
Identifying the Emotional Polarity of Song Lyrics through Natural
Language Processing

Ashley M. Oudenne
Swarthmore College

Swarthmore, PA
aoudenn1@cs.swarthmore.edu

Sarah E. Chasins
Swarthmore College

Swarthmore, PA
schasi1@cs.swarthmore.edu

Abstract

The analysis of song lyrics can provide
important meta-information about a song,
such as its genre, emotion, and theme;
however, obtaining this information can
be difficult. Classifying a song based
solely on its lyrics can be challenging for
a variety of reasons, and as yet no single
algorithm results in highly accurate clas-
sifications.

In this paper, we examine why the task
of classification based solely on lyrics is
so challenging by predicting the emotional
polarity of a song based on the song’s
lyrics. We use natural language pro-
cessing to classify a song as either posi-
tive or negative according to four sets of
frequency-based or machine learning al-
gorithms which we develop and test on
a dataset of 420 songs. We determine
which factors complicate classification,
such as generic subjectivity lexicons and
non-subjective lyrics, and suggest strate-
gies for overcoming these difficulties.

1 Introduction

Lyrics provide high-level information about a song.
Humans gather meta-information such as the genre,
sentiment, and theme of a song simply by reading
its lyrics. However, automating this task is very dif-
ficult.

In automatic music classification systems, re-
search typically focuses on classification by audio

features or collaborative filtering. However, these
methods have numerous drawbacks. Audio feature
processing relies on having the actual recording of a
song, which may be difficult to obtain under copy-
right laws. Collaborative filtering can suffer from
the long-tail problem: obscure songs are not likely
to have adequate representation on social network-
ing sites, which makes similarity analysis difficult.

Recently, researchers have turned to analyzing
lyrics in order to extract information about a song.
This information can be combined with audio fea-
tures or collaborative filtering data or used alone in
a music classification system.

Song lyrics are a good source of data because
many lyrics are freely available in a semi-structured
format on the Internet. However, they are difficult to
analyze for sentiment and, as a result, many systems
that rely on lyrical analysis alone for classification
yield poor results.

In this paper, we will explore song lyric analy-
sis by focusing on the simple yet non-trivial task of
categorizing music by emotional polarity. We clas-
sify songs as positive or negative depending upon
whether they express a mainly positive or negative
overall emotion. We test different algorithms that
analyze word frequencies, word presence, and co-
sine similarity to classify a dataset of 420 unique
lyrics. We also evaluate the performance of generic
versus corpus-specific subjectivity lexicons in or-
der to determine how lyrics-based sentiment anal-
ysis differs from traditional sentiment analysis.

The rest of this paper is laid out as follows: in Sec-
tion 2 we present related work in sentiment analysis
and how it has been extended to song lyrics. In Sec-

tion 3, we introduce our data set and the methods we
use to classify the data. In Section 4 we present our
results and discuss different ways to classify lyrics
by emotion in Section 5. Finally, in Section 6, we
conclude by discussing future work in song lyric
analysis.

2 Related Work

2.1 Sentiment Analysis

Identifying the primary sense of a document in a
corpus is very useful in natural language process-
ing. Knowing whether a document’s sentiment is
positive or negative overall can aid in classification
tasks. To that end, Janyce Wiebe created a lexicon of
subjectivity clues, such as repressive and celebrate,
that are good indicators of positive or negative senti-
ment (Wilson et al., 2005). These words are tagged
with their part of speech, polarity (positive, negative,
neutral, or both), and the strength of their subjectiv-
ity (strong or weak). Many researchers make use of
this lexicon for sentiment analysis, as do we.

Subjectivity lexicons like the one described above
can be used to extract the overall sentiment of a doc-
ument. (O’Connor et al., 2010) use sentiment analy-
sis to classify Twitter tweets about the economy and
the presidential election. They classify tweets as ei-
ther positive or negative by counting the number of
positive or negative subjectivity clues from Wiebe’s
subjectivity lexicon that occur in the tweet. They
then use this classification to predict consumer con-
fidence poll data. They note that Wiebe’s subjectiv-
ity clues lead to many instances of falsely-detected
sentiment, because the subjectivity clues are used
differently in tweets than in the corpus that gener-
ated the clues. However, they were able to success-
fully predict polling data with tweet sentiment, in
spite of the fact that they took no negation of senti-
ment words into account (e.g. ”I do not think that
the economy is good”). Based on their results, we
have included sentiment negation into some of our
algorithms.

Sentiment classification has also been success-
fully used to classify movie reviews. (Pang et al.,
2002) use machine learning techniques to classify
movie reviews as either positive or negative. They
conclude that subjectivity lexicons must be corpus-
specific. In an experiment comparing human-

suggested sentiment word lists to a corpus-specific
most-frequent word list, they achieved higher accu-
racy using corpus-specific words. This suggests that
researchers should not take a “one-size-fits-all” ap-
proach to subjectivity lexicons like Wiebe’s. A lexi-
con specific to the corpus and the task will perform
better than a generic lexicon.

Additionally, they use machine learning algo-
rithms such as Naive Bayes to perform sentiment
classification. They use a bag-of-features frame-
work where the features can be bigrams, unigrams,
positional data, and part-of-speech data. Unigram
features perform the best, and their performance in-
creases as they are combined with other features. We
also experiment with the Naive Bayes algorithm in
our work.

2.2 Sentiment Analysis with Lyrics

Lyrical analysis for classification is a relatively
new area of research. Due largely to sites such
as Lyrics.com and elyrics.net, millions of lyrics
are now available on the Internet to researchers in
semi-structured formats that are amenable to web-
scraping. Lyrics are typically analyzed as part of a
music classification task, where songs are classified
by genre, mood, or emotion (Cho and Lee, 2006; Hu
and Downie, 2010).

(McKay et al., 2010) use lyrical features com-
bined with audio, cultural, and symbolic features
to classify music by genre. The find that lyrics
alone are poor indicators of a song’s genre, but that
when lyrical analysis is combined with other fea-
tures, their system is able to achieve high genre clas-
sification accuracy. However, some of the songs in
their data set were instrumental, so there may not
have been enough data for training. In our experi-
ments, we use a larger data set that includes lyrics
for every song.

Compared to sentiment analysis in movie reviews,
we expect sentiment analysis to be more difficult for
lyrics. Movie reviewers typically use opinion-words
(e.g. ”I liked this movie because...”, ”This scene was
horrible”) in their reviews, which can be extracted
with relative ease with the proper subjectivity lexi-
con. Lyrics, however, are more challenging. There
are three main difficulties with lyric-based sentiment
analysis:

1. Songs can contain a series of negative lyrics but
end on an uplifting, positive note, or vice versa.
Love songs in particular can be misleading be-
cause the lyrics often express how happy the
singer was while in love, and then at the end of
the song the singer expresses his sadness over a
sudden breakup.

2. Songs may not contain any of the subjectivity
clues in a general subjectivity lexicon, yet ex-
press positive or negative emotions. For exam-
ple, the song ”It’s Still Rock And Roll To Me”
by Billy Joel includes the following stanza:

What’s the matter with the clothes I’m wearing?

Can’t you tell that your tie’s too wide?

Maybe I should buy some old tab collars?

Welcome back to the age of jive.

It’s not immediately apparent which of the
words in this stanza would have positive conno-
tations; yet, taken together, the stanza expresses
a positive emotion. This occurs in both posi-
tive and negative songs, and it can be difficult to
separate the overall emotion of a song from the
sentiments expressed by each line of its lyrics.

3. Songs can express positive emotions about neg-
ative things, and vice versa. Rap songs in par-
ticular suffer from this problem: their lyrics
often express positive emotions about negative
events like shootings and robbery. This adds an
additional level of confusion to a classification
system.

We address these problems in various ways in our
different algorithms for sentiment analysis.

3 Experimental Methodology

3.1 The Dataset
We use a dataset of 420 unique song lyrics, divided
equally between positive and negative emotional po-
larities (hereafter referred to as positive lyrics and
negative lyrics).

3.1.1 Gathering the Data
In order to gather a dataset of unique song lyrics,

we utilized Jamrock Entertainment’s list of top 100
songs by year1. We mined the top-100 song lists for

1http://www.jamrockentertainment.com/billboard-music-
top-100-songs-listed-by-year.html

the years 1980-2009, and then searched for lyrics
matching those songs from Lyrics.com2. We mined
the lyrics and cleaned them of xml tags and other
extraneous text. This created an initial data set of
1,652 lyrics.

3.1.2 Classifying the Data
To gather the ground truth emotional polarity la-

bels for the song lyrics, we used Last.fm’s developer
API3. For each song in our initial dataset, we queried
the Last.fm API and retrieved the user-specified top
tags—semantic text descriptors— for that song. We
then searched through the top tags to see if any of
them occurred in Jan Wiebe’s subjectivity lexicon.
We kept a count of the number of positive and neg-
ative subjectivity clues that occurred in the top tags
of the song, and then labeled the song as the emo-
tion with the greatest number of subjectivity clues
that occurred in the lyrics. We manually annotated
the few songs that did not appear in the Last.fm
database. This resulted in an intermediate dataset
of 1,515 lyrics.

3.1.3 Equalizing the Data
It is necessary to equalize the dataset so that there

is an equal number of positive and negative lyrics.
This prevents classification systems from learning
biases inherent in the dataset. When we attempted
to equalize our dataset, we realized that the number
of positive lyrics far surpasses the number of nega-
tive lyrics. This is to be expected, because we relied
on top-100 songs to create our dataset, and top-100
songs are more likely to express positive emotions.
Consequently, our equalized data set consists of 420
songs, 210 of which are labeled ’positive’ and 210
of which are labeled ’negative’. These labels were
manually checked by a human annotator.

3.2 Word Lists

We test a variety of algorithms on our dataset. The
first and simplest algorithm is based on straightfor-
ward word counts. A classification system built on
this approach requires very little information, noth-
ing more than two lists of words. The system begins
by segregating the training set into positive songs
and negative songs. Next, it creates a list of the

2http://www.lyrics.com
3http://www.last.fm/api

words that appear in the positive set, and a list of
the words that appear in the negative set. The lists
are ordered by word frequencies in their respective
classes. A maximum list size n is passed to the al-
gorithm, which is selected by the researchers. All
positive words that are not among the n most fre-
quent positive words are discarded, as are all nega-
tive words that do not appear among the n most fre-
quent negative words. From these two lists of size n,
the algorithm removes any word that appears in both
lists. (Note that even if a word is in first place in the
positive list and nth place in the negative list, the
word is removed from both lists.) Thus, no words
are shared. The two lists that remain at this stage are
the only resources necessary for classification.

Each song is classified, in this method, by keeping
separate counts of the number of times a word from
each list appears in the lyrics. The algorithm loops
through the song’s words. Each time it encounters a
word from one of the lists, it increments the appro-
priate count, even if the word has already appeared
elsewhere in the lyrics. The song’s sentiment is pre-
dicted simply by comparing these two counts. If the
positive word count is higher, the system predicts
that the song is positive.

3.3 Word Dictionaries

The second variety of classification algorithms relies
on retaining more information. It uses knowledge
of, at the very least, every word that appears in the
training set and in which class of lyrics it appears.
One algorithm in this category requires no more in-
formation than that. The Present In One algorithm is
provided with a dictionary of all words that appear
in positive lyrics, and a second dictionary of all the
words that appear in negative lyrics. To classify a
song, it loops through the words, checking whether
each word is in both dictionaries, neither dictionary,
or in only a single dictionary. The first two cases
are ignored. If, however, the word appears in only
one dictionary, the count for that sentiment is incre-
mented. That is, if the word appears in the negative
dictionary but not the positive dictionary, a point is
added to the negative score. If, in the end, the nega-
tive score is higher than the positive score, the song
is classified as negative.

The next algorithm in this class still requires
knowledge of every word in the training set, but also

needs a record of the frequency in the training set.
More specifically, it needs to know the percentage
of times a word appears in each list. The Preva-
lent In One algorithm also keeps positive and neg-
ative scores for each song. A threshold t is passed
into this algorithm. A word in the lyrics incre-
ments the positive score if its occurrences in the
positive training data divided by its occurrences in
the negative training data exceeded t. That is, if
count(word|positive)/count(word|negative)>t. Af-
ter all words have been examined, the song is labeled
with the sentiment of the higher score.

The final member of this grouping was a
traditional approach to classification problems,
a simple Naive Bayes model. To calcu-
late P(sentiment|lyrics), the algorithm calculates
P(lyrics|sentiment)*P(sentiment)/P(lyrics). Since
there was no need to compare across multiple lyrics,
but only to compare the probabilities of different
sentiments for the same lyrics, P(lyrics) would have
no effect on the comparisons under consideration.
Thus, P(lyrics|sentiment)*P(sentiment) became the
essential calculation. The lyrics are represented
by the series of n words that constitutes the lyrics,
and the algorithm makes the naive assumption that
the probability of seeing any given word depends
solely on the sentiment, and not at all on the pres-
ence of other words in the lyrics. That is, it as-
sumes that P(wk|sentiment) is the same value as
P(wk|sentiment, wk−1

1). The final probability is
therefore:

P(sentiment|lyrics)=
n∏

i=1

P(wi|sentiment)

The probability of wi conditional on sentiment is
calculated using dictionaries of words and their fre-
quencies in the positive and negative training data. If
P(negative|lyrics) is greater than P(positive|lyrics),
the song is classified as negative.

3.4 Cosine Similarity

We also attempt to classify song lyrics by cluster-
ing. In this algorithm, we calculate the inverse doc-
ument frequency (idf) of a training set of lyrics. For
each word in the training set, we define the idf of
that term as idfi = log |D|

|d:ti∈d| , where D is the train-
ing set of song lyrics, d is a song lyric document in
the training corpus, and i is the index of the current

term t in document d. Idf measures the importance
of a term— terms that occur in many song lyrics
are down-weighted, and terms that are rare are up-
weighted.

For every word in each document in the entire cor-
pus (both training and test), we then compute the
term frequency of the word. The term frequency (tf)
is defined as tfi,j =

ni,j∑
k
nk,j

, where ni,j is the num-

ber of times a specific term ti appears in document
dj , and the denominator is the number of tokens in
dj . Tf measures the importance of a term within a
given document.

For every document, we then compute the tf-idf
score of the document by multiplying the tf score by
the idf score for every term in the document: (tf −
idf)i,j = tfi,j ∗ idfi. This up-weights terms that
occur frequently in a specific document yet occur
infrequently in the corpus as a whole. We use the
tf-idf score to construct a vector of terms and their
tf-idf score for every document in the corpus.

We then calculate the cosine similarity between
each document in the test corpus and every docu-
ment in the training corpus. Cosine similarity is de-
fined as cos(θ) = A·B

‖A‖‖B‖ , where A is a document in
the test corpus and B is a document in the training
corpus. After the cosine similarity is calculated, we
take the nine training songs with the highest simi-
larity scores to the test song. We then classify the
test song based on the polarity of the majority of
those nine songs: if the majority of the songs are
positive, the test song is labeled as positive, and vice
versa. We use 5-fold cross-validation to test the en-
tire dataset.

In another experiment, we replace the tf-idf
weight with a word-sense similarity weight. We use
the WordNet similarity package to calculate the path
similarity of each word in every document in the cor-
pus to the words “happy” and “sad” (Miller et al.,
1993). We then take the ratio of the similarities, so
that the weight of each term ti in document dj can be
expressed asweightt,i,j =

pathSimilarity(ti,“happy”)
pathSimilarity(tj ,“sad”)

.
In our experiments, we calculated the similarity by
first calculating the synsets— sets of synonyms—
of each term ti and the emotion words “happy”, and
“sad”. We then use the first sense of the emotion
words and compare it to every sense in the term’s
synset. We choose the sense that maximizes the sim-

ilarity between the term and the emotion words, and
use this to calculate the ratio between the two sense
scores. We place these values in a vector and calcu-
late the cosine similarity as described above.

4 Results

4.1 Exploratory Statistics

Before attempting to classify our documents, we
evaluate the claim that a subjectivity lexicon should
be corpus-specific, or created based on statistics
from the corpus on which it will be used (Pang et
al., 2002; O’Connor et al., 2010). For these exper-
iments, we use Jan Wiebe’s subjectivity clues (Wil-
son et al., 2005). Of her 8,221 subjectivity clues,
we extract only the clues marked ”strongsubj”, the
words that are strong indicators of subjectivity. We
also only extract words with positive or negative po-
larity, but ignore words with a neutral polarity or
words that are marked as both positive or negative.
We remove repeated instances of the same word with
different parts of speech, since we do no part-of-
speech tagging. This results in 4,746 subjectivity
clues. We examine the prevalence of these subjec-
tivity clues in our dataset to see if they are useful in
classifying the polarity of song lyrics. Table 1 shows
the results of this experiment.

It is interesting that while there are about twice as
many negative subjectivity clues as there are positive
clues, only 6.67% of the dataset includes a majority
of these words, ignoring duplicates. In other words,
the best negative lyric recall we will ever achieve
using unique negative subjectivity clues is 0.0667.
This suggests that at least the negative portion of the
subjectivity lexicon is inappropriate for lyrics.

We evaluate the subjectivity lexicon in a basic
classification task. Given a training set, we calcu-
lated the 30 positive and 30 negative subjectivity
clues that occur most frequently in the training set.
Examples of these clues can be found in Table 2. We
then use these clues to classify a test set. For each
song in the test set, we count the occurrences of the
positive and negative clues. If the positive clue count
is highest, the song is classified as positive, and vice
versa.

We compare the performance of these generic
subjectivity clues to clues generated from the train-
ing set. We calculate the most frequently occurring

Table 1: Baseline Statistics on Our Dataset. The
dataset includes 420 unique song lyrics, 210 labeled
‘positive’ and 210 labeled ‘negative’.

Number of Strong Subjective Clues
Pos. Neg.
1671 3075
Lyrics with 1 or More Subjectivity Clues with
Same Polarity as Song’s Polarity
Pos. Neg.
0.9952 0.9476
Lyrics with Majority of Non-Unique Subjectiv-
ity Clues with Same Polarity as Song’s Polarity
Pos. Neg.
0.9619 0.0762
Lyrics with Majority of Unique Subjectivity
Clues with Same Polarity as Song’s Polarity
Pos. Neg.
0.9429 0.0667

Table 2: A Comparison of Generic and Corpus-
Specific Subjectivity Clues

Pos. Neg
Generic love, know, baby, want long, cry, crazy, sorry
Specific oh, hey, wanna, will but, was, back, duuh

words in positive lyrics and negative lyrics. For
the positive words, we discard any word that oc-
curs less than 1.5 more times for positive words than
for negative words, and we do the same for neg-
ative words. We set this parameter low so words
that occur in both positive and negative songs, such
as “promises”, are counted more heavily than song-
specific words (e.g. “fergalicious”), which may oc-
cur frequently in only one document. 1.5 was chosen
after experimenting with values between 1 and 20,
and 1.5 was selected because it discarded overly fre-
quent words without penalizing common sentiment
indicator words. We then select the 30 most frequent
positive and negative clues and classify each song
in the training set as described above. Examples of
these words are listed in Table 2. The results of these
experiments are shown in Table 3. Both experiments
were conducted using 5-fold cross-validation.

Table 3: Comparison of Lyric Classification Us-
ing Generic Subjectivity Clues and Corpus-Specific
Subjectivity Clues

Pos. Prec. Neg. Prec. Pos. Rec. Neg. Rec. Acc.
Generic 0.50 1.0 1.0 0.01 0.50
Specific 0.54 0.54 0.50 0.59 0.54

Figure 1: Average and maximum accuracy from 100
trials of the Word List algorithm.

While generic subjectivity clues had perfect neg-
ative precision, they had incredibly low negative re-
call (0.01). This confirms the results of our first ex-
periment, in which we determined that generic sub-
jectivity clues cannot attain a negative lyric recall of
higher than 6.67%. However, positive precision was
0.5 and positive recall was 1.0, suggesting that the
generic positive subjectivity clues are useful in clas-
sifying documents.

Corpus-specific subjectivity clues performed
slightly better. Although negative precision and pos-
itive recall dropped by half, negative recall rose
to 0.59, and the accuracy increased to 0.54. This
demonstrates that even a corpus-based subjectivity
lexicon created with a simplistic algorithm will gen-
erally outperform generic lexicons.

4.2 Word Lists

We run two different versions of the Word List al-
gorithm. In the first version, each space-separated
word is treated as its own entry in the lists. Punc-
tuation marks (e.g. periods, commas, and quota-
tion marks) before or after any alphabetic characters
are removed and entered as separate entries. How-
ever, non-alphabetic characters that appear between
alphabetic characters (such as internal apostrophes
or hyphens) remain within the words. Thus:

She didn’t say ”yes.”

would be entered as:

Figure 2: Average and maximum accuracy from 100
trials of the Word List algorithm with simple nega-
tion.

She / didn’t / say / ” / yes / . / ”

The second version of the Word List algorithm treats
punctuation in exactly the same way. However, it is
designed to control for negation by a very simple
mechanism. In the Negation Word List, any word
that follows “no” or “not” is appended, and the two
words are included in the list as a single entry. Thus:

I am not happy.

would be entered as:

I / am / not happy / .

It is also important to note, however, that the sen-
tence:

I am not very happy.

would be entered as:

I / am / not very / happy / .

These two versions of the Word List algorithm
are trained on 150 positive songs and 150 negative
songs. They are then tested on 60 positive songs and
60 negative songs. This training and testing process
is repeated 100 times. Each of the 100 times, the 210
songs from each class are randomly shuffled, so that
the training and testing sets vary from trial to trial.

Casual inspection of early data revealed that the
highest accuracies were achieved with maximum list
sizes below 500 words. We thus run the algorithm
for maximum list size thresholds from 0 to 490, at

increments of 10 words, repeating the algorithm 100
times for each threshold value. Keeping track of the
accuracy of each trial’s classifier yields average and
maximum accuracies for word lists of varying sizes.
Recall from Section 3.2 that with a maximum list
size of n, we keep the n most frequent words from
the positive list, and the n most frequent words from
the negative list. We then eliminate words that ap-
pear in both. Because words common in one are
often common in the other, the final word lists are
generally much smaller than the maximum list size.
In the 200 trials (100 without negation, and 100 with
negation) that used a maximum list size of 490, there
is never a final list with more than 136 words. In the
no-negation condition, there are multiple data points
for each final list size up to 131 words. In the nega-
tion condition, there are multiple data points for each
final list size up to 133 words.

The no negation results appear in Figure 1. The
results with negation appear in Figure 2. In the no-
negation condition, the highest average accuracy is
58.0%, with a final list size of 32. The highest max-
imum accuracy is 68.6%, achieved with a final list
size of 36. In the negation condition, the highest av-
erage accuracy is 58.53%, with 33 words in the final
list. The highest maximum accuracy is 67.7%, with
a final list size of 35.

4.3 Word Dictionaries
The three algorithms that require knowledge of ev-
ery word in the training set are run under four dif-
ferent conditions. Unlike the Word List algorithm,
these algorithms do not all automatically disregard
items common to both positive and negative songs.
It is possible that altering classifications based on
such words, since they appear so frequently and af-
fect any given song significantly, could skew re-
sults. We thus introduce an ignore list condition, in
which the algorithm maintains a list of very com-
mon words, and does not allow these words to alter
a song’s classification.

A third condition again takes negation into ac-
count, operationalizing it in the same manner as in
the Word List algorithm. The fourth and final condi-
tion utilizes both negation and the ignore list.

Each of the three algorithms is run 100 times in
each of these four conditions. Average and maxi-
mum accuracies are collected over the course of the

Table 4: Average Accuracy for Basic, Ignore List, and Negation Conditions
Basic Ignore List Negation Ignore and Negation

Present In One 0.487542372881 0.487966101695 0.492372881356 0.492711864407
Prevalent In One 0.566016949153 0.566440677966 0.55813559322 0.562372881356
Naive Bayes 0.557881355932 0.562627118644 0.553728813559 0.557372881356

Table 5: Maximum Accuracy for Basic, Ignore List, and Negation Conditions
Basic Ignore List Negation Ignore and Negation

Present In One 0.576271186441 0.576271186441 0.576271186441 0.576271186441
Prevalent In One 0.669491525424 0.661016949153 0.661016949153 0.652542372881
Naive Bayes 0.635593220339 0.64406779661 0.64406779661 0.652542372881

Figure 3: Average and maximum accuracy from 100
trials of the Prevalent In One algorithm.

Figure 4: Average and maximum accuracy from 100
trials of the Prevalent In One algorithm with the ig-
nore list.

100 runs. The average accuracies for each condition
appear in Table 4, and the maximum accuracies ap-
pear in Table 5.

Of the algorithms that require knowledge of ev-
ery word in the training set, only the Prevalent In
One algorithm requires a parameter selected by the
researcher. One important task, before the above ex-
periments were run, was to select the best possible
value for this threshold. It was evident from early
data that negation made no significant improvements
in the performance of the Prevalent In One algo-
rithm. Whether the ignore list had an impact was
less clear. We decided to run the basic Prevalent In
One algorithm and the ignore list Prevalent In One
versions 100 times each, for each of fifty thresholds.
The thresholds range from 0 to 2.45 by increments
of .05. Average and maximum accuracies are col-
lected for each threshold value. The accuracies for
the basic version can be seen in Figure 3, and the
accuracies for the ignore list version are found in
Figure 4.

In the basic version of the algorithm, the highest
average accuracy is 65.5%, achieved with a thresh-
old of 1.4. The highest maximum accuracy in this
condition is 67.0%, achieved with a threshold of 1.5.
In the ignore list condition, the highest average ac-
curacy is 57.1%, when using a threshold of 1.5. The
highest maximum is 67.0%, with threshold values
of 1.45 and 1.5. We elected to use the high aver-
age accuracy thresholds for further testing of this al-
gorithm, in which it is compared to the other two.
Therefore, a threshold of 1.4 is used for the two con-
ditions that lacked the ignore list, and a threshold of
1.5 is used for the two conditions that utilized the

Figure 5: Average accuracy, by list size, for Word
List with and without negation over 100 trials.

ignore list.

4.4 Cosine Similarity

The results of five-fold cross-validation on the
dataset using cosine similarity can be see in Table
6. Cosine Similarity using tf-idf weighting performs
about as well as the algorithms in Table 4, with an
accuracy of 0.57. Positive recall was lower than
the other values in the table, which is somewhat
surprising considering that, according to the exper-
iment described in Section 4.1, there are more pos-
itive subjectivity clues in our corpus than negative
ones, which should make it easier to identify posi-
tive lyrics. However, since we did not use the Wiebe
subjectivity lexicon in this experiment, it is possible
that the algorithm is identifying negative terms that
are more meaningful for classification than the ones
in the subjectivity lexicon. The WordNet algorithm
performs worse than the tf-idf algorithm, with an ac-
curacy of 0.52 and precision and recall across both
classifications of about 0.5.

Table 6: Cosine Similarity Results
Pos. Prec. Neg. Prec. Pos. Rec. Neg. Rec. Acc.

TF-IDF 0.59 0.56 0.49 0.66 0.57
WordNet 0.52 0.51 0.52 0.53 0.52

Table 9: Positive and Negative Word Lists for Vary-
ing Maximum List Sizes

Max Final Pos. Words Neg. Words
30 3 baby, we, just but, no, when
40 5 oh, this, can, one, got no, when, what, up, out
70 3 go, come, I’ll back, not, they
100 12 gonna, will, man, from, !, why, duuh, won’t, her,

away, hey, too, life, every, he, could, ya, little, about,
day, more, ” that’s, boy

5 Discussion

5.1 Exploratory Statistics
Based on the results in Table 2, it initially seems as if
generic subjectivity clues should generate more ac-
curate classification results. Words like “sorry” and
“baby” are more useful to humans than words like
“oh” and “duuh” when they are faced with classi-
fication tasks. However, the list of corpus-specific
words performs better. (Pang et al., 2002) saw simi-
lar results when they attempted to classify movie re-
views based on human generated subjectivity clues
and corpus-based subjectivity clues. Regardless of
how unhelpful they seem to humans, corpus-based
clues provide useful data to a classification algo-
rithm.

The improvement gained by using corpus-specific
words, however, is minimal. We used a very simplis-
tic algorithm to generate the corpus-specific lexicon,
which probably resulted in the relatively low accu-
racy. However, we expect that better subjectivity-
lexicon generation algorithms will result in better
classification accuracy, and it is encouraging that an
algorithm as basic as ours results in improvement
over using generic subjectivity clues.

5.2 Word Lists
The Word List algorithm was moderately successful.
With word list sizes that reliably yield 57-58% accu-
racy, and which can occasionally reach even 68%
accuracy, this algorithm compares favorably with
the other methods explored in this paper. However,
from the gap between maximum and average perfor-
mance, hovering at approximately 10%, it is clear
that performance is extremely variable.

The variability of the accuracy suggests several
facts about the Word List algorithm. First, since only
composition of the training and data set varies from
trial to trial of a single threshold, it seems clear that
the contents of the training set has a vast influence

Table 7: Accuracies from Sample Run 1
Basic Ignore List Negation Ignore and Negation

Present In One 0.5 0.5 0.508474576271 0.508474576271
Prevalent In One 0.64406779661 0.635593220339 0.64406779661 0.635593220339
Naive Bayes 0.627118644068 0.661016949153 0.627118644068 0.661016949153

Table 8: Accuracies from Sample Run 2
Basic Ignore List Negation Ignore and Negation

Present In One 0.525423728814 0.525423728814 0.516949152542 0.516949152542
Prevalent In One 0.669491525424 0.64406779661 0.627118644068 0.669491525424
Naive Bayes 0.610169491525 0.610169491525 0.593220338983 0.601694915254

on the accuracy of the resulting classifier. This is
not surprising, but it does suggest that performance
could be tremendously improved by access to addi-
tional training data.

The comparison of average negation and no-
negation Word List accuracies in Figure 5 demon-
strates that there appears to be no significant effect
of including negation in the algorithm. The negation
version performs better in some trials and worse in
others. And, while negation has the slightly higher
average accuracy peak at 58.5%, the no-negation
condition has the higher maximum accuracy with
a peak of 68.6%. In both cases, the difference be-
tween the peaks is trivial. Since negation also does
not harm performance, it seems possible that the
compound entries formed by “no” and “not” and the
words that follow them are rarely frequent enough
to be included in the final list of frequent words.
While this is true for trials with low maximum list
sizes, this is not the case with maximum list sizes
of greater than 200. In several runs with multiple
list sizes, the entries “no one”, “no more” and “no
matter” appear in multiple final lists, beginning at a
maximum list size of 230 to 380. In other runs, “not
goin” appears in the lists beginning with maximum
list sizes of approximately 340.

Considering negation’s apparent lack of effect on
performance, it is interesting to note that “no” and
“not” do appear in many of the final lists in the no-
negation condition. With maximum list sizes of 70
to 80, “not” becomes a common entry, and “no” con-
sistently appears with maximum list sizes between
30 and 50. Their short-lived presence in the lists
presumably explains the fact that their absence in the

negation condition matters very little.
Examination of the lists used to distinguish be-

tween positive and negative songs does provide sev-
eral insights into the results. Table 9 gives some
sense of the number of frequent words that appear
on both the positive and negative lists. In the run de-
picted in the table, 67 of the words in the 70 most
frequent positive and negative words appear in both
lists. Only three words from each list are specific to
a particular sentiment.

It also becomes clear that words are eliminated
from the final lists very quickly, indicating that the
frequency rankings of those words are very simi-
lar in the negative and positive lyrics lists. Notice
that when the maximum list size goes from 30 to
40, bringing into consideration only 10 more words
from each list, the new lists are composed entirely
of new words, save for “no” and “when” in the neg-
ative list. This demonstrates that “baby”, “we”, and
“just” - all among the top 30 positive words - are also
among the top 40 negative words. Thus, even words
that can be found to appear more frequently in one
set will appear only barely more frequently.

The presence of extremely song-specific words,
such as ”duuh” and ”ya,” which are unlikely to ap-
pear with the same spelling in multiple songs, in-
dicates the need for a larger training set. The final
word lists should reflect the entirety of the sentiment
class, and not be overly influenced by the unusual
words of any individual song. The fact that this word
appears already in the 100 most frequent words sug-
gests that many of the words that enter consideration
after the 100-word level may also be similarly im-
practical for classifying other songs. This is in fact

the case, with words such as ”mmm”, ”t”, ”1”, and
”da” appearing in later lists with greater maximum
list sizes.

Interestingly, however, these larger lists do begin
to reflect prototypical notions of the types of words
that a positive and negative list might contain. For
instance, with a maximum list size of 290, one pos-
itive list includes such words as: “kiss”, “sweet”,
“friends”, “together”, “music”, and “sugar.” The
negative list for the same run includes: “miss”,
“gone”, “leave”, “left”, “mean”, “nobody”, “fool”,
“tears”, “hurt”, “goodbye”, “broken”, “cold”, “gun”,
and “pain.” These lists, however, with final sizes of
68, are significantly above the optimal level of fi-
nal list size. It seems likely that, while these words
would be excellent for identifying the sentiment of a
song that contains many of them, such uncommon,
specific words may not appear in enough songs to be
useful for categorizing all of the test lyrics.

5.3 Word Dictionaries
It is clear again that there are large differences in the
average and maximum accuracy values for the Word
Dictionary algorithms, as evident in Tables 4 and
5. This brings to the fore the central role of train-
ing data in determining the accuracy of a classifier
and suggests the possible improvements that might
be accomplished with additional data.

Examining the average performance in Table 4 re-
veals that Present In One is an extremely ineffective
algorithm. Prevalent In One and Naive Bayes, on the
other hand, yield good results, with Prevalent In One
slightly outperforming Naive Bayes in most cases.
The accuracy differences between the two are un-
likely to be significant.

The best average accuracy is found with Preva-
lent In One, in the ignore list condition. Negation
appears to slightly harm Prevalent In One perfor-
mance, with or without the ignore list. Naive Bayes
also shows very slight losses in accuracy with the in-
troduction of negation, while Present In One appears
to benefit by it. The Present In One performance is
on average boosted by approximately 1 percentage
point through the use of negation, although its maxi-
mum accuracy appears to be entirely independent of
condition.

The use of an ignore list provides a very slight ad-
vantage in all three algorithms, and a slightly larger

advantage in the Naive Bayes approach. Again, the
differences in performance are so slight as to be al-
most certainly insignificant.

In Tables 7 and 8 we see the algorithms’ perfor-
mance in runs on the same training and test sets. The
performance of the three algorithms appears to co-
vary, with high performance of one predicting high
performance of the others. The pattern of best re-
sults is not, however, always consistent with the av-
erage accuracies. In Run 1, Naive Bayes performs
better than Prevalent In One in two conditions. In
Run 2, Prevalent In One outperforms Naive Bayes
in all conditions. In some runs, Naive Bayes outper-
forms Prevalent In One under all conditions.

Ultimately, it appears that these three algorithms
are best used with an ignore list, and depend on re-
ceiving a particular distribution of data to create a
high-performing classifier. Of the three, Prevalent
In One is the most reliably accurate, trailed immedi-
ately by Naive Bayes. The Present In One algorithm
is unproductive, performing on average worse than
a single-sentiment classifier, and worse than random
chance.

5.4 Cosine Similarity
The cosine similarity algorithms suffer from the
third lyrics analysis problem described in Section
2.2— they often miscategorize songs that express
positive emotions about negative events or words.
For example, in ”Whatta Man” by Salt-N-Pepa, the
following stanza is problematic:

My man gives real loving, that’s why I call him Killer

He’s not a wham-bam-thank-you-ma’am, he’s a thriller

He takes his time and does everything right

Knocks me out with one shot for the rest of the night

In this stanza, the words “Killer”, “thriller”, and
“shot” have negative connotations, and one would
expect them to appear most frequently in negative
documents. However, the singer is using these
words in a positive manner, which the cosine sim-
ilarity algorithm cannot model. The overall emotion
expressed by this stanza–and this song in general–
is positive. The WordNet algorithm has particular
difficulty with this problem because it uses the high-
est similarity score in its ratio calculation. The path
distance score of “thriller” and “sad” will be much
higher than the score of “thriller” and “happy”,
which will result in misclassification.

Cosine similarity algorithms also suffer from the
second problem with lyrics analysis described in
Section 2.2— the words in a song may have no obvi-
ous polarity, yet the song expresses a polar emotion.
In Will Smith’s “Miami”, the following stanza con-
tains mainly neutral words:

Hottest club in the city and its right on the beach.

Temperature, get to ya’, it’s about to reach

Five hundred degrees in the Caribbean seas

With the hot mommies screaming “Ayy papi”

There is no word in this stanza that specifically
expresses a polar emotion. “Hot” and “hottest” can
be either positive or negative, and the rest of the
words are relatively neutral. The only exception is
the phrase “Ayy papi”, which is not present in any
other document in the corpus, so tf-idf weighting is
useless in identifying it as a positive emotion indica-
tor. Additionally, most of these words are not at all
related to either “happy” or “sad”, so the WordNet
algorithm has difficulty classifying songs like this
one.

However, cosine similarity provides good results
when the song lyrics exhibit the first problem of mis-
leading initial lyrics from section 2.2. “Always” by
Bon Jovi demonstrates this problem. The begin-
ning of the song includes lines like “It’s been raining
since you left me” and ”But without you I give up”,
which might lead a human reader to expect the song
to express a negative emotion. However, it ends on
a positive note:

Well, there ain’t no luck in these loaded dice

But baby, if you give me just one more try

We can pack up our old dreams, and our old lives,

We’ll find a place, where the sun still shines

The overall tone of the song is positive, in spite
of the negative initial lyrics. The tf portion of the
tf-idf weighting that we use in this algorithm down-
weights the repeated negative words and up-weights
the less frequent positive words, so that both can be
fairly compared to other documents. As a result, tf-
idf weighting is more useful for a classification task
than WordNet similarity scoring according to our ex-
periments.

6 Conclusion and Future Work

Lyric sentiment analysis is not an easy task. Lyrics
are more difficult to analyze than traditional senti-

ment analysis corpora, such as movie reviews, be-
cause they often express an emotion without using
words that are sentiment-laden. Classifiers that rely
on the presence of subjectivity clues perform poorly
in this situation because of the paucity of subjectiv-
ity clues in most lyrics. Additionally, lyrics some-
times begin by expressing one emotion and then
conclude with the opposite emotion. This compli-
cates frequency-based analysis techniques because
the first emotion is usually more prevalent, and
causes the system to classify based on the incorrect
emotion. A final problem with lyrics is that they
express opposite emotions than the connotation of
the lyrics would lead an algorithm to expect. Many
songs in recent years use words like “shoot” and
“killer” in a positive way, which makes modeling
these usages difficult for a system that trains on data
from different time periods.

As a result, our accuracies are lower than are typ-
ically seen in other sentiment analysis tasks. Movie
review tasks in particular are able to achieve high
accuracy. However, our results are consistent with
(McKay et al., 2010), leading us to conclude that
while lyrics may improve a music classification sys-
tem that relies on additional data, current analysis
methods limit their effectiveness when they are used
alone for classification

In our experiments, we determined that, in ad-
dition to the problems listed above, the lexicon of
typical songs is different than that of a generic lexi-
con. For this reason, using a generic subjectivity lex-
icon to classify songs results in worse accuracy than
using a corpus-specific one. The lexicon that we
generated for our experiments was created with the
most basic statistical analysis, and we expect that if
it were improved, the accuracy of our classifications
would increase. This is something that we would
like to explore at a later date.

Algorithms that consider the prevalence of terms
seem to do better than presence-based algorithms.
We see improvements in our classification when we
consider the frequency of terms in positive or neg-
ative documents, rather than just their presence for
two main reasons. The first is that prevalence-based
algorithms do not ignore words that occur in both
positive and negative documents, since this excludes
most of the words in each song class. The second
reason is these algorithms have a threshold parame-

ter that could be tuned to the corpus. For our dataset,
we achieve the best accuracy with a threshold of
about 1.5; for other corpora, a different value may
be more appropriate.

There is still much work to be done in lyrical
analysis. Our current implementation of the Naive
Bayes algorithm takes as features the words in the
lyrics. However, the words themselves may not be
the best features to model the emotional polarity of
songs. Perhaps the number of syllables, the average
length of each line in the lyrics, or the number of
repeated words could also provide useful informa-
tion in a classification task. It would be interesting
to see if training the Naive Bayes classifier on these
features in isolation would result in more accurate
classifications, or if combining these new features
with our current implementation would be better.

In fact, many of our algorithms were limited to
analyzing only words. Many other language features
could be relevant to this classification task. For in-
stance, the song length, the repetition of word series,
the use of proper nouns, the number of slang words,
and any number of other characteristics could all
prove to be predictive metrics, which we did not ex-
plore. Incorporating these features and many others
could vastly improve our algorithms’ performance.
The reduction of a set of lyrics into only a series of
words is a naive simplification.

Additionally, algorithms such as Word List, Naive
Bayes, and Prevalent In One are tested using the
full sequence of words in the lyrics as they appear
in the song. It would be interesting to use simi-
lar approaches with simplified song representations
that remove repeated words, to provide only a list
of the words that appear in the song. Classifying
songs based entirely on the kind of words that ap-
pear in them would be a challenging and revealing
task. Conversely, utilizing word order, or knowledge
of word placement within a song, could conceiv-
ably simplify the classification task. Consider, for
example, the possible effects of identifying which
part of a song constitutes the chorus, and whether
treating the chorus differently from the remaining
lyrics could improve accuracy. Perhaps words in the
chorus should be down-weighted because they are
more frequent than the other words, or perhaps they
should be up-weighted because they are important
enough to be a part of the repeated chorus. emotion

of the song
In song classification, as in so many areas of

sentiment classification, negation proves a difficult
phenomenon to model. Our approach to negation
notably worsened performance in at least one sub-
class of algorithms. Accurately measuring emotion
in lyrics may require additional advances in tech-
niques for accounting for negation. Whether nega-
tion should be modeled differently in song lyrics
than in other texts remains to be seen, and could
prove an intriguing topic for future research.

We are confident that lyrical analysis for music
classification will one day achieve the accuracies of
other classification tasks. Until that time, however,
more research needs to be conducted on extracting
and analyzing the features that are salient to classifi-
cation.

7 Acknowledgements

We would like to thank Dr. Richard Wicentowski
for his guidance on this project.

References
Young Hwan Cho and Kong Joo Lee. 2006. Automatic

affect recognition using natural language processing
techniques and manually built affect lexicon. IEICE -
Transactions on Information and Systems, E89-D(12),
December.

Xiao Hu and J. Stephen Downie. 2010. Improving mood
classification in music digital libraries by combining
lyrics and audio. In JCDL ’10: Proceedings of the
10th Annual Joint Conference on Digital Libraries.

Cory McKay, John Ashley Burgoyne, Jason Hockman,
Jordan B. L. Smith, Gabriel Vigliensoni, and Ichiro
Fujinaga. 2010. Evaluating the genre classification
performance of lyrical features relative to audio, sym-
bolic, and cultural features. In Proceedings of the 11th
International Society for Music Information Retrieval
Conference, pages 213–218.

George A. Miller, Claudia Leacock, Randee Tengi, and
Ross T. Bunker. 1993. A semantic concordance. In
Proceedings of the ARPA Workshop on Human Lan-
guage Technology, pages 303–308.

Brendan O’Connor, Ramnath Balasubramanyan,
Bryan R. Routledge, and Noah A. Smith. 2010. From
tweets to polls: Linking text sentiment to public opin-
ion time series. In Proceedings of the International
AAAI Conference on Weblogs and Social Media, May.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification using ma-
chine learning techniques. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 79–86, July.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-level
sentiment analysis. In HLT ’05 Proceedings of the
Conference on Human Language Technology and Em-
pirical Methods in Natural Language Processing.

