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Motivation
OR: a map of the rabbit hole

I End goal: robot interacts with real world object and learns a kinematic tree

I Input: feature trajectories xi (t) ∈ SE(3)

I Output: kinematic tree Rigid(1,Prismatic(2,Revolute(3, 4)))

I Key subproblem: fit several candidate joint models to a set of feature
trajectories, and decide on the best model

I Sticking point 1: how do we compare the observed and predicted trajectories of
a feature? We need to be able to compare elements of SE(3).

I Sticking point 2: how do we determine which sub-objects are connected?
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Literature Review
I Interactive Perception (Katz et al 2008, 2012)

I Perception and action are not as decoupled as
roboticists like to pretend

I Tracking: optical flow, Lucas-Kanade
registration, SIFT features

I Segmentation: weighted max-flow/min-cut (?)
I Fitting: ad-hoc rigid/prismatic/revolute

I Motion subspaces (Yan & Pollefeys 2006)
I Joints restrict the motion of object parts to

intersecting subspaces of SE(3)
I Tracking/segmentation: bypassed (input is

trajectories)
I Fitting: estimate subspace of each feature, build

graph using the principle angles between all
subspaces, then minimum spanning tree

I Probabilistic approach (Sturm et al 2011)
I Bayesian treatment of the trajectory matching

problem
I Main inspiration for the current paper
I Tracking/segmentation: augmented reality

markers
I Fitting: nonlinear optimization using kinematics,

then minimum spanning tree on BIC



Probabilistic Joint Fitting

I Input is trajectories
X = {x̄kt ∈ SE (3) | k ∈ {1..K}, t ∈ {1..T}}

I Ouptut is graph G = (V ,E ) where V ∈ {1..K} and
E = {M = (J, θ, σ)i | i ∈ {1..N}}

I Now, the math:
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Distance Metric

I For minimization, we need to answer this question: given
ā1..T , b̄1..T two trajectories in SE(3), what is the
“distance”?

||ā1..T − b̄1..T || =
T∑
t=1

||āt − b̄t ||

I Can we just subtract the parameters?√
(ax − bx )2 + (ay − by )2 + (az − bz )2 + (aθ − bθ)2 + (aφ − bφ)2 + (aα − bα)2

I No good! The units are incompatible, plus subtracting
angles is a leading cause of dinosaur attacks.

I Solution: since SE(3) is a Lie group, evaluate ||x − y || as a
“line integral” of distances computed along a path in the Lie
algebra se(3).

I The formula, from Park 1995, is

||ā− b̄|| =

√
c|| log(AT

RBR)||2F + d ||~aT − ~bT ||2

(We still have to make up an arbitrary conversion factor c
d

.)



Putting it all together
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Experiment 1: Simulation

I Main experiment: sensitivity
of learning to noise and
inflation

I Figure shows the simulation
of a prismatic joint at three
noise levels and the
corresponding learning
output

I Tree designer GUI used to
debug and experiment with
simulation

I Control over simulation
parameters: T , inflation,
noise



Experiment 2: Real World
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