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Abstract

The cis to trans photoisomerization of retinal, a common biomolecular photon de-
tector, is modeled using the Su, Schrieffer, and Heeger model of conjugated polyenes
and the extended Hubbard model of electronic interactions. This attempt improves
on previous attempts by shedding the mean-field approximation, and by treating pho-
toisomerization as a current acting on electrons in the p, orbitals of carbon chains
rather than an artificial HOMO-LUMO electron displacement within a molecular or-
bital framework. The model reproduces ab initio and experimental data well, including
the energy of the photoexcited state, and with finer tuning may reproduce the 11-cis
to all-trans isomerization of retinal, and may help explain the electronic mechanism of
this peculiarly fast and efficient process.
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1 Introduction to retinal

1.1 Biological context

The retina of the eye is covered with rod cells and cone cells. The rod cells are responsible
for night vision, and the cone cells for color vision. There are about 3 x 10° cone cells and
about 1 x 10® rod cells on the human retina (Fig. 1a). The outer segment of the rod cell
contains a stack of about 1 x 10® disc-shaped membrane sacs, each about 160 A thick, in
which the protein rhodopsin makes up 80% of the protein content (Fig. 1b,c). Rhodopsin
consists of the protein opsin bound to a molecule called retinal.

Retinal, which changes shape when hit by a photon, is the first step in the process of
vision. It is present in cone cells and rod cells, the only difference being the proteins to which
it is bound, which influence rhodopsin’s absorption spectrum. Although the opsin proteins
depend on cell type and animal species, retinal appears to be a universal photon detector in
animal vision. Rhodopsin’s absorption spectrum peaks around 500 nm, correlating well with

the solar spectrum. (Nathans 1992; Stryer 1995).

1.2 Chemical structure

The retinal molecule has a backbone of 15 carbon atoms, forming a ring of six carbons at one
end, with a zigzag tail of nine carbon atoms terminated by an oxygen atom (Fig. 2a). It is
synthesized from all-trans-retinol, or Vitamin A, which differs from retinal only in that it has
CH,OH at the tip of the tail (Fig. 2). The tail end of retinal binds to the protein through a
molecule of HyN attached to a lysine group, (CHy)4, which is attached to the opsin protein.
With the introduction of a proton, retinal loses its oxygen, HyN loses a hydrogen and an
electron, and a molecule of H,O forms, leaving a positively charged nitrogen in the oxygen’s
place on the retinal chain, bound to opsin via the lysine group (Fig. 3). This nitrogen is
significant because its positive charge affects retinal’s electronics.

Retinal’s carbons have been numbered arbitrarily. Carbons 5, 9 and 13 each have an

)

attached “methyl group,” which consists of one carbon, bonded to the backbone, and three
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Figure 1: a) Scanning electron micrograph of retina, showing rod cells and the smaller cone
cells. b) One rod cell, containing stack of membrane sacs. The rhodopsin protein resides
in the membrane. c) Cross section of rod cell, showing flat membrane sacs. The rhodopsin
protein is embedded in the membrane (Stryer 1995).
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Figure 2: a) The molecule 11-cis-retinal, not tied to any protein. In the ball-and-stick
picture, carbons are shown in black; hydrogens are not shown. In the chemical diagram,
hydrogens are not shown but are implied. At the tail end of bare retinal is an oxygen atom.
b) Vitamin A, from which retinal derives (Stryer 1995).
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Figure 3: 11-cis-retinal attaches to the rhodopsin protein via a lysine group and forms a
protonated Schiff base, or a positive charge at the tip of retinal’s tail (Stryer 1995).



Figure 4: A methyl group. In retinal, methyls are bonded through their carbons to retinal’s
carbons 5, 9, and 13.

Figure 5: Each carbon in the carbon chain is bonded to a hydrogen. (The hydrogens are
omitted from chemical diagrams). Each carbon has two valence electrons caught up in
bonds to the left and right neighboring carbons. The third electron is in the bond with the
hydrogen, and the fourth (shown dark) inhabits the p, orbital and can jump from site to
site, as if the carbon chain were a kind of one-dimensional metal.



hydrogens (Fig. 4). The other carbons have an attached hydrogen instead.

The retinal molecule can take many forms, or “isomers.” The surrounding protein con-
strains the molecule so that it assumes a bent form, called 11-cis, because the bond at carbon
number 11 is a “cis” bond, rather than a “trans” bond. If the tail of the molecule were rotated
180° around the 11-12 bond, then the molecule would be straight. This straight configu-
ration is called “all-trans” retinal. When the molecule changes shape, without changing its

atomic content, it is said to “isomerize.”

1.3 Electronics

Each carbon in the chain has four valence electrons (Fig. 5). One of the electrons is caught
up in a covalent bond with the neighboring carbon to the left. Another is caught up in a
covalent bond with the neighbor on the right. The third is caught up in a covalent bond
with the hydrogen atom or methyl group. The three peripheral atoms repel each other, so
that they form a planar configuration around the center carbon, with bonds 120° apart.
The fourth moves up and down through the plane, occasionally exchanging places with a
corresponding electron from a neighboring carbon. In this way the carbon chain is like a
metal.

Since the atoms are bound together into a molecule, the electrons inhabit not pure
electronic orbitals like s and p (Fig. 6a), but “hybrid orbitals,” which combine elements of s
and p. When the s and p orbitals of neighboring carbons overlap, the overlapping s orbitals
form a o bond and the exchanging of electrons between p orbitals forms a 7 bond. The
orbitals of each carbon in the chain are of the type known as sp’p, (Fig. 6b,c). If two atoms
are bonded by o bonds but not strongly by 7 bonds, their bond is called “single.” When
7 bonding is significant, however, the atoms will be closer together and their bond is called
“double.”

The potential wells of double bonds are deeper than those of single bonds (Fig. 7).

Therefore, a chain of carbon-hydrogen pairs will form as many double bonds as possible.



Figure 6: a) Standard s and p orbitals. b) Hybrid orbitals ¢ and , in the sp’p, configu-
ration. ¢) Bonds form when the orbitals are close enough to exchange electrons and form a
wavefunction of their own.
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Figure 7: The potential well of the double bond is deeper than that of the single bond, even
though the double bond brings the nucleons closer together. (schematic diagram)

The configuration with the lowest energy turns out to consist of alternating single and

double bonds (Fig. 8). When long bonds and short bonds alternate, the system is said to
be “dimerized.”

Bonding by 7 orbitals creates torsional stiffness, because neighboring p, orbitals overlap

the most—and lower the total energy the most—when they are parallel, so that twisting
away from the parallel orientation would cause the energy to increase.

When they are
perpendicular, the overlap is negligible.

The bend in 11-cis-retinal brings the methyl group at carbon 13 in close contact with the



Figure 8: The polyacetylene molecule, in chemical and schematic notation. The ground state
of a chain of carbons has alternating single and double bonds. Double bonds are physically
shorter than single bonds. In a double bond, electrons hop back and forth between the
carbons more often than in a single bond.

Figure 9: The 11-cis configuration, showing the close proximity of the hydrogen at carbon
10 and the methyl at carbon 13.

hydrogen from carbon 10 (Fig. 9). The interaction potential between the methyl and the
hydrogen is a strong antibonding one; the particles repulse one another other. The 11-12
bond is double, however, and therefore torsionally stiff, so the molecule is stuck in the bent
formation even though it could avoid the methyl-hydrogen discomfort and have a lower total
energy if it assumed the all-trans form. Experimental analysis of retinal has found a twist

of about 10° around the 11-12 bond in the ground state of 11-cis-retinal (Aalberts 1997).



1.4 Behavior

When 11-cis retinal absorbs a photon, it will isomerize to the all-trans form, with a quan-
tum yield of 67%. If 100 photons are absorbed by rhodopsin proteins, 67 all-trans retinal
molecules will be formed. The transformation of rhodopsin, which holds 11-cis retinal, into
an intermediate bathorhodopsin, a form of rhodopsin in which retinal’s 11 bond is on its
way to becoming trans, takes place in 200 fs (Wang 1994). This is the fastest known photo-
chemical reaction (Vos 1996).

Retinal’s efficiency and speed could be related. Experiments have shown that the motion
of 11-cis retinal molecules in solution is vibrationally coherent during the 2ps after the
impact of a 35fs pulse of light. This result suggests that the transition is “barrierless,”
because if a barrier inhibited a photoexcited retinal molecule from isomerizing, then the
unisomerized molecules, those that could not pass the energy barrier, would exhibit different
modes than the isomerized molecules that did, and the vibrational modes would not be
observed to be coherent.

Traditionally, photoisomerization was thought to occur when a photon created an elec-
tronic particle-hole pair in retinal, bringing the molecule to an excited state, where it would
vibrate and critically damp out, riding its energy surface down to the ground state of the all-
trans “photoproduct” through an energy transition known as “internal conversion.” However,
such a scenario would not exhibit vibrational coherence. Furthermore, the transformation
occurs so quickly it is unlikely the vibrations have time to relax. The vibrational coherence
suggests that a nonstationary wave packet travels directly from the 11-cis excited state to the
all-trans ground state, through Landau-Zener tunneling process (Fig. 10) whose probability

(Prz) depends only on the velocity of the nuclei:
1
PLZ X exp ——
v

In such a process, then, quantum yield would depend primarily on nuclear velocity (v),

which is related to the speed of the transformation. There is supporting evidence for this
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Figure 10: The photoproduct is vibrationally coherent because the excited state tunnels into
the all-trans form of the ground state. The dashed lines show the tunneling path (Wang

1994).
relationship between speed and efficiency in the case of isorhodopsin, which has a slower
isomerization speed (600 fs) and a lower quantum yield (22%) (Wang 424).

It is unknown exactly how this transformation proceeds. However, it is likely that the
absorption of the photon reduces the torsional stiffness in the 11-12 bond, allowing the
methyl-hydrogen repulsion to twist and unbend 11-cis-retinal into all-trans-retinal. To in-

vestigate this process, we first need a theoretical model of the dimerized carbon chain.

2 Modeling
2.1 Polyacetylene as a model of retinal

The backbone of retinal is much like the molecule polyacetylene, (CH),. Polyacetylene is a
simple molecule which can be synthesized with any number of CH groups. It has been studied

experimentally and theoretically for decades, so it is fairly well understood. Therefore,

10



Figure 11: Polyacetylene, CH,, is a well-studied that is similar to the backbone of retinal.

conclusions about the structure and dynamics of polyacetylene may lead to understanding
of retinal. The validity of such an analogy is strengthened by observations that retinal’s ring
and its lysine tail end are stationary during photoisomerization.

Retinal has significant differences from polyacetylene with its two methyl groups in place
of hydrogens off of carbons 9 and 13; however, these differences are manifest primarily in
their effect on the classical moments of inertia, and not on the electronic structure of the
molecule, since all the valence electons on the methyl’s carbon are tied up in ¢ bonds, within
an sp® hybrid orbital, rather than an sp?p, orbital that would affect the electronics of the
backbone.

Studies of polyacetylene have shown that the dynamics of carbon chains can be explained
not as a disorderly mess of phonons, but as a zoology of species of stable, self-localized
non-linear excitations in bond-length patterns which propogate throughout the chain on
timescales much longer than typical phonon modes. Topical excitations are important for the
study of retinal’s photoisomerization because they demonstrate the effect of added energy, as
from a photon, on the bond lengths. These well-studied topical excitations include “solitons,”

)

“polarons,” and “breathers.”

2.2 Solitons, polarons, and breathers

Solitons arise spontaneously in the ground state of some polyacetylene chains. It turns out
that the lowest energy configuration of all finite chains has double bonds at both ends of
the chain. If the chain has an odd number of bonds, the bond alternation pattern is an
unambiguous pattern of alternating double and single bonds: w, = (—1)"uy (Fig. 12a)

where u; is the difference between the bond length |r;;; — r;| and the proper bond length

11
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Figure 12: Whether bond number is odd or even, double bonds form at the two ends of the
chain. a) When the number of bonds is odd, the bond alternation is consistent throughout
the chain. b) When the number of bonds is even, the bond alternation pattern must shift
from double-single to single-double in order to have double bonds at both ends of the chain.
The spot at the middle, where u; ~ 0, is called a soliton. The graph ¥; crosses zero at the
middle, indicating with a linear approximation the precise location of the soliton.
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Ap:

uj = |rjp1 — 1] —ag

If the chain has an even number of bonds, this alternation pattern would give a single bond
at the end. But the ground state of an odd-bond chain actually forms in such a way that
there is a gradual transition from a pattern of u, = (—1)"uy for low n to a pattern of
u, = (=1)""y, for high n, so that double bonds appear on both ends of the chain. Toward
the middle region, the alternation magnitude gradually decreases to zero, and in the very
middle of the chain the alternation magnitude is zero. A soliton is said to exist at that point
(Fig. 12b).

Like solitary waves, solitons have a width. The pattern of |u;| fits an inverted Gaussian
curve, with a width proportional to the length of the chain. (In a chain as short as retinal,
that width is around 2a; in a chain of 100, the width is around 10a). The pattern of
U; = (—1)u; fits a tbtanh(c(j' — j§)) curve, where b and ¢ are constants, and j' is a
continuous variable (Fig. 12b). The soliton can be pinpointed in continuous space at the
location j, where the tanh curve crosses zero. In these simulations, ¥, is defined in relative
terms, as ¥; = (=1)?(u; + 1 — u;). Under this definition ¥; is a smooth function, and it
exposes the solitons inherent in formations which distort the proper average bond length.

The solitons are interesting because they behave like particles. As time evolves, the
motion of the solitons is continuous. Solitons will “bounce” of the boundaries of chains, and
can annihilate with one another.

These so-called “solitons” qualify as the type of solitons that physicists and mathemati-
cians know because they arise from nonlinear phenomena, exhibit particle-like motion, and
do not disperse. However, they do not move through one another the way proper solitons do.
They carry charge (but can also be neutral), mass (they are quite light—just a few electron
masses), and spin (charged solitons have spin 0, while neutral ones have spin 1/2) (Su 1980;
Heeger 1988). They are perhaps better known as “kinks.”

Solitons appear in even-bond chains, but can arise from other means. For instance, if

13
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Figure 13: In an odd-bond chain, the dimerization pattern is perfect. But as a negative
charge is added, the dimerization pattern on the right hand side is reversed, and a soliton
gradually moves in from the right. Solitons exist at the roots of the the ¥, function. (The
simulation algorithm will be explained in section 2.6.)
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Figure 14: In a chain of even bond number, the stationary soliton in the middle of the chain
can be removed by the addition of a negative charge a the right hand end of the chain.
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Figure 15: At time zero, the 11 bonds were arranged as if a 12th double bond existed. When
system was allowed to evolve, a soliton appeared at the end, moved toward the left, and
gradually converged around the middle.

a strong positive charge is placed near a chain, it will increase the electron charge density
nearby, creating an electron shield that will repel other electrons, thereby pulling up charge
density at a site where it was low, and pulling down charge density at the neighboring site
where it was high. This causes a soliton to emerge at the end of the chain, and move in more
the greater the charge (Fig. 13).

Conversely, if a soliton already exists at the center, as in an even-bond chain, increasing
the charge at the end will “erase” the soliton (Fig. 14). If the final carbon in an odd-bond
chain is instantaneously plucked off, a soliton will form at that endpoint, and travel toward
the other end, “bounce” off of that end, and then make its way toward the center (Fig. 15).

Or, if an electron is moved from the valence band to the conduction band by photon
absorption, then a soliton and an “antisoliton,” a pair of oppositely charged solitons, form
at the center and move away from each other toward the ends, bounce off the walls, and
cancel each other out (Fig. 16). The energy of the solitons is not lost except through
damping. Therefore, even if solitons cancel each other out, and the ¥; function no longer

crosses zero, their energy is still stored in the motion of the carbons. Therefore, it is likely

15
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Figure 16: An even-bond system was in its ground state when it was hit with a photon at
time ¢ = 0, introducing energy that resulted in the creation and subsequent annihilation of
soliton-antisoliton pairs.

that soliton-antisoliton creation follows soon after annihilation (Fig. 17).

Other forms of excitation have been named. The polaron, for example, is like a soliton-
antisoliton pair in which ¥; never crosses zero (Fig 19). When a soliton annihilates with an
antisoliton, it “turns into” a polaron. Of course, such an annihilation is really a soliton’s ¥;
function moving away from the x axis, causing the zero crossings to become closer together;
the polaron’s creation is merely the opposite (Guinea 1984; Heeger 1988).

If the energy added to the system with the promotion of electron is greater than the
energy required to create a soliton-antisoliton pair, then the extra energy might be stored

Y

in a “breather,” which is defined as a “spatially localized dynamically bound state” (Heeger
1988) (Fig. 18). Breathers arise in the wake of solitons. Solitons have a certain threshold
velocity (which is near the “speed of sound” in the center of mass frame), below which they
are bound together, and above which they shed energy, leaving behind a breather that is
stationary (in the same frame). (Guinea 1984; Su 1980).

It is likely that retinal, like polyacetylene, exhibits localized excitations such as solitons,

polarons, and breathers. Such excitations in the bond lengths, fueled by the energy of an

16
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Figure 17: a) At time ¢ = 300fs, the system in Figure 16 has a soliton/anti-soliton pair in ad-
dition to the original soliton. b) Just 40fs later, the soliton/anti-soliton pair has annihilated,
leaving the original soliton.
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Figure 18: A breather in polyacetylene, formed in the wake of a soliton/anti-soliton pair (Su
1980).

¥, shape of polaron —

Figure 19: The polaron is a “dip” in the ¥, surface. Like a soliton-antisoliton pair, it holds
phonon energy. This figure shows a theoretical polaron.
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absorbed photon, may cause the strong double bond at the 11-12 bond to change into a
weak single bond, allowing the steric repulsion between the methyl and the hydrogen to

force 11-cis-retinal into the all-trans isomer.

2.3 The Su, Schrieffer, and Heeger analytic model of polyacety-
lene (SSH)

It is possible to model retinal and its behaviors, since there are empirical data with which a
model can be verified. Ab initio calculations give a good picture of retinal’s ground state that
comport with experimental evidence (Vreven 1997). Using NMR spectroscopy on retinal
in rhodopsin, experimentalists can measure a carbon’s proximity to other carbons using
an NMR “magic angle spinning” technique. Using NMR spectroscopy with 3C labeling,
they can measure the charge density at each carbon in retinal, within the rhodopsin protein
(Aalberts 1997). Retinal has been crystalized and its bond lengths measured in a frozen state
(Gilardi 1972; Hamanaka 1972). Retinal can be synthesized from from ground-up carrots
and placed in solution, so its photochemical properties can be analyzed (Wang 1994).

Unfortunately, the empirical evidence is limited. Ab initio calculations give good pre-
dictions of the ground state, but cannot calculate the dynamics of the full retinal molecule
in the photoexcitated state. Results from experiments on crystalline retinal or retinal in
solution are not immediately transferable to retinal within rhodopsin. Crystallization de-
forms all-trans retinal so that it is rotated around the 10-11 bond in addition to the rotation
around the 11-12 bond that makes 11-cis retinal (Gilardi 1972).

The predominant model for the dynamics of polyacetylene, developed by Su, Schrieffer,
and Heeger, is transferable to retinal. Their model (“SSH”) models the o bonds and the 120°
bond separation with classical springs, and the electronic with the “tight-binding model.”
(Ashcroft 1976).

The model Hamiltonian is not deduced from first principles, but rather constructed to

fit the needs of the computational task. For that reason, it treats the electronic behavior
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” one of the

discretely in one dimension, using the probability of finding electrons at a “site,
carbons along the chain, rather than calculating all of the electron clouds in three dimensions.
The model uses a crude spring approximation for the sigma bonds in order to make the setting
of parameters more flexible. Nevertheless, it predicts many variables well.

The SSH model treats simply the sp? portion of carbon’s sp?p, hybrid orbital structure.
The potential well of carbon-carbon bonding is steeply repulsive at short distances and mildly

attractive at distances beyond the average bond length ay. For small oscillations, however,

a u? approximation suffices, since the second order approximation of the Morse potential
D(e—Zk(d—do) _ 2€—k(d—d0))
is

1 1
2D (—= + =k*(d — do)?
( 2+2k(d do)*)

where d is the distance between the particles, and d is the location of the bottom of the
well. Since the bond length in polyacetylene has been observed to vary during dimerization

by no more than 6% of its average value, the second order approximation is good as long as

20



Figure 21: The o bonds in the SSH model are treated simply as springs.

k < 0.1 in the Morse approximation (Fig. 20). Therefore, the ¢ bonds can be treated as
springs (Fig. 21):
Ko_u? + ..

N —

R n—1

H=Y)

j=1

where u; = |r;;1—rj|—ao, and the hydrogens are included only implicitly, in the maintenance

of 120° angles between the bonds, modeled also with springs:
R n—1 1
H=.-. + 2 iKbend(¢j o 1200)2 + ..
j=1
where ¢; is the angle between the o bonds connecting carbon j to carbons j +1 and j — 1.

By the law of cosines,

v — 1P+ —ry® — rj — 1 — 2P
2/r; —rjaflrj — 1

¢ = arccos

The average bond length ag is the location of the minimum of the o bonding potential energy
surface. Therefore, the purpose of these terms is not only to model the ¢ bonds, but more
generally to ensure that the configuration of the carbons mirrors observations. The constants
K, and Kyeng result in calculable normal modes for the system, and so can be chosen to fit
available spectroscopic evidence.

The model treats the 7 electrons in the p, orbitals with the “tight-binding model.”
This quantum mechanical model is based on the fact that there is a finite probability that
electrons in neighboring p, orbitals can exchange places with one another. The closer the
carbon atoms are together, the more the orbitals overlap, the greater the probability. The
uncertainty Az in the electron’s location increases the more the electron moves along the

chain, thereby decreasing the uncertainty in its momentum:

AxzAp = const

21



Ap x Az~

Since the electrons are confined to the molecule, however, the expectation value of the
momentum is zero, and therefore the momentum is proportional to its uncertainty. Therefore,
the electronic energy will decrease the closer together the carbons get, and the more closely
parallel the p, orbitals become.

v 1

= «—
2mocAac2

Therefore, the molecule can lower its total energy by delocalizing its p, electrons through
hopping.

Since the probability of nearest neighbor hops is much greater than that of next-nearest
neighbor hops, we can consider only nearest neighbor hopping. By a theorem of solid state
physics known as “Peierl’s instability,” the configuration in which the carbons are equally
spaced is unstable, and electron-phonon coupling causes the ground state bond lengths to
alternate:

Since the index n can be assigned arbitrarily, the physics is invariant under an n — n + 1
transformation, so the resulting state is two-fold degenerate (Kittel 1986). Soliton creation
collapses this degeneracy.
The physics of Peierl’s instability is implemented by the electron-phonon coupling term,
n—1
H= =t (chycjrrs+chingcis) + -
j=1,s
where the ¢, are standard creation and annihilation operators. The operator product, c;- 11Cjs
acts on a state by destroying an electron at site j + 1 and creating an electron at site 7,
and its expectation value is the propensity for an electron to travel from site j + 1 to site
7. In accordance with the Pauli exclusion principle, the C;-,s operator returns zero when it is

applied to a wavefunction in which an electron of spin s already exists at site j, just as the
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cj,s returns zero where one does not exist.

cln) = Vnln—1)
c'ln) = Vn+1|n+1)

where |n) is a state where the site has n electrons on it. Thus, the expectation value of the

electron density operator nj; is

(W njs| ) =

{ v)
= <\II c;,s\/ﬁ‘ U'(n' =njs — 1)>
(v |vn= 1+1\/ﬁ\ )

o
v C;j sCiys

and returns the expected number of electrons of spin s at site j.
Since the sign of t is always positive, the term has a negative sign. The greater the
hopping probability, the more “delocalized” the electrons will be, and the less energetic they

will be. The factor ¢ is defined as
t = (to — au;)cosb

The ¢, term sets a constant hopping probability that is increased if the bond is short (u; < 0),
or double, and decreased if long, or single. The angle # refers to the angle between the p,
orbitals on sites j and j + 1, so that the hopping probability goes to zero if they are oriented
perpendicularly to one another. More specifically, 0; is the angle between the plane formed
by points rj, rj;;, and rj o, and the plane formed by points r;_;, r;, and r;;;, where r; is
the location of carbon j:

Wi X Wit1

cosf =
[Wj X W]

where
(rj—rj 1) X (rj41 —15)
|(rj —rj_1) X (rj31 —15)]

Wj:
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The cos @ factor, which is always positive, will bring the ground state into the correct planar
form (0; = 0 for all j), and will introduce a force of torsional stiffness to the molecule, by
creating an energy barrier against the cis-trans isomerization.
The a term tends to shrink the bond lengths to an unrealistic extent, requiring an
additional term,
n—1

I:_I:...+Z_Fuj+...
j=1

to counterstretch the bonds. The value of I' is set so that the average bond length is ay.
We can model the effect of the Peierl’s distortion on the energy bands. Neglecting the

cosf contribution, the electron-phonon coupling is

H(u) = =Y [to+ (=1)"2au](chi1 56n,5 + ¢ sni1,s) + 2N KW

n,s

which can be diagonalized by the Bloch operators
cks— = (N 3 exp(—ikna)cys

kst = —i(N Y23 exp(—ikna)(—1)"cys

ns

for valence and conduction bands, respectively.

The Hamiltonian can then be rewritten
H(u) = Y [en(ChosChst = Cho_Chs-) + Du(Chy Crom = Chy_Chor) + 2N Ku’]

where Ay = daugsin(ka) and ¢, = 2to cos(ka).

Then, by making the transformation
Uks— = OCrs— — PrCrs+

Aks+ = QpCho— + PrCrst

and requiring

lal* + [Be* =1
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Figure 22: The energy surface created by the tight-binding model creates an unstable equi-
librium at v = 0, pushing the u; to the bottom of the wells, which are located at u = u,.
This is Peierl’s instability.

to satisfy Fermi anticommutation relations, and by eliminating terms that cross + and —

operators, we get
H =) Ey(ngsy — nks—) + 2NKu’
where ngsy = CLS +Chs+ and ny,_ = c};s_cks_ are the number of conduction and valence
electrons, respectively, and
Ek = \/ 6% + AIQC .
Now, when uy = 0, the conduction and valence bands intersect, so that an electron can

move from one to another. However, a non-zero ug introduces a gap between the two bands.

The ground state energy can calculated:
Eo(u)/N = —4ty/m — (2to/m)[In(4/|z|) — 1/2]2° + Kt32* /20°

where x = 2au/ty (Fig 22). The ground state energy thus has a maximum at u = 0, and
minima at u = +ug (Su 1980).
The tight-binding model assumes that hopping probability is linear with u;. But this

is clearly false: hopping probability depends on the overlap integral of two electron clouds,
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Figure 23: The linear approximation to the hopping prefactor is good for t; = 1, o = 4.0,
up < 0.05. In this case, ay = 1.4.

and since electron clouds decay exponentially with distance, so should hopping probability.
In fact, the tight-binding prefactor, t, — awu;, is merely a first-order approximation to a
more realistic exponential function, %, exp(—%uj) (Fig. 23). With typical values ¢y = 1.0,
a = 4.0, and a variation Au; = £0.05, there is a reasonable 2.25% maximum deviation
from the exponential. The linear approximation works especially well at the value t5 = 2.5
initially used by Su, Schrieffer, and Heeger (error of 0.25%). However, in our studies we
lowered t, to as low as 0.4, for which the error reaches an unreasonable 17.5%. Perhaps this
is one place where the model could be improved.

The model is crude in other ways. The force of planarity does not belong exclusively
in the tight-binding term, since the planarity of the molecule depends on nuclear repulsion
as well as electronic preference. The I'" term appears completely arbitrary. It represents
nothing physical, but only acts as a corrective to the tight-binding force. However, models
are positivist approximations of reality, and their terms need not always represent identifiable
physical phenomena.

This limited set of terms was chosen by Su, Schrieffer, and Heeger in the early 1980’s in
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part so that the full quantum mechanical calculations could be carried out in a reasonable
amount of time. By necessity they applied the mean-field approximation, because including
coulomb interactions would have complicated the model impractically. They devoted much
language to justifying their disregard of interactions (Heeger 1988).

The SSH model can be extended with the “Hubbard model,” which models same-site
Coulomb interactions simply:

. n
H=- -+ Unjsn, +-
j=1

where n;; = c;-,scj,s. This term increases the energy if electrons of different spin congregate
around the same carbon atom, creating a negative incentive for the formation of doubly
occupied ionic levels. The positive coefficient U; is a constant which is usually treated as the
same for all carbon atoms, but which may be different on other types of atoms. When Uj is
the same for all j, the charge density remains uniform across j.

The “extended Hubbard model” includes a term for intersite coulomb repulsion:

. n—1
H=--+ le Vingr + 15 (0410 + 15410) + -+

The term favors an electronic configuration in which electrons congregate at every other site.
The positive coefficients Vj}, like the Uj, are usually the same for all j. Nonzero V; values
across j will dimerize the charge density p;, alternately reducing and increasing electron
density from site to site (Fig. 24).

To model the individual characteristics of molecules like retinal, terms creating specific
charge densities can be added:

. n
H=---+ > Sinj;+---
j=1,s

A negative S; models a buildup of electron density at site j, and a positive S; will repel
electrons from that site. To model a negative ion near the chain, one can compute the

potential W; due to that charge at each of the carbon locations r;, and then set S; = eW;.
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Figure 24: When the V; are uniformly increased, they introduce an alternation pattern into
the charge density pattern.

At close distances, unbonded atoms repel one another with a “steric force.” This close-

range force can be modeled with a Lennard-Jones potential:

Asteric

H=. .-+ 12

The precise magnitude of the steric repulsion is not well known, so Agieric can be chosen so
that the relative atomic coordinates agree with experiment (Haile 1992).

For better accuracy, the steric repulsion can be modeled with the antibonding term of a
Morse potential, De2¢("—70) where D and a are constants, 7 is the distance of the interaction,

and r( is the natural distance between the two atoms (Morse 1929).

2.4 Implications of the Hubbard model

The Hubbard model does not offer easy analytical solutions to systems with more than two
sites. But the two-site case illustrates how the Hubbard model affects energy eigenvalues
(Ashcroft 1976). For example, consider the problem of one electron which can be bound to
one of two protons, or sites. There are two electronic orbital levels, |R) and |R'), one for

each proton, which are taken to be orthogonal, (R|R') = 0. If the two protons are far apart,
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there will be a hydrogen atom and a proton. If they are close together, there will be HS, in
which the electron has a probability of being in the orbital of each proton. The tight-binding

model can be expressed in terms that are off-diagonal in |R) and |R'):
(RIH|R)' = (R'|H|R) = —t

Meanwhile, we know that the binding energy of an electron bound to a proton E., so that
(R'|H|R') = (R|H|R) = E,

Therefore, in |R) and |R') space, the Hamiltonian is

- E, —t
H_|:_t Ee]

with eigenvalues E, + ¢ and corresponding eigenvalues

1

V2

Thus, the introduction of the hopping parameter splits the energy spectrum in two.

(IR) ¥ |R))

To extend this system to two electrons, the Hartree approximation (Ashcroft 1976), which
treats electrons as independent, can be applied to the Hubbard model. The ground state
energy of the one-electron system is E, — t, as shown. If the two electrons could inhabit the
same orbital without interaction, the ground state energy of the two-electron system would
be simply twice that energy, or 2(E, — t). We can introduce interaction into our model as a
perturbation to the Hartree approximation, by assuming that there is an additive energy cost
of U whenever two electrons inhabit the same site. The total energy is then 2(E, —t) + pU,
where p is the probability of two electrons inhabiting the same site, and since there are four
ways to distribute two pebbles in two buckets, two of which involve both pebbles in the
same bucket, the probability p is 1/2. (The basis states are |RR), |RR'), |R'R), |R'R').)
Therefore, the ground state energy within the Hartree approximation is £ = 2(E, —t) + %U

where U is the coefficient for the same-site interaction energy term.
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But electrons are indistinguishable, so the full set of states of the two site, two electron
system properly has a basis set of three states, not four: two electrons on site 1 (®;), two
electrons on site 2 (®2), and one electron on each site (®¢). The Hamiltonian in the (P,

&y, §,) basis is
2F, —V/2t —V/2t
H=|-V2t 2E.+U 0
—V/2t 0 2F, +U

This Hamiltonian shows that the energy is just 2F, when there is one electron on each site,
and that the energy goes up by U when both electrons are on the same site. The matrix
element is zero for transitions between the two doubly occupied states, because a probability
amplitude for a simultaneous two electron hopping is not defined in this model. The matrix
element for a hopping between ®, and a doubly occupied state is —v/2t rather than —t
because it is the probability amplitude sum of two equally possible events, both of which

have amplitude —¢. For example:

1

(Bo|®)) = ((RR'| + (R'R|) H |RR)

S

1 !
= 2<RR

2
= 5= —V/2t

FI\RR>+ R’R\FI\RR)

1
L

S

The ground state of this system is proportional to

1 U2 U\l
%cbmt( 1+<4_t> _4_t) 5(<I>1+<I>2)

1 1
E=2E,+ U — /42 + ~U?
+5U 2+ U

When U becomes greater than about 2t, the effect of the interactions on the energy becomes

with eigenvalue

small, and the energy tends toward 2F, (Fig. 25). In this basis, the probability of finding two
electrons on the same site is found to decrease exponentially with U. The “Heitler-London

approximation,” which takes the ground state as ®,, where each site is single occupied, is
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Figure 25: Analytic solution of energy as a function of U in the two-site, two-electron
problem, where E, = 2.5 and t = 1. Note that the energy stays near 2E, when U is greater
than ~ 2t.

thus correct for large U/t. However, in systems that undergo Peierl’s distortion, the mixing
of the ®; with the ®; and &, states becomes important, and such an approximation is
invalid.

Su, Schrieffer, and Heeger argued at length that U is negligible in polyacetylene, and
achieved good agreement with experiment without taking electron interactions into account.
However, they underestimated the energy gap between the ground and the photoexcited
state. Although errors in energy could be due to a number of factors, it is possible that their
explanation for the insignificance of interactions was flawed. The analytic two-site, two-
electron case suggests that the energy gap would be increased if U were taken into account.
We have demonstrated in our own calculations that U causes the energy gap to increase
(Fig. 27).

In the multi-carbon chain, therefore, increasing U should tend to cut down on electron
traffic from site to site. On average, of course, there is only one electron per site, but this
means that some of the time there are no electrons there, and at other times there are two

electrons there. For the electrons to delocalize, they need to be able to cohabit the same site,
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Figure 26: In polyacetylene, As U increases the single bonds and the double bonds enlongate,
because the Coulomb interaction within each site inhibits hopping.
since electron traffic without occasional cohabitations, in a system of n sites and n electrons,
is possible only in a continuous ring of sites. Electrons will be less likely to hop to places
where they will face the energy cost of cohabitation. Therefore, the intrasite interaction
potential U should have the effect of weakening all of the 7 bonding. Single bonds, which
have some 7 character, should elongate somewhat, and double bonds should elongate even
more. This was verified in simulation (Fig. 26).

The introduction of interactions thus has a major effect on the SSH tight-binding model.
If U is increased to a non-negligible value, then I" must be reduced—all the bonds must be
shrunk in order that the bond lengths oscillate around the observed value ag. The variable
« must also be increased, so that the value ug, where u; = (—1)"u, is brought to its proper
value. After these adjustments have been performed, the quantum component of the energy
eigenvalue is greater, although the tight-binding model works as before. Thus, adjusting the
variable U allows for more flexible modeling of the energy.

The site-to-site interaction potential V' causes alternations in the charge density pattern,

causing electrons to bunch up every other site, thereby counteracting U’s effect of distributing

32



4.5 I I I I I I I

energy gap

Egap

Figure 27: Energy as a function of U, in a polyacetylene chain of 10 carbons and nine bonds,
where a and I'" were adjusted to yield the proper dimerization pattern.
the electrons equally across the sites. It increases electron density around double bonds, and
decreases it for single bonds. In practice, the electrons tend to congregate at one site, in
the middle of the chain, because the energy due to the V' term of a chain with consistent
dimerization is more than that of a chain with a single short bond at the middle.

However, the two-site model does not consider the spin of the electrons. The two-site
model with one up electron and one down electron is more appropriate to studying conjugated
chains, where there is an average of one electron per site, and where the population of

electrons can be assumed to contain up and down electrons in equal numbers.

site 1 | site 2
I
When spin matters, the two site model has four possible states: | 2 0 d
31 4 T
4 K
In a basis with this ordering, The Hamiltonian thus becomes
u -t —t 0
“ -t VvV 0 —t
H = -t 0 VvV —t
0 —t —t U
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Figure 28: As V increases, the single bonds and the double bonds enlongate, but the bond
at the center of the chain stays relatively short.

2.5 Modeling photoexcitation

The photoexcitation operator can be modeled in this basis. Photoexcitation causes an
electron-hole pair to be created; that is, by moving an electron from the valence band to the
conduction band. Quantum mechanically, this involves an electromagnetic potential A. To

first order in A, the photoexcited state evolves as
. ot
W)= 142 [5@)AwE) i) [w(0)
0

where j is the electric current in the chain and c¢ is the speed of light (Su 1980). This

photoinduced current can be understood formally as the operator

N—1 N-1
S (e- ) =3 (- 0)(c] sCp1s — ChirsCs)
j=1 j=1

where € is the polarization vector of the photon, and

ii= Tjit1 — Ty
Tj41 — 15

The potential A and its corresponding polarization vector € can be assumed to be uniform
across j, since the molecules in question are on the order of tens of angstroms in size, whereas

the wavelength of light for photoexcitation is hundreds of nanometers.
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In the spin-conscious two-site problem, the unit current operator J can be written

0 -1 -1 O
5 1 0 0 -1
J= 1 0 0 -1
0 1 1 0

Some computational models keep track of electron states by population numbers within
each band. In such a system, photoexcitation can be modeled as the artificial, instantaneous
moving of an electron from the valence band to the conduction band. However, when only
ground expectation values are computable, and no wavefunctions are known, photoexcitation
must be modeled as an operator P that has the effect of making P |G) = |E), where |G) is
the ground state and |E) is the optically excited state.

Such an operator can be found within the photon transition rate
Ry =C({f|A-pli)|"6(E; - B — w)

(where h = 1) which gives the probability of a transition between the state ¢ and the state
f, involving either absorption or emission. The product A-p can be rewritten as the current
operator .J, using Mahan’s formalism. The absorption spectrum I (w) = Xjrisy can be

broken down into its moments. For example,

JI(wwdw Ef|<f‘*]‘> (Ef — Ei)

(w) =

JIwyde oy (1] J]d) P
_ )]0 B - B
= {£]7]i)
_ x GtE n) (L) — G ) (f |7
il (f ‘J‘ i) 2

H

(il2)

It is true by definition that in any transition the energy gap between the photoexcited state

(|E)) and the ground state (|G)) should be the energy of the incoming photon: Egr—Eg = w.
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Figure 29: The retinal molecule. Carbons 5 through 16 are modeled as a polyacetylene chain
of length 12, and the ring is neglected.

The same must therefore hold for the expectation values of these quantities:
(5|1 5) ~ (e i) =
Therefore, it follows that J |i) = |E), since the moment must reduce to
(w) >= (i|J'HJ|i) = (E|H|E) - (G|H|G) = By — Ec = Egap

where Egapis the name for the energy gap between the photoexcited state and the ground
state. Higher order moments are also possible. The moments of the quantum energy gap

can construct the full absorption spectrum, and vice versa.

2.6 Extending the polyacetylene model to retinal

Within this theory, the problem of retinal’s isomerization can be outlined. It can be imagined
as a polyacetylene chain of 12 carbons, where the last carbon is not really a carbon but a
nitrogen atom (Fig 29). The fact of the nitrogen atom is significant only for its mass, since,
like a carbon, it contributes one 7 electron to the chain. The nitrogen atom at site 16 is
a good place to end the chain because it has no other possible double bonds, only single
bonds to the lysine group and to a hydrogen. Similarly, carbon 5 is a good place to end the
chain, since its bond to carbon 4 can never be double. The positive charge on the nitrogen
can be modeled by setting Sig in order that the ground state configuration comports with
experiment. This potential should cause a soliton to be created around site 13 in the ground

state (Aalberts 1997).
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The effect of the methyl from site 13 can be modeled by including in the Hamiltonian
the antibonding steric potentials between the methyl and hydrogens on neighboring sites.
These terms will lead the Hamiltonian to recognize that the all-trans configuration has a
lower energy than the 11-cis configuration. However, the cosf factor in the tight-binding
term causes torsional stiffness in the 7 bonds, creating an energy barrier in the ground state
between the cis and trans formations.

Ab initio calculations have shown that photoisomerization takes place in three sequential
steps: a photon interacts with an electron in retinal; the tail of retinal stretches; and then the
tail rotates around the 11-12 bond in to the trans configuration (Fig. 30). This is consistent
with a hypothesis that photoisomerization causes the 11-12 bond to change from a short
double bond to a long single bond, thereby decreasing the torsional stiffness so that there is
no barrier separating the cis configuration from the ¢rans. This is also consistent with the
experimental finding that the vibrational modes of retinal molecules in solution are coherent
during the time of isomerization: the molecule does not vibrate down into the all-trans state
from an excited state, but rather moves there through a barrierless internal conversion. We
further hypothesize that the stretching is caused by the passing of a soliton past the 11-12
region. (Garavelli 1997; Wang 1994).

The full theory of conjugated polyenes until now has not been used to investigate this
hypothesis. We incorporate the full theory into our model, considering electron interactions
(the U and V terms, the photoexcitation operator (P), mechanical and electronic ground
states, charge doping, soliton dynamics, and vibrational modes.

We include electronic interactions even though Su, Schrieffer, and Heeger concluded that
electron interactions were not important. We think it is possible that the increase due
to the U term in the energy gap between the ground state and the photoexcited state is
necessary for the ground state to reach the photoexcited state, from which it can tunnel
into the all-trans ground state. Furthermore, we have the technology to perform quantum

mechanical calculations with a density matrix method which can handle electron interactions
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Figure 30: Garavelli et al. performed an ab initio calculation of the dynamics of retinal’s
photoisomerization, and found it to stretch first and then twist. Note that the bond lengths
change between the FC and HM states, even though the molecule has not traveled far down
its minimum energy path (MEP). Only after the central bond is long does the molecule twist
around it (Garavelli 1997).

in a reasonable amount of time, which Su, Schrieffer, and Heeger did not. The density matrix
method (DMRG) gives quick answers because it yields expectation values without calculating

all of the wave functions (White 1992; White 1993; du Croo de Jongh 1998).

3 Computing

We consider the full Hamiltonian

n— 1
Asteric

—1q
H = Z:iKu +Z Kbend(qﬁ 120°)? +

(THIOfMeth13)12

- (t— OfU/]‘)COSQ(C;',SCj+1,S + C;_H,st,s) + Z —T'u,

n—1

n
+ D Umjangy 4+ D Vilngs +150) (et + nje,y)

j=1 j—l

+ ana, +Z mv

j=1,s j= 1

where all of the terms except the obvious kinetic energy term > 7" mv2 have been

j=12

defined above.
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The potential energy terms of the Hamiltonian are functions only of coordinates r; and
operators c;,s and c; . Given the coordinates r;, the DMRG method yields <<I> ‘O‘ q)> for any
operator O, including H and JTHJ. Thus, the energy F = <<D ‘ﬁ‘ <I>> of the ground state or
the photoexcited state is easily obtainable by substituting expectation values of operators in
place of the Hamiltonian’s operators. The energy of any configuration of r; is computable.

Since z, y, z are real parameters of H , and since the eigenfunctions ¥(z, y, z) are normal-
ized, it is true by the Hellman-Feynman theorem that

dE _ d

d -
A} —
= 22 (2, 0,2) H(z,y,2)

2| W(o.2)) = (W(o0.) ¥o. )

and the same for y and z. Since the dependence of H on the coordinates is simple, computing
the forces on the carbons, F' = —VE = — <\Il ’Vﬁ‘ \Il> is a simple matter of plugging in
expectation values for the operators in analytic derivatives of the Hamiltonian. For example,

the force due to the “hopping term” is just

Fhop = - <\II ‘Vﬁhop \I/>
n—1
= Z V (t — acos@(ujr1 — u;)) (r1,ra, ..., Tp) <\II ‘(C;,SCJ'+1,5 + c;H’scj,s) \II>
j=1,s

where cos 6 and u; are simple functions of the coordinates.

3.1 Finding the ground state

Finding the spatial ground state is a simple matter of minimizing the potential energy £ with
respect to the z;, y;, and z;. A conjugate gradient method of numerical minimization was
used. This method is more sophisticated than simple methods in which the coordinates are
merely stepped by their derivatives until the deriviatives are near zero. Instead, the function
is followed along the line of its gradient in coordinate space until it reaches a minimum. Then
the coordinates are reassigned to this point on the the line, and the gradient is computed
again. The algorithm stops when the coordinates change very little with each step (Press

1992, sec. 10.6). This method finds local minima, not global minima.
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3.2 Time evolution

With knowledge of the forces, it is possible to compute the trajectory of the coordinates in
time, and to watch how the system evolves.

Time evolution is a simple matter of integrating the carbon coordinates with their time
derivatives, and integrating the time derivatives using the coordinates’ second time deriva-
tive, which we calculate as the force divided by the carbon mass. (The mass of the electrons
is neglected.) There are n carbons, each of which has a location and a velocity, and the car-
bons are modeled in three dimensions. Evolving the system through time, therefore, requires
the integration of 6n variables.

We perform this integration using the Bulirsch-Stoer method with Richardson extrapo-
lation (Press 1992, section 16.4). The method, generally, is to perform the integration of a
function f(z) (in our case a component of location or velocity) along = (time) in a series of
non-infinitesimal steps of stepsize H. Within each step of size H, it integrates between x and
x+ H with the modified midpoint method many times, each time with a successively smaller
stepsize h, from h = H/2 to h = H/4, to h = H/6, and so on, until a suitably accurate value
of f(x + H) can be extrapolated. The value H can be considered the mega-stepsize, and
the value h the mini-stepsize. The extrapolation method considers f(xz + H) as a function
of stepsize h, and uses rational function extrapolation to guess at the value of f(z + H) at
h = 0. The number of integrations depends on the sensitivity of f(z + H) to various step-
sizes. When extra f(z + H) datapoints at successively smaller values of h cease to change
appreciably the fitted rational function, the routine sets f(z + H) to the extrapolated value
f(z + H) at h = 0, and moves forward to integrate from =z + H to =z + 2H.

The mega-stepsize H is chosen adaptively. If H is too small, then the extrapolation
method will converge on an answer too quickly, which is accurate but inefficient. If H is too
large, then the extrapolation method might not be able to converge at all. The algorithm

adapts by esimating a new mega-stepsize H' = aH after the completion of an integration
pts by g g g
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from t to t + H. The extrapolation algorithm’s sequence of successive mini-stepsizes is

determined by h = H/n; where
n; = 2,4,6,8,...,2j

It happens that the error ¢; in the fitted function at step j goes as e; & H* 1. Therefore,
if the previous series of integrations (under mega-stepsize H) converged at step j = k, the

next stepsize H' can be assigned a value

Hl _ H (2)1/(2/64-1)
€

where € is the threshold error below which the extrapolation is said to have converged.
A more complicated estimate considers the ideal j at which to converge, called ¢, can be
estimated by looking at the previous sequence of integrations and setting ¢ to the j at which
the sequence of integrations yielded the least error with the least amount of computation. If
the extrapolation converges before the integration with the ideal mini-stepsize H/n,, then
the next mega-stepsize H can be expanded by a factor that aims at achieving convergence at
mini-stepsize H/n,. If the extrapolation looks like it is going to fail to converge before mini-
stepsize H/n,1, the extrapolation routine can be restarted with a shrunk mega-stepsize H.
This integration routine is carefully controlled and highly accurate.

Since the full quantum mechanical time evolution is impossible to calculate in a rea-
sonable amount of time, we must perform the classical time evolution in short steps, while
recalculating the quantum eigenvalues with larger steps. The time evolution method calcu-
lates new expectation values of the quantum mechanical operators each time a new mega-step
H is considered, which in the model occurs every few femtoseconds. In reality, of course,
the electronic expectation values change continuously, not discretely. But the discrete ap-
proximation is accurate by the standard of the Frank-Condon principle, which holds that
electronic transitions, which occur on the timescale of femtoseconds, are so fast compared

to vibrational motion, which occurs on the timescale of picoseconds, that the nuclei have
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the same locations and velocities in the new state as they had in the old state (Turro 1960).
A timescale of electronic change of ~ 1 fs is small compared to the fastest observed phonon
motion, which in the model spectrum has a period of about 25fs (Fig. 31).

The process of photoexcitation can be modeled by first taking the system to its ground
state, then by allowing the system to evolve from some arbitrary time ¢ = 0 during which

time the expectation values of the Hamiltonian are computed for the photoexcited state:

(0)=(®[0]2) , t<0

(Oex) = (@ \ﬁoﬂf\ ®) , t>0

It is impossible to know, quantum mechanically, exactly when the photon interacts with the
electron; there is uncertainty in both time and energy. But the immediate imposition of the
excited state is justified by the Franck-Condon principle. Since the excited state must occur
sometime, and because it forms quickly relative to the motion of the coordinates, the model

system can realistically photoexcite in one step of the time evolution algorithm.

3.3 Setting the parameters

The Hamiltonian depends on several coefficients that should be assigned the values that
make the computed ground state correlate well with experimental data.

To set the variables ¢ and «, one can use experimental measurements and trustworthy
theoretical calculations of the lengths of the double and single bonds. A study of hexatriene
(polyacetylene of length 6) found that the single bonds were 1.47 A, and the double bonds
were 1.354 A (Negri 1989). Although hexatriene is certainly different from retinal, the bond
lengths are similar to those from ab initio calculations of retinal’s tail: 1.45A for single
bonds, and 1.35 A for double bonds (Gilardi 1972). In both cases, the average bond length
is 1.4 £ 0.01 A. The stretching parameter I' can be set so that the average bond length

conforms to experiment.
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A force field study of hexatriene found that the stretch constant & (for the spring model,
where F' = —ku) of a double bond is 8.50mdyn/ A, or 53eV/A?, and for a single bond,
5.42mdyn/ A, or 34eV/ A% This should lead to a vibrational frequency of w = /k/m,
where m is the mass of a carbon. The K, coefficient can be set so that Fourier analysis
of the coordinates during a time evolution reveals such a frequency. Using values of the
bending constants (for carbon-carbon-carbon bending along the chain) from the same study,
which amounted to 8.68 eV, the Kyenq coefficient can be set. In Fig. 31, for example, the
peak in w5 around 22fs suggests the central frequency due to the K, term. The peak
in ¢1o around 50fs suggests the central frequency of the Ky, q term. The two separate
peaks in 615 suggest the vibrational modes resulting from the different torsional stiffnesses
of single and double bonds. Since the vibrational modes of polyacetylene can be calculated
analytically, (Aalberts 1998; Inagaki 1975), we can use Fourier analysis to verify the primary
optical and acoustical modes, in order to check that the time evolution algorithm proceeds
as expected. Also in this way, the behaviors of different molecules can be compared. For
example, the vibrational modes reveal the different character of cis configurations and trans
configurations (Fig. 32).

Also in this way, the behaviors of different molecules can be compared. The vibrational
modes also reveal the different character of cis configurations and trans configurations (Fig.
32).

A study of hexatriene found that the torsion constant k& (for the torsional spring model,
where the torque is 7 = kf) is 0.13mdyn A/ rad?, or 0.81 eV for two carbons connected with
a double bond at the center of a chain, and 0.03 mdyn A/ rad?, or 0.18 eV for the case of a

single bond. The energy expression for the tight-binding term in the Hamiltonian is

(o — t)cost(c] i1, + iy o)

which is proportional to cosf ~ 1 — %. Thus, 6 enters the energy expression in a —%k02
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Figure 31: Fourier transform of a time evolution of polyacetylene in its excited state. Discrete
peaks represent vibrational modes, which can be checked with the spectrum observed in

experiments.
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Figure 32: Two time evolutions of retinal were performed, in which both evolutions used the
same parameters, but one was in the cis isomer and the other in the trans. The atoms of the
molecules were given random, slight displacements, and the system was allowed to evolve.

The two systems exhibited very different vibrational modes.
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form, which is that of a standard harmonic oscillator, where the torsion constant k is
k= (t—om)(cheiirs + clin i)
7/\%j,s%5+1,s j+1,5%7,s

Thus, the variables ¢ and « can be set along with any other variables that affect bond length
in order that the expression k£ matches the values of 0.18 eV and 0.81 eV for single and double
bonds j, respectively.

Hexatriene calculations show that in the transition from the ground state to the lowest
triplet excited state, the torsional constants of the double and single bonds switch places: the
constants of double bonds drop to the level of ground state single bonds, and the constants of
single bonds rise to within 75% of that of ground state double bonds. Constants for double
bonds at the ends of the chain do not fall as low as those for double bonds in the middle of
the chain, but they are still less than the constants of former single bonds. This is not true
for higher excited states (Negri 1989).

Retinal’s isomerization may occur when photoexcitation takes the system to a higher
energy state in which the double bonds and single bonds around the center of the tail are
inverted, as in hexatriene’s lowest triplet excited state. This inversion will turn the 11-12
double bond into a single bond, a process that is aided by the steric repulsion between the
methyl group off carbon 13 and the hydrogen off carbon 10. The steric force will cause
the 11-12 bond to quickly (within hundreds of fs) twist into a 90° position. Relaxation
to the planar all-trans state may take picoseconds, since the half-untwisted state kills the
torsional force. Vibrational motion might be required to push the torsional coordinate down
the energy hill to the trans configuration, and such a transition would require time. The
truth of this scenario is bolstered by the finding of intermediates in the photoproduct of
photoexcited retinal that do not form until picoseconds later. Nevertheless, a twist of the
11-12 bond to the 90° position is a sufficient mechanism to change the chemical properties
of the rhodopsin protein, setting off the process of generating a nerve signal.

Experiments using NMR spectroscopy can measure the charge density at each site along
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Figure 33: Measurements of charge density give good agreement with experimental data.

[4

retinal’s chain in rhodopsin. Using semiempirical methods, and applying the “zero differen-
tial overlap” approximation, theorists have tried to reproduce such charge density patterns
by positioning an ion at the end of the chain, where the positively charged NHy group is
located, as well as a “counterion” near carbon 13 (Han 1993). The existence of such a coun-
terion is certainly a possibility. However, it is also possible that the electron interactions,
especially U and V, affect the charge density pattern in ways similar to those of a counterion.
The U and V should thus be set according to NMR measurements of retinal’s charge density
in solution. Since they also affect the dimerization pattern, they also need to be set in order
to comply with ab initio bond length predictions (Aalberts 1997, refs. 13, 19.) (for ab initio
measurements on retinal, see Garavelli 1997) (for calculations on hexatriene, see Negri 1989).
We found that values of U; ~ 1 and V; ~ 0.3 gave good agreement with the charge density
data (Fig. 33). We also experimented with altering the S; electron density terms in order to
model the effect of charges near retinal, such as might come from retinal’s protein pocket.
The distances between carbons can be measured with NMR spectroscopy. The distance
between the methyl carbon from site 13 and carbons 10 and 11 has been measured. The

magnitude of the steric repulsion A ¢ can be set so that these distances are correct. In

steri
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Figure 34: The steric force parameter can be set according to the experimentally measured
carbon-carbon distances. A value of 6000 was found to be realistic.

Fig. 34, for instance, the value of Agqric = 6000 was found to result in reasonably good
agreement with experiment.

Setting these parameters accurately is a grand challenge, since each measurable quantity
is affected by several parameters, and each parameter affects several measurable quantities.
Since the goal of the modeling is to explain photoisomerization, the model can match ex-
periment relatively loosely, perhaps with a 10% accuracy in oscillation times and relative
distances—but one can only guess the accuracy requirement. However, it seems likely that
a molecule with a 67% quantum efficiency at room temperature would not have stringent
requirements (Wang 1994)

Of great importance is the energy difference between the ground state and optically
excited state, Egap. It is a particularly difficult variable to tune, since every parameter in
the Hamiltonian affects the energy. However, the great failing of models like SSH which
did not take interactions into account was their underestimate of Egap. Since increasing U
increases the energy gap, we think that the inclusion of interactions is what is needed to

model photoisomerization properly.
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Figure 35: Molecules such as these give off light in the visual spectrum in response to
currents, and could be used in future computer displays. Our simulator is capable of modeling
such molecules, and can predict the wavelength of the emitted photon as a function of the
molecule’s structure and conditions (Heeger 1988).

The Egapis especially important for practical applications. Conjugated polymers have
important optical properties not only in their absorption, as in vision, but also in their
emission. It has been shown that the absorption of a photon produces an electronic current
in the conjugated chain. The mathematics is time symmetric, however, so that an induced
current causes a photon to be emitted. The value Egapdetermines the wavelength of the
emitted photon. Conducting polymers are the mechanism behind low-power “Indi-glo” lights
in wristwatches and nightlights, which would be highly desirable for computer monitors, as
they require no heat-producing incandescent backlights. A color monitor would be possible
if the molecules at a particular point on the screen could be deformed by charges or by a
piezo so that they emit (or absorb, on a non-glowing screen) at a specific frequency. The
problem of engineering such applications is to set Egapto a specific value; and that is the
same problem that our model attempts to solve (Fig. 35).

Solitonic excitation will be a very important area of study. It is thought that photoexcita-
tion proceeds when the soliton at carbon 13 collides with a soliton that emerges around site 5
as a result of the energy introduced by the current. When the soliton passes by the 11 bond,
it switches the double bond into a single bond, which is less torsionally stiff than the single
bond. Although soliton-antisoliton pairs may continue to be produced, and annihilated, they

will stay away from the 11-12 bond for several hundred femtoseconds. Noninteracting mod-
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Figure 36: Upon photoexcitation, soliton/anti-soliton pairs are created in retinal. A soliton
crosses the 11-12 bond, turning it from a double bond into single bond. The solitons continue
to propagate, but they do not recross the 11-12 region (Aalberts 1997).

els have demonstrated this, but yield the incorrect energy gap (Aalberts 1997). (In Figure
36, a soliton changed the 11-12 bond from a double bond into a single bond, but the system
did not isomerize because the excitation energy was not sufficient to overcome the torsional
energy barrier.) In the excited state, the hopping expectation value is reduced. Therefore,
the torsional spring constant can be tuned so that it goes negative upon photoexcitation,
on the 11-12 bond. This will make the bond very weak, allowing the molecule to isomerize
without vibration.

Our simulation has not yet reproduced retinal’s photoinduced isomerization. However,
it is likely that the model has sufficient flexibiliy to show photoisomerization, if only the
parameters were set correctly. In one simulation retinal isomerized around the 10-11 bond,
a transformation not observed in nature, instead of the 11-12 bond (Figs. 37, 38). The failure
of this simulation suggests that the classical model of retinal’s forces must be modeled with

greater complexity, since retinal’s tail has so many degrees of freedom.

4 Conclusion

More simulations must be performed, and the parameters must be tuned more carefully, but

the preliminary results demonstrate a promising model of retinal photoisomerization.
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Figure 37: The 11-cis-retinal molecule at time ¢ = 0 was in its ground state, but then was
“hit with a photon.” a) The soliton around site 13 traveled leftward, then bounced back,
weakening the 10-11 single bond. b) The 10-11 bond is so weak that the molecule, which is
already somewhat twisted there, twists all the way around it.
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Figure 38: By t = 700fs in the simulation of Fig. 37, the double bond at 11-12 was weakened,

but sufficiently for isomerization around 11-12 to occur.
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