
An Efficient Python Module for Lexical Distributional Similarity

Brian Tomasik
Department of Computer Science

Swarthmore College
Swarthmore, PA 19081

btomasi1@swarthmore.edu

Dougal Sutherland
Department of Computer Science

Swarthmore College
Swarthmore, PA 19081

dsuther1@swarthmore.edu

Abstract

We implement the algorithm of (Rychly
and Kilgarriff, 2007) for computing distri-
butional similarity among words based on
shared context relations in a manner de-
signed to scale to billion-word corpora.

1 Introduction

Several NLP tasks require knowledge of the distri-
butional similarity of words in a particular large cor-
pus. Two words are distributionally similar if one
could be substituted for the other in a sentence with
a high probability of preserving the plausibility of
seeing the sentence in real text (Weeds and Weir,
2005, p. 442). For instance, we expect “apple” and
“banana” to be distributionally similar because they
can both substitute for x in phrases like “eat the x,”
“slice the x,” “fresh x,” “rotten x,” and “x-flavored.”

A list of distributionally similar words can be used
for a number of tasks. One example is cooccurrence
smoothing in n-gram language modeling, in which
unseen n-grams can be given higher probability if
they contain words that are similar to those of seen
n-grams (Essen and Steinbiss, 1992; Dagan et al.,
1993; Dagan et al., 1999). Even more common is
the use of distributional similarity to approximate
semantic similarity, based on the so-called distri-
butional hypothesis (Harris, 1954), the assumption
that, to quote John Firth, “You shall know a word
by the company it keeps” (Firth, 1957). (Curran,
2004, sec. 1.4) surveys a number of applications of
semantic similarity using cooccurrence information,

including parse selection, collocation identification,
sentiment classification, and query expansion in in-
formation retrieval and question answering.

The most straightforward use of similarity infor-
mation is for thesaurus construction. While man-
ually constructed tools like Roget’s thesaurus and
WordNet can also be used for identifying synonyms
in standard English, such resources are not available
for all languages, nor can they be easily adapted to
the technical terminology of a particular domain (Ju-
rafsky and Martin, 2008, p. 658).

(Curran and Moens, 2002) find that the quality
of automatically extracted thesauri continues to im-
prove as input-text size increases into the hundreds
of millions of words. As a result, (Gorman and
Curran, 2006) investigate a number of approxima-
tion algorithms for scaling to large corpora. (Rychly
and Kilgarriff, 2007) subsequently proposed a much
faster algorithm requiring essentially no approxima-
tions, and this paper describes our implementation
of this latter approach.

Section 2 of this paper describes the general algo-
rithmic challenge of problem, section 3 describes the
specifics of our implementation, section 4 illustrates
our output, and section 5 describes ways in which
one could augment our package and more systemat-
ically evaluate the results.

2 Algorithm Complexity

As is standard in the distributional-similarity liter-
ature, (Gorman and Curran, 2006) base their algo-
rithm on context relations of the form (w, r, w′).
For instance, from “bake the cake,” they would ex-
tract (cake, dir-obj, bake). The pair (r, w′) is

called an attribute by (Gorman and Curran, 2006)
and a feature by other authors (Lin, 1998a; Weeds
and Weir, 2005). For each attribute, we can list the
number of times a given word has it (see Table 1).

Table 1: Example context vectors for two words.

Attribute cake cookies

(dir-obj, bake) 5 3
(dir-obj, eat) 4 9

(subject, swam) 0 0
(modified-by, yummy) 2 1

.

A number of measures have been proposed for
computing the similarity of two words as a function
of their attribute counts (Curran, 2004; Weeds and
Weir, 2005), but they are in general O(m), where
m is the number of attributes. Given n total words,
a naı̈ve nearest-neighbor algorithm that compares
each word to each other word is O(mn2).

(Gorman and Curran, 2006) evaluate several ap-
proximation schemes, including dimensionality re-
duction and randomization techniques to reduce the
context-vector size m and data structures to ap-
proximate the O(n2) nearest-neighbor search. They
find that Spatial Approximation Sample Hierarchy
(SASH) (Houle and Sakuma, 2005) performed al-
most as well at matching synonyms from a gold
standard as doing the full O(n2) computation but
took an order of magnitude less time.

However, Rychlý and Kilgarriff (Rychly and Kil-
garriff, 2007) point out that most of the entries
of Table 1 are zeros, since most words don’t ap-
pear in most contexts. So rather than fixing two
columns and looking at the (small number of) rows
they share, one can fix a row and look at all of the
columns with nonzero entries. This number is gen-
erally small (usually less than 1000), and in the rare
case when it’s larger than p = 10, 000, the authors
skip it, since extremely common contexts are un-
likely to be informative anyway. The worst-case
run-time is thus O(mp2) with p� n.

For each pair of words with nonzero counts in a
given row, Rychlý and Kilgarriff increment partial
sums of the similarity between the words. Storing
a full word-by-word similarity matrix in RAM be-
comes impossible for large corpora, so the authors

suggest two alternatives:

1. External-memory sorting: Write the partial-
sum increments out to a file to which an
external-memory mergesort can later be ap-
plied.

2. In-memory partitioning: Build the similarity
matrix in RAM, but store only the rows cor-
responding to words in a selected range (e.g.,
words 1 through 99, 100 through 199, etc.).
Write out each partial matrix to a file and then
start over with the next range of words.

Applying their algorithm to large corpora of up to
1.9 billion words, Rychlý and Kilgarriff keep com-
putation time below 2 hours.

3 Implementation Details

We implement the algorithm of Rychlý and Kilgar-
riff in Python as a module for the Natural Language
Toolkit (NLTK) (Bird and Loper, 2004).

3.1 Relation Extraction
Our module assumes the existence of input context
relations (w, r, w′) that will be supplied by the user.
NLTK currently lacks a module for extracting such
relations from a corpus, so we use Lin’s Minipar
(Lin, 1998b), which is only available in the form of
Linux and Windows binaries.

Minipar relations come with associated parts of
speech (POS)—e.g., “buy V:obj:N car”—so our pro-
gram gives the user the option, enabled by default,
to attach the POS to the word—e.g., “buy(V)” and
“car(N)”—so that thesaurus results will be POS-
specific, as are standard thesauri like Roget’s. To
ensure that our input relations are clean and seman-
tically meaningful, we restrict consideration to those
in which both w and w′ are nouns, verbs, or adjec-
tives; however, this is a configurable parameter in
our program.

3.2 Similarity Functions
(Curran, 2004, chapter 4) presents a number of sim-
ilarity functions, each consisting of a component
weight function and measure function, explained
further below.

For a given context c, say (dir-obj, bake), and
word w, say, cake, the weight function wgt(w, c)

indicates how useful or interesting it is that w has
context c. For instance, one might use a TF-IDF
score, which gives more credit to more common
(w, c) relations but discounts contexts that are very
common in general. After evaluation, (Curran,
2004, p. 85) finds that a t-test weight performs best
against gold-standard thesauri:

wgtttest(w, c) =
p(c, w)− p(c)p(w)√

p(c)p(w)
, (1)

where p(·) is the maximum-likelihood probability
estimate based on frequency counts. We use this as
our default weight function,1 but our program could
easily extend to other weight functions computable
from the values p(c), p(w), p(c, w), and the total
number of relations N , including all of those shown
in Table 1 of (Weeds and Weir, 2005, p. 446).

A measure function is a way of combining
weights for two words wi and wj over all of their
contexts. Words that share large weights in many
contexts are taken to be more distributionally simi-
lar. (Curran, 2004, p. 84) found best performance
from two measures:

measdice-mod(wi, wj) =∑
c∈Cij

2 min (wgt(wi, c), wgt(wj , c))∑
c∈Cij

wgt(wi, c) + wgt(wj , c)

(2)

and

measjaccard(wi, wj) =∑
c∈Cij

min (wgt(wi, c), wgt(wj , c))∑
c∈Cij

max (wgt(wi, c), wgt(wj , c))
,

(3)

where

Cij := {c : (wi, c) and (wj , c) both exist}. (4)

1According to (Jurafsky and Martin, 2008, p. 662) and ref-
erences cited therein, it is standard to bound weights from be-
low by 0, since negative weights tend to be unreliable unless
the input corpora are sufficiently large. (Curran, 2004, p. 85-
86) echoes this finding. As a result, our program defaults to a
weight function that is actually the max of the quantity in (1)
and 0.

Both of these involve two sums over contexts (one
in the numerator and one in the denominator), so in
the algorithm of Rychlý and Kilgarriff, we maintain
two separate partial sums and divide them at the end.
Some of the other measures considered in (Curran,
2004, sec. 4.2), such as cosine and Lin, only sum
over Cij in the numerator and have marginal sums
over contexts for each word separately in the de-
nominator. Our program doesn’t currently allow for
such measures, but making changes to do so would
be straightforward.

3.3 Memory

Our program is intended to support both the
external-memory sorting and in-memory partition-
ing methods. However, our implementation of the
external-memory multiway mergesort currently con-
tains a relatively major stumbling block, which
prevents our algorithm from fulfilling its original
goal—namely, it does not deal gracefully with op-
erating system limits on the number of open files.
This can mean that when processing a large dataset,
it will simply crash after some time in analyzing the
data. Some more careful attention to how many files
are being created and more recursive merges would
alleviate this problem.

It would also be desirable to implement some
form of heuristic which could distinguish between
the cases in which a partitioned in-memory sort
would be appropriate, as those tend to be signifi-
cantly faster, and when an external-memory sort is
required.

4 Evaluation and Results

4.1 Measures

In (Curran, 2004, sec. 2.2), distributional similarity
is evaluated with a “gold standard” list of 300 com-
mon nouns along with the union of their synonyms
from four major thesauri. For each of the nouns,
Curran returns up to 200 candidate synonyms and
computes two measures: a direct-match score (the
percent of returned synonyms present in the gold
standard) and an inverse-rank score (e.g., if words
1, 4, and 199 appear in the gold standard, the score
is 1

1 + 1
4 + 1

199 = 1.255).
While Curran lists the words that he evaluates, he

isn’t able to reproduce the entire set of gold-standard

entries for those words. Since manually reconstruct-
ing those entries would be very difficult, we chose a
different gold-standard: The synset lists in WordNet.
We take the true synonyms of a word with a given
part of speech to be the union of all other words in
any of its synsets. By using WordNet, we can gen-
erate a gold-standard synonym list for every word in
our thesaurus that also appears in WordNet, not just
for 70 high-frequency nouns.

4.2 Corpus

Our input consists of the 1,200,000 context rela-
tions extracted from the “CE” subset of the British
National Corpus (BNC). We have also extracted
80,500,000 relations from the entire A-K subset of
the BNC, but we haven’t had time to run our algo-
rithm on the latter.

4.3 Results

From the thesaurus generated from the “CE” rela-
tions, 4,880 of the words appear in WordNet. The
average direct-match score is only 0.07%, and the
average inverse-rank score is 0.003. These com-
pare poorly against, say, the results in (Gorman and
Curran, 2006), which showed typical direct-match
scores of 2-5% and inverse-rank scores between
0.76 and 1.71. However, our results are not directly
comparable, because we evaluate all of the words
we can, not just 300 frequent nouns, and we use a
more limited thesaurus, as WordNet has fewer en-
tries than, say, Roget’s (Weeds and Weir, 2005, p.
462).

Following is a sample entry from our thesaurus
for the adjective “loving.” All of these words had
similarity scores of 1.0:

abstruse, accessible, accomplished, ambi-
tious, astonishing, basic, beautiful, cer-
tainly, cogent, consistently, cynical, def-
initely, disgusting, eloquent, exclusive,
extraordinary, famous, ferocious, fer-
vent, gratifying, gruelling, gutsy, hated,
historic, humiliating, incriminating, in-
tractable, levelheaded, long-drawn-out,
memorable, modern, notably, passionate,
photographed, popular, potent, powerful,
protected, rational, readily, recent, roman-
tic, sacred, scrumptious, serious, shock-

ing, successful, sustained, unchildlike,
unimpressed, unusual, urgent, valued, ve-
hement, viable.

Many of them bear little similarity to “loving,” and
the fact that they had perfect scores shows that our
training corpus is currently too small.

5 Future Work

(Curran, 2004) and (Weeds and Weir, 2005) present
a variety of weight and measure functions beyond
those we have implemented. While ours are the ones
that (Curran, 2004), our module would ideally pro-
vide the other options as well.

In addition, we have only tested our program on a
very limited data set, far smaller than those to which
it is designed to scale. We would like to try it on
a larger portion of the BNC, as well as perhaps the
1B-word Oxford English Corpus and the 1.9B-word
Itwac on which (Rychly and Kilgarriff, 2007) ran
their algorithm.

Finally, it would be interesting to examine other
similarity measures. If we had access to Cur-
ran’s gold-standard list, we could directly compare
against his results (something which (Rychly and
Kilgarriff, 2007) did not try themselves). And
there are many evaluation techniques in addition
to the gold-standard approach, such as correlat-
ing distributional-similarity measures against Word-
Net’s hierarchical measures (Weeds and Weir, 2005,
sec. 5.1).

Acknowledgements

We thank Rich Wicentowski for assistance extract-
ing context relations using Minipar and Steven Bird
for guidance on fitting our module into NLTK.

References
S. Bird and E. Loper. 2004. NLTK: The Natural Lan-

guage Toolkit. In Proc. Association for Computational
Linguistics, pages 214–217.

J.R. Curran and M. Moens. 2002. Scaling context space.
In Proceedings of the 40th annual meeting of the As-
sociation for Computational Linguistics, pages 7–12.

J.R. Curran. 2004. From Distributional to Semantic Sim-
ilarity. Ph.D. thesis.

I. Dagan, S. Marcus, and S. Markovitch. 1993. Contex-
tual word similarity and estimation from sparse data.
In Proceedings of the 31st annual meeting on As-
sociation for Computational Linguistics, pages 164–
171. Association for Computational Linguistics Mor-
ristown, NJ, USA.

I. Dagan, L. Lee, and F.C.N. Pereira. 1999. Similarity-
Based Models of Word Cooccurrence Probabilities.
Machine Learning, 34(1):43–69.

U. Essen and V. Steinbiss. 1992. Cooccurrence smooth-
ing for stochastic language modeling. In Acoustics,
Speech, and Signal Processing, 1992. ICASSP-92.,
1992 IEEE International Conference on, volume 1.

J.R. Firth. 1957. A synopsis of linguistic theory 1930-
1955. Studies in Linguistic Analysis, pages 1–32.

J. Gorman and J.R. Curran. 2006. Scaling distributional
similarity to large corpora. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the ACL, pages
361–368. Association for Computational Linguistics
Morristown, NJ, USA.

Z. Harris. 1954. Distributional structure. Word,
10(23):146–162.

M.E. Houle and J. Sakuma. 2005. Fast Approximate
Similarity Search in Extremely High-Dimensional
Data Sets. In Proceedings of the International Con-
ference on Data Engineering, volume 21, page 619.
IEEE Computer Society Press; 1998.

D. Jurafsky and J.H. Martin. 2008. Speech And Lan-
guage Processing. Prentice Hall.

D. Lin. 1998a. An information-theoretic definition of
similarity. In Proceedings of the Fifteenth Interna-
tional Conference on Machine Learning, pages 296–
304.

D. Lin. 1998b. Minipar.

P. Rychly and A. Kilgarriff. 2007. An efficient algo-
rithm for building a distributional thesaurus (and other
Sketch Engine developments). In Annual Meeting-
Association for Computational Linguistics, volume 45,
page 2.

J. Weeds and D. Weir. 2005. Co-occurrence Retrieval:
A Flexible Framework for Lexical Distributional Sim-
ilarity. Computational Linguistics, 31(4):439–475.

