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Abstract— We demonstrate a probabilistic approach for au-
tomatically discovering the latent kinematic structure of an
articulated object from three-dimensional input (e.g. stereo
vision, structured light, LIDAR or some other source of point
cloud data conducive to object tracking). The key thrust is
using standard function optimization algorithms to find the low-
dimensional manifolds (nonlinearly embedded in SE(3)) which
describe the pairwise relative motion of parts of an articulated
object. We review the mathematical techniques necessary to
develop this optimization, especially the distance metric on
SE(3) that is necessary for the objective function, and evaluate
the resulting learner in simulation and using video captured
using augmented reality (AR) markers for tracking.

I. INTRODUCTION

A. Motivation

Consider the problem of navigating and interacting in un-
structured, unknown environments. Actually, this is faced by
office workers every morning. A person going to work may
put on and take off several pairs of glasses. Operating a motor
vehicle is another matter, but even on foot there are doors
to open, some with keycards, others by turning keys; coffee
and breakfast to buy; and the continuous allocation problem
of accomplishing these tasks with only two hands. Once
in the office, there remains a perception problem: locate a
swivel chair, adapt to any furniture that was moved overnight.
Described in human terms, this hypothetical morning seems
simple. Yet we struggle to put a robot through these paces.

If we expect autonomous robots to accompany and assist
us in our daily lives, they must be able to act in the human
world. This includes many complex manipulation tasks. The
sequence described above is completely unremarkable for a
human, but involves serious heavy lifting and several open
problems if it is to be completed by a robot. This work
will focus on an important subproblem applicable to this
situation: namely, extracting the kinematic structure of an
articulated object from visual input. In the context of the
current paper, an articulated object is a coherent object in
the world that consists of rigid interlocking moving parts
(for example, a tape measure, desk lamp, swivel chair, etc).
The kinematic structure describes the relationships between
the parts and how they move; for example, a swivel chair
might be described by a tree with the seat at the root. The
seat has two children: the backrest (which might be rigidly
connected, or recline via a revolute joint), and the wheeled
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base, which turns on a revolute joint with respect to the
seat. The seat might also be vertically adjustable, which
would be represented by a prismatic joint in the same place.
Note that, in general, kinematic structures are graphs, but
in the following they are assumed to be trees to simplify
the computation. The wheels of a swivel chair may turn
independently, but usually they are all in contact with the
floor and so move in concert. Therefore the chair has fewer
degrees of freedom than is suggested by a kinematic tree with
the wheels as leaves. However, in many cases the analysis is
similar and with the tree assumption the structure discovery
is much easier.

B. Literature Review

Interactive perception, and discovery of latent kinematic
structure, is not an incredibly new idea. It has, however, be-
come somewhat more tractable recently with the widespread
availability of accurate RGBD cameras. Recent work in-
cludes the efforts of Dov Katz et al at UMass-Amherst [1],
[2] and later at CMU [3], as well as Yan and Pollefeys at
UNC [4] and Jürgen Sturm et al at the University of Freiburg
[5].

Katz et al present a system for “interactive segmentation”
as well as kinematic modeling in [1]. They use three-
dimensional (RGBD) vision to track a large cloud of feature
points on an articulated object of interest. Then, various
metrics are used to group feature points into object parts,
including 3D proximity, color and texture consistency, and
relative 3D motion (that is, rigidly connected feature points
will be close together, possibly the same color, and should
have very little relative motion). Once the object of interest
is segmented into rigid bodies, they aim to discover the
underlying kinematic structure of those bodies. This is done
using heuristics specific to each built-in joint type. Specifi-
cally, the relative 3D trajectories of feature points on a pair
of prismatically connected rigid bodies should fit straight
lines, and likewise arcs of circles for a revolute joint. These
heuristics are somewhat limiting in that there is no unified
system for deriving a heuristic from a kinematic definition.
However, in a subsequent paper Katz et al explore the use
of reinforcement learning to choose manipulator actions that
probe the environment for the sole purpose of perception –
an interesting direction that should be considered for this
work as well [2].

Yan and Pollefeys take a more mathematical approach,
attempting to discover the motion subspace described by
each feature trajectory and linking them by looking for



dependencies between the subspaces [4]. That work is prin-
cipally applied to non-rigid objects, which puts it outside the
scope of this paper, but the approach of considering relative
motion as a subspace and representing the object as a graph
is relevant.

Sturm et al provide the most direct inspiration for this
work in [5]. They seek to create a top-to-bottom system that
can go from visual input to a kinematic tree, taking into
account mathematical joint models and remaining robust to
outliers. Joint types considered are rigid, prismatic, revolute
and a catch-all Gaussian process model that can capture
several hard-to-model joints, such as a garage door.

C. Paper Outline

In the rest of this paper, we will present a system for
building kinematic trees from visual input, implemented from
scratch using MATLAB and following from the techniques
of [5]. Section II introduces the mathematical foundations,
and Section III follows with a schematic view of our imple-
mentation. We validate the system with several experiments
in simulation and with real-world objects, detailed in Section
IV. Finally, Section V discusses the many avenues for future
research.

II. KINEMATIC AND PROBABILISTIC MODELS

A. Kinematics of Articulated Objects

In the context of this paper, an articulated object is a
composite object consisting of one or more parts, which are
connected by joints which define their relative motion. The
joint between two parts might be rigid, in which case the two
parts are effectively one. More interesting are joints with
at least one degree of freedom. In this paper we consider
only prismatic and revolute joints, which have one degree of
freedom.

Mathematically, the relative motion between two parts
of an articulated object can be described as a trajectory
through SE(3), the space of rigid motions in 3D space.
This is a group with six degrees of freedom. However, the
presence of a 1-DOF joint restricts the relative motion to a
one-dimensional manifold nonlinearly embedded in the six-
dimensional configuration space. The problem of finding the
joint is thus rephrased as choosing the shape of the manifold
(i.e. the joint type) and the nature of its embedding (the joint
parameters).

Zooming out from the relative motion of two parts to the
articulated object as a whole, we can describe its structure
as a directed1 graph, where the nodes are the parts of the
object and the edges are annotated with joint types and
parameters. An example graph describing the structure of
a swivel chair is shown in Figure 1. In this simplified swivel
chair model, the main parts are the seat, base, backrest and
wheels. The wheels turn, the seat swivels and is adjustable
in height, and the backrest leans back (P stands for prismatic
and R for revolute). Note that, with the seat as the root, the

1Note that the graph is directed in that reversing the direction of an edge
requires inverting the geometry of the joint; however, the joint type does
not change.

swivel chair can be kinematically described as a tree. This
greatly simplifies the joint fitting for reasons that will become
clear later, so we will make the assumption in the following
that all kinematic graphs are trees. This assumption is, of
course, false; even in the swivel chair example the wheels
are normally on the ground so their rotations are locked
together. For another example, humans have two hands which
are normally independent, but when gripping something like
a steering wheel or a ladder rung they are kinematically
connected. This further reduces the degrees of the system as
a whole (thereby simplifying the search space), but it cannot
be represented in a tree, so the tree-based algorithm presented
here will miss the simplification.

seat backrest

base

wheelwheel wheel

R

P+R

R
R

R

Fig. 1. A possible model for the kinematic structure of a swivel chair

B. Probabilistic Formulation of the Problem
To mathematically formulate the problem, we express the

input data as a set of trajectories of K distinct points on an
articulated object:2

X = {xk
t ∈ SE(3) | k ∈ {1..K}, t ∈ {1..T}} (1)

The points could be feature points from camera data, or
VICON tracking output, or GPS logs; the only requirement is
that they are tracked in position and orientation. Envisioning
the object as a graph G = (V,E) where V = {1..K}, we
want to find a set of edges

E = {M i = (J, θ, σ)i | i ∈ {1..N}} (2)

such that the graph is connected and the trajectory data is
satisfactorily explained. Each of the N joints in the model
is described by the above 3-tuple M i where J identifies the
joint type, while θ and σ describe the joint parameters and
configuration (see Section II-D).

Let S be the set of all spanning trees of the connected
graph of size K (which will all have K − 1 edges), and
let ∆i:j

t = (xj
t )
−1xi

t be the relative transformation between
object parts i and j at time t. For a given model Ê we want
to evaluate its likelihood P (Ê | X) but in general this is
hard to calculate, so we invoke Bayes’ rule

P (Ê | X) =
P (X | Ê)P (Ê)

P (X)
(3)

2In this paper, superscripts are used for numbering object parts or
feature points, while subscripts are reserved for indexing in time. Where it
makes sense, operations may be considered to be implicitly vectorized (i.e.
(xa1..T )−1 refers to {(xa1)−1, (xa2)

−1), . . . }). Also, elements of SE(3)
will usually be shown in boldface (x), matrices in R3×3 in uppercase (M )
and vectors in R3 with an arrow (~v).



which reformulates the problem in terms of P (X | Ê) (easier
to calculate), P (Ê) (the model prior), and P (X) (irrelevant
for model selection). So we can select the best model using
an argmax:

Ê = max
E

P (X | E)P (M) (4)

= max
E∈S

K−1∏
i=1

max
Mi

P (X |M i)P (M i) (5)

= max
E∈S

K−1∏
i=1

max
Mi

T∏
t=1

P (∆ai:bi

t |M i)P (M i) (6)

= max
E∈S

K−1∑
i=1

max
Mi

T∑
t=1

logP (∆ai:bi

t |M i) + logP (M i)

(7)

≈ min
E∈S

K−1∑
i=1

min
Mi

T∑
t=1

||∆ai:bi

t − fkJi(θi, σi
t)||+ |θi| (8)

As per usual in model selection over a large search space,
we make several dubious independence assumptions in order
to make the search tractable. In this case, we assume that
(a) separate joints are independent (5), and (b) the likelihood
of a given model is independent across time (6). Notice
that maximizing likelihood is the same as maximizing log
likelihood, so we can switch the products to sums without
changing the outcome (7); lastly in (8) we switch from
maximizing likelihood to minimizing the Akaike Information
Criterion [6]. In this final form, the choice of g ∈ G
can be executed by building a complete graph of all K
parts, weighting each edge with the AIC of the model best
explaining the corresponding joint, and then finding the
minimum spanning tree (see Figure 3). The definitions for
the distance metric ||x − y|| in this space and the forward
kinematics fk(θ, σ) are given in sections II-C and II-D
respectively.

C. A pseudo-Riemannian Distance Metric on SE(3)

A central problem in the mathematics of trajectory fitting
is defining a distance function in trajectory space. Sturm
did not discuss this problem in [5], but as implemented3

that system uses a zero-mean, two-dimensional Gaussian
distribution with diagonal covariance on the rotation angle
and translation magnitude. That is, to find the “distance”
lS(u,v) between two SE(3) transformations, first find the
relative transformation u−1 ∗ v. Any such transformation
can be expressed as the composition of a rotation R and a
translation ~t, and taking the axis-angle view we can extract a
single angle θ from the rotation, so that Sturm et al.’s metric
is

lS(u,v) =
1

2πσrσt
exp

{
−1

2

(
θ2

σ2
r

+
||~t||2

σ2
t

)}
(9)

3see the functions GenericModel::getInlierLogLikelihood
and my_df in http://alufr-ros-pkg.googlecode.com/svn/
trunk/articulation/articulation_models/src/models/
generic_model.cpp

with suitably defined variances σr and σt. In this section,
we will derive a similar distance metric on SE(3) from first
principles.
SE(3) is not a Euclidean space because three of its six de-

grees of freedom describe rotations, which are topologically
distinct from translational dimensions. Therefore it is not so
easy to find a natural distance metric on SE(3). However, we
need one, in order to evaluate the likelihood of a candidate
joint model with regards to data (8). In this work we will
use the scale-dependent left-invariant metric derived by Park
[7], though other choices are available (e.g. Belta and Kumar
[8], Larochelle et al [9]).

A distance metric must be symmetric, positive definite,
and satisfy the triangle inequality. Additional desirable prop-
erties are scale-invariance (||a−b|| should not depend on the
units of each dimension) and bi-invariance (left ||a − b|| =
||ca−cb|| and right ||a−b|| = ||ac−bc||). Unfortunately it can
be shown [7] that in SE(3) scale invariance is impossible,
and we have to choose between left- and right-invariance.
Luckily, however, SE(3) is a Lie group, so we can use
techniques from calculus to derive an acceptable metric. The
main idea is, given two points a, b ∈ SE(3), the distance is
defined as a line integral along a geodesic from a to b (the
shortest path, or an approximation thereto) in the Lie algebra
se(3). This is called a Riemannian metric. (Since the Lie
algebra is comparable to a derivative, imagine measuring the
length of an airplane’s flight path by dividing it into many
short segments and summing the lengths of each segment as
if the Earth were piecewise flat.)

An element of SE(3) may be considered as a 4×4 matrix
containing a rotation and a translation

u =

[
uR ∈ R3×3 uT ∈ R3×1

0 1

]
(10)

and its Lie algebra se(3) has six-dimensional elements (ω, v)
with a correspondence defined by the exponential mapping

exp

[
ω× v
0 0

]
=

[
eω× Av
0 1

]
(11)

where ω× is the skew-symmetric cross product matrix and
A is defined thusly

ω× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (12)

eω× = I +
sin ||ω||
||ω||

ω× +
1− cos ||ω||
||ω||2

ω2
× (13)

A = I +
1− cos ||ω||
||ω||2

ω× +
||ω|| − sin ||ω||
||ω||3

ω2
× (14)

These formulae are from Park [7], and serve to show that the
correspondence between SE(3) and se(3) is well-defined,
but it will not be necessary to use them explicitly. The
metric used in this work, which is scale-dependent and right-
invariant, is

l(u,v) : SE(3)× SE(3) −→ R (15)

l(u,v) =
√
c|| log(UT

RVR)||2F + d||~uT − ~vT ||2



where ||·||F denotes the Frobenius norm and ||·|| the familiar
L2 norm.

Since this is only to be used as an objective function for
optimization, the quantity of interest is the squared distance

L(u,v) = c|| log(UT
RVR)||2F + d||~uT − ~vT ||2 (16)

The gradient, derived in Appendix A, is

∂L

∂u
= 2c log(UT

RVR)V
T
R URVR + 2d(~uT − ~vT ) (17)

Since the general formula for converting a rotation ma-
trix R to axis-angle form involves extracting the angle√
2θ = || log(R)||F , our metric (16) bears certain similarities

to the logarithm of Sturm et al.’s metric (9). So using (16)
as a stand-in for log likelihood is quite natural. Furthermore,
having derived (16) from the geometry of the problem, the
gradient comes naturally as well.

D. Joint Types

For the purposes of this work a joint defines an embedding
of a low-dimensional manifold into SE(3). A joint has a
set of parameters, θ, which characterize the embedding, and
states, σ, which form local coordinates in the manifold. In
the current paper only rigid, prismatic and revolute joints are
considered, but these are powerful enough to describe many
real-world objects. Figure 2 shows the joints schematically.

x

y

z

o

x = o
Rigid

x

y

z

o

~u

e

x = T (e~u) ∗ o
Prismatic

x

y

z

c
θ

r

x = r ∗Rz(θ) ∗ c
Revolute

Fig. 2. Joint types

To be useful in our system, a joint must have associ-
ated forward and inverse kinematics functions. A forward
kinematics function fkJ processes θ and σ to produce a
relative transformation in Euclidean space, while an inverse
kinematics function ikJ takes such a relative transformation,
along with θ, and recovers σ (often easier said than done,
especially in the presence of sensor noise). The definitions
of our three joint types are:

• Rigid: a rigid joint has one parameter, which is an offset
in SE(3), and no state. Acoordingly, its kinematics are
trivial.

fkri(θ, σ) : SE(3)× R −→ SE(3) (18)
fkri(〈o〉, σ) = o

ikri(x, θ) : SE(3)× SE(3) −→ R (19)
ikri(x, 〈o〉) = 0

• Prismatic: a prismatic joint has two parameters, an
offset and a unit vector pointing in the direction of
extension, and one state which specifies the length of
extension. In the following T creates a pure translation
in SE(3), given a vector in R3, and T−1 extracts the
translation vector from a full transformation.

fkpr(θ, σ) : SE(3)× U3 × R −→ SE(3) (20)
fkpr(〈o, ~u〉, σ) = T (σ~u) ∗ o
ikpr(x, θ) : SE(3)× SE(3)× U3 −→ R (21)

ikpr(x, 〈o, ~u〉) = T−1(x ∗ o−1) · ~u

• Revolute: a revolute joint has two parameters, a center
of rotation and a “radius” which defines a transforma-
tion to apply after the rotation, and one state which
specifies the rotation angle. In the following Rz creates
a pure rotation around the z axis in SE(3), given an
angle, and R−1

z recovers that angle.

fkre(θ, σ) : SE(3)× SE(3)× R −→ SE(3) (22)
fkre(〈c, r〉, σ) = r ∗Rz(σ) ∗ c
ikre(x, θ) : SE(3)× SE(3)× SE(3) −→ R (23)

ikre(x, 〈c, r〉) = R−1
z (r−1 ∗ x ∗ c−1)

In the future, it would make sense to add more joint types
so that our kinematic trees can be more expressive. For
example, ball joints (which have three states) are often seen
in the wild, as are screw joints. Note that these could also be
represented by combining prismatic and revolute joints with
“virtual” (invisible) nodes in the tree.

III. IMPLEMENTATION

Currently the algorithm presented here is implemented in
MATLAB. The code will be available online.4

A. Algorithm Overview

An overview of the major stages in the learning algorithm
is presented in Figure 3. The procedure is designed to
be modular, with most components interchangeable – for
example, the perception could use a Kinect or a laser scanner,
the smoothing could use a Kalman filter instead of the current
generic low-pass, et cetera.

Algorithm 1 corresponds to the dotted box in the flowchart,
which is the core of the learning. Here, the initial parameters
θ̂ are computed differently for each joint type:
• First we choose three (different) time points in the

trajectory from which to initialize the parameters.

4http://www.alexburka.com/penn/manip.html
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Fig. 3. Block diagram of the optimization algorithm

• For a rigid joint, we simply set the offset to one of the
transformations (which are all approximately the same,
if this is really a rigid joint).

• For a prismatic joint, we set the offset to one of
the transformations and calculate the unit vector as
the direction of translation from one transformation to
another.

• For a revolute joint, the calculation is more involved.
First we fit the plane of rotation, from the entire trajec-
tory (the plane is defined by a center point, the mean of
the trajectory translations, and two basis vectors which
come from the two largest principal components of the
trajectory translations). Then we find the circumcenter
of the three sample transformations, restricted to this
plane; that is the translation component of c. The
rotation component of c is constructed from the basis
vectors of the plane Pd1 and Pd2. Lastly, r is simple to
extract from c and one sample transformation.

The cost function is AIC, the Akaike Information Cri-
terion, which is chosen to penalize models with too many
degrees of freedom [6]. The full formula is

AIC = −2 logLmax + 2k (24)

where Lmax is the maximum likelihood and k is the number
of model DOFs. To calculate AIC we use the error calculated
by the objective function (line 19 of Algorithm 1) as a
measure of the negative log likelihood, and add the number
of model parameters.5

5In Section II-D, elements of SE(3) and R3 were counted as whole
parameters. Here we count degrees of freedom instead. An element of
SE(3) has six degrees of freedom, and an element of R3 three. Using this
counting method, a rigid joint has 6 DOFs, a prismatic joint has 8 DOFs,
and a revolute joint has 12 DOFs. In truth, for implementation expedience
the prismatic joint is considered to have 9 DOFs (ignoring the unit vector
constraint for AIC purposes), but prismatic joints are frequent false positives
anyway, so this should not adversely affect the results.

After the loop, which finds the most plausible joint model
for each pair of object parts, we still need to decide which
parts are actually connected and which joints are superfluous
or misleading. The minimum spanning tree fulfills this step,
choosing the joints with the lowest cost while keeping all of
the nodes connected.

The last step is rigid subcluster elimination, which elim-
inates all rigid joints from the tree, by modifying the sur-
rounding joints to obviate the rigid offset. Table I shows the
simple parameter adjustments necessary to absorb a rigid
offset q = (QR, ~qT ) on either end of another joint. The
reason for including rigid subcluster elimination is for the
case in which the input is from an unsupervised feature
tracker, where there will be multiple features tracker per
object part. The final tree thus contains only the movable
joints.

Joint type Parameters Prepend rigid q Append rigid q
Rigid o o← o ∗ q o← q ∗ o

Prismatic o, ~u o← o ∗ q o← q ∗ o, ~u← QR ∗ ~u
Revolute c, r c← c ∗ q r ← q ∗ r

TABLE I
INCORPORATING RIGID OFFSETS INTO JOINTS

Algorithm 1: Joint learner

Input: a, b tree edge, xa,b
1..T object part positions

Output: Joint (J, θ), states σ1..T , cost c

1 ∆1..T ← xb
1..T ∗ (xa

1..T )
−1

2 for q in {rigid, prismatic, revolute} do
3 i, j, k ← RND(1..T )
4 switch q do
5 case rigid
6 θ̂ ← {∆i}
7 endsw
8 case prismatic
9 θ̂ ← {∆i,

T−1(∆k−∆i)
||T−1(∆k−∆i)||}

10 endsw
11 case revolute
12 P ← FITPLANE(T−1(∆1..T ))
13 ~δi, ~δj , ~δk ← PROJ(P , ∆{i,j,k})
14 ~c← UNPROJ(P , CIRCUMCENTER(~δ{i,j,k}))

15 c← T (~c) ∗

 ~Pd1

~Pd2

~Pd1 × ~Pd2


16 θ̂ ← {c,∆i ∗ c−1}
17 endsw
18 endsw
19 (θq, cq)← MIN(θ̂, λθ. ||fkq(θ, ikq(∆, θ))−∆||2)
20 end for
21 J ← min

q
cq

22 σ1..T ← ikJ(∆1..T , θJ)
23 return (J, θJ), σ1..T , cJ



IV. EVALUATION

A. Simulation

Software was written to simulate the motion of arbitrary
articulated objects in 2D or 3D. A graphical interface is pro-
vided for constructing a kinematic tree, which is represented
as a list of tuples

S = {(a, b, J, θ, σ, σmin, σmax)
j | j ∈ {1..N}} (25)

In this tuple, similar to that of (2), a and b specify the object
parts (graph nodes) connected by the joint, J is the joint type
configured by θ, and σ, the joint state, varies between σmin

to σmax during the simulation.
The algorithm for generating rigid motions of the full

articulated object is simple: the root of the kinematic tree
is placed at a random position and perturbed a small amount
at every timestep. All the other object parts are placed by
walking the tree (depth-first, using the recursive PLACEOB-
JECTS function) and chaining the joint forward kinematics
functions. The parameters σ are perturbed so that the joints
move, and a small amount of noise is also simulated.

Algorithm 2: Articulated motion simulator
Input: S kinematic tree (25), (εT , εR) noise amplitude
Output: x1..K

1..T object part trajectories

1 x1
1 ← T(RND(±5)) ∗ R(RND(±2π))

2 for t← 1 to T do
3 x1..K

t ← PLACEOBJECTS(x1..K
t , S, 1)

4 ∆x← T(RND(±εT )) ∗ R(RND(±εR))
5 x1..K

t ← ∆x ∗ x1..K
t

6 x1
t+1 ← x1

t ∗∆x
7 for j ← 1 to N do
8 ∆σ ← RND(± 1

10 (σ
j
max − σ

j
min))

9 σj ← BOUND(σj + ∆σ, σj
min, σj

max)
10 end for
11 end for

Function PLACEOBJECTS (subroutine for Alg. 2)

Input: x1..K
t object part positions, S kinematic tree

(25), p parent part index
Output: x1..K

t updated part positions

1 for j ← 1 to N do
2 if aj = p then
3 xbj

t ← fkJj (θj , σj) ∗ xaj

t

4 x1..K
t ← PLACEOBJECTS(x1..K

t , S, bj )
5 end if
6 end for
7 return x1..K

t

B. Input from Augmented Reality Markers

In order to leave the simulation and use the tree learner
on real data, we need a set of feature points to track. In

the simulator, this comes for free. In order to postpone the
hard problem of image segmentation and coherent feature
tracking, we instrument the articulated objects under study
with fiducial markers, specifically Aruco markers, which are
small QR-like patterns that encode 5 bit numbers [10]. An
external detection library locates these markers in an image
and outputs position and orientation. (See Figure 4 for an
example.) It is a simple matter to translate this into our
standard trajectory format (i.e., a sequence of homogeneous
transformation matrices) and so the initial perception prob-
lem is effectively circumvented (but see Section V for ideas
to improve this situation).

Fig. 4. Detection of Aruco fiducial markers

C. Experiment 1: Simulation

1) Setup: For this experiment we drew several kinematic
trees representing imaginary objects and fabricated trajectory
datasets by generating random trajectories in state space. The
trees are not supposed to represent any real-world objects,
but rather to exercise the capabilities of the joint matching
algorithm. The simulator has two interesting hyperparame-
ters:

1) Noise is applied to the generated trajectory data. The
noise is uniformly distributed in the Lie algebra se(3),
with different magnitudes on the translational and rota-
tional components. Those magnitudes are (εT , εR), as
in line 4 of Algorithm 2.

2) Normally the simulation generates one trajectory per
object part, which replicates the input using the fiducial
markers. However, with unsupervised feature tracking
there will be multiple (rigidly-connected) trajectories
per object part. The simulator can fake this using an
“inflation” factor I: before simulation, we add KI rigid
joints connecting each node to I nearby virtual nodes.

2) Results: Figure 5 shows the effect of changing the
simulator noise parameter on matching performance. The
experiment was run 4 times at each of 4 noise settings
and 4 inflation settings; results are shown with no inflation.
At the top of the figure is the tree used to generate all
the simulations. The plots show the algorithm attempting
to model the prismatic joint, at three noise levels. With low
noise, this is successful; at high noise levels the fit incorrectly
produces three revolute joints.

Real-world trajectory measurements will always be noisy,
especially when recovering 3D pose from 2D cameras, so ro-
bustness to noise in simulation is promising. The assumption
that noise will be uniformly distributed in se(3) is perhaps
a naı̈ve one, so future work should vary this distribution.
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Fig. 5. Simulation robustness to noise. Visualizations show the best-fitting
attempts to model the leftmost joint as prismatic, at different noise levels.

D. Experiment 2: Objects in the lab

1) Setup: In the first experiment, the learner was applied
to simple articulated objects found in the robotics lab: a
swing arm desk lamp and a Dynamixel robotic arm (shown
in Figure 6). The lamp has three revolute joints and a two-
bar linkage which does not correspond to any of the models
in the current system (in fact it has two degrees of freedom),
but for certain motions it appears as a prismatic joint which
can be detected. The robotic arm has four revolute joints (and
a prismatic joint in the gripper which we are not using).

For the experiment, the lamp and robotic arm were both
actuated by hand to capture two datasets each. For a final
dataset, the robotic arm was driven by a computer through
a set of scripted motions; accordingly we can construct a
ground truth for comparison. The objects were instrumented
with Aruco markers (approximaely 2 inches in width) at the
points marked in red on the figure. All videos were recorded
with the built-in webcam on a 2012 Apple MacBook Air,
using OpenCV, and are available online.

Once parsed by the Aruco tracking library, we have a
set of markers identified in each frame, and coordinates
〈tx, ty, tz, rx, ry, rz〉1..K for each one (frames where one or
more markers go undetected are simply discarded). Since the
library unfortunately uses a different version of Euler angles
than the rest of this work, we perform the transformation

Rk = Rz(
π

2
)Ry(r

k
x)Rz(−

π

2
)Ry(r

k
y)Rz(r

k
z ) (26)

The Aruco output is rather noisy, especially the rotation
components, so we smooth it with a low-pass filter. After
that, the trajectories are processed by the matching algorithm
as in Figure 3.

2) Results: Figure 7 shows a trace through time of the
commands sent to the base joint of the robotic arm, and
the angle detected for that joint (note that of course the
commands are sent instantaneously, but the arm speed is
heavily limited so that the camera does not lose track of

Fig. 6. Representative images of the objects used for Experiment 2.
Fiducial markers placed at red dots. Sources: Home Decorators Collection
and CrustCrawler Robotics

the Aruco tags). We see that the detection works fairly well
as the base joint rotates around the z axis. At high angles,
the Aruco tags are at an oblique angle with respect to the
camera, so there is not much resolution and the detection
accuracy is reduced.
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Fig. 7. Commanded and detected angles for one joint of the robotic arm
in Experiment 2.

V. CONCLUSIONS AND FUTURE WORK

In the current paper we have presented a working system
that takes in raw trajectory input and produces a kinematic
tree as output. The system’s effectiveness is demonstrated in
simulation and on real-world objects using fiducial markers
for tracking, though we envision swapping out the fiducial
markers for 3D feature tracking with a stereoscopic camera
in the near future. The key contribution of this work is a
modular framework for kinematic tree fitting applications,
since nearly every stage in Figure 3 can be replaced with
alternative implementations to try different joint matching
strategies; additionally, adding another joint type requires
implementing only forward/inverse kinematics and a few
ancillary functions.

There are many avenues for continuing research with this
modular platform as a base.



One area that invites inquiry is better object tracking: that
using a stereoscopic camera we can achieve real-time posi-
tion and orientation tracking without using fiducial markers.
Given a stationary camera, motion can be used directly for
segmentation.

Another avenue is to re-examine the feedforward nature of
Figure 3. Other popular vision algorithms, such as SLAM,
use probabilistic structures to keep track of a belief state
about the world, which in turn informs the interpretation of
new sensor data. We could even incorporate a structure akin
to a particle filter in order to track multiple kinematic tree
hypotheses [11].

Looking further ahead, it is somewhat limiting to con-
fine the modeling effort to software. Humans and animals
routinely modify the environment to test hypotheses and
ease perception. Robots may nudge, squeeze, pick up or
even throw and drop objects in order to learn about their
kinematic and dynamic properties. The “Ripley” robotic
arm system described in [12] performs these exploratory
manipulations. Applied to articulated objects, this kind of
“interactive perception”, where the current belief state of the
kinematic tree determines the most informative manipulator
action, could be very helpful.

In conclusion, the system presented here is modular and
extensible, and we see many interesting directions for ex-
tending its functionality.

APPENDIX

A. Gradient of the Objective Function
If we re-cast (16) as a chain of nested functions

L(u,v) = c ∗ g(h(k(u,v))) + d ∗m(n(u,v)) (27)

where the individual functions are

g(x) = ||x||2F R3×3 → R
h(x) = log x R3×3 → R3×3

k(u,v) = UT
RVR SE(3)→ R3×3

m(x) = ||x||2 R3 → R
n(u,v) = ~uT − ~vT SE(3)→ R3

the gradient decomposes as a combination of Jacobian ma-
trices:

∂L

∂u
= c

∂g

∂x

∂h

∂x

∂k

∂u
+ d

∂m

∂x

∂n

∂u
(28)

Computing the Jacobians and calculating as above,
∂g

∂x
= 2x 1× 9

∂h

∂x
= x−1 9× 9

∂k

∂u
= vR 9× 16

∂m

∂x
= 2x 1× 3

∂n

∂u
= 1 3× 16

∂L

∂u
= c ∗ 2h(k(u,v)) ∗ k(u,v)−1 ∗ VR + d ∗ 2n(u,v)

= 2c log(UT
RVR)V

T
R URVR + 2d(~uT − ~vT ) (29)

and this will be used to speed up the gradient descent
optimization (see Algorithm 1).

B. Source Code

The MATLAB, Python and C++ code underlying the
algorithms described in this paper may be found at
http://www.alexburka.com/penn/manip.html.
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[10] R. Muñoz Salinas, “ArUco: A minimal library for Augmented Reality
applications based on OpenCV,” 2012.

[11] S. Thrun, “Robotic Mapping : A Survey,” no. February, 2002.
[12] K.-y. Hsiao and D. Roy, “A Habit System for an Interactive Robot

Ripley : An Interactive Manipulator Robot,” 2005.


