Probabilistic Discovery of Articulated Object Kinematics Using Trajectory Matching with a pseudo-Riemannian Metric on SE(3)

Alex Burka

March 20, 2013

Motivation

OR: a map of the rabbit hole

- End goal: robot interacts with real world object and learns a kinematic tree
- Input: feature trajectories $x_{i}(t) \in S E(3)$
- Output: kinematic tree

Rigid(1, Prismatic (2, Revolute (3, 4)))

- Key subproblem: fit several candidate joint models to a set of feature trajectories, and decide on the best model
- Sticking point 1: how do we compare the observed and predicted trajectories of a feature? We need to be able to compare elements of $S E(3)$.
- Sticking point 2: how do we determine which sub-objects are connected?

Literature Review

- Interactive Perception (Katz et al 2008, 2012)
- Perception and action are not as decoupled as roboticists like to pretend
- Tracking: optical flow, Lucas-Kanade registration, SIFT features
- Segmentation: weighted max-flow/min-cut (?)
- Fitting: ad-hoc rigid/prismatic/revolute
- Motion subspaces (Yan \& Pollefeys 2006)
- Joints restrict the motion of object parts to intersecting subspaces of $S E$ (3)
- Tracking/segmentation: bypassed (input is trajectories)
- Fitting: estimate subspace of each feature, build graph using the principle angles between all subspaces, then minimum spanning tree
- Probabilistic approach (Sturm et al 2011)
- Bayesian treatment of the trajectory matching problem
- Main inspiration for the current paper
- Tracking/segmentation: augmented reality markers
- Fitting: nonlinear optimization using kinematics, then minimum spanning tree on BIC

Fig. 1. The mobile manipulator UMan interacts with a tool, extracting the tool's kinematic model to enable purposeful manipulation. The right image shows the scene as seen by the robot through an overhead camera; dots mark tracked visual features.

Probabilistic Joint Fitting

- Input is trajectories

$$
X=\left\{\bar{x}_{t}^{k} \in S E(3) \mid k \in\{1 . . K\}, t \in\{1 . . T\}\right\}
$$

- Ouptut is graph $G=(V, E)$ where $V \in\{1 . . K\}$ and $E=\left\{M=(J, \theta, \sigma)^{i} \mid i \in\{1 . . N\}\right\}$
- Now, the math:

$$
\begin{aligned}
\widehat{E} & =\max _{E} P(X \mid E) P(M) \\
& =\max _{E \in S} \prod_{i=1}^{K-1} \max _{M^{i}} P\left(X \mid M^{i}\right) P\left(M^{i}\right) \\
& =\max _{E \in S} \prod_{i=1}^{K-1} \max _{M^{i}} \prod_{t=1}^{T} P\left(\bar{\Delta}_{t}^{a^{i}: b^{i}} \mid M^{i}\right) P\left(M^{i}\right) \\
& =\max _{E \in S} \sum_{i=1}^{K-1} \max _{M^{i}} \sum_{t=1}^{T} \log P\left(\bar{\Delta}_{t}^{a^{i}: b^{i}} \mid M^{i}\right)+\log P\left(M^{i}\right) \\
& \approx \min _{E \in S} \sum_{i=1}^{K-1} \min _{M^{i}} \sum_{t=1}^{T}\left\|\bar{\Delta}_{t}^{a^{i}: b^{i}}-f k_{j^{i}}\left(\theta^{i}, \sigma_{t}^{i}\right)\right\|+\left|\theta^{i}\right|
\end{aligned}
$$

Distance Metric

- For minimization, we need to answer this question: given $\bar{a}_{1 . . T}, \bar{b}_{1 . . T}$ two trajectories in $\operatorname{SE}(3)$, what is the "distance"?

$$
\left\|\bar{a}_{1 . . T}-\bar{b}_{1 . . T}\right\|=\sum_{t=1}^{T}\left\|\bar{a}_{t}-\bar{b}_{t}\right\|
$$

- Can we just subtract the parameters?

$$
\sqrt{\left(a_{x}-b_{x}\right)^{2}+\left(a_{y}-b_{y}\right)^{2}+\left(a_{z}-b_{z}\right)^{2}+\left(a_{\theta}-b_{\theta}\right)^{2}+\left(a_{\phi}-b_{\phi}\right)^{2}+\left(a_{\alpha}-b_{\alpha}\right)^{2}}
$$

- No good! The units are incompatible, plus subtracting angles is a leading cause of dinosaur attacks.
- Solution: since $\operatorname{SE}(3)$ is a Lie group, evaluate $\|x-y\|$ as a
 "line integral" of distances computed along a path in the Lie algebra $\mathfrak{s e}(3)$.
- The formula, from Park 1995, is

$$
\|\bar{a}-\bar{b}\|=\sqrt{c\left\|\log \left(A_{R}^{T} B_{R}\right)\right\|_{F}^{2}+d\left\|\vec{a}_{T}-\vec{b}_{T}\right\|^{2}}
$$

(We still have to make up an arbitrary conversion factor $\frac{c}{d}$.)

Putting it all together

Experiment 1: Simulation

- Tree designer GUI used to debug and experiment with simulation
- Control over simulation parameters: T, inflation, noise
- Main experiment: sensitivity of learning to noise and inflation
- Figure shows the simulation of a prismatic joint at three noise levels and the corresponding learning output

Experiment 2: Real World

k shoulder -100 elbow -100 wrist 100 base -100
z 5
k base 75
z 5
k wrist 30
z 3
k wrist -60
z 3
k wrist 30
z 2
j

