The RSA Algorithm:
A Mathematical History of the Ubiquitous Cryptological Algorithm

Maria D. Kelly

December 7, 2009

Abstract

The RSA algorithm, developed in 1977 by Rivest, Shamir, and Adlemen, is an algorithm for public-
key cryptography. In public-key cryptography, users reveal a public encryption key so that other users
in the system are able to send private messages to them, but each user has their own private decryption
key. The key to ensuring privacy in a public-key cryptosystem is for it to be extremely difficult to
derive the decryption key from the publicly available encryption key. The algorithm works by exploiting
concepts from number theory, including Fermat’s Little Theorem. In this paper, we explore the RSA
algorithm, its definition, the underlying mathematics, and a number of attacks against the algorithm.
Two vulnerabilities of the algorithm used with low public exponent are presented in detail. The paper
concludes with an explanation of what the RSA algorithm will need to maintain security as technology

continues to advance.

Introduction

Before the introduction of public-key cryptography by Diffie and Hellman [3], if two people wanted to
communicate in private by encrypting messages sent between them, they would first need meet to agree
upon methods for encoding and decoding the messages. The advent of the public-key cryptosystem
made these kinds of meetings unnecessary because it allowed both parties to make their encryption
procedures publicly available without compromising the privacy of their communication. A public-key
cryptosystem is one in which each user places an encryption procedure E into a public file. Each user

has a corresponding decryption procedure D, the details of which the user does not reveal to anyone

else. The key to ensuring the security of a public-key cryptosystem is for it to be extremely difficult to
derive the decryption key from the publicly available encryption key. In order to qualify as a public-key

cryptosystem, the encryption and decryption procedures must have the following properties [3] [7]:

1. Applying the decryption procedure to a message encrypted by the corresponding encryption pro-

cedure yields the original message. This can be expressed formally as,
D(E(M)) =M.

2. Both the encryption procedures and the decryption procedures are easy to compute.

3. Publicly revealing the encryption method E does not reveal any easy way to compute the corre-

sponding decryption procedure D.

4. If a message M is first deciphered using the decryption procedure D and then the result is encrypted
using the corresponding encryption procedure F, the final result gives the original message. For-
mally we write this as,

E(D(M)) = M.

Typically, an encryption (or decryption) procedure E consist of an encryption key and a general
method for enciphering a message M using the key. The enciphered message is called the ciphertext
C. In a public-key cryptosystem, everyone can use the same method for enciphering the message because
the security of any given encryption procedure relies on the security of the decryption key. An encryption
function which satisfies the first three properties given above is called a trap-door one-way function.
Diffie and Hellman, who first introduced the concept, define a trap-door one-way function as function
whose inverse, though it exists, is computationally infeasible to compute when given only the original
function [3]. Though Diffie and Hellman were the first to introduce the idea of public-key cryptography
and of trap-door one-way functions, the true emergence of public-key cryptography did not come until

the introduction of the RSA algorithm.

The RSA Algorithm: A Realization of Public-Key Cryptography

The RSA algorithm, introduced in 1977 by Rivest, Shamir, and Adlemen, is an algorithm for public-key
cryptography. RSA was the first and is still the most widely-used algorithm for public key cryptography
and it is used for thousands of applications from e-mail encryption to secure online purchasing. It was
the first cryptosystem to enable senders to “sign” each message they send so that the recipient has proof

of who sent the message.

Alice Bill

l |

Dear Bill, Dear Bill,

How are you? How are you?
Isn't the RSA Isn't the RSA
algorithm algorithm
wonderful? wonderful?

--Alice --Alice
encryption by decryption by
Bill's public key Bill's private key
3679 1246 4930 3679 1246 4930

\ 4

1275 1789 4557 1275 1789 4557

Figure 1: In public-key cryptography, if Alice wants to send a message to Bill a message, she first looks
up Bill’s public encryption procedure to encode the message, sends Bill the resulting ciphertext, and

Bill is then able to decode the message using his private decryption procedure.

To encrypt a message using the RSA algorithm, given a public encryption key (e,n), the general
method of the encryption procedure is as follows: The first step is to represent the message as an integer
between 0 and n — 1, M, using any standard representation. Then, to encrypt the message, raise M to

the eth power modulo n. The ciphertext C is thus given by,
C=FEM)=M°® (mod n).

To decrypt the message, we raise it to a different power, d, part of the private decryption key (d,n),

modulo n. We can represent the decryption procedure as
D(C) = C* (mod n).

In the RSA algorithm, the encryption key is the pair of positive integers (e, n) and the decryption key is
the pair of positive numbers (d, n). Each user makes the encryption key public, keeping the corresponding
decryption key private. To choose the encryption and decryption keys for the RSA algorithm, we first

compute n as the product of two very large, random primes p and q. We then choose d to be a large

integer that is relatively prime to (p — 1)(¢ — 1). That is, choose d such that it satisfies
ged(d,(p—1)(¢ = 1)) = L.
Finally, we choose the value of e such that it satisfies the equation
e-d=1 (mod (p—1)(q —1)).

In addition to allowing secure encryption of messages, the RSA method of encryption also allows mes-
sages to be “signed” by the person sending the message so that the recipient has proof that the message
came from the sender and not simply from someone claiming to be the sender. This is done as follows:
If Alice would like to send a message M to Bob, she first uses her own private decryption procedure D 4
on the message to obtain a value for D4 (M). Then, using Bob’s publicly available encryption procedure,
she encrypts the result of the previous step to obtain the ciphertext C = Eg(Da(M)). Then, when Bob
receives the message he can decipher it by first using his private decryption procedure and then applying
Alice’s publicly available encryption procedure to obtain the original message. Formally, this can be

expressed as

First, Bob applies his own decryption procedure, Dg(C) = Dg(Ep(Da(M)))
= Da(M).
Then Bob applies Alice’s encryption procedure, to get Ea(Da(M)) = M

This ability to easily represent signatures made RSA cryptography particularly well-suited for use with

e-mail.

A (Simple) Example of RSA

In this section, we present a simplified example of encryption using the RSA algorithm. Consider the
case where we choose the following values for p, ¢, n, and d: p =53, ¢ =61, n =p-q = 5361 = 3233
and d = 2753. We can compute e the “multiplicative inverse” of d to get e = 17.

Suppose we would like to encipher the message, “math is the coolest,” using our encryption key and
the RSA algorithm. Then, following the example presented in [7], we can represent the message as a
number by encoding two letters per block and substituting a two-digit number between 00 and 26 for

each letter (where 00 = blank, 01 = ‘a@’, ... , 26 = ‘2’). The message then becomes

M = 1301 2008 0009 1900 2008 0500 0315 1512 0519 2000.

If we let M be the first block of M, that is M; = 1301, we can encipher the message block by block

to obtain:
E(M;) =1301'" =1301'° - 1301 = 2230 (mod 3233)
E(M>) =2008'" = 2038 (mod 3233)
E(Mo) = 20007 = 2698 (mod 3233)

Thus, we find that the enciphered message can be represented as
E(M) = 2230 2038... 2698.

To decode the message, we could similarly raise each block of E(M) to the power of d = 2753 to obtain

the orginal message.

Security of the RSA

The security of the RSA algorithm and messages encrypted using the algorithm relies on the difficulty
of factoring the value of n. If n could be easily factored into the corresponding values of p and ¢, then
one could easily find the value of d. If Marvin wanted to intercept a message that Bob sent to Alice that
had been encrypted using Alice’s public encryption procedure E4, even though Marvin might be able
to intercept the ciphertext C' = F4 (M), without the decryption key d, Marvin is unable to retrieve the
orginal message. The security of the RSA algorithm can be described by the RSA problem and the

RSA assumption.

The RSA Problem

The RSA problem is, given an RSA public key (e, n) and a ciphertext C' = M* (mod n), to compute

the original message, M [8].

The RSA Assumption

The RSA Assumption is that the RSA Problem is hard to solve when n is sufficiently large and
randomly generated and the value of M (and by extension the value of C) is a random integer between
0 and n — 1. The RSA assumption can be thought of as the assumption that the RSA function given

the choice of n and M is, in fact, a trap-door one-way function [8].

One variant on the RSA assumption that was first by Baric and Pfitzmann in 1997 is the strong
RSA assumption. The assumption here is similar to the RSA assumption except that Marvin can
select the public exponent e. That is, Marvin’s task becomes: given a value for n and a ciphertext C, to
compute any value of M and e such that C = M® (mod n). This task may be easier than the original
RSA problem, because Marvin is allowed to determine the value of e as well. Thus, the assumption that
the task is hard to solve is a stronger one than the original RSA assumption. When we say “hard to

solve,” we mean that there is no efficient, polynomial-time algorithm for solving the problem.

The Math Behind the RSA Algorithm

The mathematics behind the RSA algorithm are simple, yet elegant. The algorithm works by exploit-
ing concepts from number theory, including the properties of modular arithmetic and Fermat’s Little
Theorem.

The proof of the correctness of the RSA algorithm uses number theory to conclude that indeed,
M = D(E(M)) (mod n) and M = E(D(M)) (mod n),

where M is the message being encrypted, E is the public encryption procedure (which encludes a public
key (e,n) and an encryption method—in this case E(M) = M® (mod n), and D is the decryption
procedure (which includes the private decryption key (d,n) and the decryption procedure, here: D(M) =
c? (mod n) where C is the cyphertext encryption of some message. Since n is computed as a product of
two large primes, p and ¢, and d is determined to be a large integer relatively prime to (p — 1) * (¢ — 1),
it is extremely difficult, given the difficultly of factoring large numbers, to compute d from e.

We define ¢(n) to be the Euler phi function or the totient function, which is defined as the
number of positive integers not exceeding n, which are relatively prime to n [7]. For any prime number
p, ¢(p) = p — 1. Further, if m and n are relatively prime, then ¢(m)o(n) = ¢(mn).

To prove that the RSA algorithm is correct, we begin by proving Fermat’s Little Theorem and then

using the theorem to establish the desired result.

Fermat’s Little Theorem

Statement: Let p be a prime number and a an integer. Then

a’ =a (mod p).

Furthermore, if a is not divisible by p (that is, ged(a,p) = 1), then
a” ' =1 (mod p).
Proof: We can list the first p — 1 positive multiples of the integer a as
a,2a,3a,...,(p—1a.

Suppose that ra = sa (mod p). This implies that 7 = s (mod p) However, since we chose distinct
values for the coefficients above and r and s are both less than p, it cannot be the case that r = s
(mod p). Thus we know that all of the p — 1 multiples of a listed above are distinct and nonzero.
Further, they must be equivalent (mod p) to 1,2,3,...,(p — 1) in some order. Then if we multiply

the congruences, we get

Il
—

a-2a-3a-...(p—1a 22:3-...-(p—1) (mod p)

a'p—1)! = (p—1)! (mod p)

Finally, if we divide both sides by (p — 1)!, we arrive at the desired result [4].

Proof of the Correctness of RSA

The RSA Algorithm: If we represent a message as an integer M between 1 and n where n is the

product of two prime numbers p and ¢, and
E(M)= M° (mod n) and D(M) = M* (mod n)

where d is chosen such that ged(d,(p —1)(¢—1)) =1lande-d=1 (mod (p—1)(¢ — 1)), then:

S
&=
=
I

M (mod n) (1)
E(D(M))=M (mod n) (2)
Proof: The left-hand sides of equations (1) and (2) can both be expressed as (M¢)? = M =
(M%)¢. Thus, to prove the correctness of the algorithm, it suffices to show [7] that
M = M (mod n)

Letting ¢(n) represent the totient of n, we know that e-d =1 (mod ¢(n)). This implies that for

some value of k,

M = M**™MF (mod n).

Further, by Fermat’s Little Theorem, we know that if M is not divisible by p,
MP"' =1 (mod p).

Therefore, since (p — 1) does divide ¢(n),
MF*™ =1 (mod p)

which implies that
Mk¢(n)+ 1

M (mod p)

An analogous argument for ¢ gives us that
MFMF = M (mod).

Since both p and ¢ divide n, these last two equations together imply
MFMF = M (mod n)

which, in turn, gives us the desired result that

M= M (mod n).

The Significance of the Algorithm

Prior to the advent of the Internet, encryption was in many ways considered an issue only for government
agencies. The RSA algorithm was introduced at a time when the potential popularity of the Internet
was first becoming clear. With this popularity came a high demand for safely and securely being able to
transmit information. The RSA algorithm, perceived as a nearly unbreakable, public-key cryptosystem,
quickly became the method of choice for Internet cryptography including e-mail encryption among other
uses. Today, RSA continues to be employed for enciphering e-mail messages as well as for the Secure
Socket Layer (SSL) protocol used in the majority of internet data exchanges [6]. Thus, the RSA algorithm
is something that most of us rely on each and every day, though very few of us give a second thought to

the security of the e-mails we send.

Attacks on the RSA Algorithm

As we have seen, the RSA algorithm is a very secure cryptosystem that has been used for the past
thirty years to provide security in millions of applications on the Internet. However, the algorithm has
suffered a number of crypographic attacks or attempts to find and exploit weaknesses in the algorithm.
Recall, the basis of the security of the RSA algorithm is that, given n it is impossible to factor n into the
corresponding values of p and ¢ in polynomial time. However, this basic assumption has neither been
proved nor disproved. If there were to be a polynomial-time algorithm for factoring large numbers, the

security of the internet as we know it would be compromised.

Types of Attacks

In his, “T'wenty years of attacks on the RSA cryptosystem,” Dan Boneh categorizes attacks on the RSA
cryptosystem into four distinct classes: (1) elementary attacks that exploit blatant misuse of the algo-

rithm, (2) low private exponent attacks, (3) low public exponent attacks, and (4) implementation attacks

(1].

Elementary Attacks

Elementary attacks on the RSA algorithm rely on exploiting blatant misuse of the system. One example
of this is choosing the same value of n for all users in the public file. Perhaps this seems like a good
option because it is easier than computing a different value of n for each user in the system. Instead, each
user can be provided unique values for e; and d;. However, once Marvin has a value for e,, and d,,, he
can easily derive the value of n, and using Alice’s publicly available exponent e,, he is able to easily com-

pute a value for d,. This in fact gives us that no two users in the system should share the same value for n.

Low Private Exponent

The benefit of choosing a low private exponent is that it reduces the time required for decrypting a
message. Indeed, decrypting a message is linear in log, d. However, using a value of d that is fewer than

256 bits long leads to a system in which d can be efficiently recovered from n and e [1].

Low Public Exponent

When implementing the RSA algorithm, one may be tempted to use a low public exponent e to reduce

the time required for encryption or signiture-verification. However, attacks by Coppersmith and Hastad
underscore the importance of choosing a large value for e [1]. In the following section, we will present a
proof that if a low public exponent is used, then if Bob sends Alice two related messages that have been
encrypted using the same values of n and e, and Marvin is able to intercept the ciphertexts of the two

messages, then he is able to recover the values of the two messages.

Implementation Attacks

The final class of attacks on the RSA algorithm does not have to do with attacking the algorithm itself,
but rather involves finding weaknesses in the implementation of the algorithm. One type of implementa-
tion attack is called a “timing attack” because it relies on determining the time it takes for the algorithm
to perform a decryption and using this along with information about the computer with which the algo-

rithm was implemented to determine the value of d.

One final method of attacking the RSA cryptosystem worth mentioning (though it does not cleanly fit
into any of our defined classes) is called the “Man in the Middle Attack.” In this situation, communication
between Alice and Bob is intercepted by Marvin before it begins and Marvin is able to give both Alice
and Bob his own encryption key (€m,nm) so that when Alice encrypts a message that she is trying to
send to Bob, she actually uses Marvin’s encryption key, thinking that it is Bob’s. Marvin then receives
the enciphered message, decipher’s it using his private decryption key, and re-encrypts the message with
Bob’s encryption key before passing the message along to Bob. In this case, Marvin is able to read

messages sent between Alice and Bob that both of them believe are private [6].

The Math Behind Some Specific Attacks

In this section, we explore two specific attacks on the RSA cryptosystem and the math behind them.
Both attacks are examples of low public exponent vulnerabilities of the algorithm. The first attack, called
a partial key exposure attack, shows that if a low public exponent is used and an adversary is able to

partially expose some bits of the private key d, then they will be able to efficiently factor n.

Partial Key Exposure Attack

Statement: Let (d,n) be a private decryption key for the RSA algorithm and let n have N bits.

10

Then, given the (%-\ least significant bits of d, Marvin can recover all of d in time linear in elog, e.

Proof: The proof of the partial key exposure attack follows from a proof of the following theorem
proven by Coppersmith [2]: Let n = pq be an N-bit RSA modulus. Then, given the % least significant
bits of p or the % most significant bits of p, one can efficiently factor n. From the definition of e and
d, we know that

e-d=1 (mod ¢(n))

and therefore, that there exists k such that

ed—k¢(n) = 1
ed—k((p—1(¢-1) = 1
ed—k(pg—p—q+1) = 1
ed—k(n—p—q+1) = 1

We know that d < ¢(n), which implies that the value of & must be such that 0 < k < e. Then
if we reduce the above equation modulo 2™/* and substitute N /p in for g, we obtain the following
expression

ed —k(n—p— % +1)=1 (mod 2™%).

If we then multiply both sides of the equation by p, we find

(ed)p — kp(n —p — % +1) p (mod 2™/*)

(ed)p—kp(n—p+1)+kn = p (mod 2V/%)

Then, if Marvin is given the N/4 least significant bits of d, he can determine the value of ed
(mod 2N/4). Thus, he obtains an equation for d in terms of the values of £ and p. Then, for
each of the e possible values of k, Marvin is able to solve the equation for p, obtaining a number of
candidate values for p (mod 2N/4). Then, for each of these values, Marvin can run the efficient algo-
rithm guaranteed by Coppersmith’s theorem above to attempt to factor n. The number of candidate
values for p is at most elog, e. Thus we have shown that even if only a portion of d is revealed, the

security of the system is compromised if the value of e is chosen to be low [1].
Related Message Attack

11

In a related message attack, if Bob sends Alice related messages that have been enciphered using the
same value of n for both, if Marvin intercepts the ciphertext of the two messages, he may be able
to recover the original messages if the value of the public exponent e is low. The attack works for
any low value of e, but, to simplify the proof, we choose e = 3. The proof of the related message
attack relies on using the a modified version of the Euclidean algorithm, an iterative algorithm for
determining the greatest common divisor of two values, which is linear in the size of the smaller of

the two integers. In this case, we must use the Euclidean algorithm for polynomials.

Statement: Let e = 3 and let (e,n) be an RSA public encryption key. Let two messages M and
M5 such that 1 < My, M2 < n—1 and My # M> also satisfy My = f(M2) mod n for some linear
polynomial f(z) = ax+b € Zy[z] with b # 0. Then, given the values of n, e, C1, C2 and the expression

for f, one can recover M; and M> in time quadratic in log n.

Proof: By the RSA algorithm, we know that C1 = M} (mod n). Thus, since Ms is a root of the

equation f(x) — My (mod n), Mz is a root of the polynomial
91(z) = f(2)° — C1 € Zn[z].
Similarly, since C2 = M$ (mod n), we know that Ma is a root of the polynomial
g2(z) = 2° — Cy € Znlx].

Both polynomials are divisible by the linear factor (z — M2) and therefore one can use the Euclidean

algorithm?!

to compute the greatest common divisor of g1 and g2. Then, if the gcd of the two
polynomials is linear, then M> has been found (and, since M1 = f(M2) (mod n), M; has also been
found).

When e = 3, the greatest common divisor of e and ¢(n) is 1 and thus there is only one root of the

polynomial g2 = ° — C» that is in Z,,. Therefore, g2 factors modulo both p and ¢ into a linear factor

and an irreducible quadratic factor. Then since g2 does not divide g1, their greatest common divisor

IWhile, technically, Zy, [z] is not a Euclidean ring, if the algorithm fails here, then we get a nontrivial factor of n. Each time
we have to divide modulo n, we use the Euclidean algorithm to find the inverse modulo n. Then, if at any stage the algorithm
fails to provide an inverse, we have either obtained a nontrivial divisor of n or we obtain n itself as the greatest common divisor.
In the former case, we have exposed the factorization of n. In the latter, we can continue using the Euclidean algorithm to find

the factorization of n [5].

12

must be linear, and so if e = 3, one can determine the values of M; and My if given the values of the

corresponding ciphertexts [1].

Future of the RSA Algorithm and Public-Key Cryptography

Attacks on the RSA will continue to get stronger as factoring algorithms are improved and made faster.
There are many ideas for improving RSA security. First and foremost is the hope that simply choosing
increasingly longer keys will make the factorization problem more difficult and help prevent attacks.
As few as five years ago, RSA encryption that used a 512-bit value for n was considered safe. Now,
improvements in technology have made it so that a 512-bit RSA system can be broken in just a few days
[6]. As computers continue to increase their computing power, increasing key length will continue to be
a good solution against many of the attacks presented here. The main problems that RSA and other
encryption mechanisms must be prepared to deal with include improved computing speed and capacity

and mathematical breakthroughs for factoring large numbers.

Conclusions

In this paper, we have described the famous RSA algorithm for public-key cryptography. The algorithm,
which was developed in 1977 by Rivest, Shamir, and Adlemen, has become one of the most widely-used
cryptography systems since it was adopted for enciphering e-mail messages and other tasks involving
security on the Internet. We have seen that RSA is, at its core, a piece of simple mathematics which
makes use of facts and theorems from number theory, including Fermat’s Little Theorem. We have looked
at several kinds of attacks both on the algorithm itself and on implementations of the algorithm. Finally,
we recognize that as computing capacity increases, the future of public-key cryptography will necessarily

involve using longer decryption keys to maintain security.

References

[1] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the AMS, 46(2):203-213,

1999.

13

[2] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA vulnerabilities.

Journal of Cryptology, 10:233-260, 1997.

[3] W. Diffie and M.E. Hellman. New directions in cryptography. IEEE Transactions on Information

Theory, 22:644-654, 1976.

[4] G.H. Hardy and E.M. Wright. An Introduction to the Theory of Numbers. Oxford University Press,

1960.
[5] Neal Koblitz. A Course in Number Theory and Cryptography. Springer, 1994.
[6] B. Morgan and D. Grimshaw. The dangers of putting too much trust in RSA, 2003.

[7] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital-signatures and public-key

cryptosystems. Communications of the ACM, 21(2):120-126, 1978.

[8] H.C.A. van Tilborg. Encyclopedia of cryptography and security. Springer, 2005.

14

