Energy Efficient Synchronization and
SWARTHMORE Parallelism on the VirtualSoC Simulator

Callen Rain', Peng Zhao', Dimitra Papagiannopoulou?, Tali Moreshet?!, Iris Bahar?, Maurice Herlihy?

Department of Engineering, Swarthmore College, Swarthmore PA 19081
1. Swarthmore College 2. Brown University

Background
Embedded Platform

Embedded systems are highly constrained in size and

» Offers scalability by clustering cores and then
running a network between the clusters
* Originally ran very few parallel

R A PP lication Su PpoO rt
i * We expanded the interface between the applications and system that could
support parallel benchmarks

\
2\

battery life. High performance mobile devices such as benchmarks woon| [¢|'T |2E2 S u * We added the MPARM supporting functions to VSoC for initialization flags,
smart phones require architectures that are designed + Contains a Tightly Clustered Data wan | |5 | |2 :.“I """" ":‘N"‘ f“%’ barriers, and global pointers
with energy efficiency in mind. Memory (TCDM), a shared memory onawsiwrazper T | S (e —— uTtom —— S
bank connected to the cores through a logarithmic interconnect Shared Memory Allocation (Shmalloc) g —
From Single Core to Many-Core We created our own system tailored for VSoC O O O O
 Consumer demand for higher computing capability encourages a shift from that can allocate and free shared memory Core | | L Core
single core architectures to multi-core architectures (2-8 cores) * Relies on several linked links that connect free — —
* This shift means that tasks must be parallelized among cores . sections of memory G [y I Uy g B
* While primarily implemented in research environments, many-core systems can Porti ng Benchmarks * Contains counters that keep track of how many ||[e LT Core
achieve massive scalability by clustering cores and organizing a network Goals free sections there are of different memory sizes

interface within and between clusters * A benchmark is an application on the simulator that is used to model how real

computer applications would interact with shared data Initialization Flags

Hazards * We would like benchmarks to utilize large shared data structures. * In the initialization phase of most benchmarks, global data structures need to
When attempting to run applications on systems with many cores, issues arise with The work done on the data structures should overlap with other cores, creating be allocated by one core only
how memory is shared between processors. Shared data structures need to be possible conflicts that test the system * The other cores will watch a flag in memory to be set by the first core
protected in some way to prevent hazards from occurring. Unsynchronized cores % m$1 Ei]
may unknowingly add duplicate or incorrect information to shared memory. Benchmarks % g g Barriers

* Patricia - Inserts small number of IP addresses 7 mbics ,g' '3 * Barriers are checkpoints that all the cores must reach before any of them can
Synchronization into patricia trie (radix tree) and then searches © Er;_, ‘"T"ﬁi' on:dus move along with the rest of the benchmark
 To maintain synchronization between cores, shared data for addressed from larger list. ©@ @ ® 6 ® O * Implemented in memory as a small counter

structures can be protected with locks or transactions Shared work involves cores adding nodes to the trie

* Locks force attempts to access memory to serialize so L « STAMP Suite - Developed at Stanford Global Pointers

that no hazards can occur .

 [fan application spends much of its time accessing shared data, using locks
will waste the advantages of a parallel system

* Transactions are bundles of operations that are denoted by the programmer

 Transactions are speculatively executed in parallel but are tracked in
hardware to avoid conflicts

 |faconflictis detected, the transaction aborts and memory is returned to
the state it was in before the transaction

Vacation - Checks clients into vacation reservation system. * Once the global data structures are allocated, each of the other cores
accesses a special location in memory that is initialized by the memory
allocation system

* Genome - Creates unique list of DNA
segments from large dataset and
attempts to construct a complete genome.

* K-means - Carries out k-means clustering
on a set of floating point vectors

e Labyrinth - Finds a path through a maze

Future Work

 Red-Black / Skiplist - inserts random memory addresses into private and local * Complete transactional memory support for the VSoC simulator
data structures * Optimize shared memory allocation
— = * Run entire benchmark suite with transactional memory support
=l > - > and evaluate the system’s performance and energy efficiency
— P IR P B » » P NIL
3 o3 o3 1P o1 o P o1 Pf e oL P 1P e BINIL
head |1 2 3 4 S 6 I 8 9| (10

* Allow testing of architectures that would be expensive to fabricate Results
* No operating system

* Written using the SystemC library

* Developed by researchers in University of Bologna

Execution Time of Benchmarks on VSoC

Computation Time of Matrix Multiplication

* Herlihy, Maurice, and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. Vol. 21. No. 2. ACM, 1993.
* Holla, Aditya G., and Maurice Herlihy. "Lock Elision for Memcached: Power and
Performance analysis on an Embedded Platform.”
| s000000 N ? 4-core * Ferri, Cesare, et al. "Embedded-TM: Energy and Complexity-Effective Hardware

:Zzzzzz " 16-core Transactional Memory for Embedded Multicore Systems 6.”

— * Ferri, Cesare, et al. "SoC-TM: integrated HW/SW support for transactional memory
* Bus-based architecture only supports up to 16 cores 1000000 .] programming on embedded MPSoCs." Proceedings of the seventh IEEE/ACM/IFIP
* Bus becomes bottlenecked when more cores are L, T Genome abyrinth - paticia Vacaton international conference on Hardware/software codesign and system synthesis.
added 2 -= ACM, 2011.

10000000

2000000
8000000
7000000

6000000

* Previously used platform for transactional memory
research; runs many benchmarks

