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The ?ﬁfst eﬂiﬁd‘d oﬁ this’ ook caine Out Just as the apparatus of algebra.lc
. géometry ‘was reaéhing 4 stage that permitted a “Tuéid ‘and" concxse éccount
of the foundatxons of the subject. The author was no longer forced into the
pamﬁﬂ chibice betweer sacnﬁcmg rigour of e exposxtlon or overloadmg the clear
geometncal picture with cumberﬁome a]gebraxc apparagus
~The'15 years that have eiapsed sxnce the first eq‘ ition have seen the apﬁear-
ance of many beautii‘ul boaks trea. g variots branches of algebr‘ ebmetry
However, 4§ #4¢ as'T' Khow, 1o other author lias’ been attracted to the 8 aim
which this book set itself: to give an' overall view of the many varied aspects
of algebraic geometry, without going too far afield into the different theories.
There is thus scope for a second edition. In preparing this, I haveé: ifictiided
some additional material, rather varied in nature, and have made some small
cuts, but the general character of the book remainsunchanged. -
- «Thie three parts of the hook now appear a8 two- separate volumes. Béok I
corresponds: to-Part. I, Chapters IV, of the first ‘edition.  Here qiité a ot
of magarial:f -a.rather :conctete geometric nature: has been added: the- first
section, forming 8:bridge between coordinate geometry and the théory of ‘al-
gebraic turved.in the.plane, haa béer substantially expanded. More space has
been given ever to-conerete algébraic varieties: Grassmiannibs varieties; plané
cubic.curves.gnd the cubié: surface. The maih role that singularities playédin
the first edition was in giving rigofous définition to situstions we: wished $o
~ avoid. The present edition treats a number of questions' relatéd £¢: deigatierate
fibres in families: degenerations of quadrics and of elliptic curves, the Bertini
theorems. We discuss the notion of infinitely near points of algebraic curves
on surfaces and normal surface singularities. Finally, some.applicationstq
number theory have been added: the zeta function of algebraic varieties over
a. ﬁmte field and the analogue of the Riemann hypothesis for elliptic curves,
“-Books'd and B corresponds’ to Parts If-and 111, Cﬁapiers V=IX of ‘the
At ecitiont "They treat the Bundations of the theoryf b scheyie ‘é’b‘s‘f, i
algebraic varieties and algebraic Madifolds over ths" cotiiﬁéx nuiibel feld.
Asisshie - Book ‘T ‘thére-are’s rumbér 6f additiond to’ the’ text, Of chm,
theéfollowitig ate''the two mést iiportant. The'firét is ‘a’ diséussion of the
notion of moduli spaces, that is, algebraic varieties that classify alggbraic or
goonitiic ‘bbjects’ 6 Sotie type: as an example we work out the thearv of




A Preface

the Hilbert polynomial and the Hilbert scheme. I am very grateful to V. L.
Danilov for a series of recommendations on this subject. In particular the
proof of Chap. VI, 4.3, Theorem 3 is due to him. The second addition is the
definition and basic properties of a Kahler metric and a description (without
proof) of Hodge’s theorem.

For the most part, this material is taken from my old lectures and semi-
nars, from notes provided by members of the audience. A number of improve-
ments of proofs have been borrowed from the books of Mumford and Fulton.
A whole series of misprints and inaccuracies in the first edition were pointed
out by readers, and by readers of the English translation. Especially valuable
was the advice of Andrei Tyurin and Viktor Kulikov; in particular, the proof
of Chap. IV, 4.3, Theorem 3 was provided by Kulikov. I offer sincere thanks
to all these.

Many substantial improvements are due to V. L. Popov, who edited the
second edition, and I am very grateful to him for all the work and thought he
has put into the book. I have the pleasure, not for the first time, of expressing
my deep gratitude to the translator of this book, Miles Reid. His thoughtful
work has made it possible to patch up many uneven places and inaccuracies,
and to correct a few mathematical errors.

Prerequisites

The nature of the book requires the algebraic apparatus to be kept to a
minimum. In addition to an undergraduate algebra course, we assume known
basic material from f:xsweory: finite and transcendental extensions (but not
Galois theory), and from 1i5g§t_lleﬁo/ly: ideals and quotient rings. In a number
of isolated instances we refer to the literature on algebra; these references are
chosen so that the reader can understand the relevant point, independently of
the preceding parts of the book being referred to. Somewhat more specialised
algebraic questions are collected together in the Algebraic Appendix at the
end of Book 1. The preface to Books 2-3 contams recommended further
reading in Algebraic Geometry.

Preface to the 1972 Edition

Algebraic geometry played a central role in 19th century math. The deepest
results of Abel, Riemann, Weierstrass, and many of the most imnortant works
of Klein and Poincaré were part of this subject.

The turn of the 20th century saw a sharp change in attitude to algebraic
geometry. In the 1910s Klein! writes as follows: “In my student days, under

1 Klein, F.: Vorlesungen iiber die Entwicklung der Mathematik im 19. Jahrhundert,
Grundlehren Math. Wiss. 24, Springer-Verlag, Berlin 1926. Jrb. 52, 22, p. 312



Preface to the 1972 Edition

the influence of the Jacobi tradition, Abelian functions were considered as
the unarguable pinnacle of math. Every one of us felt the natural ambition
to make some independent progress in this field. And now? The younger
generation scarcely knows what Abelian functions are.” (From the modern
viewpoint, the theory of Abeliah functions is an analytic aspect of the theory
of Abelian varieties, that is, projective algebraic group varieties; compare the
historical sketch.) .

Algebraic geometry had become set in a way of thinking too far removed
from the set-theoretic and axiomatic spirit that determined the development
of math at the time. It was to take several decades, during which the theories
of topological, differentiable and complex manifolds, of general fields, and of
ideals in sufficiently general rings were developed, before it became possible
to construct algebraic geometry on the basf of the principles of set-theoretic
math. ’

Towards the middle of the 20th century algebraic geometry had to a large
extent been through such a reconstruction. Because of this, it could again
claim the place it had once occupied in math. The domain of application of
its ideas had grown tremendously, both in the direction of algebraic varieties
over arbitrary fields and of more general complex manifolds. Many of the
best achievements of algebraic geometry could be cleared of the accusation
of incomprehensibility or lack of rigour.

The foundation for this reconstruction was algebra. In its first versions, the
use of precise algebraic apparatus often led to a loss of the brilliant geometric
style characteristic of the preceding period. However, the 1950s and 60s have
brought substantial simplifications to the foundation of algebraic geometry,
which have allowed us to come significantly closer to the ideal combination
of logical transparency and geometric intuition.

The purpose of this book is to treat the foundations of algebraic geo-
metry across a fairly wide front, giving an overall account of the subject, and
preparing the ground for a study of the more specialised literature. No prior
knowledge of algebraic geometry is assumed on the part of the reader, neither
general theorems, nor concrete examples. Therefore along with development
of the general theory, a lot of space is devoted . applications and particular
cases, intended to motivate new ideas or new ways of formulating questions.

It seems to me that, in the spirit of the biogenetic law, the student who
repeats in miniature the evolution of algebraic geometry will grasp the logic
of the subject more clearly. Thus, for example, the first section is concerned
with very simple properties of algebraic plane curves. Similarly, Part I of the
book considers only algebraic varieties in an ambient projective space, and
the reader only meets schemes and the general notion of a variety in Part II.

Part III treats algebraic varieties over the complex number field, and their
relation to complex analytic manifolds. This section assumes some acquain-
tance with basic topology and the theory of analytic functions.
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Shaﬁwe:vmh ] book is ﬂm frmt:nf hdtumaomses ah Mmcaw State 'Umvemty
iri: the 1960s and! early: 19703 The:style rof Russian mathiematical -writing
of the period is very much in evidence. The book does not aim to coves
a-huge volume; of maseriad 1in-the maximal:génerality  ahdirigbur,. but: gives
instead. @ well:considered choice of topics, with a humarisorierived-discussion
of the matjvation: and. the ideas, and: somé sample: resbltd {ineluding a good
pumber. of 1rard $heerems-with domplete proefs). In: view:of the difficulty of
keeping up! with 'developments in algebraic geometiy dufing the 1960s, and
the extraordihary difficulties faced by: Smnet. mathematicmms of that. penod,
the book is a tremendous achievement.: 5 : 4 <« -1l t
ort + Ehestudent:whorwants to.get through: the teclum:ai nmemi nﬁ algebralc
geometry: quickly iand at full :strehgth stiould::perhapsitutn:to -Hartshdrne's
boak {35]; howéver, myexperiende is:that; some grdduate :students:{by: ne
mesns all) -can!workihard foir:a: yearion two.on: Chiaps: 1111 of Hartshorne;
and still ‘knovx ntéresoreess: ndthibg atthe endrof:it.- For many’ students, it’s
just not feasible both to do the researchifor-a:Ph. D. thesis and:to:rhaster &ll
the:teshnical foundations of algebraic geometry-at the sanie time; In any tase,
even i yon havethastered evérythingdn-scheme théory; your research may well
take;yod into nunslier-thbory-or differentiil geometry or representation theory
or-mahh physics;iadd :you'll‘have jjust: as;many:-new technical ‘things toi lears
there:;For all such students;:and; for tlie many specialists in ethex brarichea-of
mdih: who need-a liberak gdmzahnm xn.nlgebmc teometry, Shéfamvmh’s ‘Book
EfEJMJ artalinint 1o e - it bahan i e
aiThes prevmns Eaghsbhmnslbﬁdn 1by-thq Jate Proﬁ.; Kuzt Hnseh: has Heen
used with greatfirofit by many studahtsover the last two-decades. In prepar-
ing the new tvanslation off the penvised:-edition, in addition:to correcting:a
fei typogeaphical: ertors end. puttingithe rdferences  into English. alphabeti-
bal-order;- 1 have:attempted to put.Shafagevichls taxt/into thelangwage sed
By theéipresent-geneiation of: Baglishrspeaking algebraic: geometers; 1 have in
a-fewi-cases! edrredhed; the . Russiaf: text, of-even made.some-fairlyl farbirary
changes: when: the original; wes alstady perfectly-alll right..in -most. case with
the author’s explicit:ot implicit: approval.: The footnetds are all mineritheyare
mainly pedantic in nature, either concerned with minor points of terminology,
or giving references for proofs not found in the main text; my references do



Translator’s Note

not necessarily follow Shafarevich’s ground-rule of being a few pages accessi-
ble to the general reader, without obliging him or her to read a whole book,
and so may not be very useful to the beginning graduate student. It’s actually
quite demoralising to realise just how difficult or obscure the literature can
be on some of these points, at the same time as many of the easier points are
covered in any number of textbooks. For example: (1) the “principle of con-
servation of number” (algebraic equivalence implies numerical equivalence);
(2) the Néron—-Severi theorem (stated as Chap. 3, 4.4, Theorem D); (3) a
punctured neighbourhood of a singular point of a normal variety over C is
connected; (4) Chevalley's theorem that every algebraic group is an extension
of an Abelian variety by an affine (linear) group. A practical solution for the
reader is to take the statements on trust for the time being.

The two volumes have a common index and list of references, but only
the second volume has the references for the historical sketch.
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2 Chapter 1. Basic Notions

since the same point (0, 0) is also defined by the equa.tlon 3" 4y = 0. The
curve is irreducible if we take its equ'atwn to be z2 +'y2 = 0, but reducible if
.we take it to be z6 + y% = 0.
Problems of this kind do not arise if k is an algebraically closed field. This
is based on the following simple fact. -

- Lemma. Let k be an arbitrary field, f € k[z,y] an irreducible polynomial,
and g € k(z,y] an arbitrary polynomial. If g is not divisible by f then the sys-
tem of equations f(z,y) = g(z,y) = 0 has only a finite number of solutions.

Proof. Suppose that z appears in f with positive degree. We view f and g
as elements of k(y)(z], that is, as polynomials in one variable z, whose coeffi-
cients are rational functions of y. It is easy to check that f remains irreducible
in this ring: if f splits as a product of factors, then after multiplying each
factor by the common denominator a(y) € kly] of its coefficients, we obtain
a relation that contradicts the irreducibility of f in k[z,y]. For the same rea-
son, g is not divisible by f in the new ring k(y)[z]. Hence there exist two
polynomials %,V € k(y)[z] such that f& + g¥ = 1. Multiplying this equality
through by the common denominator a € kiy] of all the coefficients of # and
v gives fu + gv = @, where ¥ = a%, v = a¥ € k[z,y), and 0 # a € k[y].
It follows that if f(a, 8) = g(a,8) = 0 then a(8) = 0, that is, there are
only finitely many possible values for the second coordinate 4. For each such
value, the first coordinate a is a root of f(z,5) = 0. The polynomial f(z,3)
is not identically 0, since otherwise f(z,y) would be divisible by y — 3, and
hence there are also only a finite number of possibilities for a. The lemma is
proved.

An algebraically closed field k is infinite; and if f is not a constant, the
curve with equation f(z,y) = 0 has infinitely many points. Because of this,
it follows from the lemma that an irreducible polynomial f(z,y) is uniquely
determined, up to a constant multiple, by the curve f(z,y) = 0. The same
holds for an arbitrary polynomial, under the assumption that its factorisation
into irreducible components has no multiple factors. We can always choose
the equation of a curve to be a polynomial satisfying this condition. The
notion of the degree of a curwe, and of an irreducible curve, is then well
defined.

Another reason why algebraic geometry only makes sense on passing to
an algebraically closed field arises when we consider the number of points of
intersection of curves. This phenomenon is alresdy familiar from algebra: the
theorem that the number of roots of a polynomial equals its degree is only
valid if we consider roots in an algebraically closed field. A generalisation
of this theorem is the so-called Bézout theorem: the number of points of
intersection of two distinct irreducible algebraic curves equals the product of
their degrees. The lemma shows that, in any case, this number is finite. The
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theorem on the number of roots of a polynomial is a particular case, for the
curvesy — f(z)=0and y =0. _

Bézout’s theorem holds only after certain amendments. The first of these
is the requirement that we consider points with coordinates in an algebraically
closed field. Thus Figure 1 shows three cases for the relative position of two
curves of degree 2 (ellipses) in the real plane. Here Bézout’s theorem holds
in case (c), but not in cases (a) and (b).

AR

Figure 1. Intersections of Conics

We assume throughout what follows that k is algebraically closed; in the
contrary case, we always say so. This does not mean that algebraic geometry
does not apply to studying questions concerned with algebraically nonclosed
fields ko. However, applications of this kind most frequently involve passing
to an algebraically closed field k containing kp. In the case of R, we pass to the
complex number field C. This often allows us to guess or to prove purely real
relations. Here is the most elementary example of this nature. If P is a point
outside a circle C then there are two tangent lines to C through P. The line
joining their points of contact is called the polar line of P with respect to C
(Figure 2, (a)). All these constructions can be expressed in terms of algebraic
relations between the coordinates of P and the equation of C. Hence they
are also applicable to the case that P lies inside C. Of course, the points of
tangency of the lines now have complex coordinates, and can't be seen in
the picture. But since the original data was real, the set of points obtained
(that is, the two points of tangency) should be invariant on replacing all the
numbers by their complex conjugates; that is, the two points of tangency are
complex conjugates. Hence the line L joining them is real. This line is also
called the polar line of P with respect to C. It is also easy to give a purely
real definition of it: it is the locus of points outside the circle whose polar
line passes through P (Figure 2, (b)).

Here are some other situations in which questions arise involving algebraic
geometry over an algebraically nonclosed field, and whose study usually re-
quires passing to an algebraically closed field:

(1) k = Q. The study of points of an algebraic curve f(z,y) = 0, where
[ € Q|[z,y], and the coordinates of the points are in Q. This is one of the fun-



4 Cibddfiter! I. nBasic Nbtiongaal A [

2 T2 B2t _“.Jh 9 no na109ds

A0 0= (23— eavius

Wi mornady 2 300sE

ba 25003 dnainovisget odl &

5 fugi"{ 256{1 .blait beeols

} 2 sorgab 1o =ovion
b0 i tor dud o) 9ans ai

il 10t sae 1sluoidpsq s & leimonyloq 6 Yo amo‘

\
indetérminate e ions.
e points (z, y) € Q?
of the gurve 2" + y" = 1. o) (s

zoinol) 1o eaoitrertesal LI snrgid

(2) Finite fields. Let k = F, be the field of residues modulo p. Studying
the points with coordinates in k on the algebraic curve given by f(z,y) =0
iyl anothercproblesis sfonismber ‘thidoryotnt the olutibiuosd the: corgrdénce
flegpe gm&&p[ﬁ 381l ssoum 10t woob wid’T o vaz avBEls 9w 5w VIATII0Y
bazolraow vHswwrdogls dire buiaonu soniiesup waivbuze o3 vipas Joa 2s0b
€8)# 4= C(2Y Tonsiderthe-slgbordic'surfacein'A%given By P yos )k el
Wit Py %) € Oy, 2)'By pltsiigis Tty il eobhiclonty and chiniking of
Poasilppolyrionsial ity 204 we ot vorideriour shrfaoblas a>daive svbyithe
fIduC(#) ‘of Fatiorial fifiétions 1w TTHR 9 Bale msmaxy fértile maenotbin
ohél sty df ilgebidic sutfved. 7euast ow? s1g a1eild a1 43 7 elrls g shiztuo

Doz gougest dsiw L Yo sad wdeg ot Dallso 2 2ossuon o adic g viadd gainiog

2121‘0' f TSI U LoeEsna sd 180 anoiutiznoy seser HA La) L s1ugid)
Ty ot ion 5] 19‘}[ x‘eﬂ 1y ady hrg L sotngibioon adr qeeriad aaoitcle

p

T aw
v gt

>

B A8 omns ads oo 2ldusiigas ouls ois
GoF ¥ ;k*lowg’bg}'lf 99}3-}’%, l}’ier./ /yuqm vy svsd wol zonf edl o (Jnfinum
Fetdo a3iiog 1o bz ol e _;‘.gaq,%a-mm o oo s e Uhx(‘ '(#

ads fe yoiely o 1ol Dluods (oonnanst o fmm AN BT
bas vbepmpxerty thatthe; conrdmame of its:points: nmlbemqymssedds»maﬁnnai
functiopsdf otie pesametend Todeduce thederexpreasiing: note:that Atiqline
theoughs the.ariginey osite:idtetsects: the eurin (T dutside- tlxenoa‘rgixbiﬁ.r,a
sirigle point. Iideed; substitating y= to in (1), we getiz?{t%e z+ 1) 5= 0;/the
double root z = 0 corresponds to the origin. 8.w=:48,)0). Inaddition 4o, this|
we biawe-grotherrontim =:t8 jmd; the:equatmn.mf the imh gnleery‘m\t(tzi-s 1)
We thius get the required parametmsatlkm S oas z

b

z=f-1, §=t(t"~’i) e ‘(2)

and its geometric- meamng is evident: ¢ is the’ slope of the line through 0
and (z,y); and (z,y) are the coordinates of the poirt of Intersection of the
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If the coefficients of the rational functions ¢ and ¢ belong to some subfield
ko of k and to € ko then the coordinates of the point (¢(to), ¥(to)) also belong
to ko. This observation points to one possible application of the notion of
rational curve. Suppose that f(z,y) has rational coefficients. If we know that
the curve given by 1.1, (1) is rational, and that the coefficients of ¢ and ¥
are in Q, then the parametrisation £ = ¢(t),y = 9)(t) gives us all the rational
points of this curve, except possibly. a finite number, as ¢ runs through all
rational values. For example, all the rational solutions of the indeterminate
equation (1) can be obtained from (2) as ¢ runs through all rational values.

Another application of rational curves relates to integral calculus. We
can view the equation of the curve 1.1, (1) as determining y as an algebraic
function of z. Then any rational function g(z,y) is a (usually complicated)
function of z. The rationality of the curve 1.1, (1) implies the following im-
portant fact: for any rational function g(z,y), the indefinite integral

[ stz @

can be expressed in elementary functions. Indeed, since the curve is ratio-
nal, it can be parametrised as z = @(t), y = ¢¥(t) where ¢, ¢ are rational
functions. Substituting these expressions in the integral (4), we reduce it to
the form [ g(ip(t), ¥(t))¢'(t)d¢, which is an integral of a rational function. It
is known that an integral of this form can be expressed in elementary func-
tions. Substituting the expression ¢t = x(z,y) for the parameter in terms of
the coordinates, we get an expression for the mtegral (4) as an elementary
function of the coordinates.

We now give some examples of rational curves. Curves of degree 1, that
is, lines, are obviously rational. Let us prove that an irreducible conic X is
rational. Choose a point (zg,y9) on X. Consider the line through (zg, yo)
with slope t. Its equation is

— 9o = t(z — zq). (5)

We find the points of intersection of X with this line; to do this, solve (5) for
y and substitute this in the equation of X. We get the equation for

f(z, 90 + t(z — z0)) =0, (6)

which has degree 2, as one sees easily. We know one root of this quadratic
equation, namely z = zy, since by assumptxon (o, yo) is on the curve. Divide
the equation (6) by the coefficient of 2, and write A for the coefficient of =
in the resulting equation; the other root is then determined by = + zo = —A.
Since t appears in the coefficients of equation (6), A is a rational function of
t. Substituting the expression z = —zo — A in (5), we get an expression for
y also as a rational function of ¢. These expressions for x and y satisfy the
equation of the curve, as can be seen from their derivation, and thus prove
that the curve is rational.
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The above parametrisation has an obvious geometric interpretation. A
point (x,y) of X is sent to the slope of the line joining it to (xp,ye); and
the parameter ¢ is sent to the point of intersection of the curve with the line
through (zg,y0) with slope t. This point is uniquely determined precisely
because we are dealing with an irreducible curve of degree 2. In the same
way as the parametrisation of the curve (1), this parametrisation can be
interpreted as the projection of X from the point (xg,30) to some line not
passing through this point (Figure 4).

("o:yo)

X

/ / \ \ Figure 4. Projection of a Conic

Note that in constructing the parametrisation we have used a point
(z0, yo) of X. If the coefficients of the polynomial f(z,y) and the coordinates
of (Zg,y0) are contained in some subfield kg of k, then so do the coefficients
of the functions giving the parametrisation. Thus we can, for example, find
the general form for the solution in rational numbers of an indeterminate
equation of degree 2 if we know just one solution.

The question of whether there exists one solution is rather delicate. For the
rational number field Q it is solved by Legendre's theorem (see for example
Borevich and Shafarevich [13], Chap. 1, 7.2.).

We consider another application of the parametrisation we have found.
The second degree equation y2 = ax? + bx + ¢ defines a rational curve, as we
have just seen. It follows from this that for any rational function g(z,y), the
integral [ g(z, vaz? + bz + c)dz can be expressed in elementary functions.
The parametrisation we have given provides an explicit form of the substitu-
tions that reduce this integral to an integral of a rational function. It is easy
to see that this leads to the well-known Euler substitutions.

The examples considered above lead us to the following general question:
how can we determine whether an arbitrary algebraic plane curve is rational?
This question relates to quite delicate ideas of algebraic geometry, as we will
see later.
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1.3.. Relatxon wrth F:eld 'I‘heety

t 4

We now . show how the question »at the, end, of mm be fozmulated ‘a8 @
problem of field theory. To do this, we assign ta every irreducible plang.curve
a certain field, by. analogy with the way: we assign to.an jrteducible polynoxmal
in.one variable the smallest field extension;in: which it. has:. rogt... '

- -Let X be the irreducible curve giver: by 1.1, {1). Cansider rational funo-
tions u(z,y) = p(z,y)/q(z,y), where p and g are polynomials with coefficients
in k such that the denominator ¢(zx, y) is not divisible by f(z,y). We say that
such a function u(z,y) is a rational function defined on X and two rational
functions p(z,y)/¢(z,y) and p;(z,y)/q:1(z,y) definéd b‘h,.x*m;g equal on X
if the polynomial p(z, ¥)q1(z.y) — ¢(z,y)p1(=, ) is divisible by f(z,y). It is
easy to check that rational functions on X, up to equ%§y on X, form a field.
This field is called the function field or field of ration functu)us of X, and
denoted by k(X). A,

A rational function u(z,y) = p(z,y}/q(x, y)r is deﬁned at All pomts of
X where ¢(z,y) # 0. Since by assumption '3 is not dmsxb}e by f. by 1.1,
Lemma, there are ouly finitely many points of X at which u(:c y) is not
defined. Hence we can also consider elements of k(X) as functions on X,
but defined everywhere except at a finite set It can happen that a rational
function « has two different expre: sionis u = pfq and u= m/ a, q.nd ('.hat for
some point (a, 8) € X we have g a,ﬂ) 20 b B) ;é
the funiction u = 1~ y)/z on the crr
an alternatwe expressron u= :x:/ (1
at'(0,1). If 4'has an expressmn U
regular at P. N ;

Every elemen*]x of (XY itten
of % ‘arid y; 'now 'z, y are algetira,lcgny depen&ent,, §xhc hey d’

f(z,y) = 0. It is easy to check from this t'hat k(X ) has transcendence 'degree
I over k. s

ff Xisa l"ne,' giveh say by y O fhen every ratronal ‘function 35'(
X is arationial funq;ion cp(x, 0) of ¥ on'Iy, and’ hence—the Eguictron ﬁeld' of X
equals the field of Tational functrons in o ablq, k(Xf kgz‘} Lot

Now assume that‘. the clirve i rised by £'= v

j = y(t). Consider the substitution u(z, (t},z[)(t)) that ta.k any

(z,y) o5 td ; _,nctrox}mi
( aeck first that this
k " that is, that" the denommator ql "(t}t;'gﬁ('t)')fis('xii‘of
xdentrcalIy 6 a3 a function of ¢. Assume that ¢({t), v()) = b and ébﬁlbaire
this equality with 1.2, (3). Recalling that the field k is algebraically closea
and therefore infinite, by making ¢ take different values in k, we see that
f(z,y) = 0 and ¢(x,y) = 0 have infinitely many common solutions. But by
1.1, Lemma, this is only possible if f and ¢ have a common factor.

Thus our substitution sends any rational function u(x,y) defined on X
into 2 well-defined element of k(t). Moreover, since y and 1 satisfy the relation
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1.2, (3); the substitution takes rational functions u,-u; that.are equal on X
to the same Trational function. in ¢. Thus every element of. k(X } goes to a
well-defined element of k(t). This map.is obviously’an isomorphism; of- k(X )
with some subfield of k(t). It takes an element of k to itself.

At this point we make use of a theorem on rational functions. Thls is the
result known as Liiroth’s theorem, that asserts that a subfield of the field: k(t)
of rational functions containing k is of the form. k(g(t)), where g(¢) is some
rational function; that is, the subfield consists of all the rational functions of
g(t). If g(t) is not constant, then sending: fi(u}.— f(g(t)) obviously gives.an

“isomorphism of the field of rational functions k(u) with k(g(t)). Thus Liiroth’s
theorem can be given the following statement: a-subfield of the field of rational
functions k(t) that contains k and is not equal to k is itself isomorphic to
the field of rational functions. Liiroth’s theorem can be proved from simple
properties of field extensions (see van der Waerden {73); 10.2 (§73)). Applying
it to out situation, we see that if X is a rational curve then k(X) is isomorphic
to -the field of ratianal functions k(t). Suppose conversely, that for some
curve X given by 1.1, (1), the field k{X) is'isomorphic to the field of rational
functions -k(t). Suppoese that uridet this isomorphism z corr%ponds to p(t)
and y'to ¥(t): The polynomial relation’ f(z}y) = 0 € k(X) is respected by
the field - isomorphism, and gives f(p(2), ¥(¢))'= 0; therefore X is rational.

*It i5 easy tosee that any field X O ~k’haﬁhg"tr'ansaendenbe degree 1 ovet £
and generated by two elemerits z and y is-isomorphic to a field k(X?}, where X
is some irreducible algebraic plane curve. Indeed, x and y must be connected
by ‘2 polyncmial relation, since K has transcendence degree 1 over k:'If this
dependence relation is f(2,y) = 0, with:f an'irreducible’ pélynomial,’ “then
we can obviously take X to be the algebraic eurve defined by this equation.
It follows from this that the!question on-rational ttrves posed at-the: end
of 1.2 is equivalent t6 the follomng question of figld ‘theory: when i is a field -
K > k with transcendence!degree 1.over k and generated by two élemefits =
and y isomorphic to the field of rational functions of one variable k(t)? The
requirement that K is generated over k by two elements & 'npt very patural
from the algebraic point of view. It would be more natural to consider field
extensions generated by .an arbitrary;finite number of elements. However, we
will prove later that doing this does not. give . more gtaneral notien (cOmpaue
3.3, Theorem 5 and:Appendix,§5, Propositioa 1).". o

sl gonclusion, we note thatthe preceding arguments allow us to salve the
prpblem of obtaining a generically one-te-one pavametrisation of a:rational
cusve. Let X beia.rational curve. By Liiroth’s theorem, the field k(X) is
isomorphic to the field of rational functions k(t). Suppose that this-isemer-
phmfmk&q T to <p(t) and. y t;o 4/1(5) Thxs nges the. parametnsatxon @ mwp(t)

= g(t)-of X RISTARRTE . e A Leoen
e TR O
Propesition... The- pammetnsatwm;v —»(p(t'), y = 1,b(t) hasdhe follafwzng
R@Peﬁleﬁ-'!" P W NI LRI TR SRR Y VR T A F
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(i) Except possibly for a finite number of points, any (zo,y0) € X has a
representation (xg,0) = (¢(to), ¥(to)) for some to.

(ii) Ezcept possibly for a finite number of points, this representation is
unique.

Proof. Suppose that the function that maps to ¢ under the isomorphism
k(X) — k(t) is x(x,y). Then the inverse isomorphism k(t) — k(X) is given
by the formula u(t} — u(x(z,y)). Writing out the fact that the correspon-
dences are inverse to one another gives

z=px(@y), ¥=vX@) %)
t = x(e(t), (). (2)

Now (1) implies (i). Indeed, if x(z,y) = p(z,y)/q(z,y) and g(zo, o) # 0,
we can take to = x(xo, yo); there are only finitely many points (xo,30) € X
at which g(xo, %) = 0, since ¢(x,y) and f{z,y) are coprime. Suppose that
(xo,¥0) is such that x(zp, yo) is distinct from the roots of the denominators
of ¢(t) and %(t); there are only finitely many points (zo, o) for which this
fails, for similar reasons. Then formula (1) gives the required representation
of (zg, ¥o)- In the same way, it follows from (2) that the value of the parameter
t, if it exists, is uniquely determined by the point (xg, #5), except possibly for
the finite number of points at which g(xg, y) = 0. The proposition is proved.

Note that we have proved (i) and (ii) not for any parametrisation of a ra-
tional curve, but for a specially constructed one. For an arbitrary parametri-
sation, (ii) can be false: for example, the curve 1.2, (1) has, in addition to
the parametrisation given by 1.2, (2), another parametrisation z = ¢4 — 1,
y = t2(¢* — 1), obtained from 1.2, (2) on replacing ¢ by t2. Obviously here the
values ¢t and —t of the parameter correspond to the same point of the curve.

1.4. Rational Maps

A rational parametrisation is a particular case of a more general notion. Let
X and Y be two irreducible algebraic plane curves, and u, v € k(X). The
map ¢(P) = (u(P),v(P)) is defined at all points P of X where both u and
v are defined; it is called a rational map from X to Y if o(P) € Y for every
P € X at which ¢ is defined. If Y has the equation g = 0 then g(u,v) € k(X)
must vanish at all but finitely many points of X, and therefore we must have
g(u,v) =0 € k(X).

For example, the projection from a point P considered in 1.2 is a rational
map of X to the line. A rational parametrisation of a rational curve X is a
rational map of the line to X.

A rational map ¢: X — Y is birational, or is a birational equivalence

“of X to Y, if  has a rational inverse, that is, if there exists a rational map
¥: Y — X such that g o4 and 1oy are the identity (at the points where they



1. Algebraic Curves in the Plane 11

are defined). In this case, we say that X and Y are birational, or birationally
equivalent.

A birational map is not constant, that is, at least one of the functions
defining it is not an element of k. Indeed, a constant map is defined every-
where, and sends X to a single point Q € Y. Taking any point Q' # Q at
which the inverse 1 of » is defined contradicts the definition.

It follows that for any point Q € Y the inverse image ¢~}(Q) of Q (the
set of points P € X such that ¢(P) = Q) is finite; this follows at once from
1.1, Lemma. Let S be the finite set of points of X at which'a birational map
@: X — Y is not defined, U = X \ S its complement, and T and V the same
for ¥: Y — X. It follows from what we said above that the complement in
X of o Y (V)NU and in Y of Yy~1(U) NV are finite, and ¢ establishes a
one-to-one correspondence between ¢~} (V)N U and y~HU)NV.

Birational equivalence is a fundamental equivalence relation in algebraic
geometry, and we usually classify algebraic curves up to birational equiva-
lence. We have seen that the rational curves are exactly the curves birational
to the line.

Suppose that the equation f(zx,y) of an irreducible curve of degree n is
a polynomial all of whose terms are monomials in x and y of degree n — 1
and n only. Then the projection from the origin defines a birational map of
our curve and the line: this can be proved by a direct generalisation of the
arguments for the curve 1.2, (1).

Now suppose that the equation f has terms of degrees n —2, n —1 and n,
that is, f = #p—2+un—1 +un, where u; is homogeneous of degree i. Again we
set y = tz and cancel the factor of *~2 from the equation, thus reducing it to
the form a(t)z? +b(t)z +c(t) = 0, where a(t) = up(1,t), b(t) = un_1(1,t) and
c(t) = un—2(1,t). Setting s = 2ax + b to complete the square (assuming that
the ground field has characteristic # 2), we see that our curve is birational
to the curve given by s = p(t), where p = b? — 4ac. A curve of this type is
called a hyperelliptic curve. If p(t} has even degree 2m then rewriting it in
the form p(t) = ¢(t)(t — ) and dividing both sides of the equation through
by (t — @)®>™ shows that the curve is birational to the curve given by

2 _ _ 1 _ 8 _ q(t)

n _h(E)’ Whel‘e{-— t_a,"l— ( a and h(E)_ (t__a)2m_l)
in which 4 is a polynomial of degree < 2m —1in ¢,

These ideas apply in particular to any cubic curve, if we take the origin
to be any point of the curve. We see that, if chark # 2, an irreducible cubic
curve is birational to a curve given by y*> = f(z) where f is a polynomial of
degree < 3. If f(x) has degree < 2 then the cubic is rational. If it has degree 3
then we can assume that its leading coefficient is 1. Then the equation takes
the form

=22+ +bz +c
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This is:called the Weibrstrass mornial forni' of 'the equation: of: &>cibic 7K
chark # 3 then after making a translatlon T a/3 we can réduce the
equamxﬁto*ﬁhe fop Tad ol it e o ; RECURE

s dnb i

; 4y2=ea: +z§x4—q

" Vet X and Y ,bé twp 4 ;efiumble algebraxc Hlane curves that a;e b;nat;;mal,
and. supposp that the maps.betyeen them are given by, . ... ., | Ty

(“ v? & (*i’(l' y3 ¢’(1' y)) °aﬂd (z‘ ') (6 (u v) n(u v))

As in- oixr study of ratlgmal curves;: o c’an estabhsh a!relab”ron beiween the
funotion fields k(X ) and k(Y }-of thesetwo curvess For this, we send a fatioral
function: w(z,y) &k (X} to w(€(l, v), H(u,v)), viewed: as-a rational function
on Y. It is-easy ‘to check that ‘this defines & fap k(X) = k(Y) that is
an isomorphism between ‘these two fislds. Conversely; if k(X)) and k(Y) are
isomorphie, ther under this isomorphismyz;y € k{ X eortesporid:to fitnctions
E(u,v)yn(u,v) € k(Y), and u, v €k(Y) to functiotis'efz, ), Y(zyyy & k(XY
and it is again trivial to check that the pairs of functions ¢, ¥ and &9 defing
birational maps between the'curves X and Y. THus two cutves’ é,re bltatmnal
if and only if their rationsl function fields are isomorphic:

- ‘We' see: that .the problem of:classifying algebraic curves up to- biratlonal
equivalencs.is a- geometri¢ aspect of the natural algebrdic problem of clas-
sifying finitely generated extension fields of & 'of ‘tfariscendetice deégree 1 up
to isomorphism. In this problem; it is also natural not'tu vestrict: to: fields
of transéendence dégres: 1) but to ‘consider fields of any finite transdendence
degree: ' We will see dater that this wider Tormuldtion ¢f the probléni also has
a:geometric. mterprétation. - Howéver; ‘for-this we have to leave the frameé-
work of the theory af algebmc curwes a:nd consxder algebrmc vanemes of ahy
dxmensm oin nwe dedi oo L foonden Lo

s s T T P UUPET P RIS SU
We borrow a definition from coordinate geéometry: a point P is & singular
point or singularity of the curve defined by ffz,y) = 0 if f,(P) H(P) =
f(P) =9, whe;‘e 1L ‘denotes the partial derivative af ]9z, T we trénslate P
to the origin, we can say that (0 0) is singular if f does not have constant
or linear terms. A point i]sl‘ytom'myular it 15 ot 'singular, that is, i f’ {Py
or - fi(P) #0. A eurve &l of ‘wliOSe points: ax‘e nonsingulat-is %dﬁéﬁfgmdr or
smoothf 1t is well knowrt that dn Frrédutible conic is norismgulﬁr, the éimpfestf
exampieofasingukafcurveisthe curve of 12, (1) -1 s
For ‘anifrédlicible turve, either f; vatiishes at dnly firittely mny poifits of
the curve;-of f. id'divisible by f: However; since ! hhs Smaller’ degree than '
the latter is only possible if f; = 0. The same holds for f;. But f; = f’ =31]
implies, if chark = 0, that'f &k; and} if char k= p> 0 that f mvolves z
and y only as pth powers; in this last case, taking pth roots of the coefficients
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of f and using the well-known characteristic p identity (a + 8)? = oP + 0P,
we deduce that

f= }:a'_jxpiypj = (}: bijziyi)p where bfj = aij,

which contradicts the irreducibility of the curve. This shows that an irre-

ducible curve has only a finite number of singular points.
If P = (0,0) and the leading terms in the equation of the curve have degree
~ r,then r is called the multiplicity of P, and we say that P is an r-tuple point,
or point of multiplicity r. Thus a nonsingular point has multiplicity 1. If
P = (0,0) has multiplicity 2 and the terms of degree 2 in the equation of the
curve are az? + bzy + cy® then there are two possibilities: (a) az? + bzy + cy?
factorises into two distinct linear factors; or {b) ax? + bzy + cy? is a perfect

square. In case (a) the singularity is called a node (see Figure 3), and in case
(b) a cusp (Figure 5).

Figure 5. A Cusp

It follows from the definition that a curve of degree n cannot have a
singularity of multiplicity > n. If a singular point has multiplicity n then the
equation of the curve is a homogeneous polynomial in z and y of degree n,
and therefore factorises as a product of linear factors, so that the curve is
reducible. In 1.4 we proved that if an irreducible curve of degree n has a point
of multiplicity n — 1 it is rational, and if it has a point of multiplicity n — 2
then it is hyperelliptic. The cubic curve written in Weierstrass normal form
1.4, (1) is nonsingular if and only if the cubic polynomial on the right-hand
side has no multiple roots, that is, 4p® + 27¢% # 0. In this case it is called an
elliptic curve.

If £ = R and P is a nonsingular point of the curve with equation f(z,y) =
0, and f,(P) # 0, say, then by the implicit function theorem we can write y
as a function of z in some neighbourhood of P. Substituting this expression
for y, this represents any rational function on the curve as a function of z
near P. .

When k is a general field, z can still be used to describe all the rational
functions on the curve, admittedly to a more modest extent. For simplicity,
set P = (0,0). Then f = az + By + g, where g contains only terms of degree
> 2 and § # 0. We distinguish the terms in f that involve z only, writing
f=.2o(x) + yf + yh, with h(0,0) = 0. Thus on the curve f = 0 we have
Y(B + "\ —zp(z), or, in other words, y = zv, where v = —p(x)/(8 + h) is
a recular funection at P (hecatice B 4 Al P) £ 0
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Let u be any rational function on our curve that is regular at P and has
u(P) = 0. Then u = p/q, where p,q € k{z,y] with p(P) = 0 and ¢(P) #
0. Substituting our expression for y in this gives p(z,y) = p(x,zv) = zr
(because p has no constant term), where r is a regular function on the curve,
and hence u = zr/g = zu;. If u;(P) = 0 then we can repeat the argument,
getting u = x2uy, and so on. We now prove that, provided u is not identically
0 on the curve, this process must stop after a finite number of steps.

For this, return to the expression u = p/q, in which, by assumpticn, p is
not divisible by f. Hence there exist £, 7 € k[z, y] and a polynomial a € k[z]
with @ # 0 such that f¢ + pn = a (we have already used this argument in the
proof of 1.1, Lemma). Suppose a = z*ag with ao(0) # 0. Then pn = a on the
curve, and a representation p = z'w with | > k would give a contradiction:
z*(x!~%w — ag) = 0 on the curve, that is, z'"*w — ap = 0. If w = ¢/d with
¢,d € k[z,y] and d(P) # O then z'~*c ~ aod = 0 on the curve, that is,
x!~*¢ — aod is divisible by f. But this is impossible, since z!~* vanishes at P
and aod does not. Since any rational function is a ratio of regular functions,
we have proved the following theorem.

Theorem 1. At any nonsingular point P of an irreducible algebraic curve,
there exists a regular functiont that vanishes at P and such that every rational
function u that is not identically O on the curve can be written in the form

u=tky, (1)
with v regular at P and v(P) # 0. The function u is regular at P if and only
fk>201in(1). O

A function t with this property is called a local parameter on the curve
at P. Obviously two different local parameters are related by t' = tv, where
v is regular at P and v(P) # 0. We saw in the proof of the theorem that if
fy(P) # 0 then z can be taken as a local parameter.

The number & in (1) is called the multiplicity of the zero of u at P. It is
independent of the choice of the local parameter.

Let X and Y be algebraic curves with equations f = 0 and g = 0, and
suppose that X is irreducible and not contained in Y, and that P€ X NY
is a nonsingular point of X. Then g defines a function on X that is not
identically zero; the multiplicity of the zero of g at P is called the intersection
multiplicity? of X and Y at P. The notion of intersection multiplicity is one
of the amendments needed in a correct statement of Bézout’s theorem: for the
theorem that the number of roots of a polynomial is equal to its degree is false
unless we count roots with their multiplicities. Here we analyse intersection
multiplicities in the case that X is a line.

2 This is discussed at length later in the book; see Chap. IV, 1.1 for the general
definition of intersection multiplicity, which is symmetric in X and Y, and for the
fact that it coincides with the simple notion used here.
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Let P = (o, 3) € X, and suppose that the equation of X is written in
the form f(x,y) = a(z — a) + b(y — §) + g, where the polynomial g expanded
in powers of £ — a and y — 8 has only terms of degree > 2. We write the
equation of a line L through P in the form

z=a+ A, y=0+ut (2)
t is a local parameter on L at P. The restriction of f to L is of the form
fla+ Xt 0+ ut) = (ah + bu)t + t2p(t).

From this we see that if P is singular, that is, if a = b = 0, then every
line through P has intersection muitiplicity > 1 with X at P. On the other
hand, if the curve is nonsingular, then there is only one such line, namely
that for which aA + bu = 0, with equation a(z — a) + b(y — 8) = 0. Obviously
a = f1(P), b = f,(P), and hence this equation can we expressed

Fi(P)z—a) + fy(P)(y - B) = 0. ®)

The line given by this equation is called the tangent line to X at the nonsin-
gular point P.

We now determine when a line has intersection multiplicity > 3 with a
curve at a nonsingular point P = (a, ). For this, we write the equation in
the form

flz,y) = a(z — a) +b(y - B)

+e(x ~ a)? +d(x —a)(y - B) +e(y — B)? +h, @

where h is a polynomial which has only terms of degree > 3 when expanded
in power of £ — a and y — $. Restricting f to the line L given by (2), we get
that f = (@) +bu)t + (A2 +dhp + ep?)t? + t34(t). Therefore the intersection
multiplicity will be > 3 if the two conditions aX + by = eA? + dhu + ep? =0
hold. The first of these, as we have seen, means that L is the tangent line
to X at P, and the second that moreover cu? + duv + ev? is divisible by
au + bu as a homogeneous polynomial in u, v. Together they show that ¢ =
au + bu + cu? + duv + ev? is reducible: it is divisible by au + bv. Conversely,
if ¢ is reducible, then ¢ = rs, and r and s must have degree 1, and one of
them, say r, must vanish when 4 = v = 0. But then r is proportional to
au + bu and cu? + duv + ev? is divisible by it. Thus the reducibility of the
conic ¢ = au + bv + cu? + duv + ev? is a necessary and sufficient condition
for there to exist a line L through P with intersection multiplicity > 3 at P.
Such a point is called an inflerion point or flex of X.

We know from coordinate geometry the condition for a conic to be
reducible. We assume that k has characteristic # 2; then recalling that
a=fi(P), b= f(P), c = (1/2)f2(P), d = f2,(P) and e = (1/2) 4, (P), we
can write this condition in the form
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1.6. The Projective Plane

We return to Bézout's theorem stated in 1.1. Even if we consider points with
coordinates in an algebraically closed field and take account of multiplicities
of intersections, this fails in very simple cases, and still needs one further
amendment. This can already be seen in the example of two lines, which
have no points of intersection if they are parallel. However, on the projective
plane, parallel lines do intersect, in a point of the line at infinity.

In the same way, any two circles in the plane, although they are curves of
degree 2, have at most 2 points of intersection, and never 4 as predicted by
Bézout’s theorem. This follows from the fact that the qua.dratic term in the
equation of all circles is always the same, namely z% + 42, so that subtracting
the equation of one circle from that of the other gives a linear equation, and
therefore the intersection of two circles is the same thing as the intersection of
a circle and a line. Moreover, if the circles are not tangent, their multiplicity
of intersection is 1 at each point of intersection.

To understand what lies behind this failure of Bézout’s theorem, write the
equation of the circle (x — a)? + (y ~ b)? = r? in homogeneous coordinates by
setting z = £/¢ and y = 1/(. We get the equation (£ —a()?+(n—56¢)® = r2(?,
from which we see that the circle intersects the line at infinity ¢ = 0 in the
points ¢2 + 52 = 0, that is, in the two circular points at infinity (1, %i,0).
Thus all circles have the two points (1,+7,0) at infinity in common. Taken
together with the two finite points of intersection, we thus get 4 points of
intersection, in agreement with Bézout's theorem. This type of phenomenon
motivates passing from the affine to the projective plane.

Recall that a point of the projective plane P? is determined by 3 elements
(€,7m,¢) of the field k, not all simultaneously zero. Two triples (§,7,{) and
(¢’,7,¢’) determine the same point if there exists A € k with X # 0 such that
&= X¢,n= Ay and ( = X{'. Any triple (¢,7,¢) defining a point P is called
a set of homogeneous coordinates of P, and we write P = (£ : 5 : {).

There is an inclusion A% C P? which sends (r,y) € A% to (x: y: 1). We
get in this way all points with ¢ # 0: a point (£ : 5 : {) € P? with ¢ # 0
corresponds to the point (£/¢,n/¢) € A2%. The points of the complementary
set ¢ = 0 are called points at infinity. This notion is related to the choice
of the coordinate ¢. In fact, P? contains 3 sets that are copies of the affine
plane in this way: A? (given by ¢ # 0), A} (given by 7 # 0), and A2 (given by
¢ # 0). These intersect, of course: if'a point P € A2 has coordinates x = £/(,
y = n/¢ and 1 # 0 then in A’ the same point has coordinates =’ = ¢/n,
y =(/n, so that &’ = z/y, ¥’ = 1/y; if € # O then in A? it has coordinates

= nf€, y"' = (/€, so that 2"’ = y/z, y" = 1/z. Every point PePlis
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contained in at least one of the pieces A7, A2 or A%, and can be written down
in the affine coordinates of that piece.

An algebraic curve in P?, or a projective algebraic plane curve is defined
in homogeneous coordinates by an equation F(&,7,{) = 0, where F is a
homogeneous polynomial. Then whether F(¢,1,{) = 0 holds or not is in-
dependent of the choice of the homogeneous coordinates of a point; that is,
it is preserved on passing from &, , ( to & = X, 7' = A, ¢’ = X with
A # 0. A homogeneous polynomial is also called a form. An affine alge-
braic curve of degree n with equation f(zr,y) = 0 defines a homogeneous
polynomial F(¢,1,{) = ("f(£/¢,n/¢), and hence a projective curve with
equation F(£,7,{) = 0. It is easy to see that intersecting this curve with the
affine plane A gives us the original affine curve, to which it therefore only
adds points at infinity with { = 0. If the equation of the projective curve
is F(¢,7,¢) = 0, then that of the corresponding affine curve is f(z,y) = 0,
where f(z,y) = F(z,y,1). Since every point P € P? is contained in one of
the affine sets A2, AZ or AZ, we can use this correspondence to write out the
properties of curves, defined above for affine curves, in terms of homogeneous
coordinates. We do this now for the notions of tangent line, singular point
and inflexion point of an algebraic curve. We always assume that P € A2.

In affine coordinates, the equation of the tangent is

of (P)(x—a>+—£( )y~ B) =

By assumption f(z,y) = F(z,y,1), where F(£,7,{) = 0 is the homogeneous
equation of our curve. Hence writing F etc. for the partial derivatives, we
get f/0x = Fy(z,y,1) and 0f/0y = Fy(z,y,1), and by the well-known
theorem of Euler on homogeneous fUnCthnS, we have

i€+ Fin+ Fi( =nF.

Since P = (o : B: 1) is a point of the curve, Fg(P)a + F;(P)B + F((P) =
so that the equation of the tangent is F{(P)r + Fy(P)y + F/(P) = 0, or in
homogeneous coordinates

Fg(P)¢ + Fy(P)n + Fe(P)¢ =

The conditions in affine coordinates for a singular point are f, = Jy =
f =0. Hence in homogeneous coordinates Fy = Fp=F =0, and by Euler s
theorem, since { = 1, also FC' = 0. If the charactenstlc of the field k is O then
it is enough to require the conditions F¢(P) = Fy(P) = F{(P) = 0, since
then also F(P) =
The condition defining an inflexion point is given by the relation 1.5,
(5) Here again f(r,y) = F(z,y,1), so that f; = F,, f; = F,, fi, = F,,
zy = Fzy» fypy = Fyy,- From now on, in the homogeneous polynomlal F we
write £ for z a.nd i for y. We substitute these expressions in the determinant
of 1.5, (5), and use Euler’s theorem
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Fab+ Fem+ Fe¢ = (n - 1)F
Qe+ Fgn+ Fi¢ = (n—1)F;
F¢¢ + Fyn+ F{( =nF.

Multiply the last column of our determinant by (n — 1), and subtract from it
£ times the first column and 7 times the second. Using the above identities
and recalling that F(P) = 0, we get the determinant

‘U ‘4 U

€ “&n T

U ’

e Fm Fen|(P):
! 4 !

F, F, F

Now perform the same operation on the rows of the determinant. The
condition for P to be an inflexion point then takes the form

1! 73 "
Fg Fg Fg

Fie Fy Fi|(P)=0. o

Ff Ffy FY

The determinant on the left-hand side of equation (1) is called the Hessian
form of F, and denoted by H(F).

We now proceed to considering rational functions. Making the substitu-
tion z = €/(, y = n/¢ and clearing denominators, we can rewrite a rational
function f = p(z,y)/q(z,y) on A2 in the form P(¢,7,¢)/Q(£,n,¢), where
P and Q are homogeneous polynomials of the same degree. Hence its value
at a point (£ : 5 : () does not change on multiplying the homogeneous co-
ordinates through by a common multiple, and hence f can be viewed as a
partially defined function on P2.

Given a rational map ¢: A2 — A2 defined by (z,y) — (u(z,y),v(z,¥)),
we first rewrite it, as just explained, in the form

U,n¢) VI
R(&,n,€)"  S(&mQ)’

where U,V, R, S are homogeneous polynomials, with degU = deg R and
degV = deg$. Next we put the two components over a common denomi-
nator, that is, in the form (A/C, B/C), with deg A = deg B = deg C. Finally,
introducing homogeneous coordinates £ /(' = A/C, 1’ /(' = B/C, we write
the map in the form

€:n:0)— (A€:n:Q):BE:n:():C€:n:()),

where A, B,C are homogeneous polynomials of the same degree. Now ¢ is
naturally a rational map P2 — P?. The map is regular at a point P if one of
A, B, C does not vanish at P. Studying properties related to points P in the
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affine set A2, say, we can divide each of A, B, C by (", where n is their com-
mon degree, and write the map in the form (z,y) — (u(z,),v(z,v), w(z,v)),
where u, v and w are polynomials. This map is regular at P if the 3 polyno-
mials do not vanish simultaneously at P.

As a first illustration we prove the following important result.

Theorem 2. A rational map from a projective plane curve C to P? is regular
at every nonsingular point of C (see 1.5 for the definition).

Proof. Suppose that the nonsingular point P is in the affine piece A2 with
coordinates denoted by z, y. We write the map as above in the form (z,y) ~
(uo : uy : ug) where ug, uy, uy are polynomials, and apply 1.5, Theorem 1
to these. Restricting the u; to C, we can write them in the form u; = tkiy;,
where t is a local parameter, v;(P) # 0 and k; > 0 for i = 0, 1, 2. Suppose
that ko, say, is the smallest of the numbers kg, k1, k2. Then the same map can
be rewritten in the form (z;y) > (vo : tF1 %oy, : tha=koy,) with k; — ko > 0,
k2 — ko > 0, and vo(P) # 0. It follows that it is regular at P. The theorem is
proved.

Corollary. A birational map between nonsingular projective plane curves is
regular at every point, and is a one-to-one correspondence. 0O

As an example, consider a birational map of the projective line to itself.
Just as with any rational map, this can be written as a rational function
z — p(z)/q(z), with p(z), g(z) € k[z] (here we assume that z is a coordinate
on our line, for example the line given by y = 0). The points that map to a
given point o are those for which p(r)/g(z) = a, that is, p(z) — ag(z) = 0.
Hence from the fact that the map is birational, it follows that p and q are
linear, that is, the map is of the form z +— (az +b)/(cx +d) with ad —be # 0.
As a consequence, we get that a birational map of the line to itself has at
most two fized points, the roots of the equation z(cx + d) = azx + b.

Now consider the elliptic curve given by 1.4, (1), and assume that
4p® +27¢% # 0. All its finite points are nonsingular. Passing to homogeneous
coordinates, we can write its equation in the form n2¢ = £3 + p£(2 + q¢3.
Hence it bas a unique point on the line at infinity ( = 0, namely the point
0 = (0:1:0). Dividing through by 5® we write the equation of the curve
in the form v = 4% + puv? + ¢v*, in coordinates u, v, where u = £/5 and
v = (/n. The point o = (0,0) in these coordinates is also nonsingular. Hence
our curve is nonsingular. The map (z,y) — (z, —y) is obviously a birational
map of the curve to itself. Its fixed points in the finite part of the plane are
the points with y = 0, 23 + pz + ¢ = 0, that is, there are 3 such points. The
point o is also a fixed point, since © = z/y, v = 1/y, and in coordinates u,
v, the map is written (u,v) — (—u, ~v). We have constructed on an elliptic
curve an automorphism having 4 fixed points. It follows from this that an
ellintic curve 18 not iratio alt . ine that is 18 ot mtional This shaws
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that the problem of birational classification of curves is not trivial: not all
curves are birational to one another.

Passing to projective curves is the final amendment required in the state-
ment of Bézout’s theorem. One version of this is as follows:

Theorem. Let X and Y be projective curves, with X nonsingular and not
- contained in Y. Then the sum of the multiplicities of intersection of X and
Y at all points of X NY equals the product of the degrees of X and Y.

We will prove this theorem and a series of generalisations in a later section
(Chap. 111, 2.2, and Chap. IV, 2.1). Here we verify the two simplest cases,
when X is a line or a conic.

Let X be a line. By 1.1, Lemma, X and Y have a finite number of points
of intersection. We choose a convenient coordinate system, so that the line
¢ = 0 does not pass through the points of intersection, and is not equal to
X, and n = 0 is the line X. Then the points of intersection of X and Y are
contained in the affine plane with coordinates z = ¢/¢, y = n/(, and the
equation of X is y = 0. Let f(x,y) = 0 be the equation of the curve Y and
f = fo+ filz,y) + -+ + folz,y) its expression as a sum of homogeneous
polynomials. The point (1: 0: 0) is not contained in ¥ by the choice of the
coordinate system, and hence f(1,0) # 0, that is, f contains the term azx™
with a # 0. Hence f(z,0), the restriction of f to X, has degree n. The function
z — « is a local parameter of X at the point £ = «, and the multiplicity of
intersection of X and Y at this point equals the multiplicity of the root z = «
of the polynomial f(z,0). Therefore the sum of these multiplicities equals n.

Let X be a conic. Take any point P € X with P ¢ Y, and choose
coordinates so that ¢ = 0 is the tangent line to X at P, and £ = 0 some
other line through P. An easy calculation in coordinates shows that X is
a parabola in the affine plane with coordinates z = £/¢, y = n/{ (since it
touches the line at infinity), with equation y = pz? + gz +r and p # 0. As
before, f = fo+- -+ fa(z,y), and now f,(0,1) # 0, that is, f(z, y) contains
the term ay™ with a # 0. The conic X has no other points of intersection
with the line ¢ = 0 except P, and hence all the points of intersection of X and
Y are contained in the finite part of the plane. At any point with z = o the
function x — « is a local parameter on X, and the multiplicity of intersection
of X and Y at this point is equal to the multiplicity of the root z = a of
the polynomial f(x,px” + ¢z + 7). Since f(z,y) contains the term ay™ with
a # 0, the degree of f(z,pr? + gz + 1) is 2n, so that the sum of multiplicities
of all the points of intersection equals 2n.

This proves the theorem in the case X is a line or conic.

Already this simple particular case of Bézout’s theorem has beautiful
geometric applications. One of these is the proof of Pascal’s theorem, which
asserts that for a hexagon inscribed in a conic, the 3 points of intersection
of pairs of opposite sides are collinear. Let [; and m;, I3 and mq, I3 and m3



Exercises to §1 21

be linear forms that are the equations of the opposite sides of a hexagon
(see Figure 6). Consider the cubic with the equation f\ = lil2l3 + Amymoms
where A is an arbitrary parameter. This has six points of intersection with
the conic, the vertexes of the hexagon. Moreover, we can choose the value of
A so that fy(P) = 0 for any given point P € X, distinct from these 6 points
of intersection. We get a cubic f having 7 points of intersection with a conic
X, and by Bézout’s theorem this must decompose as the conic X plus a line
L. This line L must contain the points of intersection {; N m,, lx Ny and
13 " m3. (This proof is due to Pliicker.)

Figure 8. Pascal’s Theorem

Exercises to §1

1. Find a characterisation in real terms of the line through the points of intersection
of two circles in the case that both these points are complex. Prove that it is the
locus of points having the same power with respect to both circles. (The power of a
point with respect to a circle is the square of the distance between it and the points
of tangency of the tangent lines to the circle.)

2. Which rational functions p(z)/q(z) are regular at the point at infinity of P'?
What order of zero do they have there?

3. Prove that an irreducible cubic curve has at most one singular point, and that
the multiplicity of a singular point is 2. If the singularity is a node then the cubic
is2 projgctively equivalent to the curve in 1.2, (1); and if a cusp then to the curve
y* =z

. What is the maximum multiplicity of intersection of two nonsingular conics at
a common point?
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5. Prove that if the ground field has charactenstlc p then every line through the
origin is a tangent line to the curve y = zP*!. Prove that over a field of characteristic
0, there are at most a finite number of lines through a given point tangent to a
given irreducible curve.

6. Prove that the sum of multiplicities of two singular points of an irreducible curve

of degree n is at most n, and the sum of multiplicities of any 5 points is at most
2n.

7. Prove that for any two distinct points of an irreducible curve there exists a
rational function that is regular at both, and takes the value 0 at one and 1 at the
other.

8. Prove that for any nonsingular points P,..., P. of an irreducible curve and
numbers my, ..., m, > 0 there exists a rational function that is regular at all these
points, and has a zero of multiplicity. m; at P;.

9. For what values of m is the cubic z3 + 2} + 23 + mzoz122 = 0 in P? nonsingular?
Find its inflexion points.

10. Find all the automorphisms of the curve of 1.2, (1).

11. Prove that on the projective line and on a conic of P?, a rational function that
is regular at every point is a constant.

12. Give an interpretation of Pascal’s theorem in the case that pairs of vertexes of
the hexagon coincide, and the lines joining them become tangents.

2. Closed Subsets of Affine Space

Throughout what follows, we work with a fixed algebraically closed field &,
which we call the ground field

2.1. Definition of Closed Subsets

At different stages of the development of algebraic geometry, there have been

changing views on the basic object of study, that is, on the question of what
" is the “natural definition” of an algebraic variety; the objects considered
to be most basic have been projective or quasiprojective varieties, abstract
algebraic varieties, schemes or algebraic spaces.

In this book, we consider algebraic geometry in a gradually increasing
degree of generality. The most general notion considered in the first chapters,
embracing all the algebraic varieties studied here, is that of quasiprojective
variety. In the final chapters this role will be taken by schemes. At present
we define a class of algebraic varieties that will play a foundational role in
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all the subsequent definitions. Since the word variety will be reserved for the
more general notions, we use a different word here.

We write A™ for the n-dimensional affine space over the field k. Thus its
points are of the form a = (ay,...,a,) with a; € k.

Definition. A closed subset of A" is a subset X C A"™ consisting of all
common zeros of a finite number of polynomials with coefficients in k. We
will sometimes say simply closed set for brevity.

From now on we will write F(T") to denote a polynomial in n variables,
allowing T to stand for the set of variables Tj,...,T,. If a closed set X
consists of all common zeros of polynomials Fy(T), ..., Fy(T), then we refer
to Fi(T) = --- = F(T) = 0 as the equations of the set X.

A set X defined by an infinite system of equations F,(T) = 0 is also
closed. Indeed, the ideal 2 of the polynomial ring in T7,...,T, generated by
all the polynomials F,(T) is finitely generated (the Hilbert Basis Theorem,
see Atiyah and Macdonald (7], Theorem 7.5), that is, A = (Gy,...,Gm). One
checks easily that X is defined by the system of equations Gy = -+ = G = 0.

It follows from this that the intersection of any number of closed sets
is closed. Indeed, if X, are closed sets, then to get a system of equations
defining X = [} X«, we need only take the union of the systems defining all
the X,.

The union of a finite number of closed sets is again closed. It is obviously
enough to check this for two sets. If X = X, U X, where X, is defined by
the system of equations F;(T) =0 for i = 1,...,m and X3 by G;(T) =0
for j = 1,...,! then it is easy to check that X is defined by the system
F(T)G;(T)=0fori=1,...,mandj=1,...,L

Let X C A™ be a closed subset of affine space. We say that aset U C X
is open if its complement X \ U is closed. Any open set U 3 z is called a
neighbourhood of x. The intersection of all the closed subsets of X containing
a given subset M C X is closed. It is called the closure of M and denoted by
M. A subset is dense in X if M = X. This means that M is not contained
in any closed subset Y’ G X.

Ezample 1. The whole affine space A" is closed, since it is defined by the
empty set of equations, or by 0 =0.

Ezample 2. The subset X C A! consisting of all points except 0 is not closed:
every polynomial F(T) that vanishes at all T # 0 must be identically 0.

Ezample 3. Let us determine all the closed subsets X < A!. Such a set is
given by a system of equations Fi(T') = .-+ = Fj;(T) = 0 in one variable
T. If all the F; are identically 0 then X = Al, If the F; don’t have any
common factor, then they don’t have any common roots, and X does not
contain any oints. If the highest common factors of all the F; is D(T) then
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D(T) = (T - a1)--- (T — an) and X consists of the finitely many points
T=a,...,.T=a,.

Example 4. Let us determine all the closed subsets X C A2. A closed subset
is given by a system of equations

Fi(T)=---=Fn(T)=0, 1)
where now T = (T}, T:). If all the F; are identically 0 then X = A2. Suppose
this is not the case. If the polynomials F,...,F, do not have a common

factor then, as follows from 1.1, Lemma, the system (1) has only a finite
set of solutions (possibly empty). Finally, suppose that the highest common
factor of all the Fy(T') is D(T). Then Fy(T) = D(T)Gi(T), where now the
polynomials G;(T") do not have a common factor. Obviously then X = X,UX,
where X is given by Gi(T) = --- = Gn(T) = 0 and X, is given by the
single equations D(T) = 0. As we have seen, X is a finite set. The closed
sets defined in A® by one equation are the algebraic plane curves. Thus a
closed set X C A2 either consists of a finite set of points (possibly empty), or
the union of an algebraic plane curve and a finite set of points, or the whole
of A2,

Ezample 5. If o € AT is the point with coordinates (ay,...,a,) and 8 € A®
the point with coordinates (fi,.. ., 3s), we take a, 8 into the point (o, 8) €
ATt* with coordinates (ai,...,a,,01,-- -, Bs)- Thus we identify A™** as the
set of pairs (¢, 3) with o € A" and S € A®. Let X C A" and ¥ C A® be
closed sets. The set of pairs (z,y) € A™** withz € X and y € Y is called
the product of X and Y, and denoted by X x Y. This is again a closed set.
Indeed, if X is given by F;(T)=0and Y by G;(U) =0 then X xY C A™**
is defined by Fi(T) = G;(U) = 0.

Ezample 6. A set X C A™ defined by one equation F(T1,...,T,) = 0 is called
a hypersurface.

2.2. Regular Functions on a Closed Subset
Let X be a closed set in the affine space A" over the ground field k.

Definition. A function f defined on X with values in k is regular if there
exists a polynomial F(T) with coefficients in k such that f(z) = F(z) for all
reX.

If f is a given function, the polynomial F is in general not uniquely deter-
mined. We can add to F any polynomial entering in the system of equations
of X without altering f. The set of all regular functions on a given closed set
X forms a ring and an algebra over k; the operations of addition, multiplic-
ation and cealar multinlic £t n by | ments f  are defined as in analv is.
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by performing the operations on the value of the functions at each point
z € X.The ring obtained in this way is denoted by k{X| and is called the
coordinate ring of X.

We write k[T for the polynomial ring with coefficients in k in variables
Ty,...,Tn. We can obviously associate with each polynomial F' € k[T] a
function f € k[X], by viewing F as a function on the set of points of X;
in this way we get a homomorphism from k[T] to k[X|. The kernel of this
homomorphism consists of all polynomials F' € k[T} that take the value 0 at
every point ¢ € X. This is an ideal of k[T, just as the kernel of any ring
homomorphism; it is called the ideal of the closed set X, and denoted by 2x.
Obviously

k[X] = k{T]/2x.

Thus k[X] is determined by the ideal Ax C k[T.
Example 1. If X is a point then k{X] = k.
Ezample 2. If X = A™ then Ax = 0 and k[X] = k[T].

Ezample 3. Let X C A? be given by the equation T\T; = 1. Then k[X] =
k[T1,T; Y], and it consists of all the rational functions in Ty of the form
G(Th) /TP with G(T1) a polynomial and n > 0.

Ezample 4. We prove that if X and Y are any closed sets then k[X x Y] =
k|X) ®x k[Y). Define a homomorphism ¢: k[X] @k k[Y] — k{X x Y] by the

condition
o(Tfi00)@y) = 3 fi@)etw).

The right-hand side is obviously a regular functions on X x Y, and it is clear
that ¢ is onto, since, in the notation of 2.1, Example 5, the functions a; and
(; are contained in the image of ¢, and these generate k[X xY]. To prove that
¢ is one-to-one, it is enough to check that if {f;} are linearly independent in
k[X] and {g;} in k[Y] then {f; ® g;} are linearly independent in k[X x Y].
Now an equality
> e filz)gi(y) =0

implies the relation 3 ¢;;9,;(y) = 0 for any fixed y, and in turn that ¢;; = 0.

Since k[X] is a homomorphic image of the polynomial ring k[T, it sat-
isfies the Hilbert basis theorem: any ideal of k[X] is finitely generated.
It also satisfies the following analogue of the Nullstellensatz (Appendix, §6
Prop(_)sition 1): if a function f € k[X] is zero at every point z € X at w’hicl;
functions g1,...,gm vanish then f7 € (915.-.,9m) for some r > 0. Indeed
suppose that f is given by a polynomial F(T), the g; by polynomials G, -(T)’
and let F; = 0 for j = 1,...,{ be the equations of X. Then F(T) va.n;shes’
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at all points & € A" at which all the polynomials Gy,...,Gn, F,..., Fi
vanish; for since Fj(a) = 0 it follows that @ € X, and then by assumption
F(a) = 0. Applying the Nullstellensatz in the polynomial ring we deduce that
Fr e (Gy..-,Gm, F,..., F) for some r > 0, and hence f" € (g1,...,9m) in
k[X].

How is the ideal Ax of a closed set X related to asystem F} = --- = F, =
0 of defining equations of X? Clearly F; € 2x by definition of Ay, and hence
(F1,...,Fn) C Ax; however, it’s not always true that (Fy,...,Fn) = Ax.
For example, if X C A is defined by the equation T2 then it consists just of
the point T’ = 0, so that Ax consists of all polynomials with no constant term.
That is, Ax = (T), whereas (F,...,Fpn) = (T'?). We can however always
define the same closed set X by a system of equation Gy = --- = G =0
in such a way that Ax = (Gy,...,G1). For this it is enough to recall that
any ideal of k[T] is finitely generated. Let Gy,..., Gt be a basis of the ideal
Ax, that is, Ax = (Gy,...,G1). Then obviously the equations G, = --- =
G| = 0 define the same set X and have the required property. It is sometimes
even convenient to consider a closed set as defined by the infinite system of
equations F = 0 for all polynomials F € 2Ay. Indeed, if (Fi,...,Fn) = Ax
then these equations are all consequences of F} = --- = Fy, = 0.

Relations between closed subsets are often reflected in their ideals. For
example, if X and Y are closed sets in the affine space A" then X D Y
if and only if Ax C Ay. It follows from this that with any closed subset Y
contained in X we can associate the ideal ay of k[X], consisting of the images
-under the homomorphism k{T'] — k[X] of polynomials F € 2y. Conversely,
any ideal a of k[X|] defines an ideal 2 in k[T, consisting of all inverse images
under k[T] — k[X] of elements of a. Clearly % D A x. The equations F =0
for all F' € 2 define the closed set Y C X.

It follows from the Nullstellensatz that Y is the empty set if and only if
ay = k{X]. The ideal ay C k[X] can alternatively be described as the set of
all functions f € k[X] that vanish at all points of the subset Y.

In particular, each point z € X is a closed subset, and hence defines an
ideal m, C k[X]. By definition this ideal is the kernel of the homomorphism
k[X] — k that takes a function f € k[X] to its value f(z) at z. Since
k[X]/m, = k is a field, the ideal m, is maximal. Conversely, every maximal
ideal m C k[X] corresponds in this way to some point z € X. Indeed, it
defines a closed subset Y C X; for any point y € Y we have my D m, and
then m; = m since m is maximal. For u € k[X] the set of points z € X at
which u(z) = 0 is closed; it is denoted by V'(u), and called a hypersurface in
X.
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2.3. Regular Maps
Let X C A™ and Y C A™ be closed subsets.

Definition. A map f: X — Y is reqular if there exist m regular functions
f1y++ 1 fm on X such that f(z) = (fi(z),..., fm(z)) forallz € X.

Thus any regular map f: X — A™ is given by m functions f;,..., fm €
k[X]; in order to know that this maps into the closed subset Y C A™, it
is obviously enough to check that fi,..., f, as elements of k[X] satisfy the
equations of Y, that is

G(fi,..-,fm) =0€k[X] forall G € Ay.

Ezample 1. A regular function on X is exactly the same thing as a regular
map X — Al

Ezample 2. A linear map A™ — A™ is a regular map.

Ezample 8. The projection map (z,y) — z defines a regular map of the curve
defined by zy = 1 to Al.

Ezample 4. The preceding example can be generalised as follow: let X C
A™ be a closed subset and F a regular function on X. Consider the subset
X' C X x A! defined by the equation T,,41F(T1,...,T,) = 1. The projection
@(x1,. .., Tnp1) = (21,- - ., Zn) defines a regular map p: X' — X.

Ezample 5. The map f(t) = (t2,t?) is a regular map of the line A! to the

curve given by y? = z3.

Ezample 6. The zeta function of a variety over F,. We give an example that
is very important for number theory. Suppose that the coefficients of the
equations F;(T) of a closed subset X C A™ belong to the field F, with p
elements, where p is a prime number.

As we said in 1.1, the points of X with coordinates in F, correspond to
solutions of the system of congruences F;(T') = 0 mod p. Consider the map
@: A" —» A" defined by

lay,...,an) =(f,...,af).

This is obviously a regular map. The important thing is that it takes X C A"
to itself. Indeed, if @ € X, that is, Fi(a) = 0, then since F;(T") € F,[T], it
follows from properties of fields of characteristic p that F}(a’l’,...,aﬁ) =
(F}(al,...,a,.))" = 0. The map ¢: X — X obtained in this way is called
the Probenius map. Its significance is that the points of X with coordinates



28 Chapter 1. Basic Notions

in F,, are characterised among all points of X as the fixed points of ¢. Indeed,
the solutions of the equation af = a are exactly all the elements of F,,.

In exactly the same way, the elements a € Fpr of the field with p” elements
are characterised as the solutions of a?” = ¢, and hence the points z € X
with coordinates in Fy- are the fixed points of the map ™. For each r, write
v, for the number of points z € X with coordinates in Fpr. To get a better
overall view of the set of numbers v,., we consider the generating function

A deep general theorem asserts that this function is always a rational function
of t (for a fairly elementary proof, see Koblitz [47], Chap. V). In this way the
function Px(t) gives an expressmn in finite terms for the infinite sequence of
numbers vy.

The function Px(t) associated with the closed set X has some properties
analogous to those of the Riemann zeta function. To express these, note that
if z € X is a point whose coordinates are in F,- and generate this field, then
X contains all the points ¢*(z) for i = 1,...,r, and these are all distinct. We
call a set £ = {¢*(z)} of this form a cycle, and the number r of points of £
the degree of £, denoted degé. Now we can group together all the v, points
z € X with coordinates in Fp- into cycles. The coordinates of any of these
points generate some subfield Fya C Fyr, and it is known that d | r (see for
example van der Waerden [73], 6.7, Ex. 6.23 (§43, Ex. 1)). We get a formula

Ur = Z dug,

dir

where p4 is the number of cycles of degree d, hence

Px(t) = sz#dt = Zdﬂ-d Z tmd = Ell-d . v
r=1 djr

‘

We introduce the function
1
Zx(®) =] 1= @)
3

where the product runs over all cycles £. Then the formula (1) can obviously
be rewritten as Ze(t)
Px(t) = 25t

(2) is analogous to the Euler product for the Riemann zeta function. To
emphasise this analogy we set pd¢8€ = N(¢) and ¢ = p~*. Then (2) takes the
form
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1
Zx () = Cx(s) =IEL—_T@—

This function (either Zx (t) or {x(s)) is called the zeta function of X.

We now find out how a regular map acts on the ring of regular functions
on a closed set. We start with a remark concerning arbitrary maps between
sets. If f: X — Y is a map from aset X to a set Y then we can associate with
every function u on Y (taking values in an arbitrary set Z) a function v on
X by setting v(z) = u(f(z)). Obviously the map v: X — Z is the composite
of f: X >Y and u: Y — Z. We set v = f*(u), and call it the pullback of u.
We get in this way a map f* from functions on Y to functions on X. Now
suppose that f: X — Y is a regular map; then f* takes regular functions on
Y into regular functions on X. Indeed, if u is given by a polynomial function
G(Ti,...,Ty) and f by polynomials Fy,..., Fy, then v = f*(u) is obtained
simply by substituting F; for T; in G, so that v is given by the polynomial
G(Fy,..., Fn). Moreover, regular maps can be characterised as the maps
that take regular functions into regular functions. Indeed, suppose that a
map f: X — Y of closed set has the property that for any regular function »
onY the function f*(u) on X is again regular. Then this applies in particular
to the functions t; defined by the coordinates T; on Y for i = 1,...,m; thus
the functions f*(¢;) are regular on X. But this just means that f is a regular
map.

We have seen that if f is regular then the pullback of functions defines
a map f*: k[Y] — k[X]. It follows easily from the definition of f* that it
is a homomorphism of k-algebras. We show that, conversely, every algebra
homomorphism ¢: k[Y] — k[X] is of the form ¢ = f* for some regular
map f: X — Y. Let t;,...,tm be coordinates in the ambient space A™
of Y, viewed as functions on Y. Obviously t; € k[Y], and hence ©(t;) €
k[X)]. Set o(t;) = s; and consider the map f given by the formula f(z) =
(81(2), ..., 8m(z)). This is of course a regular map. We prove that f(X) CY.
Indeed, if H € %y then H(t1,...,tm) = 0 in k[Y], hence also ¢(H) = 0 on
X. Let z € X; then H(f(z)) = ¢(H)(z) = 0, and therefore f(z) €Y.

Definition. A regular map f: X — Y of closed sets is an isomorphism if
it has an inverse, that is, if there exists a regular map ¢g: ¥ — X such that
fog=1and go f = 1. In this case we say that X and Y are isomorphic.

An isomorphism is obviously a one-to-one correspondence. It follows from
what we have said that if f is an isomorphism then f*: k[Y] — k[X] is an
isomorphism of algebras. It is easy to see that the converse is also true; in
other words, closed sets are isomorphic if and only if their rings of regular
functions are isomorphic over k.

The facts we have just proved show that X — k[X] defines an equiva-
lence of categories between closed subsets of affine spaces (with regular maps
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between them) and a certain subcategory of the category of commutative
algebras over k (with algebra homomorphisms). What is this subcategory,
that is, which algebras are of the form k[X]?

Theorem 1. An algebra A over a field k is isomorphic to a coordinate ring
k[X] of some closed subset X if and only if A has no nilpotents (that is

™ = 0 implies that f = 0 for f € A) and is finitely generated as an algebra
over k.

Proof. These conditions are all obviously necessary. If an algebra A is
generated by finitely many elements ti,...,t, then A = k[Ty,...,T,)/9,
where 2 is an ideal of the polynomial ring k[T},...,T,]. Suppose that
A = (F,...,Fy), and consider the closed set X C A™ defined by the equa-
tions F} = --- = F,, = 0; we prove that %x = 2, from which it will follow
that k[ X} = k[T, ..., T,]/A = A.

If F € %y then F" € 2 for some r > 0 by the Nullstellensatz. Since A
has no nilpotents, also F € A. Thus %Ax C A, and since obviously % C Ay,
we have Ax = %. The theorem is proved.

Ezample 7. The generalised parabola, defined by the equation y = z* is
isomorphic to the line, and the maps f(z,y) = = and g(t) = (¢, t*) define an
isomorphism.

Ezample 8. The projection f(z,y) = z of the hyperbola zy = 1 to the z-axis
is not an isomorphism, since the map is not a one-to-one correspondence: the
hyperbola does not contain any point (z,y) for which f(z,y) = 0. Compare
also Ex. 4.

Example 9. The map f(t) = (t2,t3) of the line to the curve defined by 3> =
23 is easily seen to be a one-to-one correspondence. However, it is not an
isomorphism, since the inverse map is of the form g(z,y) = y/z, and the
function y/z is not regular at the origin. (See Ex. 5.)

Ezample 10. Let X and Y C A™ be closed sets. Consider X x Y C A as
in 2.1, Example 5, and the linear subspace A C A" defined by equations
t1 = U1,...,tn° = un, called the diagonal Consider the map that sends each
point z € X NY to ¢(z) = (2,2) € A, which is obviously a point of
X x YNA. 1t is easy to check that the map ¢: XNY — X x YN A obtained
in this way is an isomorphism from X NY to X x Y N A. Using this, we can
always reduce the study of the intersection of two closed sets to considering
the intersection of a different closed set with a linear subspace.

Ezample 11. Let X be a closed set and G a finite group of automorphisms
of X. Suppose that the characteristic of the field ¥ does not divide the order
N of G. Set A = k[X], and let A€ be the subalgebra of invariants of G in 4,



2. Closed Subsets of Affine Space 31

that is, A® = {f € A| g*(f) = f for all g € G}. According to Appendix, §4,
Proposition 1, the algebra AS is finitely generated over k. From Theorem 1
it follows that there exists a closed set Y such that A 2 k[Y], and a regular
map @: X — Y such that ¢*(k[Y]) = 'AC. This set Y is called the quotient
variety or quotient space of X by the action of G, and is written X/G.

Given two points 1, z2 € X, there exists g € G such that z; = g(z,) if
and only if (1) = ¢(z2). Indeed, if z; = g(z,) then f(x2) = f(x;) for every
f € k[X]€ = k[Y], and hence ©(z1) = p(z2). Conversely, if 2 # g(z1) then
we must take a function f € k[X] such that f(g(z2)) = 1, f(g(z1)) = 0 for all
g € G. Then the symmetrised function S(f) (see Appendix, §4) is G-invariant
and satisfies S(f)(z2) = 1 and S(f)(z1) = 0, and hence ¢(z3) # @(z1). Thus
X/G parametrises the orbits {g(z) | g € G} of G acting on X. '

In what follows we will mainly be interested in notions and properties of
closed sets invariant under isomorphism. The system of equations defining a
set is clearly not a notion of this kind; two sets X and Y can be isomorphic
although given by different systems of equations in different spaces A™. Thus
it would be natural to try to give an intrinsic definition of a closed set inde-
pendent of its realisation in some affine space; a definition of this kind will
be given in Chap. V-VI in connection with the notion of a scheme.

Now we determine when a homomorphism f*: k[Y] — k[X] correspond-
ing to a regular map f: X — Y has no kernel, that is, when f* is an iso-
morphic inclusion k[Y] — k[X]. For u € k[Y], let’s see when f*(u) = 0. This
means that u(f(z)) = 0 for all z € X. In other words, u vanishes at all points
of the image f(X) of X. The points y € Y for which u(y) = 0 obviously form
a closed set, and hence if this contains f(X), it also contains the closure f{X).
Repeating the same arguments backwards, we see that f*(u) = 0 if and only
if u vanishes on f(X), or equivalently, 4 € ar 70X)" It follows in particular that

the kernel of f* is zero if and only if f(X) =Y, that is, f(X)is densein Y.

This is certainly the case if f(X) =Y, but cases with f(X) = Y but
f(X) #Y are possible (see Example 3).

In what follows we will be concerned mainly with algebraic varieties in
projective space. But closed subsets of affine space have a geometry with a
specific flavour, which is often quite nontrivial. As an example we give the
following theorem due to Abhyankar and Moh:

Theorem. A curve X C A? is isomorphic to A if and only if there erists
an automorphism of A? that takes X to a line. (Here an automorphism is an
isomorphism from A? to itself) O

The group AutA? of automorphisms of the plane is an extremely inter-
esting object. Some examples of automorphisms are very simply to construct:
the affine linear maps, and maps of the form

' =az, ¥ =py+f(z), @)
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where o, 8 # 0 are constants, and f a polynomial. It is known that the whole
group Aut A2 is generated by these automorphisms. Moreover, the expression
of an element g € AutA? as a word in affine linear maps and maps of the
form (3) is almost unique: the only relations in AutA? between maps of
these two classes are those expressing the fact that the two classes have a
subset in common, namely maps of the form (3) with f a linear polynomial.
In the language of abstract group theory, Aut A? is the free product (or
amalgamation) of two subgroups, the maps of the form (3) and the affine
maps, over their common subgroup (see Kurosh [51], Vol. II, Chap. IX, §35
and Ex. 10).

A famous unsolved problem related to automorphisms of A? is the Jaco-
bian conjecture. This asserts that, if the ground field k has characteristic O,
a map given by

' = f(z,y), ¥ =gy
with f, g € k[z,y) is an automorphism of A? if and only if the Jacobian

determinant g—g—‘z% is a nonzero constant. At present this conjecture is proved

when the degrees of f and g are not too large (the order of 100). There is a
similar conjecture for the n-dimensional affine space A™.

Exercises to §2

1. The set X C A? is defined by the equation f: x> +4® =1 and g: z = 1. Find
the ideal Ax. Is it true that Ax = (f,g)?

2. Let X C A? be the algebraic plane curve defined by 4° = z*. Prove that an
element of k{X] can be writtén uniquely in the form P(z) + Q(z)y with P(z), Q(z)
polynomials.

3. Let X be the curve of Ex. 2 and f(t) = (t?,t%) the regular map A! — X. Prove
that f is not an isomorphism. [Hint: Try to construct the inverse of f as a regular
map, using the result of Ex. 2.}

4. Let X be the curve defined by the equation y* = z?+2% and f: A — X the map
defined by f(t) = (t* — 1,¢(t* - 1)). Prove that the corresponding homomorphism
f* maps k[X] isomorphically to the subring of the polynomial ring k[t] consisting
of polynomials g(t) such that g(1) = g(—1). (Assume that char k # 2.)

5. Prove that the hyperbola defined by zy = 1 and the line A! are not isomorphic.

6. Consider the regular map f: A% — A? defined by f(z,y) = (z,zy). Find the
image f(A?); is it open in A%? Is it dense? Is it closed?

7. The same question as in Ex. 6 for the map f: A®> — A® defined by f(z,y,2) =
(ml zylxyz)'
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8. An isomorphism f: X — X of a closed set X to itself is called an automorphism.
Prove that all automorphisms of the line A' are of the form f(z) = az + b with
a#0.

9. Prove that the map f(z,y) = (az, By + P(z)) is an automorphism of A%, where
a, (3 € k are nonzero elements, and P(z) is a polynomial. Prove that maps of this
type form a group B.

10. Let A be the group of affine linear transformations of the plane A?, B the
group described in Ex. 9 and C = AN B. Choose a system of representatives A for
the cosets of C\ A and B for the cosets of C\ B, with the elements of C itself deleted.
Prove that for any a € C, @; € A and b; € B, the product abi@ib2a2d; - - - # e. [Hint:
Set 82,—; = aby ---b; and s3; = ab; - --@;. Assume that s; is of the form (z,y) —
(fi(z,y), 9i(z,y)). Verify that deg f2; = deggai = deg fai41 < deg g2i41, so that the
number max(deg f;,deg g;) either stays the same, or increases.]| Deduce from this
that an element g € Aut A% has a unique expression in the form abia;b2G2bs - - .

11. Prove that if f(Z1,...,2.) = (Pl(:n,...,zn),...,Pn(zl,...,zn)) is an auto-

morphism of A" then the Jacobian J(f) = det € k. Prove that f — J(f) is

a homomorphism from the group of automorphisms of A" into the multiplicative
group of nonzero elements of k.

ap,
9z;

12. Suppose that X consists of two pbints. Prove that the coordinate ring k{X] is
isomorphic to the direct sum of two copies of k.

13. Let f: X — Y be a regular map. The subset I'y C X x Y consisting of all
points of the form (z, f(z)) is called the graph of f. Prove that (a) [y C X x Y is
a closed subset, and (b} Iy is isomorphic to X.

14. The map py: X x Y — Y defined by pv(z,y) = y is called the projection to
Y or the second projection. Prove that if Z C X and f: X — Y is a regular map
then f(Z) = py((Z x Y) N Iy), where [y is the graphof fand ZxY C X x Y is
the subset of (z,y) with z € Z. '

15. Prove that for any regular map f: X — Y there exists a regular map ¢g: X —
X x Y that is an isomorphism of X with a closed subset of X x Y and such that
f = py o g. In other words, any map is the composite of an embedding and a

projection.
16. Prove that if X = |JU, is any covering of a closed set X by open subsets U,

then there exists a finite number Uq,, . .., Ua, of the U, such that X = Uy, U---U
Usg,.-

17. Prove that the Frobenius map ¢ (see 2.3, Example 6) is a one-to-one corre-
spondence. Is it an isomorphism, for example if X = A'?

18. Find the zeta function Zx(t) for X = A™.

19. Determine Zx(t) for X a nonsingular conic in A2,
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3. Rational Functions

3.1. Irreducible Algebraic Subsets

In 1.1 we introduced the notion of an irreducible algebraic curve in the plane.
Here we formulate the analogous notion in general.

Definition. A closed algebraic set X is reducible lf there exist proper closed
subsets X 1,X2 X such that X = X; U X2. Otherwise X is irreducible.

Theorem 1. Any closed set X is a finite union of irreducible closed sets.

Proof. Suppose that the theorem fails for a set X. Then X is reducible,
X = X, U X], and the theorem must fail either for X; or for Xi If Xh,
then it is reducible, and again it is made up of closed sets one of which is
reducible. In this way we construct an infinite strictly decreasing chain of
closed subsets X 2 X; 2 X;---. We prove that there cannot be such a
chain. Indeed the 1dea.ls corr&spondmg to the X; would form an increasing
chain Ax G Ax, & Ax, G ---. But such an infinite strictly increasing chain
cannot exist, smce every ideal of the polynomial ring has a finite basis, and
hence an increasing chain of ideals terminates. The theorem is proved.

If X = |JX; is an expression of X as a finite union of irreducible closed
sets, and if X; C X for some i # j then we can delete X; from the expression.
Repeating this several times, we arrive at a representation X = U X; in which
X; ¢ X; for all i # j. We say that such a representation is irredundant, and
the X; are the irreducible components of X.

Theorem 2. The irredundant representation of X as a finite union of irre-
ducible closed sets is unique.

Proof. Let X = {J; X; = J;Y; be two irredundant representations. Then

Xi=X.nX =X, Jy; = JX:nY)).
j i
Since by assumption X; is irreducible, we have X;NY; = X; for some j, that
is, X; C Y. Repeatmg the argument with the X; and Y; interchanged gives

Y; C X» for some #'. Hence X; C Y; C Xy, so that by the irredundancy of
the representation, i =i’ and Y; = X The theorem is proved.

We now restate the condition that a closed set X is irreducible in terms -
of its coordinate ring k[X]. If X = X; U X; is reducible then since X 2 X;
there exists a polynomial Fj that is 0 on X, but not 0 on X, and a snmllar
polynomial F; for X5. Then the product Fy F; is 0 on both X, and X, hence
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on X. The corresponding regular functions f,, f2 € k[X] have the property
that fi, f2 # 0, but fif2 = 0. In other words, f; and f, are zerodivisors
in k[X). Conversely, suppose that k[X] has zerodivisors f1, f2 # 0, with
fifa = 0. Write X,;, X, for the closed subsets of X corresponding to the
ideals (f1) and (f2) of k[X]. In other words, X; consists of the points z € X
such that f;(z) =0, for i = 1 or 2. Obviously both X; C X, since f; # 0 on
X, and X = X; U X, since f;f2 = 0 on X, so that at each point z € X either
fi(z) = 0 or fa(x) = 0. Therefore, a closed set X is irreducible if and only
if its coordinate ring k[X] has no zerodivisors. This in turn is equivalent to
Ax being a prime ideal.

If a closed subset Y is contained in X then obviously so are its irreducible
components. In terms of the ring k[X] the irreducibility of a closed subset
Y C X is reflected in ay C k[X] being a prime ideal.

A hypersurface X C A" with equation f = 0 is irreducible if and only
if the polynomial f is irreducible. Thus our terminology is compatible with
that used in §1 in the case of plane curves.

Theorem 3. A product of irreducible closed sets is irreducible.

Proof. Suppose that X and Y are irreducible, but X xY = Z; U Z,, with
Z; g X xY for i = 1,2. For any point z € X, the closed set z x Y, consisting
of points (z,y) with y € Y, is isomorphic to Y, and is therefore irreducible.
Since

zxY=((zxY)nZ)U(zxY)nZ),
either z XY C Z; or z x Y C Z,. Consider the subset X; C X consisting of
points = € X such that z x Y C Z;; we now prove that X, is a closed set.
Indeed, for any point y € Y, the set X, of points z € X such that zxy € Z
is closed: it is characterised by (X X y) N Z; = X, X y, and the left-hand side
is closed as an intersection of closed sets; now X; = ner Xy is closed. In
the same way, the set X, consisting of all points z € X suchthat zxY ¢ Z;
is also closed. We see that X; U X5 = X, and since X is irreducible it follows
from this that X; = X or X2 = X. In the first case X x Y = Z;, and in the
second X x Y = Z,. This contradiction proves the theorem.

3.2. Rational Functions

It is known that any ring without zerodivisors can be embedded into a field,
its field of fractions.

Definition. If a closed set X is irreducible then the field of fractions of the
coordinate ring k[X] is the function field or field of rational functions of X;
it is denoted by k(X).

Recalling the definition of the field of fractions, we can say that the
function field k(X) conmsists of rational functions F(T)/G(T) such that



G(T) ¢ Ux, and F/G = F, /G, if FG, ~F,G € Ayx. This means that the field
k(X can be constructed as follows. Consider the subring Ox C k(Ty,...,T,)
of rational functions f = P/Q with P, Q € k[T] and Q ¢ 2x. The functions
f with P € 2x form an ideal Mx and k{X) = Ox/Myx.

In contrast to regular functions, a rational function on a closed set X does
not necessarily have well-defined values at every point of X; for example, the
function 1/x at x = 0 or z/y at (0,0). We now find out when this is possible.

Definition. A rational function ¢ € k(X) is regular at € X if it can be
written in the form ¢ = f/g with f, ¢ € k[{X] and g(z) # 0. In this case we
say that the element f(x)/g(z) € k is the value of ¢ at z, and denote it by
wlz).

Theorem 4. A rational function ¢ that is regular at all points of a closed
subset X is a regular function on X.

Proof. Suppose ¢ € k(X) is regular at every point x € X. This means that for
every x € X there exists f;, g; € k[X] with g,(z) # 0 such that ¢ = f,/g..
Consider the ideal a generated by all the functions g, for x € X. This has a
finite basis, so that there are a finite number of points zy,...,xy such that
a = (gz,,-..,9zn)- The functions g;, do not have a common zero r € X,
since then all functions in a would vanish at z, but g:(x) # 0. From the
analogue of the Nullstellensatz it follows that a = (1), and hence there exist
functions u;,...,uny € k[X] such that Z:L u;9z, = 1. Multiplying both
sides of this equality by ¢ and using the fact that ¢ = fs,/gz,, we get that
p= Zf';l u; fz,, that is, € k[X]. The theorem is proved.

If  is a rational function on a closed set X, the set of points at which
 is reégular is nonempty and open. The first assertion follows since ¢ can
be written ¢ = f/g with f, g € k[X] and g # 0; hence g(z) # O for some
z € X, and obviously ¢ is regular at this point. To prove the second assertion,
consider all possible representations ¢ = f;/g;. For any regular function g;
the set Y; € X of points z € X for which g;(z) = 0 is obviously closed,
and hence U; = X \Y; is open. The set U of points at which ¢ is regular
is by definition U = {JU;, and is therefore open. This open set is called
the domain of definition of . For any finite system ¢y, ..., pm of rational
functions, the set of points x € X at which they are all regular is again
open and nonempty. The first assertion follows since the intersection of a
finite number of open sets is open, and the second from the following useful
proposition: the intersection of a finite number of nonempty open sets of an
irreducible closed set is nonempty. Indeed, let I/; = X \Y; fori =1,...,m
be such that (\U; = 0. Then Y; # X and JY; = X; but the Y; are closed
sets, and this contradicts the irreducibility of X.

Thus for any finite set of rational functions, there is some nonempty open
set on which they are all defined and can be compared. This remark is useful
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because a rational function ¢ € k(X) is uniquely determined if it is specified
on some nonempty open subset U C X. Indeed, if p(z) =0 forallz € U
and ¢ # 0 on X then any expression p = f/g with f, g € k[X] gives
a representation of X as a union X = X; U X5 of two closed sets, where
X1 = X — U and X3 is defined by f = 0. This contradicts the irreducibility
of X.

3.3. Rational Maps

Let X C A™ be an irreducible closed set. A rational map ¢: X — A™is a map
given by an arbitrary m-tuple of rational functions ¢, ..., om € k{X). Thus
a rational map ¢ is not a map defined on the whole set X to the set A™, but
it clearly defines a map of some nonempty open set U C X to A™. Working
with functions and maps that are not defined at all points is an essential
difference between algebraic geometry and other branches of geometry, for
example, topology.

We now define the notion of rational map w: X — Y to a closed subset
Y CA™.

Definition. A rational map ¢: X — Y C A™ is an m-tuple of rational
functions ¢y, ...,@m € k(X) such that, for all points z € X at which all the
@; are regular, p(z) = (¥1(2),...,9m(T)) € Y; we say that ¢ is regular at
such a point z, and ¢(z) € Y is the image of x. The image of X under a
rational map ¢ is the set of points

w(X) = {¢(z) | x € Xand ¢ is regular at z}.

As we proved at the end of 3.2, there exists a nonempty open set U ¢ X
on which all the rational functions ; are defined, hence also the rational map
¢ = (¢1,-.-,0m). Thus we can view rational maps as maps defined on open
subsets; but we have to bear in mind that different maps may have different
domains of definition. The same of course also applies to rational functions.

To check that rational functions ¢, ..., pm € k(X) define a rational map
@: X — Y we need to check that ¢,,...,pn, as elements of k(X), satisfy
all the equations of Y. Indeed, if this property holds then for any polynomial
u(Th,...,Tn) € AUy the function u{wy,...,m) = 0 on X. Then at each
point x at which all the g; are regular, we have u(p1(z),..., Pm(z)) =0 for
all w € AUy, that is, (p1(z),...,m(z)) € Y. Conversely, if ¢: X — Y is
a rational map, then for every u € 2y the function u(p1,...,¢m) € k(X)
vanishes on some nonempty open set U C X, and so is 0 on the whole of X.
It follows from this that u{p,...,om) =0 in k(X).

We now study how rational maps act on rational functions on a closed
set. Let ¢: X — Y be a rational map and assume that ¢(X) is dense in V.
Consider © as amap U — v X) ¢ Y, where U is the domain of definition
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of ¢, and construct the map ¢* on functions corresponding to it. For any
function f € k[Y] the function ¢*(f) is a rational function on X. Indeed, if
Y C A™, and f is given by a polynomial u(T},...,T,,), then p*(f) is given
by the rational function u(y1,...,¢m). Thus we have a map ¢*: kY] —
k(X) which is obviously a ring homomorphism of the ring k[Y] to the field
k(X). This homomorphism is even an isomorphic inclusion kfY] — k(X).
Indeed, if @*(u) = 0 for u € k(Y) then u = 0 on (X). But if u # 0
on Y then the equality u = 0 defines a closed subset V(u) G Y. Then
@(X) C V(u), but this contradicts the assumption that ¢(X) is dense in Y.
The inclusion ¢*: k{Y] < k(X) can be extended in an obvious way to an
isomorphic inclusion of the field of fractions k(Y’) into k(X). Thus if p{X) is
dense in Y, the rational map ¢ defines an isomorphic inclusion ¢*: k(Y) <
k(X). '

Given two rational maps ¢: X — Y and ¢: Y — Z such that o(X) is
dense in Y then it i5 easy to see that we can define a composite yop: X — Z;
if in addition ¥(Y} is dense in Z then so is (¢ o ©)(X). Then the inclusions
of fields satisfy the relation (0 p)* = " 0 y*.

Definition. A rational map : X — Y is birational or is a birational equi-
valence if p has an inverse rational map ¢: ¥ — X, that is, p(X) is dense
inY and ¥(Y) in X, and oy =1, poyp =1 (where defined). In this case
we say that X and Y are birational or birationally equivalent.

Obviously if ¢: X — Y is a birational map then the inclusion of fields
©*: k(Y) — k(X) is an isomorphism. It is easy to see that the converse is
also true (for algebraic plane curves this was done in 1.4). Thus closed sets X
and Y are birational if and only if the fields k(X) and k(Y are isomorphic
over k.

Examples. In §1 we treated a series of examples of birational maps between
algebraic plane curves. Isomorphic closed sets are obviously birational. The
regular maps in 2.3, Examples 8-9, although not isomorphisms, are birational
maps.

A closed set that is birational to an affine space A™ is said to be ratio-
nal. Rational algebraic curves were discussed in §1. We now give some other
examples of rational closed sets.

Ezample 1. An irreducible quadric X C A™ defined by a quadratic equation
F(Ty,...,T,) = 0 is rational. The proof given in 1.2 for the case n = 2
works in general. The corresponding map can once again be interpreted as
the projection of X from some point £ € X to a hyperplane L C A" not
passing through z (stereographic projection). We need only choose z so that
it is not a vertex of X, that is, so that F/9T;(z) # O for at least one value
ofi=1,...,n.



3. Rational Functions 39

Ezample 2. Consider the hypersurface X C A3 defined by the 3rd degree
equation 3 4+ 33 + 2% = 1. We suppose that the characteristic of the ground
field k is different from 3. The surface X contains several lines, for example
the two skew lines L; and L, defined by

Li:z+y=0,2=1, and La:x+ey=0,z=¢,

where € # 1 is a cube root of 1.

We give a geometric description of a rational map of X to the plane,
and leave the reader to write out the formulas, and also to check that it is
birational. Choose some plane E ¢ A3 not containing L, or L. For z €
X\ (L1ULyg), it is easy to verify that there is a unique line L passing through
z and intersecting L, and Lo. Write f(z) for the point of intersection LN E;
then x — f(z) is the required rational map X — F.

This argument obviously applies to any cubic surface in A3 containing
two skew lines.

In algebraic geometry we work with two different equivalence relations be-
tween closed sets, isomorphism and birational equivalence. Birational equiv-
alence is clearly a coarser equivalence relation than isomorphism; in other
words, two closed sets can be birational without being isomorphic. Thus it
often turns out that the classification of closed sets up to birational equiv-
alence is simpler and more transparent than the classification up to isomor-
phism. Since it is defined at every point, isomorphism is closer to geometric
notions such as homeomorphism and diffeomorphism, and so more conve-
nient. Understanding the relation between these two equivalence relations is
an important problem; the question is to understand how much coarser bira-
tional equivalence is compared to isomorphism, or in other words, how many
closed sets are distinct from the point of view of isomorphism but the same
from that of birational equivalence. This problem will reappear frequently
later in this book.

We conclude this section by proving one result that illustrates the notion
of birational equivalence.

Theorem 5. Any irreducible closed set X is birational to a hypersurface of
some affine space A™.

Proof. k{X) is generated over k by a finite number of elements, for example
the coordinates ty,...,t, in A™®, viewed as functions on X.

Suppose that d is the maximal number of the ¢; that are algebraically
independent over k. According to Appendix, §5, Proposition 1, the field £(X)
can be written in the form k(zy,...,24+1), where z1,. .., zq are algebraically
independent over k and

f(21,---,Zd+1) =0, (1)
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with £ irreducible over k and fz, | # 0. The function field k(Y) of the closed

set Y defined by equation (1) is obviously isomorphic to k(X). This means
that X and Y are birational. The theorem is proved.

Remark 1. According to Appendix, §5, Proposition 1, the element z4., is
separable over the field k(z1,...,zq). Hence the k(2,...,24) C k(X) is a
finite separable field extension.

Remark 2. It follows from the proof of Appendix, §5, Proposition 1 and the
primitive element theorem of Galois theory that zy,..., zas1 can be chosen as
linear combinations of the original coordinates x1, ..., Iy, that is, of the form
2 = }:J 1Gijxy fori=1,...,d + 1. The map (z1,...,%a) = (21,.. ., Za+1)
given by these formulas is a pro_]ectlon of the space A" parallel to the linear
subspace defined by Y ;_,cijz; = 0 for i = 1,...,d 4+ 1. This shows the
geometric meaning of tgle birational map whose existence is established in
Theorem 5.

Exercises to §3

1. Suppose that k is a field of characteristic 76 2. Decompose mto lrredumble com-
ponents the closed set X C A® defined by 22 + 32 +2° =0, 72—y - 22 +1=0.

2. Prove that if X is the closed set of §2, Ex. 4 then the elements of the field k(X)
can be expressed in a unique way in the form u(z) + v(z)y where u(z) and v(z) are
arbitrary rational functions of z.

3. Prove that the maps f of §2, Ex. 3, 4 and 6 are birational.

4. Decompose into irreducible components the closed set X C A? defined by 3*
zz, 22 = y°. Prove that all its components are birational to Al

5. Let X C A™ be the hypersurface defined by an equation fn_1(Th,...,Tn) +
fa(T1,...,Tn) = 0, where fo.-1 and f, are homogeneous polynomials of degre&
n—1 and n. (A hypersurface of this form is called a monoid.) Prove that if X is
irreducible then it is birational to A™~'. (Compare the case of plane curves treated
in 1.4.)

6. At what points of the circle given by z+? = 1 is the rational function (1—y)/z
regular?

7. At which points of the curve X defined by y? = z* + z® is the rational function
t = y/z regular? Prove that y/z ¢ k[(X].
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4. Quasiprojective Varieties

4.1. Closed Subsets of Projective Space

Let V be a vector space of dimension n + 1 over the field k. The set of lines
(that is, 1-dimensional vector subspaces) of V is called the n-dimensional
projective space, and denoted by P(V) or P*. If we introduce coordinatles
£0,...,&n in V then a point £ € P" is given by n+1 elements (& : - .f,,) of
the field £, not all equal to 0; and two points (§ : -+ : &a) and (o i+~ : 7a)
are considered to be equal in P" if and only if there exists A #£ 0 such that

;= A fori=0,...,n. Any set ({ : --- : £,) defining the point £ is called
a set of homogeneous coondz'nates for ¢ (compare 1.6).

We say that a polynomial f(S) € k[So,...,S,) venishes at £ € P" if
f(&,--., &) = 0 for any choice of the coordinates (&, ..., &,) of £&. Obviously,
then also f(Agp,...,A&,) = 0 for all A € k with A # 0. Write f in the form
f=/fo+ fi+ -+ fr, where f; is the sum of all terms of degree ¢ in f. Then

F(M&o, .-, M) = folbos-- -, &n)
+ A1) + o+ A frlbos o 6n)-

Since k is an infinite field, the equality f(Alo,...,A¢n) =0 for all A € k with
A # 0 implies that fi(Afo,...;Aén) = 0. Thus if f vanishes at a point £ then
alk of its homogeneous components f, also vanish at &.

Definition. X C P" is a closed subset if it consists of all points at which a
finite number of polynomials with coefficients in k vanish. A closed subset
defined by one homogeneous equation F = 0 is call a hypersurface, as in the
affine case. The degree of the polynomial is the degree of the hypersurface. A
hypersurface of degree 2 is called a quadric.

The set of all polynomials f € k[Sy, ..., S,] that vanish at all points z € X
forms an ideal of k[S], called the ideal of the closed set X, and denoted by
Ax, By what we said above, the ideal 2x has the property that whenever
it contains an element f it also contains all the homogeneous components
of f. An ideal with this property is said to be homogeneous or graded. Thus
the ideal of a closed set X of projective space is homogeneous. It follows
from this that it has a basis consisting of homogeneous polynomials: we need
only start from any basis and take the system of homogeneous components
of polynomials of the basis. In particular, any closed set can be defined by a
system of homogeneous equations.

Thus to each closed subset X C P™ there is a corresponding homogeneous
ideal Ax C k[So, ..., Sn]. Conversely, any homogeneous ideal A C k[S] de-
fines a closed subset X C P". That is, if F1,..., F, is a homogeneous basis
of 2 then X is defined by the system of equation F} = --- = Fy,, = 0. If this
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system of equations has no other solutions in the vector space V other than
0 then it is natural to take X to be the empty set.

Examples of closed subsets of projective space

Ezample 1. The Grassmannian. The projective space P(V') parametrises the
1-dimensional vector subspaces L' C V of a vector space V. The Grassman-
nian or Grassmann variety Grass(r, V') plays the same role for r-dimensional
vector subspaces L™ C V. To define this, consider the rth exterior power
A"V of V, and send a basis fi,..., fr of a vector subspace L into the ele-
ment f; A--- A f. € A" V. On passing to another basis of the same vector
subspace this element is multiplied by a nonzero element o € k, the deter-
minant of the matrix of the coordinate change, and hence the corresponding
point of the projective space P(A" V) is uniquely determined by the subspace
L. Write P(L) for this point. It is easy to see that it determines the subspace
L uniquely. If {e;} is a basis of V then {e;, A---Ae; } isabasisof ATV
and P(L) = Zn<~~-<i, Pi,..i (€, A+ Aei). The homogeneous coordinates
Di,..i, of P(L) are called the Plicker coordinates of L.

Except for the trivial cases of subspaces having dimension or codimension
1, not every point P € P(A" V) is of the form P(L), or in other words, not
every element € A"V is of the form fi A--- A f, with f; € V. Necessary
and sufficient conditions for this use the notion of convolution. Let u € V*
be a vector of the dual vector space. For z € A'V =V the convolution « 1z
is an element of k, and is just the scalar product (u,z) or the value E(E) For
TE /\OV =k we set w oz = 0. For any z € A"V the convolution u 2z = 0
can be extended in a unique way from x € /\l V if we require the property

u.:(:z/\y):(u._r:z:)/\y+(-1)°(x/\(u_:y)) forme/a\V. (1)

Here u A"V C A" 7'V. The element u 1z for u € V* and z € A"V is
called the convolution of u and z. Finally, for u,,...,u, € V* the element
2y a(ugd+-+4(uy1z)---) dependsonlyonz and y=u3 A---Au, € A'V*,
and is denoted by y 4x. Herey iz e A" *Vifr>sandysz=0ifr <s.

Necessary and sufficient conditions for € A"V to be of the form z =
fi A+ A f, are given by

r—1

(y1z)Az=0 foralye /\V'- )

It is obviously enough to check the conditions (2) for y = us, A+ Aug,_,,
where {u;} is a basis of V'*; in particular, if we take {u;} to be the basis dual
to the basis {e;} of V then (2) can be written in coordinates. They take the

form
r+1

t =
E(-l) pix---ir-x.‘icp.‘ix-~-3:--~J'-+1 =0 (3)

e 1
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for all sequences iy,...,ir—1 and j1,..., Jrs1.
The variety defined in P(A" V') by the relations (2) or (3) is called the
Grassmannian, and denoted by Grass(r, V) or Grass(r,n) where n =dim V.,
We need a method of reconstructing a vector subspace L explicitly from its
Pliicker coordinates p;, ;. satisfying (3). Suppose for example that p,..» # 0.
If p = (pi,...i,) = P(L) then L has a basis of the form

f,-=e,-+Za,~kek fori=1,...,r. -
k>r

1t follows easily from this thatp, & . = (- —1)*q;x, from which we get a;, =

(- 1)"p1 ' , where we have set p;..» = 1 for convenience.
Thus the" open affine sets p;,..;, # 0 of Grass(r, V) are all isomorphic
to the affine space A"(®~7) with coordinates aq (ffori=1,...,rand k =

r+1,...,n). We can see, for example, that in the open set p; . # 0 the
equations (3) can be solved explicitly with the coordinates p1_. ., ;é 0 and
Py %ok 35 free parameters. That is, if m > 2 of the subscripts 4,,...,1, are
>r then
Pl )
Diy..i, = " y
(Pl 'r)

where F is a form of degree m in p;_, # 0 and Py Tk with i < r and
k > r. A detailed treatment of Grassmannians is contamed for example, in
the survey article Kleiman and Laksov [45).

The first nontrivial case of this theory is when r = 2. Then by (1)

2
(u_::z)A:z=%(u_r(:zAx)) forueV'andze/\V.

Hence (2) reduces to u u (z Ax) =0 for all u € V*, that is, simply
zAz=0. (4)

Finally, when n = 4 we have dim A* V' = 1, so that (4) reduces to a single
equation in the Pliicker coordinates py2, P13, P14, D23, P24, P3a:

P12P34 — P13P24 + P1apPe3 = 0. (5)

Planes L C V in a 4-dimensional vector space V correspond to lines
£ c P(V) in projective 3-space. In this case, coordinates in V are denoted by
Zo, Z1, T2, z3 and the Pliicker coordinates po:1, oz, Pos, P12, P13, P23, and (5)
takes the form

Po1P23 — PozP13 + Po3piz = 0. (6)

This is a quadric in projective 5-space P( /\2 V).
Example 2. The variety of associative algebras. Let A be an associative alge-

bra over a field k of rank n. Then after a choice of basis, A is determined by
its multiplication table .
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!
ejej.== Zcijez

with structure constants c}; € k. The associative condition for multiplication
in A takes the form

Z cﬁjc{',: = Z c:?c}k for i,5,k,m=1,...,n. (N
1 1 '

this is again a system of quadratic equation in the structure constants cﬂj.
Multiplying all the basis elements e; by a nonzero element a~! € k has the
effect of multiplying all the c‘ by a. Thus if we discard the algebra with zero
multiplication, all algebras are described by points of the closed set in the
projective space P*’~! defined by the equations .

To be more precise, points of this set correspond to associative multiplic-
ation laws written out in terms of a chosen basis ey,...,e,. The change to a
different basis is given by a nondegenerate n X n matrix. Thus the set of asso-
ciative algebras of rank n over a field k, up to isomorphism, is parametrised
by the quotient of the set defined by (7} by the group of nondegenerate n x n
matrixes. The extent to which this type of quotient can be identified thh an
algebraic variety is an extremely delicate question.

Erample 8. Determinantal varieties. Quadratic forms in n variables form
a vector space V of dimension ("}') = (1/2)n(n + 1). Quadrics in an
(n — 1)-dimensional projective space are parametrised by points of the pro-
jective space P(V). Among these, the degenerate quadrics are characterised
by det(f) = 0, where f is the corresponding quadratic form. This is a hyper-
surface X; C P(V). The quadrics of rank < n — k correspond to points of a
set X defined by setting all (n — k + 1) X (n — k + 1) minors of the matrix of
f to 0. A set of this type is called a determinantal variety. Another type of
determinantal variety M, is defined in the space P(V'), where V is the space
of n x m matrixes, by the condition that a matrix has rank < k.

In the case of closed subsets of affine space, an ideal % C k{T] defines
the empty set only if 2 = (1); this is the assertion of the Nullstellensatz. For
closed subsets of projective spaces this is not the case: for example, the ideal
(So, - - -, Sn) also defines the empty set. Write I, for the ideal of k[S] consisting
of polynomials having only terms of degree > s. Obviously I, also defines the
empty set: it contains, for example, the monomials S} for i = 0, ..., n, which
have a common zero only at the origin.

Lemma. A homogeneous ideal U C k[S| defines the empty set if and only if
it contains the ideal I, for some s > 0.

Proof. We have already seen that the ideal I, defines the empty set, and
the same holds a fortiori for any ideal containing I,. Suppose that a homo-
geneous ideal A C k[S] defines the empt set. Let Fy,..., F. be a homo-
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geneous basis of the ideal ¥ and set deg F; = m;. Then from the assump-
tion, it follows that the polynomials F;(1,T},...,T},) have no common root,
where T; = S;/Sp. Indeed, a common root (a;,...,0,) would give a com-
monroot (1,¢y,...,a,) of Fy,..., Fy. By the Nullstellensatz there must exist
polynomials Gi(Ty,...,T,) such that >, (1, Ty,..., T5)Gi(Th, ..., Tn) = 1.
Setting T; = S;/Sp in this equality and multiplying through by a com-
mon denominator of the form S{° we get Si° € 2. In the same way, for
each i = 1,...,n there exists a number [; > 0 such that S,!" € A. If now
! = max(lp,...,ln) and s = ({ — 1)(n + 1) + 1 then in any term Sg°-.-Sg~
of degree ag + - - - + a, > s we must have at least one term S; with exponent
a; > | > l;, and since Sﬁ‘ € 2, this term is contained in 2. This proves that
I, C A. The lemma is proved.

From now on we consider closed subsets of affine and projective spaces
at one and the same time. We again call these affine and projective closed
sets. For projective closed sets, we use the same terminology as for affine
sets; that is, if ¥ C X are two closed sets then we say that X \ 'Y is an
open set in X. As before, a union of an arbitrary number of open sets, and
an intersection of finitely many open sets is again open. The set A} C P
of points £ = (& : --- : &,) for which & # O is obviously open. Its points
can be put in one-to-one correspondence with the points of an n-dimensional
affine space by setting o; = &;/§ for i = 1,...,n, and sending £ € A} to
(a1,...,00) € A". Thus we call the set A} an affine piece of P*. In the same
way, fori =0,...,n, the set A consists of points for which &; # 0. Obviously
P* = |, A7

For any projective closed set X C P?, and any ¢ = 0,...,n, the set
U, = XNA? isopen in X. It is closed as a subset of A?. Indeed, if X is given
by a system of homogeneous equations Fy = --- = F, =0 and deg F; = n,
then, for example, Uy is given by the system

S F =F(LTy,....T.)=0 forj=1...,m,

where T} = 8;/So fori = 1,...,n. We call U; the affine pieces of X; obviously
X = JU;. A closed subset I/ C A} defines a closed projective set U called
its projective completion; U is the intersection of all projective closed sets
containing U. It is easy to check that the homogeneous equations of U are
obtained by a process inverse to that just described. If F(Ty,...,T,) is any
polynomial in the ideal 2 of U of degree deg F = k, then the equations of U
are of the form S¥F(S1/So,-..,5./S0)- It follows from this that -

U=TUnAZ , ®)

Up to now we have considered two classes of objects that could claim to be
called algebraic varieties; affine and projective closed sets. It is natural to try
to introduce a unified notion of which both of these types will be particular
cases. This will be done most systematically in Chap. V-VI in connection
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with the notion of scheme. For the moment we introduce a more particular
notion, that unifies projective and affine closed sets.

Definition. A quasiprojective variety is an open subset of a closed projective
set.

A closed projective set is obviously a quasiprojective variety. For affine
closed sets this follows from (8). A closed subset of a quasiprojective variety is
its intersection with a closed set of projective space. Open set and neighbour-
hood of a point are defined similarly. The notion of irreducible variety and
the theorem on decomposing a variety as a union of irreducible components
carries over word-for-word from the case of affine sets.

From now on we use subvariety Y of a quasiprojective variety X C P" to
mean any subset Y C X which is itself a quasiprojective variety in P*. This
is obviously equivalent to saying that Y = Z'\ Z; with Z and Z; C X closed
subsets.

4.2. Regular Functions

We proceed to considering functions on quasiprojective varieties, and start
with the projective space P™ itself. Here we meet an important distinction
between functions of homogeneous and inhomogeneous coordinates: a rational
function of the homogeneous coordinates

_ P(Sp,...,5n)
~ Q(So,...,8n) )

cannot be viewed as a function of z € P*, even when Q(z) # 0, since the
value f{ay,...,ay) in general changes when all the a; are multiplied through
by a common factor. However, when f is a homogeneous function of degree
0, that is, wheww%iw T the same degjge, then f can
be viewed as a function of z € P". o

If X ¢ P" is a quasiprojective variety, £ € X and f = P/Q is a homo-
geneous function of degree 0 with Q(z) # O, then f defines a function on
a neighbourhood of z in X with values in k. We say that f is regular in a
neighbourhood of z, or simply at z. A function on X that is regular at all
points z € X is a regular function on X. All regular functions on X form a
ring, that we denote by k[X].

Let’s prove that for a closed subset X of an affine space, our definition of
regular function here is the same as that in 2.2 (after an obvious passage to
inhomogeneous coordinates). For X irreducible, this is stated in 3.2, Theo-
rem 4. In the general case we only need to change slightly the arguments

used to prove this theorem. In this proof we let f be a regular function in
the affine sense of 2.2.

f(Soy---,Sn)
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By assumption, each point € X has a neighbourhood U, with ¢ # 0 on

U, in which f = p;/q,, where p,, g, are regular functions on X and g, # 0
on U,. Hence

~ 4:f =p: (2)

on U;. But we can assume that (2) holds over the whole of X. To achieve this,

we multiply both p; and ¢, by a regular function equal to 0 on X \ U, and

nonzero at z; then (2) holds also on X\ U,, since both sides are 0 there. As in

the proof of 3.2, Theorem 4, we can find points z;,...,zy € X and regular

functions hj,...,hx such that Zz=1 ¢ hi=1. Multxply (2) forz =z; by h;

and add, to get
N
f = szahia
i=1

that is, f is a regular function.

In contrast to the case of closed affine sets, the ring k| X] may consist only
of constants. We will prove later (5.2, Theorem 3, Corollary 1) that this is
always the case if X is an irreducible closed projective set. This is easy to
prove directly if X = P™: indeed, if f = P/Q, with P and Q forms of the
same degree, we can assume that P and @ have no commen factors; then f
is not regular at points £ where Q(z) = 0. On the other hand, when X is
only quasiprojective, k[X] may turn out to be an unexpectedly large ring.
If X is an affine closed set then as ‘we have seen k[X] is finitely generated
as an algebra over k. However, Rees and Nagata- constructed examples of
quasiprojective varieties for which k[X] is not finitely generated. This shows
that k[X] is only a reasonable invariant when X is an affine closed set.

We pass to maps. Any map of a quasiprojective variety X to an affine
space A" is given by n functions on X with values in k. If these functions are
regular then we say the map is regular.

Definition. Let f: X — Y be a map between quasiprojective varieties, with
Y c P™. This map is regular if for every point £ € X and for some affine
piece AT containing f(z) there exists a neighbourhood U 3 z such that
f(U) c AT and the map f: U — A" is regular.

We check that the regularity property is independent of the choice of
affine piece A]* containing f(z). If f(z) = (Yo,---,1,...,Ym) € AT (where
1 in the ith place means that this coordinate is dlscarded) is also con-
tained in AT, then y; # 0, and the coordinates of this point in AT
are (yo/Yjr---21/Yj- LT, .Ym/Yj), with 1/y; in the ith place and T
discarded from the jth. Therefore if f: U — A" is given by functions
(forevns 1,..., fm), the map f to AT is given by

(fo/f_,»,...,l/fj,...,l,...fm/fj).
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By assumption f;{z) # 0, and the subset U’ C U of points at which f; # 0 is
open. The functions fo/f;,...,1/f;,..., fm/f; are regular on U, and hence
f:U"— AT is regular.

In the same way as for affine closed sets, a regular map f: X — Y defines
a homomorphism f*: k[Y] — k[X].

The question of how to write down formulas defining a regular map on an
irreducible variety is solved in complete analogy with the case n = 2 treated
in 1.6. Suppose for example that f(x) € AT*, and the map f: U — A7 is given
by regular functions fy,..., f;. By definition f; = P;/Q; where P,, Q; are
forms of the same degree in the homogeneous coordinates of x and Q;(z) # 0.
Putting these fractions over a common denominator gives f; = F;/Fy, where
Fo,...,F,, are forms of the same degree and Fy(x) # 0. In other words,
f(z) = (Fo(z) : -+ : Fy(x)) € P™. In this process, we must bear in mind
that the representation of a regular function as a ratio of two forms is not
unique. Hence two different formulas

f(z) = (Fo(z): -+ : Fn(z)) and g(z) = (Go(z): -+ : Gmlz)) (3)
may define the same map; this happens if and only if
FiGj = F;G;on X for0<i,j <m. T4)
This brings us to a second form of the definition of a regular map:

Definition. A regular map f: X — P™ of an irreducible quasiprojective
variety X to projective space P™ is given by an (m + 1)-tuple of forms

(Fo:-: F) )

of the same degree in the homogeneous coordinates of z € P*. We require
that for every z € X there exists an expression (5) for f such that F;(z) #0
for at least one %; then we write f(z) to denote the point (Fp(z) : - - - : Frp(z)).
Two maps (3) are considered equal if (4) holds.

Now we have a definition of regular maps between quasiprojective vari-
eties, it is natural to define an isomorphism to be a regular map having an
inverse regular map.

A quasiprojective variety X’ isomorphic to a closed subset of an affine
space will be called an affine variety. It can happen that X is given as a
subset X C A™, but is riot closed in A™. For example, the set X = A'\ 0
is not closed in A!, although it is quasiprojective, and is isomorphic to the
hyperbola zy = 1 (2.3, Example 3), which is a closed set of A%. Thus the
notion of a closed affine set is not invariant under isomorphism, while that
of affine variety is invariant by definition. N

In the same way, a quasiprojective variety isomorphic to a closed projec-
tive set will be called a projective variety. We will prove in 5.2, Theorem 2
that if X C P" is a projective variety then it is closed in P", so that the
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notions of closed projective set and projective variety coincide and a/re both
invariant under isomorphism.
" There are quasiprojective varieties that are neither affine nor projective
(see Ex. 5 and §5, Ex. 4-6).

In what follows, we will meet some properties of varieties X that need
only be verified for some neighbourhood U of any point £ € X. In other
words, if X = |JUq, with U, any open sets, then it is enough to verify the
property for each of the U,. We say that properties of this type are local
properties. We give some example of local properties.

-Lemma 1. The property that a subset Y C X 1is closed in a quasiprojective
variety X is a local property.

Proof. The assertion means that if X =|JU, with open sets U,, and Y NU,
is closed in each U, then Y is closed in X. By definition of open sets, U, = X\
Z where the Z, are closed, and by definition of closed sets, UaNY = UaNT,
where the T, C X are closed.

We check that ¥ = [(Z4 U Ta), from which it follows of course that ¥
isclosed. f y e Y and y € Uy theny € U, NY C T,, and if y ¢ U, then
y€ X\ U, = Z,, s0 that y € Z, UT, for every a. Conversely, suppose that
T € Zo UT, for every a. Since X = JU, it follows that z € Ug for some S.
Then x ¢ Zg, and hence T € T, so that £ € TyNUg C Y. The lemma is
proved.

In studying local properties we can restrict ourselves to affine varieties in
view of the following result.

Lemma 2. Every point x € X has a neighbourhood isomorphic to an affine
variety.

Proof. By assumption X C P".If x € A} (that is, if the coordinate uq of =
is nonzero) then z € X N AF, and by definition of a quasiprojective variety
XNAJ =Y\Y; whereY and Y) C Y areclosed subsets of A§. Since z € Y'\Y,,
there exists a polynomial F of the coordinates of A} such that F=0onY;
and F(z) # 0. Write V(F') for the set of points of Y where F = 0. Obviously
D(F) = Y\V/(F) is a neighbourhood of x. We prove that this neighbourhood
is isomorphic to an affine variety. Suppose that Gy = -.- = G, = 0 are the
equations of Y in A%}. Define a variety Z C A™*! by the equations

G](Tl,...,Tn)="'=Gm(le---1Tn)=0a (6)
F(T,....Ty) Thp=1.
The map ¢: (z1,...,Tn41) = (Z1,...,T) obviously defines a regular

map Z — D(F) and ¢: (z1,...,%n) = (T1s- -+, Eny F(Z1, ..., Tn)"1) a regu-
lar map D(F) — Z inverse to y. This proves the lemma.
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Y = A F = T then the isomorphism just constructed is the map
considered in 2.3, Example 3.

Definition. An open set D(f) = X \ V(f) consisting of the points of an
affine variety X such that f(z) # 0 is called a principal open set. )

The significance of these sets is that they are affine, as we have seen,
and the ring k[D(f)] of regular function on them can be easily determined.
Namely, by construction f # 0 on D(f), so that f~! € k[D(f)], and 3.2,
Theorem 4 together with (6) shows that k[D(f)} = k[X}[f~"].

Lemmas 1-2 show for example that closed subsets map to closed subsets
under isomorphigms. We prove in addition that the inverse image f~1(Z)
under any reguJar map f: X — Y of any closed subset Z C Y is closed in X.

By definition of a regular map f: X — Y, for any point x € X there are
neighbourhoods U of z in X and V of f(z) in Y such that f(U) CV C A™
and the map f: U — V is regular. By Lemma 2 we can assume that U is
an affine variety. By Lemma 1, it is enough to check that f~1(Z)NU =
FYZ V) is closed in U. Since Z NV is closed in V, it is defined by
equations g, = -+ = g, = 0, where the g; are regular functions on V. But
then f~1(ZNYV) is defined by the equations f*(g,) = --- = f*(gm) =0, and
is hence also closed.

It follows also from what we have just proved that the inverse image of an
open set is again open. It is easy to check that a regular map can be defined
as a map f: X — Y such that the inverse image of any open set is open
(that is, f is “continuous”), and for any point z € X and any function ¢
regular in a neighbourhood of f(z) € Y, the function f*(y) is regular in a
neighbourhood of z.

4.3. Rational Functions

In discussing the definition of rational functions on quasiprojective varieties,
we met a distinction of substance between the case of affine varieties and the
general case. Namely, we defined rational functions on an affine variety X as_
ratios of functions that are regular on the whole of X. But in the general case,
as we have said, it can happen that there are no everywhere regular functions
except for the constants, so that if we used the same definition there would
also be no rational functions except for the constants. For this reason we
define rational functions on a quasiprojective variety X C P" to be functions
defined on X by homogeneous functions on P" (as in 1.6 for n = 2). 7
More precisely, consider an irreducible quasiprojective variety X C P™ and
(by analogy with 3.2) write Ox for the set of rational functions f = P/Q
in the homogeneous coordinates Sy, ..., S, such that P, Q are forms of the
same degree and Q ¢ x. As for affine varieties, from the fact that X is
irreducible it follows that Ox is a ring. Write Mx for the set of functions
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f € Ox with P € %x. Obviously the quotient ring Ox /My is a field, called
the function field of X, and denoted by k(X). If U is an open subset of an
irreducible quasiprojective variety X then, since a form vanishes on X if and
only if it vanishes on U, we have k(X) = k(U). In particular, k(X) = k(X),
where X is the projective closure of X in P". Thus in discussing function
fields we can restrict to affine or projective varieties if we want to. .

It is easy to check that if X is an affine variety then the definition just
given coincides with that given in 3.2. Indeed, dividing the numerator and
denominator of a rational function f = P/Q with degP = deg@ = m by
S, we can write it as a rational function in T; = S;/Sy for i = 1,...,n. By
doing this, we establish an isomorphism of the field of homogeneous rational
functions of degree 0 in Sy, ..., S, with the field k(Ty,...,7,). An obvious
verification shows that the subring and ideal of k(T},...,T,,) denoted in 3.2
by Ox and Mx correspond to the objects denoted here by the same letters.

In 4.2 we have already used rational functions on P" to define regular
functions. As there, we say that f € k(X)+s regular at a point z € X if it can
be written in the form f = F/G, with F and G homogeneous of the same
degree and G(z) # 0. Then f(z) = F(z)/G(z) is the value of f at z. As in
the case of affine varieties, the set of points at which a given rational function
f is regular is a nonempty open set U of X, called the domain of definition
of f. Obviously a rational function can also be defined as a function regular
on some open set U C X.

A rational map f: X — P™ is defined (as in the second definition of
regular map in 4.2) by giving m + 1 forms (Fy : --- : F,) of the same
degree in the n + 1 homogeneous coordinates of P* containing X. Here at
least one of the forms must not vanish.on.X, Two maps (Fy : - : F,) and
(Go: ‘W{Gj = F;G; on X for alli, . If we divide through
all the forms F; by one of them (nonzero on X), we can define a rational map
by M1 Fational Functions on X, with the saime nofion of equality of maps.
Ifa rational map f can be defined by functions (fp : -+ : fi,) such that all
the f; are regular at x € X and not all zero at x, then f is regular at z. It
then defines a regular map of some neighbourhood of the point z to P™.

The set of points at which a rational map is regular is open. Hence we can
also define a rational map to be a regular map of some open set U C X. If
Y ¢ P™ is a quasiprojective variety and f: X — P™ a rational map, we say
that f maps X to Y if there exists an open set U C X on which f is regular
and f(U) C Y. The union U of all such open sets is called the domain of
definition of f, and f(U) C Y the imageof X in Y,

As in the case of affine varieties, if the image of a rational map f: X - Y
is dense in Y then f defines an inclusion of fields f*: k(Y) — k(X). If a
rational map f: X - Y has an inverse rational map then f is birational
or is a birational equivalence, and X and Y are birational. In this case the
inclusion of fields f*: k(Y') — k(X) is an isomorphism.
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We can now clarify the relation between the notions of isomorphism and
birational equivalence. '

Proposition. Two irreducible varieties X and Y are birational if and only
if they contain isomorphic open subsets U C X and V C Y.

Proof. Indeed, suppose that f: X — Y is birational, andlet g = f~*: Y — X
be the inverse rational map. Write U} € X and V; C Y for the domain
of definition of f and g. Then by assumption f(U;) is dense in Y, so that
f~Y(V)NU, is nonempty, and as proved in 4.2, is open. Set U = f~1(V})nU;
and V = ¢~} (U1) N V;. A simple check shows that f(U) =V, g(V) =U and
fg=1,9f =1, that is, U and V are isomorphic.

4.4. Examples of Regular Maps

Example 1. Projection. Let E be a d-dimensional linear subspace of P" de-

fined by n — d linearly independent linear equations Ly = --- = L,_4 = 0,
with L; linear forms. The projection with centre E is the rational map
n(z) = (Li(z) : --- ¢ Lp-4(z)). This map is regular on P* \ E, since at

every point of this set one of the forms L; does not vanish. Hence if X is any
closed subvariety of P"® disjoint from E, the restriction of = defines a regular
map 7: X — P"~9~1, The geometric meaning of projection is as follows: as
a model of P"~9~! take any (n —d — 1)-dimensional linear subspace H C P"
disjoint from E. Then there is a unique (d + 1)-dimensional linear subspace
(E, z) passing through F and any point = € P™ \ E. This subspace intersects
H in a unique point, which is w(z). If X intersects E, but is not contained
in it, then projection from E is a rational map on X. The case d = 0, a
projection from a point, has already appeared several times.

Ezample 2. The Veronese embedding. Consider all the homogeneous poly-
nomials F of degree m in variables Sp,...,Sn. These form a vector space,
whose dimension is easy to compute: it is the binomial coefficient (":"‘).
Consider the hypersurfaces of degree m in P™. Since polynomials de-
fine the same hypersurface if and only if they are proportional, hypersur-

faces correspond to points of the projective space PN of dimension N =

Unm = (™) — 1. Write vj,..4, for homogeneous coordinates of PV, where
19,...,in > 0 are any nonnegative integers such that ip + .-+ + i, = m.

Consider the map vy, : P* — PV defined by
Vigoin = UG Uy forig+---4in =m. (1)

This is obviously a regular map, since the monomials on the right-hand side
of (1) include in particular the elements u]*, which vanish only if all u; = 0.
The map v,, is called the mth Veronese embedding of P*, and the image
vm(P™) C PN the Veronese variety. It follows from (1) that the relations
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Vig..sinVjo.dn = Vko.knUlo..dn (2)

hold on vy, (P*) whenever ig + jo = ko +lo, .. .,in + jn = kn + ln. Conversely,
it's easy to deduce from (2) that at least one of the coordinates vg.m...0
corresponding to the monomial 4™ is nonzero, and that, for example, on the
open set vmo...0 # 0, the map

U = Umo..0) ¥i =VUm-10..1.0 fori > 2

is a regular inverse of vy,. Hence v,,,(P™) is defined by the equations (2), and
Uy is an isomorphic embedding P* — P¥.
The significance of the Veronese embedding is that if

F= E GigigUy * Uy

is a form of degree m in the homogeneous coordinates of P* and H C P" is
the hypersurface defined by F = 0, then v,,(H) C v,,(P") C PV is the inter-
section of vy, (P™) with the hyperplane of PV with equation 3" a4y, vig. i«
Thus the Veronese embedding allows us to reduce the study of some problems
concerning hypersurfaces of degree m to the case of hyperplanes.

The mth Veronese image of the projective line v,,(P!) c P™ is called
the Veronese curve, the twisted m-ic curve, or the rational normal curve of
degree m.

Exercises to §4

1. Prove that an affine variety U is irreducible if and only if its projective closure
U is irreducible.

2. Associate with any affine variety U C A} its projective closure U in P". Prove
that this defines a one-to-one correspondence between the affine subvarieties of
A} and the projective subvarieties of P® with no components contained in the
hyperplane Sp = 0.

3. Prove that the variety X = A%\ (0,0) is not isomorphic to an affine variety.
[Hint: Compute the ring k[X] of regular functions on X, and use the fact that if Y
is an affine variety, every proper ideal 2 g k[Y)] defines a nonempty set.|

4. Prove that any quasiprojective variety is open in its projective closure.

5. Prove that every rational map ¢: P! — P™ is regular.

6. Prove that any regular map ¢: P — A" maps P! to a point.
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7. Define a birational map f from an irreducible quadric hypersurface X C P2 to
the plane P2 by analogy with the stereographic projection of 3.3, Example 1. At
which points is f not regular? At which points is f~" not regular?

8. In Ex. 7, find the open subsets U C X and V C P? that are isomorphic.

9. Prove that the map yo = 2122, ¥1 = ToZ2, ¥2 = ZToZ defines a birational map
of P? to itself. At which points are f and f~' not regular? What are the open sets
mapped isomorphically by f? (Compare Chap. IV, 3.5.}

10. Prove that the Veronese image um(P") C PV is not contained in any linear
subspace of PV,

11., Prove that the variety P2 \ X, where X is a plane conic, is affine. [Hint: Use
the Veronese embedding.]

5. Products and Maps of Quasiprojective Varieties

5.1. Pr?ducts

The definition of the product of affine varieties (2.1, Example 5) was so
natural as not to require any comment. For general quasiprojective varieties,
things are somewhat more complicated. Because of this, we first consider
quasiprojective subvarieties of affine spaces. If X C A" and Y C A™ are
varieties of this type then X xY = {(z,y) | ¢ € X,y € Y} is a quasiprojective
variety in A" x A™. Indeed, if X = X,\ Xpand Y = Y, \ Y5 where X, X, C
" A", and Y;, Yy C A™ are closed subvarieties, then writing

XxY =X xY:\ (X1 x Yo) U(Xo x 11))

shows that X x Y is quasiprojective. This quasiprojective variety is the prod-
uct of X and Y. At this point, we should check that if X and Y are re-
placed by isomorphic varieties then so is X x Y. This is easy to see. Suppose
that o: X — X' C AP and ¥: Y — Y’ C A? are isomorphisms. Then
pxP: X xY — X' x Y’ defined by (¢ x ¢)(z,y) = (¢(z), ¥(y)) is a regular
map, with regular inverse =1 x 1.

We return to quasiprojective varieties, and decide what properties we
want the notion of product to have. Let X C P® and Y C P™ be two
quasiprojective varieties. Write X x Y for the set of pairs (z,y) with z € X
and y € Y. We want to consider this set as a quasiprojective variety, and for -
this, we have to produce an embedding ¢ of X x Y into a projective space PV
in such a way that the image ¢(X xY) C PV is a quasiprojective subvariety.
At the same time, it is reasonable to require that the definition is local, in the
sense that for any points £ € X and y € Y there exist affine neighbourhoods
XDU>3zandY DOV 3ysuch that ¢(U x V) is open in ¢(X x Y), and ¢
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defines an isomorphism of the product of the affine varieties U and V', whose
definition we already know, to the subvariety @(U x V) C (X x Y).

It is easy to see that the local property of ¢ determines it uniquely; more
precisely, if ¢: X x Y — PM is another embedding of the same kind, then
1 o ¢~} defines an isomorphism between (X x Y) and (X x Y). Indeed,
for this, it is enough to prove that for any z € X and y € Y, there exist
neighbourhoods (X xY) O W, 3 ¢(z,y) and (X xY) D W, 3 ¢(z,y) such
that ¢ 0 o~1: W; — W, is an isomorphism. Consider affine neighbourhoods
X>U>3zandY D V 2 y the existence of which is provided by the
local property; passing if necessary to smaller affine neighbourhoods, we can
assume that U x V is isomorphic to both w(U x V) and ¥(U x V). Then
p(U x V) = W, and ¢(U x V) = Wy, are the affine neighbourhoods we need,
since both are isomorphic to the product U x V of the affine varieties U and
V.

We now proceed to construct an embedding ¢ with the required proper-
ties. For this, we can at once restrict to the case X =P", Y = P™, for once
an embedding ¢: P* x P™ — PV is constructed, it is easy to check that its
restriction to X x Y C P" x P™ has all the required properties.

To construct the embedding ¢, consider the projective space PV with

homogeneous coordinates w;; having two subscripts ¢ = 0,...,n and j =
0,....mjthus N=(n+1)m+1)-1Ifz = (up: - : u,) € P* and
y=(vo: " :uUm)€P™ then we set

o(r,y) = (wy;), withwy=uv; for0<i<nand0<j<m. (1)

Multiplying the homogeneous coordinates of £ or y by a common scalar
obviously does not change the point ¢(z,y) € PV. To prove that o(P" x P™)
is a closed set of PV, we write out its defining equations:

Wi W = Wi Wil for0<i,k<nand0<jl<m (2

Substituting the w;; given by (1) shows at once that they satisfy (2). Con-
versely, if w;; satisfy (2), and, say, wgp # 0, then setting k, ! = 0 in (2) gives
that (wi;) = ¢(z,v), where

= (woo:" -:wWno) and y=(Woo::*:Wom)

This argument proves at the same time that ((z,y) determines = and y
uniquely, that is, ¢ is an embedding P* xP™ — PV with image the subvariety
W ¢ PV defined by (2). Consider the open sets A} C P" given by up # 0,
A7 C P™ by v # 0, and A, C PV by wgo # 0, having inhomogeneous
coordinates z; = ui/uo, ¥; = vj/vo and 2;; = w;;/wgo respectively. Then
obviously @(Al x AT*) = W N AJ) = Wo. As we have just seen, on Wyp we
have zjp = =i, 20; = y; and zi; = T,y; = zigzo; for 4, j > 0. It follows from
this that o(P" x P™) N A, = Wy is isomorphic to A"*™ with coordinates
(Z1y-+-+%n, Y1,+- ., ¥m), and  defines an isomorphism Af x AF' — Woe.
This proves that ¢ satisfies the local requirement of our construction. The
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embedding ¢: P* x P™ — PN with N = (n+ 1)(m + 1) — 1 just constructed
is called the Segre embedding, and the image P™ x P™ C PV the Segre variety.

Remark 1. The point (w;;) can be interpreted as an (n+ 1) x (m+ 1) matrix,
and equations (2) express the vanishing of the 2 x 2 minors:

Wi Wi
Wkj Wkl

det

That is, they express the condition that the matrix (w;;) has rank 1, and
equation (1) shows that such a matrix is a product of a 1 X (n + 1) column
matrix and a (m + 1) x 1 row matrix. Thus ¢(P"® x P™) is a determinantal
variety (see 4.1, Example 3).

Remark 2. The simplest case n = m = 1 has a simple geometric inter-
pretation: in this case, (2) is the single equation wjjwoee = woiwio, SO
that (P! x P!) is just a nondegenerate quadric surface Q C P3. For
a = (ag,a;) € P, the set w(a xP!) is the line in P3 given by ajwe = agwio,
a;wpy = agwy;. As a runs through P!, these lines give all the generators of
one of the two families of lines of Q. Similarly the set ¢(P! x /) is a line of
P3, and as f runs through P!, these lines give the generators of the other
family.

It is convenient, now that we have defined the product X x Y of quasi-
projective varieties using the embedding ¢: P* x P™ < PN 'with N =
(n + 1)(m + 1) — 1, to explain some ideas of algebraic geometry that are
originally defined in terms of P* x P™ and of this embedding.

Let us determine, for example, what are the subsets of P* x P™ that
are mapped by ¢ to algebraic subvarieties of PV; these will then be the
closed algebraic subvarieties of the product P* x P™. A subvariety V C PV is
defined by equations Fi(woo : - - - : Wnm) = 0, where the Fy, are homogeneous
polynomials in the w;;. After making the substitution (1), we can write these
in the coordinates u; and v; as equations

Gr(uo: - :tunivo: - 1vm) =0,
where the G are homogeneous in each set of variables ug,...,u, and
Vg, ..,VUm, and of the same degree in both. Conversely, it is easy to see

that a polynomial with this bihomogeneity property can always be written
as a polynomial in the products u;v;. However, equations that are bihomo-
geneous in u; and v; always define an algebraic subvariety of P* x P™ even
if the degrees of homogeneity in the two sets of variables are different. For
if G(ug : *++ : Un;¥p : -+ : Um) has degree r in u; and s in v;, and, say,
r > s, then G = 0 is equivalent to the system of equations v]™'G = 0 for
i =0,...,m, and we know that these define an algebraic variety.
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In'what follows, we also need to answer the same question for the product
P" x A™. Suppose that A™ = Al* C P™ is given by vp.# 0. The equations

of a closed subset of P* x P™ are Gr(ug : -+ : Un;¥ : - : Um) = 0. Suppose
that G is homogeneous of degree ri in vp : - - - : . Dividing the equation by
vy* and setting y; = v;/vg gives equations ge(tio : +--: Un;Y1: -+ 1 Ym) =0

that are homogeneous in the u;, and (in general) inhomogeneous in the y;.
This proves the following result:

Theorem 1. A subset X C P* x P™ is a closed algebraic subvariety if and
only if it is given by a system of equations

Gr(ug: - tunjvg:---tun) =0  fork=1,...,¢

homogeneous separately in each set of variables u; and v;. Every closed alge-
braic subvariety of P™ x A™ is given by a system of equations

ge(vo - tuniy1: iym) =0 fork=1,...,¢ (3)

that are homogeneous in ug,...,u,). O

Of course, the same kind of thing holds for a product of any number of
spaces. For example, a subvariety of P™ x --- x P is given by a system of
equations homogeneous in each of the k sets of variables.

5.2. The Image of a Projective Variety is Closed

The image of an affine variety under a regular map does not have to be a
closed set; this is illustrated in 2.3, Examples 3—4 for a map from an affine
variety to an affine variety. For maps from an affine variety to a projective
variety it is even more obvious: an example is given by the embedding of
A" into P™ as the open subset A}. In this respect, projective varieties are
fundamentally different from affine varieties.

Theorem 2. The image of a projective variety under a regular map is closed.

The proof uses a notion that will occur later. Let f: X — Y be a regular
map between arbitrary quasiprojective varieties. The subset I'y of X x Y
consisting of pairs (z, f(z)) is called the graph of f.

Lemma 1. The graph of a regular map is closed in X x Y.

Proof. First of all, it is enough to assume that Y is projective space. Indeed,
fY C P™ then X x Y C X x P™, and f defines a map f: X — P™ with
If=ICXxY CXxP" Thusset Y = P™. Let ¢ be the identity map
from P™ to itself. Consider the regular map (f,¢): X x P™ — P™ x P™ given
by (f, ) (z,y) = (f(z), y). Obviously I'f is the inverse image under the regular
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map (f,¢) of the graph I, of «. We proved in 4.2 that the inverse image of a
closed set under a regular map is closed. Hence everything reduces to proving
that I, C P™ x P™ is closed. But I, consists of points (z,y) € P™ x P™ such
that z =y. Ifr = (ug: - :up)and y = (vp : -+ : vp,) then the condition
is that (ug:-+-: up) and (vg : +++ : Um) are proportional; this condition can
be expressed u;v; = u;v;, that is, wi; = wy; for 4, j = 0,...,m. This proves
that I', is closed, and therefore the lemma.

We return to the proof of the theorem. Let I'y be the graph of f, and
p: X x Y — Y the second projection, defined by p(z,y).= y. Obviously
f(X) = p(I¥). In view of Lemma 1, Theorem 2 follows from the following
more general assertion.

Theorem 3. If X is a projective variety, and Y a quasiprojective variety,
the second projection p: X x Y — Y takes closed sets to closed sets.

Proof. The proof of this theorem can be reduced to a simple particular case.
First of all, if X C P" is a closed subset then the theorem for X follows from
the theorem for P": for X x Y is closed in P* x Y, so that if Z is closed in
X xY, it is also closed in P* x Y. Thus we can assume that X = P". Secondly,
since closed is a local property, it is enough to cover Y by affine open sets
U, and prove the theorem for each of these. Hence we can assume that Y is
an affine variety. Finally if Y C A™ then P" x Y is closed in P* x A™, and
hence it is enough to prove the theorem in the particular case X = P* and
Y =A™,

Let’s see what the theorem means in this case. According to Theorem 1,
any closed subvariety Z C P® x A™ is defined by equations 5.1, (3), that
we write in the form g;(u;y) = 0 for i = 1,...,t. Write p: Z — A™ for the
restriction of the second projection. Obviously the inverse image p~1(yo) of
Yo € A™ consists of all nonzero solutions of the system g;(u,yo) = 0, and
hence yp € p(Z) if and only if the system of equations g;(u;yo) = 0 has a
nonzero solution in (¥, ... ,un). Thus Theorem 3 asserts that for any system
of equations 5.1, (3), the subset T of yp € A™ for which g;(u;y0) = 0 has a
nonzero solution is closed.

Now in view of 4.1, Lemma 1, ¢;(u; yo) = 0 has a nonzero solution if and
only if

(91(U,yo)v-~-,9t(u»yo)) ¢ Ia forall s = L2...

We now show that for given s > 1, the set of points yp € A™ for which
(91(u, y0), - - - » ge(u, o)) 2 I, is a closed set T,. Then T = T, and T is also
closed. Write k; for the degree of the homogeneous polynomial g;(u,y) in the
variables ug, ..., u,. Let {M®}4 be the monomials of degree s in ug,...,u,
written out in some order. The condition (g1(u,30), ... ,g:(u, yg)) 2 I, means
that each monomial M® can be expressed in the form
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M =" gi(u,yo) Fialu)- (1)

i=1

Comparing the homogeneous components of degree s shows that there must
also be an expression (1) for M* with deg F; o = s— ki, or F; o = 0if k; > s.
Let {N”}5 be the monomials of degree s — k; written out in some order.
We see that the conditions (1) hold if and only if every monomial M? is a
linear combination of the polynomials g;(x, yo)Nf . This, in turn, is equivalent
to the condition that the polynomials g;(u, yo)N,-ﬁ span the entire vector
space S of homogeneous polynomials of degree s in ug,...,u,. Conversely,
(910w, %0), - -, e (s, yo)) P I, means that g,~(u,yo)Niﬂ do not span S. To turn
this condition into equations for T,, write out the coefficients of the M*
appearing in all the polynomials g;(u, yo)Nfj as a rectangular matrix {a,(},
and set to zero all of its o X ¢ minors, where ¢ = dim §. These minors are
obviously polynomials in the coefficients of the polynomials g;(u,yo), and
are therefore polynomials in the coordinates of the point ¥, they give the
equations of the set T,. Theorem 3 is proved, and with it Theorem 2.

Remark. One sees from the proof that Theorem 2 generalises to a wider class
of maps f: X — Y between quasiprojective varieties, namely those that
factor as a composite of a closed embedding :: X — P™ x YV (that is, an
isomorphism of X with a closed subvariety) and the projection p: P* xY —
Y. Such maps are said to be proper. For example, if f: X — Y is a regular
map of projective varieties then the restriction f: f~'(U) — U to an open
subset U C Y is proper. Obviously if f: X — Y is a proper map the inverse
image f~!(y) of a point y € Y is a projective variety.

Corollary 1. If ¢ is a regular function on an irreducible projective variety
then @ € k, that is, ¢ is constant. ’

Proof. We can view ¢ as amap f: X — Al, and hence as a map f: X —
P!. Since ¢ is a regular function, f is a regular map, and hence so is f;
by Theorem 2 its image f(X) C P! is closed. But since f itself is regular,
_ f(X) = F(X), and therefore f(X) is a closed subset of P! and is contained in
A!, that is, it does not contain the point at infinity o, € P!. It follows from
this that either f(X) = A! or f(X) is a finite set § C A! (see 2.1, Example 3).
The first case is impossible, since f(X) is also supposed to be closed in P!, and
A! is not. Hence f(X) = S. If S consists of finitely many points ay,...,o
then X = |Jf1(a;), and t > 1 would contradict the irreducibility of X.
Hence S consists of one point only, and so ¢ is constant. The corollary is
proved.

Corollary 1 and 3.2, Theorem 4 provide an example of affine and projective
varieties having diametrically opposite properties. On an affine variety there
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is a host of regular functions (they make up the whole coordinate ring k[{X]),
but on an irreducible projective variety, only the constants. The next result
is a second example of affine and projective varieties being opposites.

Corollar§ 2. A regular map f: X — Y from an irreducible projective variety
X to an affine variety Y maps X to a point.

Proof. Suppose that ¥ C A™. Then f is given by m functions f(z) =
(p1{x), ..., pm(z)). Each of the functions ¢; is constant by Corollary 1, that
is pi = a; € k. Hence f(X) = (ay,...,am). The corollary .is proved.

We give another example of an application of Theorem 2. For this, we use
the representation of forms of degree m in n + 1 variables by points of the
projective space PV with N = v, m = (™1") - 1, as in 4.4, Example 2.

Proposition. Points ¢ € PN corresponding to reducible homogeneous poly-
nomials F form a closed set.

Remark 1. The proposition asserts that the condition for a homogeneous
polynomial to be reducible can be written as polynomial conditions on its
coefficients. For curves of degree 2, that is, the case m = n = 2, this relation
is well known from coordinate geometry: if F = }:?:0 a;;U;U; then F is
irreducible if and only if det|a;;| = 0. ,
Remark 2. Passing to inhomogeneous coordinates, we see that in the vector
space of all polynomial of degree < m, the reducible polynomials together
with the polynomials of degree < m form a closed set.

Proof. Proceeding to the proof of the proposition, we write X c PV for
the set of points £ corresponding to reducible polynomials, and X} for the
set of points corresponding to polynomials F' that split as a product of two
polynomials of degrees k and m —k (for k = 1,...,m). Obviously X = {J X,
and we need only prove that each X is closed.

Consider the projective space P¥~* and P*».m-* of forms of degree k and
m—k, where vp j = ("t") —1is as in 4.4, Example 2. Multiplying polynomials
of degree k and m — k defines a map f: PV~* x PYnm-% — PN and it is easy
to see that f is regular. Obviously X = f(P¥~* x PY»m-*), We saw in 5.1
that the product of two projective spaces is a projective variety, and hence
X closed follows by Theorem 2. The proposition is proved.



5. Products and Maps of Quasiprojective Varieties 61

5.3. Finite Maps

The projection map introduced in 4.4 has an important property; in order to
state this, we first recall some notions from algebra. Let B be a ring, and 4
a subring containing the identity element 15. We say that an element b € B
is integral over A if it satisfies an equation

b t+a b1+ 4a=0 with a; € A.

B is integral over A if every element b € B is integral over A. It is easy to
prove (see for example Atiyah and Macdonald {7], Chap. 5, Proposition 5.1
and Corollary 5.2) that a ring B that is finitely generated as an A-algebra is
integral over A if and only if it is finite as a module over A.

Let X and Y be affine varieties and f: X — Y a regular map such that
f(X) is dense in Y. Then f* defines an isomorphic inclusion k{Y] — k[X].
We view k[Y] as a subring of k[X] by means of f*.

Definition 1. f is a finite map if k[X] is integral over k[Y].

From the properties of integral rings recalled above it follows that the
composite of two finite maps is again finite. A typical example of a map that
is not finite is 2.3, Example 3.

Ezample 1. Let X be an affine algebraic variety, G a finite group of automor-
phisms of X and Y = X/G the quotient space (see 2.3, Example 11). Then
the map ¢: X — Y is finite. Indeed, the proof of Appendlx, §4, Proposition 1
shows that the generators u; of the algebra k[X] are integral over the algebra
k[X]G = k[Y]. 1t follows from this that k[X] is integral over k[Y].

If f is a finite map then any point y € Y has at most a finite number
of inverse images. Indeed, suppose that X C A"™ and let ¢,,...,¢, be the
coordinates of A™ viewed as functions on X. It is eriough to prove that any
coordinate t; takes only a finite number of values on the set f~!(y). By
definition t; satisfies an equation t¥ + alti"1 + ¢+ ar =0 with a; € k[Y].
For y € Y and z € f~1(y), we get an equation

ti(z)* + ar(@)ti(z)¥ ™t + -+ ak(y) =0, ()

which has only a finite number of roots.

The meaning of the finite condition is that as y moves in Y, none of the
roots of (1) tends to infinity, since the coefficient 1 of the leading term does
not vanish on Y. Thus as y moves in Y, points of f~(y) can merge together,
but cannot disappear. We make this remark more precise in the following
result.

Theorem 4. A finite map s surjective.



62 Chapter 1. Basic Notions

Proof. Let X and Y be affine varieties, f: X — Y a finite map, and y € Y.
Write m,, for the ideal of k[Y] consisting of functions that take the value 0 at
y. If t1,...,t, are the coordinate functions on Y and y = (a4,...,an) then
my, = (t; — oy,...,tn — ;). The equations of the variety f~!(y) then have
the form f*(¢1) = ay,..., f*(ts) = a,, and by the Nullstellensatz f~1(y) = 0
if and only if the elements f*(t;) — a; generate the trivial ideal:

(f‘(tl) Q1.0 f.(tn) - an) = k[X].

From now on we view k(Y] as a subring of k[X], and do not distinguish
between a function v € k[Y] and f*(u) € k[X]. Then the above condition
is of the form (t; — ay,...,tn — an) = k[X], that is, myk[X] = k[X]. Since
L{X] is integral over k(Y] it follows that it is a finite k[Y]-module; Theorem 4
follows from this and the following purely algebraic assertion:

Lemma. If a ring B is a finite A-module where A C B is a subring contain-
ing 1g, then for an ideal a of A,

aGA = aBGB.

See Appendix, §6, Proposition 3, Corollary 1 for the proof. O
This completes the proof of Theorem 4.
Corollary. A finite map takes closed sets to closed sets.

Proof. It is enough to check this for an irreducible closed set Z C X. We apply
Theorem 4 to the restriction of f to Z, thatis f: Z — f(Z). This is clearly

a finite map between affine varieties, hence f(Z) = f(Z) by Theorem 4, that
is, f(Z) is closed. The corollary is proved.

-~ . Finiteness is a local property:

Theorem 5. If f: X — Y is a regular map of affine varieties, and every
point € Y has an affine neighbourhood U > z such that V = f~Y(U) is
affine and f: V — U is finite, then f itself is finite.

Proof. Set k[X] = B, k[Y] = A. Principal open sets were defined in 4.2. We
can take a neighbourhood U of any point of Y such that U is 4 principal
open set and satisfies the assumption of the theorem (see Ex. 11). Let D(gqo)
be a family of such open sets, which we can take to be finite. Then ¥ =
U D(ga), that is, the ideal generated by the g, is the whole of A. In our case
Va = £~1(D(ga)) = D(f*(9a)) and k[D(g0)] = All/gal, k{Va] = Bl1/gal-
By assumption B[1/g,] has a finite basis w; , over A[1/g,]. We can assume
that w; o € B, since if the basis consisted of elements w; o /g7 with w; o € B
then the elements w; , would also be a basis. We take the union of all the
bases w; o and prove that they form a basis of B over A.
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An element b € B has an expression

as
b= Z gz;—':wi,a

for each a. Since the gli= generate the unit ideal of A, there exist ho € A

such that 3" gleh, = 1. Hence

b= ng:"ha = Z Zai,ahawi,m
a a

i

which proves the theorem.

Definition 2. A regular map f: X — Y of quasiprojective varieties is finite
if any point y € Y has an affine neighbourhood V such that the set U = f~1V
is affine and f: U — V is a finite map between affine varieties.

Obviously, for a finite map f the set f~}(y) is finite for every y € Y. It
follows from Theorem 4 that any finite map is surjective. This property has
important consequences, that relate to arbitrary maps.

Theorem 6. If f: X — Y is a regular map and f(X) is dense in Y then
f(X) contains an open set of Y.

Proof. The assertion of the theorem reduces at once to the case that both X
and Y are irreducible and affine, and we assume this in what follows. Then
kY] C k[X]. We write r for the transcendence degree of the field extension
k(X)/k(Y), and choose r elements uy,...,ur € k[X] that are algebraically
independent over k(Y). Then

K[X] D k[Y)[u1, ..., u] DE[Y] and K[Y][us,...,u,] = k[Y x A"].

This represents f as the composite f = go h of two maps h: X — Y x A"
and g: Y x A” — Y, where g is simply the projection to the first factor. Any
element v € k[X] is algebraic over k[Y x A7), hence there exists an element
a € k[Y x A"} such that av is integral over k[Y x A7]. Let vy, ... v, be
a system of generators of k{X], and a1,...,am € k[Y x A"] elements such
that each a,v; is integral over k[Y x A7), and set F = ay---am. Since all
the functions a; are invertible on the principal open set D(F) C Y x A", the
functions v; on D(h*(F)) C X are integral over k[Y x A"|[1/F], that is, the
restricted map
h: D(h*(F)) — D(F)

is finite. Thus h(D(h*(F))) = D(F) by Theorem 4, so that D(F) C h(X). It
remains to prove that g(D(F)) contains an open set of Y. Suppose that

F=F(yT) =Y Fay)T,
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where T® are monomials in the variables T1,...,T;, the coordinates of A".
For points y € Y at which not all F,(y) = 0, there exist values T, = ; for
which F(y,7) # 0. Hence g(D(F)) D |J D(F,). This proves Theorem 6.

Theorem 6 shows one respect in which regular maps of algebraic varieties
are simpler than continuous or differentiable maps. The famous example of
an everywhere dense line in the torus T = R?/Z2, a map such as’

f:R'—=T givenby  f(z) = f(z, V2r) mod Z*

is an example of a situation that cannot happen for algebraic varieties, by
Theorem 6.

Theorem 7. If X C P" is a closed subvariety disjoint from a d-dimensional
linear subspace E C P™ then the projection m: X — P"~9~1 with centre E
(see 4.4, Ezample 1} defines a finite map X — w(X).

Proof. Let yo, ...,¥n-d-1 be homogeneous coordinates on P*~%~!, and sup-
pose that = is given by yg = Lj(z) for j =0,...,n~d -1, where z € X.
Obviously U; = n~'(A?~%"!) N X is given by the condition L,(z) # 0, and
is an affine open subset of X. We prove that =: U, — A:“d‘l Na(X)isa
finite map. Any function g € k[Uj] is of the form g = G,(zy,...,z,)/L",
where G, is a form of degree m. Consider the map m,: X — P"™ given by
Z = L_',."(a:) for j =0,...,n—d—1 and z,.4 = G;(z), where 2zg,...,2,_4
are homogeneous coordinates in P"~¢. This is a regular map, and its image
m(X) C P*~? is closed by 5.2, Theorem 2. Suppose that m1(X) is given by
equations F; =.-- = F, =0.

Since X is disjoint from E, the forms-L; for i = 0,...,n —d — 1 have
no common zeros on X. Hence the point 0 = (0:---:0:1) € P*¢ is not
contained in m(X), or in other words, the equations 2y = --+ = 2,,_4_; =
Fy = ... = F, = 0 do not have solutions in P*~¢. By 4.1, Lemma 1, it follows
from this that (z0,...,2n-g-1, F1,..., Fs) 2 Ix for some k > 0. In particular,
(z0y---y2n—d-1,F1,...,Fy) 3 z,’i_d. This means that we can write

AN
n—d-1 s

k
Zp_d= Z ZjHj + Fij,
j=0 j=1

where H; and P; are polynomials. Writing H9) for the homogeneous com-
ponent of H of degree g, we deduce from this that

B(20,...,2n-a) = 25_4= Y zHF TV =0 on m(X). @)

The homogeneous polynomial @ is of degree k and as a polynomial in
Zn_g4 it has leading coefficient 1:
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k-1 )
® = z,’:_d— ZAk_j(zo,...,zn_d_l)zi_d. (3)
j=0

If we substitute in (2) the formulas defining the map m,: X — P"~¢, we
get that O(LF,..., L7 ,_,,G;) =0 on X, with & of the form (3). Dividing
this relation by L7 we get the required relation

k=1
gF - Z Ap_j(zg,..., 1,20 4 g =0,
=0

where z, = y,/y; are coordinates in A(',‘“d_l. The theorem is proved.

Using the Veronese embedding (4.4, Example 2) allows the following sub-
stantial generalisation of Theorem 7.

Theorem 8. Suppose that Fy, ..., F, are forms of degree m on P* having no
common zeros on a closed variety X C P*. Then

e(x) = (Fy(x) : -+ : Fy(x))
defines a finite map ¢: X — o(X).

Proof. Let vm: P* — PV be the Veronese embedding (with N = "t -1)
and L; the linear forms on PV corresponding to the forms F; on P™. Then
obviously ¢ = m o v, where 7 is the projection defined by the linear forms
Ly,...,L,. Since vm: X — vn(X) is an isomorphism, Theorem 8 follows
from Theorem 7.

5.4. Noether Normalisation

Consider an irreducible projective variety X ¢ P" distinct from the whole
‘of P". Then there exists a point z € P* \ X, and the map ¢ obtained by
projecting X away from z will be regular. The image ¢(X) C P*~! is pro-
jective by Theorem 2, and the map ¢: X — (X) is finite by Theorem 7. If
@(X) # P! then we can repeat the same argument for it. We finally arrive
at a map X — P™, which is finite, since it is a composite of finite maps. The
result we have proved is called the Noether normalisation theorem:

Theorem 9. For an irreducible projective variety X there exists a finite map
@: X — P™ to a projective space. 0}

The analogous result also holds for affine varieties. To prove this, consider
an affine variety X C A™. Embed A™ as an open A™ C P*, and write X for
the projective closure of X in P". Suppose that X # A™. We choose a point
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at infinity z € P*\ A™ with z ¢ X, and consider the projection ¢: X — Pn~1
from this point. Here X will map to points in the finite part of P!, that
is, to points of A®~! = P"~1 N A". We can repeat this process as long as
X # A", and as a result we arrive at a projection ¢: X — P™ for which
¢(X) = A™. This proves the following result.

Theorem 10. For an irreducible affine variety X there erxists a finite map
p: X — A™ to an affine space. O

Theorems 9-10 allow us to reduce the study of certain (very coarse) prop-
erties of projective and affine varieties to the case of projective and affine
spaces. When m = 1 this point of view is due to Riemann, who considered
algebraic curves as coverings of the Riemann sphere (P! over the complex
number field C).

Theorem 10 means that an integral domains A that is finitely generated
over the field k is integral over a subring isomorphic to a polynomial ring.
This result can also easily be proved directly.

Exercises to §5

1. Prove that the Segre variety @(P™ x P™) ¢ PV (where N = {(n+1)(m +1) - 1)
is not contained in any linear subspace strictly smaller than the whole of PV,

2. Consider the two maps of varieties P! x P! — P! given by ps(z,y) = = and
p—;(x,yz = y. Prove that p1(X) = p2(X) = P! for any closed irreducible subset
X c P'x P, unless X is of one of the following types: (a) a point (zo, yo) € P! x PY;
(b} a line To x P! for 2o € P! a fixed paint; (c) a line P! x yo.

3. Verify Theorem 2, Corollary 1 directly for the case X = P".

4. Let X = A?\ z where z is a point. Prove that X is not isomorphic to an affine
nar a projective variety (compare §4, Ex. 3).

5. The same question as Ex. 4, for X = P? \z.
6. The same question as Ex. 4, for X =P* x Al.

7.2 Isat.he map f: Al — X finite, where X is given by y* = z°, and f by f(t) =
{t,t%).

8. Let X C A" be a hypersurface of A” and L a line of A” through the origin. Let
pr be the map projecting X parallel to L to an {r — 1)-dimensional subspace not
containing L. Write S for the set of all lines L such that ¢, is not finite. Prove that
S is an algebraic variety.[Hint: Prove that S = X NP, ! Find Sifr = 2and X
is given by Ty = 1.
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9. Prove that any intersection of affine open subsets is affine. [Hint: Use 2.3, Ex-
ample 10.]

10. Prove that forms of degree m = kl in n+1 variables that are Ith powers of forms .
correspond to the points of a closed subset of PY, where N = ("""’l"') —1=vpm.

11. Let f: X — Y be a regular map of affine varieties. Prove that the inverse
image of a principal affine open set is a principal affine open set.

6. Dimension

6.1. Definition of Dimension

In §2 we saw that closed algebraic subvarieties X C A? are finite sets of
points, algebraic plane curves, and A? itself. This division into three cases
corresponds to the intuitive notion of dimension, with varieties of dimensjon
0, 1 and 2. Here we give the definition of the dimension of an arbitrary
algebraic variety.

How could we arrive at this definition? First, of course, we take the di-
mension of P* and A™ to be n. Secondly, if there exists a finite map X — Y
then it is natural to suppose that X and Y have the same dimension. Since by
Noether normalisation (5.4, Theorems 9-10), any projective or affine variety
X has a finite map to some P™ or A™, it is natural to take m as the defini-
tion of the dimension of X. However, the question then arises as to whether
this is well defined: might there not exist two finite maps f: X — A™ and
g: X — A™ with m # n? Suppose that X is irreducible. Then the finiteness
of a regular map f: X — A™ implies that the rational function field k(X)
is a finite extension of the field f*(k(A™)), which is in turn isomorphic to
k(t1,...,tm). Hence k{X) has transcendence degree m over k; this gives a
characterisation of the number m independent of the choice of the finite map
f: X — A™. This gives some motivation for the definition of dimension.

Definition. The dimension of an irreducible quasiprojective variety X is
the transcendence degree of the function field k(X); it is denoted by dim X.
The dimension of a reducible variety is the maximum of the dimension of
its irreducible components. If Y C X is a closed subvariety of X then the
number dim X — dimY is called the codimension of Y in X, and written
codimY or codimy Y. Algebraic varieties of dimension 1 and 2 are called
curves and surfaces.?

Note that if X is an irreducible variety and U C X is open then k(U) =
k(X), and hence dimU = dim X.

3 n-dimensional varieties are often called n-folds, for example 3-folds, 4-folds (or
threefolds, fourfolds).
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Ezample 1. dimA™ = dimP" = n, because the field k(A™) is the field of
rational functions in n variables. Since dimension is by definition invariant
under birational equivalence, we see that A" and A™ are not birational if
n#m.

Ezample 2. An irreducible plane curve is 1-dimensional, as we saw in 1.3.

Ezample 3. If X consists of a single point then obviously dim X = 0, and
thus the same holds if X is a finite set. Conversely, if dim X = 0 then X is
a finite set. It is enough to prove this for an irreducible affine variety X. Let
X C A", and write ty,...,t, for the coordinates on A™ as functions on X,
that is, as elements of k[X]. By assumption the t; are algebraic over k, and
can hence only take finitely many values. It follows from this that X is finite.

Ezample {. We prove that if X and Y are irreducible varieties then
dim(X x Y) =dim X + dimY.

We need only consider the case that X C AN and Y ¢ AM are affine
varieties. Suppose that dimX = n, dimY = m, and let t;,...,tx and
u1,...,un be coordinates of AN and AM considered as functions on X and
Y respectively, such that ti,...,t, are algebraically independent in k(X)
and uy,...,um in k(Y). By definition k[X x Y] is generated by the elements
t1,-..,tN, ¥1,...,%p, and under the current assumptions all of these are
algebraically dependent on t,,...,¢,, u1,...,um. Hence it is enough to prove
that these elements are algebraically independent. Suppose that there is a
relation F(T\U) = F(Ty,...,Tn,U1,...,Un) = 0 on X x Y. Then for any
point z € X we have F(z,U;,...,Un) = 0onY. Since uy,...,un are al-
gebraically independent in k(Y), every coefficient a;(z) of the polynomial
F(z,U) is zero; this means that the corresponding polynomial (71, ...,T,)
is 0 on X. Now we use the fact that ty,...,t, are algebraically independent
in k(X) and deduce from this that a;(T1,...,Tn) =0, and hence F(T,U) is
identically 0.

Frample 5. The Grassmannian Grass(r,n) (see 4.1, Example 1) is covered
by open sets p;,..i # O isomorphic to the affine space A™(®~7). Thus
dim Grass(r,n) = r(n — r). It also follows from this that Grass(r,n) is ratio-
nal.

Theorem 1. If X CY thendim X <dimY. IfY is irreducible and X C Y
isa closed subvariety with dim X =dimY then X =Y.

Proof. It is enough to prove the assertions for X and Y irreducible affine
varieties. .

Suppose X C Y C AY with dimY = n. Then any n + 1 of the coordinate
functions t,,...,ty are algebraically dependent as elements of k[Y], that is,
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are connected by a relation F(t;;,...,t;,,) = 0 on Y. A fortiori this holds
on X. This ‘means that the transcendence degree of k{(X) is at most n, so
that dimX < dimY.

Now suppose that dimX = dimY = n. Then some n of the coor-
dinates t;,...,t)y are algebraically independent on X; suppose that these
are t;,...,t,. Then a fortiori they are algebraically independent on Y. Let
u € k[Y] with « # 0 on Y. Then u on Y is algebraically dependent on
t1,...,tn, that is, there is a polynomisl a(¢,U) € k[ty,...,t,][U] such that
the relation

ao(tl,...,t,,)uk+---+ak(t1,...,t,,)=0 (1)

holds on Y. We can choose a(t, U) to be irreducible, and then ax(t,...,t,) #
0 on Y. Relation (1) holds a fortiori on X. Suppose that v = 0 on X. Then
(1) implies that ax(t;,...,tx) = 0 on X. Since by assumption ¢,...,¢, are
independent on X, it follows that a(t1,...,%,) = 0 on the whole of A¥. This
contradicts ax(t),...,t,) # 0on Y. Thus if v = 0 on X then also u =0 on
Y, and therefore X =Y. The theorem is proved.

We have seen that an irreducible algebraic plane curve is 1-dimensional.
The following result is a generalisation.

Theorem 2. Every irreducible component of a hypersurface in A™ or P* has
codimension 1.

Proof. 1t is enough to consider the case of a hypersurface in A™. Suppose
that a variety X C A™ is given by an equation F(T) = 0. The factorisation
F = F,...F; of F into irreducible factors corresponds to an expression
X =X U---UX,, where X; is defined by F; = 0. It is obviously sufficient to
prove the theorem for each variety X,. Let us prove that X is irreducible: if
X were reducible, there would exist polynomials G and H such that GH =0
on X; but G, H # 0 on X. From the Nullstellensatz it follows that F; | (GH)'
for some ! > 0. Since F; is irreducible it follows from this that F; | Gor F; | H,
and this contradicts G #£ 0, H # 0 on X,.

Suppose that the variable T}, actually appears in the polynomial F;(T),
and prove that the coordinates t1,...,t,-; are algebraically independent on
X;. Indeed, a relation G(¢1,...,tn—1) = 0 on X; would imply that F; | G* for
some ! > 0, which is impossible since G does not involve T,,. Thus dim X; >
n — 1; since X # A", it follows from Theorem 1 that dimX; = n - 1.
Theorem 2 is proved.

Theorem 3. Let X C A™ be a variety, and suppose that all the components
of X have dimension n — 1. Then X is a hypersurface and the ideal Ax is
principal.

Proof. We only need consider the case that X is irreducible. Since X # A"
(because dim X = n — 1), there exists a nonzero polynomial F which is zero
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on X. Since X is irreducible, some irreducible factor H of F is also zero on
X. Write Y C A™ for the hypersurface defined by H = 0; we saw in the
proof of Theorem 2 that Y is irreducible. Then X C Y, so that X =Y by
Theorem 1. If G € Ux then by the Nullstellensatz H | G' for some [ > 0,
and then G € (H) by the irreducibility of H, that is Ax = (H).

Theorem 3 is proved.

The following analogue of Theorem 3 is proved similarly:

Theorem 3'. Let X C P™ x --- x P** be a variety, and suppose that all the
components of X have dimension ny + .- +ng —1. Then X is defined by one
equation that is homogeneous in each of the k sets of variables.

Proof. We need only replace the unique factorisation of polynomials used
in the proof of Theorem 3 by the unique factorisation of polynomials that
are homogeneous in each of the k groups of variables into irreducible poly-
nomials of the same type. This comes from the fact that if F(zg,...,Zn,,
Y0y +-rYngs- -1 Up, -+ Uy, ) i homogeneous in each of the k sets of variables
{zos---+Zn; }y---» {¥0,---,%n, } and F factorises as F = G- H, then G and
H have the same homogeneity property. Theorem 3’ is proved.

6.2. Dimension of Intersection with a Hypersurface

If we try to study varieties defined by more than one equation, we come up
at once against the question of the dimension of intersection of a variety with
a hypersurface. We study this question first for projective varieties. If X is
closed in P¥ and a form F is not zero on X then we write X for the closed
subvariety of X defined by F = 0.

For any projective variety X C PN we can find a form G(Us,-..,UN)
of any specified degree m which does not vanish on any components X,- of
X. For this, it is enough to choose one point z; € X; in each irreducible
component of X, and find a linear form L not vanishing on any of these;
then we can take G = L™ to be the appropriate power of L. Suppose that
X C P¥ is closed, and that a form F is not zero on any component of X. By
Theorem 1 we have dim Xr < dim X. Set Xp = X1 and apply the same
argument to X, finding a form F; with deg F; = deg F not vanishing on
any component of X{!), We get a chain of varieties X() and forms F; such
that

X=XO>5xW>5...  with X =xDand H=F (1)
By Theorem 1, dim X(+1 < dim X(9). Hence if dim X = n, then X(*+1) is

empty. In other words, the forms Fy = F, F,..., Fy, have no common zeros
on X.
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Suppose now that X is irreducible. Consider the map ¢: X — P* given
by
p(z) = (Fo(z) : -+ : Fu(x)). (2)

This map satisfies the assumptions of 5.3, Theorem 8, and by this theorem
the map X — ¢(X) is finite. But if X — Y is a finite map then, as we have
seen, dim X = dimY. Hence dim ¢(X) = dim X = n, and since o(X) C P*
is closed by 5.2, Theorem 2, we get ¢(X) = P* by 6.1, Theorem 1. Suppose
now that dim X(1) = dim Xr < n—1. Then in (1), already X" is empty. In
other words, the forms Fy,..., F,—1 have no common zeros on X . This means
that the point (0 : --- : 0 : 1) is not contained in ¢(X), which contradicts
9(X) = P". Thus we have proved the following result.

Theorem 4. If a form F is not 0 on an irreducible projective variety X then
dimXr=dimX-1. O

Recall that this means that Xp contains one or more irreducible compo-
nents of dimensjon dim X — 1.

Corollary 1. A projective variety X contains subvarieties of any dimension
s<dimX. DO

Corollary 2 (Inductive definition of dimension). If X is an irreducible pro-
Jjective variety then dim X =1 + supdimY, where Y runs through all proper
subvarieties of X. O '

Corollary 3. The dimension of a projective variety X can be defined as the
mazimal integer n for which there ezists a strictly decreasing chain Yy 2 Y1 2
- 2 Y, 2 0 of length n of irreducible subvarieties Y; C X. O

Corollary 4. The dimension n of a projective variety X C PY can be defined
as N — s — 1, where s is the mazimum dimension of a linear subspace of PN
disjoint from X.

Proof. Let E C PY be a linear subspace of dimension s. If s > N — n then
E can be defined by < n equations, and successive application of Theorem 4
proves that dim{X 0 E) > 0, and hence X N E is nonempty (the dimension
of the empty set is —1!). Setting m = 1 in the construction of the chain (1)
gives n + 1 linear forms Ly, ..., L, with no common zeros on X. If F is the
linear subspace defined by these, then dimE = N —n—1 and XN E is empty.
Corollary 4 is proved.

Corollary 5. The variety of common zeros of r forms Fy,...,F, on an
n-dimensional projective variety has dimension > n —r.
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The proof is by r — 1 applications of Theorem 4. Corollary 5 provides a
rather strong existence theorem.

Proposition. Ifr < n thenr forms have a common zero on an n-dimensional
projective variety. For example, in the case X = P, this says that n homo-
geneous equations in n + 1 variables have a nonzero solution. O

This existence theorem allows us to make a number of important deduc-
tions.

Corollary 1. Any two curves of P? intersect. O

This is clear, since a curve is given by a single homogeneous equation.
However, there exist nonintersecting curves on a nonsingular quadric surface
Q < P3, for example the lines of one family of generators. Therefore P? and
Q are not isomorphic. Since they are birational (3.3, Example 1) we get an
example of two varieties that are birational but not isomorphic. This example
will appear again later (Chap. II, 4.1 and 4.5, Chap. IV, 2.3, Example 2).

Corollary 2. Theorem 3 fails already for the curves on a nonsingular quadric
surface Q: there exist curves C C @ that cannot defined by setting to zero a
single form on P°.

Indeed, if we assume that each of the disjoint curves C; and C, which
we found on @ is defined by one equation F; = 0 and F; = 0, we get a
contradiction to Corollary 5, according to which the system of equations
G = Fy; = F, = 0 have a common solution (where G is the equation of Q).

Corollary 3. Any curve of degree > 3 has an inflexion point.

Proof. We have seen in 1.6 that the inflexion points of an algebraic plane curve
with equation F = 0 is defined by H(F) = 0, where H(F) is the Hessian form
of F. If F has degree n then H(F) has degree 3(n — 2). Therefore for n > 3
the system of equations F = H(F) = 0 has a nonzero solution; that is, the
curve F = 0 has an inflexion point. Corollary 3 is proved.

The simplest case is when n = 3. We see that every cubic curve in P2
has an inflexion point. Choose a coordinate system (&, &1, £2) so that the
inflexion point is (0,0,1), and the inflexional tangent is the line £ = 0.
Setting u = £o/&2, v = €1 /€2, we see easily that our assumption is equivalent
to saying that the equation ¢(u,v) of the curve has no constant term, or
term in u or u2. Changing to coordinates z = £/, y = £2/£1, so that the
inflexion point is at infinity, we find that the equation of our cubic has no
term in %, y2z or yz?, that is, it is of the form ay® + (bz + c)y + g(z) = 0,
where g is a polynomial of degree < 3. If a = 0 then the inflexion point is
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singular. If a # 0 we can assume that a = 1. Assuming that chark # 2, we
can complete the square by setting y; = y + (1/2)(bz + ¢) and reduce the
equation to the form y? = g1(z), where g1(z) has degree < 3, and = 3 if
the cubic curve is nonsingular. Thus the equation of a nonsingular cubic has
Weierstrass normal form in some coordinate system. In 1.4 we proved only
the weaker statement that a cubic is isomorphic to a curve with equation in
Weierstrass normal form.

Corollary 4. (Tsen’s theorem). Let F(zy,...,z,) be a form in n variables
of degree m < n whose coefficients are polynomials in one variable t. Then
the equation F(z1,...,z,) = 0 has a solution in polynomials z; = p;(¢).

Proof. We look for z; of the form z; = Z;'=o ui;t! with unknown coefficients
u;;. Substituting these expressions in the equation F(z,,...,z,) = 0, we get
a polynomial in ¢t all of whose coefficients must be set to 0. If the maximum
of the degrees of the coefficients of a polynomial F equals k then the number
of equations is at most ml + k + 1. The number of indeterminates is n(/ + 1).
Since by assumption n > m, for [ sufficiently large, the number of unknowns
is greater than the number of equations, and hence the system has a nonzero
solution.

Ezample 1. An important particular case of Tsen’s theorem is when n = 3
and F is a quadratic form. It can be given the following geometric interpre-
tation: suppose that a surface X C P? x Al is defined by the equation

2

q(zo 3 B Ig;t) = Z a,-j(t)z,-zj Wlth a,j(t) € k[t],
£,j=0

where (zg : z; : T2) are coordinates in P? and ¢ a coordinate on Al. The
fibres of the map X — A! are the conics g(zp : z; : z2;a8) = 0 for a € Al,
and the surface is called a conic bundle or pencil of conics. Tsen’s theorem
proves that a pencil of conics has a section, that is, there exists a regular map
p: Al — X such that ¢(a) is a point of the fibre over a for every a € Al

Another interpretation of this result is as follows. Consider our surface
X as the conic C with equation ¢(zg : z1 : z2;t) = Z?‘FO a;;z;z; = 0 in
P2 over the algebraically nonclosed field K = k(t). Obviously K(C) = k(X).
Then C has a point with coordinates in K.

We assume that the curve C is irreducible for a general point t € Al,
that is, that det|a;;(t)| is not identically 0; we say that the pencil of conics
is nondegenerate in this case. In 1.2 we saw that the conic is then rational,
with the birational map to P! defined over K = k(t). In other words, the
field K (C) is isomorphic over K to the field K(z), and since K(C) = k(X) it
follows that k(X) is isomorphic to K(z) = k(t,z). We have proved the next
result.
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Corollary 5. A nondegenerate pencil of conics over Al is a rational sur-
face. O

Theorem 5. Under the assumptions of Theorem 4, every component of Xp
has dimension dim X ~ 1.

Proof. Consider the finite map ¢: X — P (with n = dim X) constructed in
the proof of Theorem 4, and let AT C P" for i =0,...,n be the affine open
sets covering P™. Then using the Veronese embedding with m = deg F, it is
easy to see that ¢~ 1(A?) = U; are affine open sets of X. It is obviously enough
to prove that each component of the affine variety Xp N U; has dimension
n — 1 for each i. From now on our arguments apply to some fixed U;, which
we denote by U. Obviously Xp N U = V(f), where f = F/F;, that is, Xr
coincides on U with the set of zeros of the regular function f € k[U]. We
constructed above a finite map ¢: U — A", given by n regular functions
fiooos fuo with f = f1.

To prove that each component of V(f) has dimension n — 1, we only need
to prove that it has dimension > n—1. We prove that the functions fa,..., f,
are algebraically independent on each component. Let P € k[T3,...,T,}. To
prove that R = P(fa,..., fn) does not vanish on any component of V(f) it
is enough to prove that for Q € k[U],

RQ =00nV(f) = Q=0o0on V(f).

Indeed, if V(f) = UM U-..uU® is an irredundant decomposition into
irreducible components, and R = 0 on U™, then take Q to be any function
that vanishes on U@ U..-UU*) but not on UY), Then RQ = 0 on V(f) but
Q # 0 on V(f). -

By the Nullstellensatz our assertion can be restated as follows: if f | (RQ)"
for some { > 0 then f | QF for some k > 0. Thus Theorem 5 follows from the
following purely algebraic fact:

Lemma. Set B = k[T,...,Ty,), and let A D B be an integral domain that is
integral over B; write x = 11, and let y = P(T3,...,T,) # 0. Then for any
u€ A,

z | (yu) in A for somel>0 = z|u* for some k > 0.

Proof of the lemma. The only property of z and y that we use is that they
are relatively prime in the UFD k[T1, ..., Ty}. Note that we can replace y' by
z and u! by v, and then it is enough to prove that if z and z are relatively
prime in k{Ty,...,Ty] then = | zv in A implies that z | v* for some k > 0.
Thus the lemma asserts that the property of polynomials z, z € B being
relatively prime is in a certain sense preserved on passing to a ring A that is
integral over B.
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Write K for the field of fractions of B. If ¢ € A is integral over B then it
is algebraic over K. Let F(T) € K[T} be the minimal polynomial of t over
K, that is, the polynomial of least degree with leading coefficient 1 such that
F(t) = 0. Division with remainder shows that any polynomial G(T) € K[T}
with G(t) = 0 is divisible by F(T) in K[T]. Now from this it follows that
t is integral over B if and only if F|T} € B[T)]. Indeed, if ¢ is integral and
G(t) = 0 for G € B[T] with leading coefficient 1, then G(T') = F(T)H(T)
in K[T}. But B = k[T},...,Ty] is a UFD, so a simple application of Gauss’
lemma shows that F(T), H(T) € B(T}.

It is now easy to complete the proof of the lemma. Suppose that 2v = zw
with v, w € A and let F(T) = TF 4+ byT%"! 4+ ... + bx be the minimal
polynomial of w. Since w is integral over B, the coefficients b; of F satisfy
b; € B. 1t is easy to see that the minimal polynomial G(T) of v = zw/z is
given by (z/z)* F(2T/z). Therefore

k
G(T) =T"+$—blT’°“1 +---+5%,
z z
.’L‘kbk
2k

©
=0.

zb
and v"+—;lv"'l +--- 4

Since v is integral over B, also z'b;/2* € B, and because z and z are relatively
prime it follows that z* | by. It then follows from (3) that z | v*. The lemma
is proved, and with it Theorem 5.

Corollary 1. If X C P¥ is an irreducible quasiprojective variety and F a
form that is not identically 0 on X, then every (nonempty) component of
Xp has codimension 1. (Xp = 0 is of course possible for quasiprojective
varieties.)

Proof. By definition X is open in some closed subset X < P¥. Since X is
irreducible, so is X, and hence dim X = dim X. By Theorem 5, (X) F=UY:
with diim Y; = dim X — 1. But it is easy to see that Xp = (X) ,NX; it follows
that Xp = [J(Y: N X), and Y; N X is either empty or is open in Y;, so that
dim(Y; N X) = dim X — 1. This proves Corollary 1.

The particular case of this lemma that usually turns up is when X C A"
is an affine variety. Let A™ C P™ be the subset A} given by ug # 0, and write
m =deg F and f = F/ul’; then Xp = V(f). In other words, XF is just the
set of zeros of some regular function f € k[X].

Corollary 2. Let X c PV be dn irreducible n-dimensional quasiprojective
variety, andY C X the set of zeros of m forms on X. Then every (nonempty)
component of Y has dimension > n —m.

Proof. The proof is by an obvious induction on m. In the case of an affine
variety X we can again say that Y is the set of zeros of m regular functions
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on X. If X is projective and m < n then by the proposition after Theorem 4,
Corollary § we can assert that Y # @. Corollary 2 is proved.

Theorem 6. Let X,Y C PN be irreducible quasiprojective varieties with
dimX = n and dimY = m. Then any (nonempty) component Z of X NY
hasdimZ >n+m — N.

Moreover, if X and Y are projective andn+m > N then X NY # §.

Proof. The theorem is obviously local in nature, and we therefore only need
to prove it in the case of affine varieties. Suppose that X, Y ¢ AN. Write
A C AN x AN = AN for the diagonal (see 2.3, Example 10). Then X NY
is isomorphic to (X x Y)N A ¢ A?N, The theorem follows from Theorem 5,
Corollary 2, since A C A2V is defined by N equations.

For the final sentence, apply the first part to the affine cone over X and
Y. The theorem is proved.

Theorem 6 can be stated in a more symmetric form, in which it generalises
at once to the intersection of any number of subvarieties:

T r
codimy (Y < Y codimyx ¥;. (4)

i=1 i=1
'6.3. The Theorem on the Dimension of Fibres

For a given regular map f: X — Y of quasiprojective varieties, and y € Y,
the set f~1(y) is called the fibre of f over y. It is obviously a closed subvariety
of X. The idea behind the terminology is that f fibres X as the disjoint union
of the fibres over the different points y € f(X).

Theorem 7. Let f: X — Y be a regular map between irreducible varieties.
Suppose that f is surjective: f(X) =Y, and that dimX = n, dimY = m.
Then m < n, and

(i) dim F > n—m for any y € Y and for any component F of the fibre
)

(i) there eTists a nonempty open subset U C Y such that dim f~(y) =
n—m foryeU.

Proof of (i). This property is obviously local over Y, and it is enough to prove
it after replacing Y by any open set U € Y with U 3 y and X by f~}U).
Hence we can assume that Y is affine. Suppose that Y ¢ AV, In the chain of
subvarieties of Y given by 6.2, (1), Y™ is a finite set Y™ =Y n Z, where
Z is defined by m equations and y € Z. The open set U can be chosen such
that ZNY NU = {y}, and so we can assume that ZNY = {y}. The subspace
Z is defined by m equations g, = --- = g, = 0. Thus in Y the system of
equations g; = - -+ = gm = 0 defines the point y. This means that in X the
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system of equations f*(g1) = -+ = f*(gm) = 0 defines the subvariety f~(y).
Assertion (i) now follows from Theorem 5, Corollary 2 (the affine case).

Proof of (ii). We can replace Y by an affine open subset W and X by an open
affine set V C f~1(W). Since V is dense in £~} (W) and f is surjective, f(V)
is dense in W. Hence f defines an inclusion f*: k{W] < k[V]. From now on
we take k[W] C k[V], therefore k(W) C k(V). Write k(W] = k[wy,...,wn]
and k[V] = k[v1,...,vn]. Since dimW = m and dimV = n, the field k(V)
has transcendence degree n — m over k(W). Suppose that vy,...,vp_mm are
algebraically independent over k(W), and the remaining v; algebraic over
K(W)[v1,...,Un-m], with relations ’

Fi(v5015« oy Upemi Wi, .-, W) =0 fori=n-m+1,...,N.
Write ; for the function v; restricted to f~'(y) N V. Then
k[f~Y(y)n V] = k[5y,...,0n]. (1)

We now view F; as a polynomial in v;, vy,...,Vp_m, With coefficients func-
tions of wy,...,wp, and define Y; to be the subvariety of W given by the
vanishing of the leading term of F;. Set E = |JY; and U = W\ E. Obviously
U is open and nonempty. By construction of E, if y € U then none of the
polynomials F;(T}; Ty, .-, Tnem;wi(y), ..., wap(y)) is identically zero, and
therefore all the T; are algebraically dependent on @y,...,Up-m. Together
with formula (1) this proves that dim f~!(y)} < n — m, so that (ii) of the
proposition follows from (i). The theorem is proved.

It is easy to give examples where (ii) does not hold for every y € Y'; (see
for example §2, Ex. 6, and the end of 6.4). That is, the dimension of fibres
may jump up.

Corollary. The sets Yy = {y € Y [ dim f~}(y) > k} are closed in Y.

Proof. By Theorem 7, Yn_m =Y, and there exists a closed subset Y’ 'Y
such that Y, C Y' if k > n — m. If Z; are the irreducible components of ¥’
and fi: f~1(Z:) — Zi the restrictions of f, then dim Z; < dimY, and we can
prove the corollary by induction on dimY. The corollary is proved.

Theorem 7 implies a criterion for a variety to be irreducible which is often

useful.

Theorem 8. Let f: X — Y be a regular map between projective varieties,
with f(X) =Y. Suppose that Y is irreducible, and that all the fibres f~1(y)
fory € Y are irreducible and of the same dimension. Then X is irreducible.

Proof Let X = |JX; be an irreducible decomposition. By 5.2, Theorem 2,
each f(X,) is closed. Since Y = | f(X;) and Y is irreducible, Y = f(X;) for
some 1.
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Set dim f~!(y) = n. For each i such that Y = f(X;), by Theorem 7,
(i), there exists a dense open set U; C Y and an integer n; such that
dim(f'(y)) = n; for all y € U;. Extend the definition of U; to i such
that f(X;) # Y by setting U; = Y'\ f(X,). Consider y € (U;. Then since
f~1(y) is irreducible, we must have f~1(y) C X; for some i, say i = 0. Write
fo: Xo — Y for the restriction of f. Then f~*(y) C f5 }(y); but the opposite
inclusion is trivial, so that f~1(y) = f; () and n = n,.

Now since fo is surjective, we know that f'(y) € f~!(y) is nonempty
for every y € Y, and it has dimension > ng by Theorem 7, (i), so that
fo (y) = F~(y). Therefore Xy = X. The theorem is proved.

A very special case of Theorem 8 is the irreducibility of a product of
irreducible projective varieties; see 3.1, Theorem 3.

6.4. Lines on Surfaces

It is only natural, after the effort spent on the proof of 6.2, Theorems 4-6 on
the dimension of intersections, to look for some applications of these results.
As an example, we now treat a simple question on lines on surfaces in P3.

As a general rule, the notion of dimension is useful in cases when we need
to give rigorous meaning to a statement that some set depends on a given
number of parameters. For this, we must identify the set with some algebraic
variety, and apply the notion of dimension we have introduced.

For example, we have seen in 4.4, Example 2 that hypersurfaces of P",
defined by equations of degree m, are in one-to-one correspondence with
points of a projective space

]PN, where N = vy = (n :’nm) -1.

We proceed to subvarieties that are not hypersurfaces, the simplest of
which are lines in P3. In 4.1, Example 1, we saw that lines | C P3 are in one-
to-one correspondence with points of the quadric hypersurface of II ¢ P®
defined by pgyp23 — po2p1s + Poapi2 = 0. Obviously dim IT = 4.

To study lines lying on surfaces, the following result is important.

Lemma. The conditions that the line | with Pliicker coordinates p;; be con-
tained in the surface X with equation F = 0 are algebraic relations between
the pi; and the coefficients of F, homogeneous in both the p;; and the coeffi-
cients of F'.

Proof. We can write a parametric representation of [ it terms of its Pliicker
coordinates: let z and y be a basis of a plane £ C V, with dim£ = 2,
dim V' = 4. Then it is easy to check that as f runs through the space of all
linear forms on V, the set of vectors of the form
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zf(y) — yf(z) (1)

coincides with £. If f has coordinates (ag,o,as2,as), that is, if f(zx)
3" ayx;, then the vector (1) has coordinatés z; = ZJ. a;pij, where p;;
Z;y; — Z;¥;- Hence if [ is the line with Pliicker coordinates p;;, the points of
| are the points with coordinates 3 a;pi; for j =0,...,3.

On substituting these expressions into the equation F(up,u1,u2,us) =0
and equating to zero the coefficients of all the monomials in a;, we get the
condition that [ C X, as a set of algebraic relations between the coefficients
of F and the Pliicker coordinates p;;. The lemma is proved.

We proceed to the question we are interested in, the lines lying on surfaces
in P3. For given m, consider the projective space PV with N = V3m =
s %) — 1, whose points parametrise surfaces in P* of degree m, that is, given
by a homogeneous equation of degree m. Write I, C PV x IT for the set
of pairs (£,17) € PN x IT such that the line | corresponding to € IT is
contained in the surface X corresponding to £ € PV. By the lemma, I}, is a
projective variety. Let us determine the dimension of I,. For this, consider
the projection maps ¢: PN¥ x T — P¥ and ¢: PN x IT — IT given by
(& n) = & and ¥(&,n) = n. Obviously ¢ and 1 are regular maps. From now
on, we only consider their restrictions to I,. Note that ¥(I)n) = II. This
simply means that for every line [ there is at least one surface of degree m
passing through [, possibly reducible.

We determine the dimension of the fibres 1~!(n) of 1. By a projective
transformation we can assume that the line corresponding to 7 is given by
ug = u; = 0. Points ¢ € PV such that (¢,7) € ¥~(n) C Iy correspond
to surfaces of degree m passing through this line. Such a surface is given by
F =0, where F = u9G +u1 H, with G and H arbitrary forms of degree m —1.
The set of such forms is of course a linear subspace of PN whose dimension
is easy to calculate. It is equal to

_ m(m+1)(m+5)

u._-————ﬁ———-—l. (2)

Thus
dim = (n) = -"i(ﬂi%wi) ~1=N-(m+1).

It follows from Theorem 8 that I3, is irreducible. Applying Theorem 7 we
get that
dim I, = dim9(I3,) + dim ¢~ (n)
- min Dint9) g 0
=N+3-m.

Consider now the other projection ¢: I, — PV. Its image is a closed
subset of PV, by 5.2, Theorem 2. Obviously dimg(I,) € I},. Thus if
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dim I, < N then o(I'y) # PN, or in other words, not every surface of
degree m contains a line. By (3), the inequality dim I3, < N reduces to
m > 3. We have obtained the following result.

Theorem 9. For any m > 3, there erist surfaces of degree m that do not
contain any lines. Moreover, such surfaces correspond to an open set of PV,

Thus there exist nontrivial algebraic relations between the coefficients of
a form F(ug,u1,u2,u3) of degree m > 3 that are necessary and sufficient for
the surface given by F = 0 to contain a line.

Of the remaining cases m = 1, 2, 3, the case m =1 is trivial. We consider
the case m = 2, although we already know the answer from 3-dimensional
coordinate geometry. When m = 2 we have N = 9 and dimI3, = 10. It
follows from Theorem 7 that dim@~1(£) > 1. This is the well-known fact
that any quadric surface contains infinitely many lines.

We remark in passing, and without details of the proof, that this already
provides an example of the phenomenon mentioned in 6.3 of the dimension
of fibres jumping up: if the quadric surface corresponding to a point £ is
irreducible then dim p~!(€) = 1, whereas if it splits as a pair of planes then
of course dim =1 (£) = 2.

Now consider the case m = 3. In this case, dim I, = N = 19. It is easy
to construct a cubic surface X C P® which contains only a finite number of
lines. For example, if X is given in inhomogeneous coordinates by

T ToTs =1, (4)

then X does not have a single line contained in A%, Indeed, if we write the
equation of an affine line in the form T; = a;t+b; for i = 1, 2, 3 and substitute
in (4), we get a contradiction; whereas the intersection of X with the plane
at infinity contains 3 lines. Thus there exists a point of P! for which ¢~1(¢)
is nonempty and dim ¢~1(£) = 0. By 6.3, Theorem 7, this is only possible if
dim p(I3) = 19. Using Theorem 1, we see that o(I3) = P'9. We have proved
the following result.

Theorem 10. Every cubic surface contains at least one line. There erists an
open subset U of the space P'? parametrising all cubic surfaces such that a
surface corresponding to a point of U contains only finitely many lines. [

Cubic surfaces that contain infinitely many lines do exist, for example
cubic cones. Thus again the dimension of fibres can jump up. We will see
later that most cubic surfaces contain only finitely many lines, and we will
determine the number of these.
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Exercises to §6

1. Let L C P" be an (n — 1)-dimensional linear subspace, X C L an irreducible
closed variety and y a point in P* \ L. Join y to all points z € X by lines, and
denote by Y the set of points lying on all these lines, that is, the cone over X with
vertex y. Prove that Y is an irreducible projective variety and dimY = dim X +1.

2. Let X C A% be the reducible curve whose components are the 3 coordinate axes.
Prove that the ideal Ax cannot be generated by 2 elements.

3. Let X C P? be the reducible 0-dimensional variety consisting of 3 points not
lying on a line. Prove that the ideal 2{x cannot be generated by 2 elements.

4. Prove that any finite set § C A? can be defined by two equations. [Hint: Choose
the coordinates z, y in A? in such a way that all points of S have different «
coordinates; then show how to define S by the two equations y = f(z), [I(z — ) =
0, where f(z) is a polynomial.]

5. Prove that any finite set of points S C P? can be defined by two equations.

6. Let X C A® be an algebraic curve, and z, y, z coordinates in A%; suppose that
X does not contain a line parallel to the z-axis. Prove that there exists a nonzero
polynomial f(z,y) vanishing at all points of X. Prove that all such polynomials
form a principal ideal {g(z, %)), and that the curve g(x,y) = 0 in A% is the closure
of the projection of X onto the (z, y)-plane parallel to the z-axis.

7. We use the notation of Ex. 6. Suppose that h(z,y,2) = go(z,y)2" +- - -+ gna(z, y)
is the irreducible polynomial of smallest positive degree in z contained in the ideal
Ax. Prove that if f € Ax has degree m as a polynomial in z, then we can write
g8t = hU +v(z,y), where v(z, y) is divisible by g(z, y). Deduce that the equation
h = g = 0 defines a reducible curve consisting of X together with a finite number
of lines parallel to the z-axis, defined by go(z,y) = g(z,y) = 0.

8. Use Ex. 6-7 to prove that any curve X C A3 can be defined by 3 equations.

9. By analogy with Ex. 6-8, prove that any curve X C P? can be defined by 3
equations.

10. Let Fo(Zo,...,Zn)s-. -, Fn(Zo,...,Zn) be forms of degree mo, ..., mn, and con-

sider the system of n + 1 equations in n + 1 variables Fo{z) = --- = Fa(z) = 0.
Write I" for the subset of []7 o P*~™ x P* (where vn,m = ("1™) — 1) defined by
I'={(Fo,...,Fn,z) | Fo(z) = = Fa(z) = 0}

By considering the two projection maps ¢: I' — [[,P*»™ and ¥: I" — P™, prove
that dimI" = dimg(I') = 3}, ¥n,m; — 1. Deduce from this that there exists a
polynomial R = R(Fy, ..., Fy) in the coefficients of the forms Fy, ..., Fn such that
R = 0 is a necessary and sufficient condition for the system of n + 1 equations in
n + 1 variables to have a nonzero solution. What is the polynomial R if the forms
Fo,..., F, are linear?
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11. Prove that the Pliicker hypersurface IT C P® contains two systems of 2-dimen-
sional linear subspaces. A plane of the first system is defined by a point § € P?
and consists of all points of I7 corresponding to lines ! C P® through £. A plane
of the second system is defined by a plane = C P and consists of all points of IT
corresponding to lines [ C P® contained in =. There are no other planes contained
in IT.

12. Let F(zo,1,%2,z3) be an arbitrary form of degree 4. Prove that there exists
a polynomial @ in the coefficients of F such that $(F) = 0 is a necessary and
sufficient condition for the surface F' = 0 to contain a line.

" 13. Let Q € P be an irreducible IP(éua;dric surface and Ax C IT the set of points
on the Pliicker hypersurface IT C P* corresponding to lines contained in Q. Prove
that Ax consists of two disjoint conics.



Chapter II. Local Properties

1. Singular and Nonsingular Points

1.1. The Local Ring of a Point

This chapter investigates local properties of points of algebraic varieties, that
is, properties of points z € X that remain unchanged if X is replaced by any
neighbourhood of z. Since any point has an affine neighbourhood, in the
study of local properties of points we can restrict ourselves to affine varieties.

The basic local invariant of a point z of a variety is its local ring Oy, the
ring consisting of all functions, each of which is regular in some neighbourhood
of z. This definition requires a little care, however, since each function is
regular in a different neighbourhood.

If X is irreducible, O; is the subring of the function field k(X) consisting
of all functions f € k(X) that are regular at z. Recalling the definition of
k(X) as the field of fractions of the coordinate ring k[X] we see that O,
consists of fractions f/g with f,g € k[X] and g(z) # 0.

_This construction becomes clearer if we focus on its general and purely
algebraic nature. It can be applied to an arbitrary commutative ring A and
prime ideal p of A. In this generality there is a new difficulty caused by
possible zerodivisors in A.

Consider the set of pairs (f,g) with f,.g€Aand g ¢ p; we 1dent1fy pairs
according to the rule

(f,9)=(f'.9') < 3FheA\psuchthat h(fg' —gf)=0. (1)

Algebraic operations are defined on this set as follows:

() +(f,d)=(fd' +9f' 99" )
(Hr9)f9)=(ff 99 (3)

It is easy to check that in this way we get a ring. It is called the local ring of
A at the prime ideal p, and denoted by A4,.

The map ¢: A — A, given by p(h) = (h,1) is a homomorphism. The
elements (g) with g ¢ p are invertible in A;, and any element u € A,
can be written u = @(f}/p(g) with g ¢ p; we sometimes use the somewhat
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imprecise notation u = f/g. The elements of the form ¢(f)/p(g) with f €p
and g ¢ p form an ideal m C A; moreover every element u € A, with u ¢ m
has an inverse. Therefore m contains every other ideal of A,.

We arrive at one of the fundamental notions of commutative algebra: a
ring O is a local ring if it has an ideal m C O with m # O such that m
contains every other ideal of O.

Lemma. If A is a Noetherian ring then so is every local ring A,.

Proof. Indeed, for any ideal a C Ap, set @ = p~!(a). This is an ideal of
A, and so by assumption has a finite basis, @ = (f1,..., fr). If 4 € a then
u = ¢(f)/p(g) with f,g € A and g ¢ p. By the identification rule (1), it
follows that there exists h € A\ p such that hf € @, and since 1/¢(hg) € A4,,

we get u € p(@)A4, = (p(f1),---,¢(fr)) Hence a = (p(fi1),...,0(f+)), and
so0 has a finite basis. The lemma is proved.

If A = k[X] is the affine coordinate ring of an affine variety X and p = m;
the maximal ideal of a point z € X then A, is called the local ring of , and
denoted by Ox ; or O;. It is Noetherian by the lemma.

For each pair (f,g) defining an element of O, the function f/g is regular
in the neighbourhood D(g) of z. The rule (1) means that in O, we identify
functions f/g and f’/¢’ that are equal in some neighbourhood of z (in the
present case D(hgg’)). Thus we can also define O, as the ring whose elements
are regular functions in different neighbourhoods of x, with the identification
rule just given. The definition is already independent of the choice of some
affine neighbourhood U of z.

We choose, in particular, the variety V' so that all its irreducible com-
ponents pass through z. Then a fisiction f that is 0 on some heighbour-
hood U C V of z will be 0 on the whole of V. Hence the homomorphism
¢: k[V] = O; is an inclusion, and we identify k[V] with a subring of O;. In
this situation, we can get rid of the factor h in the identification rule (1). In
other words, O, consists of functions on V' without any identification, and
all functions @, € O, are of the form f/g, with f,g € k[V] and g(z) # 0.

A similar construction is applicable to any irreducible subvariety ¥ of an
affine variety X. Here we need to set A = k[X] and p = ay. In this case,
the local ring A, is called the local ring of X at the irreducible subvariety Y’
(or along Y), and denoted Ox y or Oy. If X is irreducible then Oy C k(X)
is the ring consisting of all rational functions that are regular at some point
of Y (and hence regular on a dense open subset of ¥). The maximal ideal
my C Oy consists of functions vanishing along Y, and the residue field
Oy /my = k(Y) is the function field of Y.

The passage to the case of an irreducible closed subvariety Y of an ar-
bitrary quasiprojective variety X is just as obvious as when Y was a point.
The local ring Oy is defined in this case as the local ring of the subvariety
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YNV, where V C X is any open affine variety such that Y NV # @. The
local ring is independent of the choice of V.4

1.2. The Tangent Space

We will define the tangent space to an affine variety X at a point z as the
set of all lines through z tangent to X. To define tangency of a line L C AV
to a variety X C A", suppose that the coordinate system in A" is chosen so
that £ = (0,...,0) = 0. Then L = {ta | t € k}, where a # 0 is a fixed point.
To study the intersection of X with L, suppose that X is given by a system
of equations Fy = --- = Fy; = 0 with Ax = (F,..., Fp).

The set X N L is then given by the equations Fi(ta) = --- = Fj,(ta) =0.
Since we are now dealing with polynomials in one variable ¢, their common
roots are the roots of their highest common factor. Suppose that

f(t) = hef(Fy(ta), ..., Fm(ta)) = e JJ (¢ - a:)™. (1)

The values t = a; correspond to the points of intersection of L with X. Note
that in (1), a root t = a; has an associated multiplicity k;, that is naturally
interpreted as the multiplicity of intersection of L with X. In particular, since
LN X 30, one of the roots of f(t) in (1) is t = 0. We arrive at the following
definition.

Definition 1. The intersection multiplicity of a line L with a variety X
at 0 is the multiplicity of ¢ = 0 as a root of the polynomial f(t}) =
hef(Fi(ta),.. ., Fn(ta)).

Thus the intersection multiplicity is the biggest power of t dividing all the
F(ta). It is > 1 by definition, since 0 € L N X. If the F;(ta) are identically 0
then the intersection multiplicity is considered to be +o0.

Obviously, f(t).= hef{F(ta) | F € %;}, and hence the multiplicity of
intersection is independent of the choice of the generators F; of Ax.

4 Quite generally, Ox,y is a subring of the direct product of function fields k(X;)
of the irreducible components X; of X that meet Y, that is,

Ox,y C H k(X:).
YNX;#8

We can also view it as a quotient of the local ring Opn y of rational functions on
the ambient space regular on a dense open set of ¥, modulo the ideal axOpn,y
of functions vanishing on X. In discussing rational maps and rational functions
as in Chap. I, a point to grasp is that rational functions are defined as fractions,
and the locus where they are regular is determined subsequently; otherwise you
have to worry about when two functions or maps with different domains are equal
(for example, is the function z/z with a removable singularity equal to 17).



86 Chapter II. Local Properties

Definition 2. A line L is tangent to X at 0 if it has intersection multiplicity
2 2 with X at 0.

We now write out the conditions for L to be tangent to X. Since X 30,
each of the polynomials F;(T) has constant term 0. For i = 1,...,m, we
write L; for the linear term, so that F; = L; 4+ G, where G; has only terms
of degree > 2. Then F;(at) = tL;(a) + G;(ta), and G;(ta) is divisible by 2.
Therefore F;(at) is divisible by ¢2 if and only if Li(a) = 0. Thus the condition
for tangency is

Ly(a) = -+ = Ly(a) =0. (2)

Definition 3. The geometric locus of points on lines tangent to X at z is
called the tangent space to X at z. It is denoted by 6, or by Ox,; if we need
to specify which variety is intended.

Thus (2) are the equations of the tangent space. They show that 8. is a
linear subspace of AN,

Ezample 1. The tangent space to A™ at any point is just A™ itself.

Ezample 2. Let X C A™ be a hypersurface and Ay = (F). If X 5 0 and
F = L 4+ G (in the above notation) then 6y is defined by the single equation
L(Th,...,Tn) = 0. Hence if L # 0 then dim6p = n — 1 and if L = 0 then
6y = A™, so that dim 6y = n. Obviously

oF
L= Z &:(O)xi,
so that for n = 2 the definition coincides with that given in Chap. I, 1.5, (3).

Ezample 3. The tangent space at (0,0) to the curve y(y —z2) = 0in A% is
the whole of A2. (Although both its components have the same tangent line
y=0)

1.3. Intrinsic Nature of the Tangent Space

1.2, Definition 3 was given in terms of the defining equations of a subvariety
X ¢ AN. Hence it is not obvious that under an isomorphism f: X — Y
the tangent spaces at z and at f(z) are isomorphic (that is, have the same
dimension). We now prove this; for this, we reformulate the notion of tangent
space so that it depends only on the coordinate ring k[X].

We recall some definitions. If F(T},...,Tn) is a polynomial and z =
(z1,...,zN) a point, then F has a Taylor series expansion

F(T) = F(z) + FO(T) +--. + F®(T),
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where F(*) are homogeneous polynomials of degree i in the variables T; —z;.
The linear form F(!) is the differential of F at x, and is denoted by dF or
d.F; we have

d.F= z 3T, (I)(Ti It)

i=1

It follows from the definition that

do(F + G) = d,F + 4,6, .
d2(FG) = F(2)d:G + G(z)d, F )

Using this notation, we can write the equations 1.2, (2) of the tangent space -
to X at z € X in the form

d:Fl="'=d:Fm =0, (2)

or

aF’ (:z:)(T- —-x) = forj=1,...,m, (3)

i—l

where %Ax = (Fy,..., Fn). Suppose that g € k{X] is defined as the restriction
to X of a polynomial G. If we set d;g = d.G then the answer depends on
the choice of the polynomial G; more precisely, it would only be defined up
to adding a terms d; F with F € Ax. Since Ax = (Fy,...,Fy), we have
F=AF,+ -+ AnFn, and by (1) and the fact that Fi(z) = 0, we get
that d; F = Ai1(z)d:F} + -« + Am(z)dz Fin. Using (2) we see that all the
linear forms d_F for F € Ay are 0 on 6;, and hence, if we write d.g for the
restriction to O, of the linear form d.G, that is,

d:g = delezl (4)
we get a map that sends any function g € k[X] into a well-defined linear form
d.g on 6;.

Definition. The linear function d.g defined by (4) is called the differential
of g at .

Obviously,

d:(f+9)= dzf +d.g, d:(fg) = f(:t)d,g + g(z)dzf‘ (5)

We thus have a homomorphism d: k[X] — 67, where 6 is the space of
linear forms on ©;. Since d.a = 0 for a € k, we can replace the study of this
map by that of d;: m; — 62, where m, = {f € k{X] | f(z) = 0}. Obviously
m, is an ideal of k[X]).

Theorem 1. The map d, defines an isomorphism of the vector spaces
m./m2 gnd 6.
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Proof. We need to show that imd, = 67, and kerd, = m2. The first of these
is obvious. Any linear form ¢ on 6, is induced by some linear function f on
AN, and d. f = ¢. To prove the second assertion, suppose that z = (0,...,0)
and that g € m, satisfies d;¢ = 0. Suppose that g is induced by a polynomial
G € k[Th,...,Tn]. By assumption the linear form d;G is 0 on 6., and hence
is a linear combination of the equations (2) defining this subspace, that is,

d:G=MdFy + -+ ApndFpy.

Set Gy = G-\ F} -+ - - — Ay Fy. We see that Gy does not have any terms of
degree O or 1in T3,..., TN, and therefore G; € (T1,...,Tn)2 Furthermore,
GllX = GlX = g, and hence g € (t1,...,tn)%, where t; = T"IX' Since
obviously m; = (t;,...,tn), this proves the theorem.

As is well known, if L is a vector space and M = L* is the vector space
of all linear forms on L then L can be identified with the vector space of
all linear forms on M, that is, L = M™. Applying this in our case gives the
following.

Coroilary 1. The tangent space ©; at a point z is isomorphic to the vector
space of all linear forms on mz/m2. O

The vector space m,/m? is called the cotangent space to X at z.

From this, we make a deduction concerning the behaviour of tangent
spaces under a regular map f: X — Y between varieties. Suppose that
z € X and y = f(z). Then f defines a map f*: k[Y] — k[X], and obvi-
ously f*(my) C m; and f*(m2) C mZ; thus f induces a map f*: m,/m2 —
m,/m2. Linear functions, like any functions, are contravariant (map in the
opposite direction) and since by Corollary 1 the tangent spaces Ox z and Oy,
are isomorphic to the vector space of linear forms on m;/m2 and m, /“‘: re-
spectively. We get a map Ox ; — Oy,,. This map is called the differential of
f and denoted by d.f.

It is easy to check that if g: Y — Z is another regular map and z = g(y)
then the differential d(g o f): ©x,z — Oz, of the composite map is given
by d(g o f) = dg o df. If f is the identity map X — X then for any point
z € X the differential d. f is also the identity map on the tangent space at
any point. These observations imply the following result.

Corollary 2. Under an isomorphism of varieties, the tangent spaces at cor-
responding points are isomorphic. In particular the dimension of the tangent
space at a point is invariant under isomorphism. 0O

Theorem 2. The tangent space Ox ; ts a local inveriant of a point = of ¢
variety X. Namely, Ox  is the dual vector space of the vector space m;/m2,
where m; is the mazimal ideal of the local ring O, of z.
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Proof. We show how to determine 6, in terms of the local ring O, of z. Recall
that the differential of a rational function F/G, where F,G € k[T1,...,Ty),
at a point where G(z) # 0, is given by
G(z)d . F — F(z)d. G
G

We can view a function f € O, as the restriction to X of a rational
function F/G, and define the differential as d.f = d,(F/G')Iez. All the
arguments given before Theorem 1 and during its proof go through as before,
and we see that d, defines an isomorphism d,: m;/m2 = %, where now m,

is the maximal ideal {f € O, | f(z) = 0} of the local rmg O This proves
Theorem 2.

d:(F/G) =

We define the tangent space O, at a point z of any quasiprojective variety
x'as (mz/m2)*, where m, is the maximal ideal of the local ring O, of z. By
Theorem 2, 8, is then also the tangent space at z to any affine neighbourhood
of z.

The tangent space is thus defined as an abstract vector space, not realised
as a subspace of any ambient space. However, if X is affine and X C A® then
the embedding i: X < AN defines an embedding di: Ox , «— O~ ,. Since
O~ ; may be identified with AV, we can view Ox; as embedded in AN
thus returning to the definition given in 1.2.

If X C PV is a projective variety and = € X with z € AY, then Ox; is
an affine linear subspace of AN. The closure of 6x ; in PN does not depend
on the choice of the affine piece AY. Despite the ambiguity in using the same
term for two different objects, the closure 2] X,z C PN is sometimes also called
the (projective) tangent space to X at z. The usual verification shows that
By . C PV is defined by the equations

N

2 (z)¢ =0,
>
where {F,} is a homogeneous basis for the ideal of X.

The intrinsic nature of the tangent space provides answers to certain
questions on embedding varieties in affine spaces. For example, if 1€ X isa
point such that dim©,; = N, then X is not isomorphic to any subvariety of
an affine space A™ with n < N. An isomorphism f: X 5 Y C A™ would take
6; isomorphically to the subspace ©(;) C A". From this, for any n > 1, one
can construct an example of a curve X C A" not isomorphic to any curve
Y C A™ with m < n. Namely, take X to be the image of A! under the map

7 =t", zp=t"", ... g, =t (6)

It is enough to prove that the tangent space to X as z = (0,...,0) is the
whole of A™. This means that all polynomials F € 2x do not contain linear
terms in Ty,...,Ty. Let F € %x and write
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n
F=Y aT,;+G with Ge(Ty,...,T).

i=1

Substituting (6) in F, we get the following identity in ¢

n
S agrttp o, L ) =0,

i=1

But if any a; # O this is impossible, since the terms a;t"**~! have degree
< 2n—1, and terms coming from G(t", . ..,t>"~1) have degree > 2n, so that
they cannot cancel out.

It follows from the proof just given that no neighbourhood of z in the
curve X is isomorphic to a quasiprojective variety in A™ with m < n.

We now consider some examples of tangent spaces. We start by giving
an interpretation of the tangent space to a point ¢ € P(V) of the projective
space corresponding to a vector space V. The tangent space Oy, to V at v
can naturally be identified with V/, since m,/m? is identified with the vector
space of linear forms on V, that is, V*. The map r: V'\ 0 — P(V) given by
(&0 ---,&n) = (€0 : +- - : €a) has differential dy7: By, =V — Opvy r(v). If
& # 0 at v then in coordinates z; = £; /& a linear form ¢ € By, goes over
into the function ¥ = (d,7)(¢) on Mg,/ m:(u) for which

W(z:) = pdy (& /60) = E_so(_ﬁw_g-;&@
It follows that the image of dy7 is the whole of Op(v),x(v), and the kernel
consists of the vectors (ng, . . . , ) satisfying &ino = &, that is, proportional

to (£0,---,6n)-
Thus for £ € P(V) we have

Opv).e = V/ie, . (M

where l¢ = m=!(£) is the line in V' corresponding to a point § € P(V).

From this, we can say that if X C P(V) is a projective variety defined by a
system of homogeneous equations, and X C V the affine cone over X, defined
in V by the same equations, then Ox ; = 6;;/1,, where z = n(Z), and I,
is as in (7). We apply this interpretation of the tangent space to a projective
variety to the algebraic varieties considered in Chap. I, 4.1, Examples 1-3.

Ezample 1. The Grassmannian. We consider here only X = Grass(2,n). It
is defined by the equations z> =z Az =0 in Il’(/\2 V). Differentiating these
equations, we get that the tangent space to the affine cone Xc /\2 Vatz
consists of y € A?V such that

TAy=0. 8
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Suppose that z € A’L C /\2V is the point corresponding to a 2-plane
L C V,sothat A’L = kz, and let f € Hom(L,V/L). Then it is easy to
check that for any basis e;, es of L, the bivector y = e; A f(e2) — ea A f(e1)
is uniquely determined in /\2 V/kz, is independent of the choice of a basis in
L up to a scalar multiple, and satisfies (8). Moreover, any solution to (8) is
obtained in this way. Thus for any 2-plane L C V, we see that

OGrase(2,v),L = Hom(L, V/L). ()

We will show in Chap VI, 4.1, Example 3 that a similar relation holds for
any Grass(r, V), and give an interpretation.

Remark. Our starting point for deducing (9) was that Grass(2,V) is given
by the system of equations = A z = 0. But in order to apply the definition
of the tangent space given in 1.2, we need to know that these equations not
only define X = Grass(2, V) set-theoretically, by also generate the ideal 2 x.

At present we can only assert that if we write out the equations = /\z =0 as
Fy = ... = F,, = 0 then, after restricting to some affine piece of P(/\ V), the
space deﬁned by Y(8F;/8T;)(z)(Ti — z:) = 0 is isomorphic to Hom(L, V/L).

From this it is already not hard to deduce that Ax = (Fi,...,Fm), and
hence the relation (9) holds without any reservations (see §3, Ex. 15).

Ezample 2. Variety of associative algebras. Differentiating the associativity
relation Chap. I, 4.1, (7), we see that the tangent space to the variety of
associative algebras is defined by the equations

Z( Ilk + alkzu Z(atl IJk + aJkItl ) (10)
l§

Suppose that z]} = 7);, satisfy these equations. Consider the bilinear function
f(z,y) with z,y € A given by f(ei,€;) = 3_,, n{7em. The relations (10) then
take the form

zf(y,2) + f(z,92) = f(zy,2) + f(z,9)z  forallz,y,z€ A

Functions of this type are called 2-cocycles on A. Thus the tangent space to
the variety of algebras at a point corresponding to an algebra A is isomorphic
to the space of 2-cocycles on A.

Remark. As in Example 1, we started from the relations Chap. I, 4.1, (7),
that define the variety of associative algebras only in the set-theoretic sense.
Whether the left-hand sides of these equations generate the ideal of the va-
riety seems not to be known; it is known that this fails for Lie algebras, and
it is plausible that it also fails for associative algebras. Thus the space of
2-cocycles on A is only equal to the tangent space at A to the variety of
algebras for those dimensions n for which the equations Chap. I, 4.1, (7) gen-
erate the ideal of the variety of algebras, or for A for which these equations
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generate the ideal locally. However, the associativity relations Chap. I, 4.1,
(7) are so natural that any information deduced from them should have some

_kind of meaning. In particular, for a discussion of the space of 2-cocycles, see
Chap. V, 3.4, and Chap. VI, 4.1, Example 4.

Ezample 3. Variety of quadrics. Let V be the vector space of symmetric
n X n Mmatrixes A = (z;5), with z;; = Zji, and consider the variety A C
P(V) given by det A = 0 for A € V. It is easy to see that det A is an
irreducible polynomial, so that A is an irreducible hypersurface. The tangent
space to the affine cone A at a matrix A consists of matrixes B € V such
that ((d/dt) det(A + tB))lt = o = 0. Since

d
5 det(A+B)jy _ g = det Ay +--- + det Ay,

where A; is the matrix obtained by replacing the ith row of A by that of
B, this expression is 0 if rank A < n — 1. For these points 64,4 = P(V).
Suppose that A has rank n — 1. Transformations A — ‘CAC with C a
nondegenerate matrix obviously define automorphisms of A. We can use such
a transformation to put the quadratic form f corresponding to A in the form
22 4...4+22_,. Thus we can assume that f = z?+-.-+2z2_,, and then the
same argument shows that ((d/dt) det(A + tB))|t — o equals the entry bn,
of B. Hence at such points, the tangent space 64,4 can be identified with
the subspace of matrixes B € V with b,, = 0, that is, the space of quadrics
passing through the vertex of the singular quadric f = 0.

1.4. Singular Points

We now explain what can be said concerning the dimension of tangent spaces
of an irreducible quasiprojective variety X. Our result will be local in nature,
so that we restrict ourselves to considering affine varieties.

Let X C AV be an irreducible variety. Consider the subset © of the direct
product AN x X consisting of pairs (a,z) with a € AN and z € X such that
a € 6,. The equation 1.3, (2) shows that © is closed in AN x X. Write
m: 6@ — X for the second projection, 7(a,z) = z. Obviously #n(6) = X
and 77 Y(z) = {(a,z) | a € 8;}. Thus O is fibred over X with the tangent
spaces O, at different points of X as fibres; 6 — X is called the tangent
fibre space to X. We apply to 6 the results on the dimensions of fibres of a
map Chap I, 6.3, Theorem 7 and its corollary; then we see that there exists
a number s such that dim &, > s for every z € X, and the points y € X for
which dim 6y > s form a closed proper subvariety Y G X, that is, a variety
of smaller dimension.
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Definition. Let X be an irreducible variety and set s = min,ex dim 6,. We
say that a point = € X is nonsingular® if dim©, = s; we also say that X
is nonsingular at z. A variety X is nonsingular if it is nonsingular at every
z € X.If dim©,; > s then z is a singular point of X.

As we have just seen, nonsingular points of X form an open nonempty
subvariety, and singular points a closed proper subvariety.

Counsider the example of a hypersurface (1.2, Exampie 2), which contains
as the particular case n = 2 the case of algebraic plane curves considered in
Chap. [, 1.5. If Ax = (F) then the equation of the tangent space at z is

n

g—TIfj(I)(Ti —z;)=0.

i=1 i
We now prove that in this case $ = mindim &, = n — 1. This is obviously
equivalent to saying that the OF/0T; are not all identically 0 on X. In char-
acteristic 0 this would mean that F is constant, and in characteristic p > 0
that all the indeterminates only appear in F in powers that are multiples
of p. But then, as in Chap. I, 1.5, since the field k is algebraically closed, it
would follow that F = FP, and this contradicts Ax = (F).

Thus in our example, nonsingular points £ € X have dim6, =dim X =
n —1. We now prove that the same holds for an arbitrary irreducible variety,
and that the general case reduces to that of a hypersurface.

Theorem 3. The dimension of the tangent space at a nonsingular point
equals the dimension of the variety.

Proof. In view of the definition of nonsingular point, the theorem asserts that
dim &, > dim X for every point = of an irreducible variety X, and that the
set of points z with dim @, = dim X is open and nonempty. This is obviously
a local assertion, and we need only consider the case of an affine variety. We
have seen that there exists an.s such that dim©; > s for every z € X, and
the set of points z with dim ©,; = s is open and ronempty. It only remains
to prove that s = dim X. We now use Chap. I, 3.3, Theorem 5, which asserts
that X is birational to a hypersurface Y.

Let ¢: X — Y be the birational map of Chap. I, 3.3, Theorem 5. By
Chap. 1, 4.3, Proposition, there exist nonempty opensets U C X and V C Y
such that ¢ defines an isomorphism ¢: U = V. By the remarks made before
the statement of the theorem, the set W of nonsingular points of the variety
Y is open, and dim @y = dimY = dim X for ally € W. The set WNV is also
open and nonempty, and hence ¢~} (WN V) C U is also open and nonempty.

5 The term smooth is used interchangeably with nonsingular in the current litera-
ture. The first English edition of this book used the archaic term simple, which
goes back to Zariski, and is a literal translation of the Russian, but is not in
current use.
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Since the dimension of the tangent space is invariant under isomorphism,
dim O, = dim X for z € ¢~} (W N V). The theorem is proved.

Consider now reducible varieties. Already the inequality dim 8, > dim X
fails for them. For example, if X = X; UX; with dim X; = 1 and dim X, = 2,
and if £ € X; \ X2 is a nonsingular point of X; then dim©, = 1, whereas
dim X = 2. This is only to be expected, since a component of X not passing
through z contributes to the dimension dim X, but does not affect 6,. Hence
it is natural to introduce the following notion. The dimension of X at a point
z, denoted by dim.; X, is the maximum of the dimensions of the irreducible
components of X through z. Obviously dim X = max;¢x dim; X.

Definition. A point z of an affine variety is nonsingular if diim ©; = dim; X.

It follows from Theorem 3 that dim &6, > dim, X for any point z € X.
Indeed, if X* for i = 1,...,s are the irreducible components of X passing
through z, and ©; is the tangent space to X* at this point then dim 6} >
dim X* and €% C 6;, so that

dim 6, > maxdim 6%, > maxdim X* = dim, X.

It follows from Theorem 3 exactly as before that the singular points are
contained in a subvariety of X of smaller dimension.

The passage to an arbitrary quasiprojective variety is obvious: a point
z € X is nonsingular if it is nonsingular on an affine neighbourhood U 5 z.
This is equivalent to dim 68, = dim, X. A variety is nonsingular or smooth if
all its points are nonsingular.

Examples of singular points of algebraic plane curves appeared in Chap. I,
1.5. We now consider a quadric Q@ C P". In a suitable coordinate system, Q
has the equation z2 + --- 4+ 22 = 0 for some r < n (here we are assuming
that chark # 2). The singular points of Q are given by 2o = -+ = z, = 0,
and if 7 = n, there are none. If r < n then the singular points form a
(n — r — 1)-dimensional linear subspace L C P". Intersecting Q with the
r-dimensional subspace ZT,4; = -+ = T, = 0 gives a nonsingular quadric
S C P. For any point g = (ag: -+ :ap) €EQ the pointss=(ag: -+ :a,) €
S, because the equation of Q does not involve the last n — r coordinates
Typpls- .-y Zn. If s is fixed, the points ¢ € Q with arbitrary a,41,..., an form
the (n —r)-dimensional linear subspace spanned by s and L. These subspaces
sweep out Q. For this reason, we say that Q is a cone with vertex the linear
subspace L and base the nonsingular quadric S.

Chap. 1, 6.1, Example 5 showed that dim Grass(r,n) = r(n —r), and that
Grass(r, n) is nonsingular and rational. In exactly the same way, in the space
of quadrics, by 1.3, Example 3, the open set of the determinantal hypersurface
,A consisting of quadrics of rank n — 1 is nonsingular. In the case of the
varlety of associative algebras (Example 2), the situation is more complicated;
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there are both nonsingular and singular points, that is, “nonsingular” and
“singular” algebras.

1.5. The Tangent Cone

The simplest invariant measuring how far a singular point is from being
nonsingular is the dimension of its tangent space. However, there is a much
finer invariant, the tangent cone to X at z. We do not need this notion in
what follows, and therefore leave the detailed working out of the following
arguments to the reader as a (very easy) exercise.

Let X be an irreducible affine variety. The tangent cone to X at x € X
consists of lines through z that we define as the analogue of limiting positions
of secants in differential geometry.

Suppose that X ¢ AN with z = (0,...,0), and that we make A" into a
vector space using the choice of z as ongm In AM+1 = AN » Al consider
the set X of pairs (a,t) with a € AN and ¢ € A! such that at € X. Obviously
X is closed in AN+1. We have, as usual, the two projections ¢: X — A! and
#: X — AN. One sees easily that X is reducible (if X # AN), and consists
of two components: X = X, UX,, where X; = {(2,0) | a € A¥} and X1 is
the closure in X of ¢~1(Al\ 0). Write @; and ; for the restriction to X of
the projections ¢ and 1. The set 4;(X;) is the closure of the set of points
on all secants of X through z. The set T> = 91(p; " (0)) is called the tangent
cone to X at z.

It is easy to write out the equations of the tangent cone. The equations
of X are of the form

Flat)=0 for all F € Ay.

Suppose that F = Fy + Fi;; +--- 4 F;, where Fj is a form of degree j and
F, # 0. Then F(at) = t*Fy.(a) + t**'Fi,1(a) + - - - + ! Fi(a). Since F(0) =0,
we automatically have k > 1, and the equation of the component X, inside
X is t =0. It is easy to see that the equations of T, are Fj = 0 for all
F € Ax. The form F}, is the leading form of F. Thus T is defined by setting
to 0 the leading forms of all polynomials F € 2Ax. Since T} is defined by
homogeneous polynomials, it is a cone with vertex z. It is easy to see that
T, C 6,, and that T, = 6, if z is a nonsingular point.

We consider the example of an algebraic plane curve X C A2 If %x =
(F(z,y)) and Fy is the leading form of F' then T; has equation Fi(z,y) =0
Since Fj, is a form in two variables, and k is algebraically closed, F} splits as
a product of linear forms, Fi(z,y) = [J(aiz + Biy)". Hence in this case T;
breaks up into several lines o;z + B;y = 0. These lines are called the tangent
lines to X at z, and [; their multiplicities. If k > 1 then 6, = A%. The number
k is called the multiplicity of the singular point . When k = 2 or 3 we say
that z € X is a double point or triple point.
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For example if F = 22 — y? 4+ z® and x = (0,0) then T consists of the
two lines x4+ y=0and -y =0; if F = 2%y — ¢ + z* and z = (0, 0) then
T, consists of 3 linesy =0, z+y=0and z—y =0. If F = y?> — z° and
z = (0,0) then y =0 is a tangent line with multiplicity 2.

In exactly the same way as the first definition of tangent space given in 1.2,
the above definition of tangent cone uses a notion that is not invariant under
isomorphism. However, one can prove that the tangent cone T is invariant
under isomorphism, and is a local invariant of z € X.

Exercises to §1

1. Prove that the local ring Ox,: of a point z of an irreducible variety X is the
union in k(X) of all the rings k{U] for U a neighbourhood of z.

2 The  map @(t) = (t*,t%) defines a birational map from the line A’ to the curve
y? = 2°. What are the rational functions in t that correspond to the functions in
the local ring O of the point (0,0)?

3. The same question for the birational map from A’ to the curve of Chap. I, 1.2,
).

4. Prove that the local ring O of the curve zy = 0 at (0,0) is isomorphic to the
subring © C O & O,, where O1 and O are copies of the local ring of 0 in Al,
consisting _of functions f1, f2 with f; € O) and f, € O, such that £;,(0) = f2(0).

5. Determine the local ring at (0, 0, 0) of the curve consisting of the three coordinate
axes in A3,

6. Determine the local ring at (0,0) of the curve zy(z — y) = 0. Prove that this
curve is not isomorphic to that of Ex 5.

7. Prove that if z € X and y € Y are nonsingular points then (z,y) € X x Y is
nonsingular.

8. Prove that if X = X; U X3 and z € X; N X, then the tangent spaces Ox z,
Ox,,z and Ox, = satisfy
9x,,= + 9Xg,: C GX,:-

Does equality always hold?
9. Prove that a hypersurface of degree 2 with a singular point is a cone.

10. Prove that if a hypersurface X of degree 3 has two singular points then the
line joining them is contained in X.

11. Prove that if a plane curve of degree 3 has three singular points then it breaks
up as a union of 3 lines.
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12. Prove that the singular points of the hypersurface X C P" defined by
F(xo,...,%n) = 0 are determined by the system of equations

F(zq,...,n) =0, and 8—F(:z:o,,..,1:,,) =0 fori=0,...,n.
Ox;
If deg F' is not divisible by the characteristic of the field, then the first equation
follows from the others.

13. Prove that if a hypersurface X C P" contains a linear subspace L of dimension
r > n/2 then X is singular. [Hint: Choose the coordinate system so that L is given
by Tr41 = +-» =z, = 0, write out the equation of X and look for singular points
contained in L.]

14. For what values of a does the curve 1:8 +ad+ 1:% +a(xo + 1 + :1:2)3 = 0 have
a singular point? What are its singular points then? Is it reducible?

15. Determine the singular points of the Steiner surface in P2:
1:?1:% + 1:31:?, + :!:g:t:f — xox1x2x3 = 0.

16. For what values of a does the surface =8 + z?¢ + =& + =38 — az1T27aze have
singular points, and what are these points?

17. Let PY with N = v, m be as in Chap. I, 4.4, Example 2. Prove that cver a
field of characteristic 0, the points of the space PV for which the corresponding

hypersurfaces has a singular point form a hypersurface in P” . [Hint: Use the result
of Chap. I, §6, Ex. 10.]

18. Let F(zo,x1,x2) = 0 be the equation of an irreducible curve X C P? over
a field of characteristic 0. Consider the rational map ¢: X — P? given by the
formulas u; = 8F/8z(xo,x1,x2) for i = 0,1,2. Prove (a) ¢(X) is & point if and
only if X is a line; (b) if X is not a line, then ¢ is regular at z € X if and only if z
is nonsingular. The image (X) is called the dual curve of X.

19. Prove that if X is a conic then so is p(X).
20. Find the dual curve of 3 + 23 + 23 = 0.

21. Prove that if X C P™ is a nonsingular hypersurface and not a hyperplane, then
as ¢ runs through X, the tangent hyperplanes G; form a hypersurface in the dual
space P"*.

22. Let ¢ be the regular map of a variety X C A™ consisting of the linear projection
to some subspace. Determine the map dy on the linear subspaces 6 for z € X.

23. Let = be a point of a variety X and m; C O, the local ring at = and its
maximal ideal. Prove that for every integer ¢ > 0, the module mf /m%*? is a finite
dimensional vector space over k.
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2. Power Series Expansions

2.1. Local Parameters at a Point
We study a nonsingular point z of a variety X, with dim, X =n.

Definition. Functions uy,...,u, € O are local parameters at z if each
u; € m,, and the images of u,, ..., 4, form a basis of the vector space mz/mi.

In view of the isomorphism d,: m,/m2 — 62, we see that u;,...,uq €
O, is a system of local parameters if and only if the n linear forms
dsuy,...,dzttn on O, are linearly independent. Since dim©, = n, this in
turn is equivalent to saying that the system of equations

dzuy =+ - =dzun =0 1)

has 0 as its only solution in 8;.

We can replace X by an affine neighbourhood X’ of z on which the
uy,..., Uy are regular functions; set A = Ax.. Now write X/ for the hyper-
surface in X' defined by u; = 0, and set %; = Ax;. Let U; be a polynomial
that defines the function u; on X’. Then 9; D (%,U;), and by definition of
the tangent space it follows that 6; C L;, where 6; is the tangent space to
X; at £ and L; C O; is defined by d.U; = 0. From the assumption that
the system (1) has 0 as its only solution in 6, it follows that L; # 6.,
that is, dim L; = n — 1, and from the theorem on dimension of intersection
and the inequality dim6; > dim X/ it follows that dim&; > n — 1. Hence
dim©; = n — 1, and it follows that z is a nonsingular point of X}. In some
neighbourhood of x, the intersection of the varieties X is exactly z: for if
some component Y of (| X! with dimY > 0 passed through z, the tangent
space to Y at = would be contained in all the 6;, and this again contradicts
the assumption that (1) has 0 as its on)y solution.

We have thus proved the following assertion.

Theorem 1. If uy,...,u, are local perameters at = such that the u; are
regular on X, and X; = V(u;), then z is @ nonsingular point on each of the
X; and (16; = 0, where 6; is the tangent space to X; at z.

Here we meet a general property of subvarieties that will appear frequently
in what follows.

Defihition. Subvarieties Yy,...,Y; of a nonsingular variety X are transversal
at a point z € (Y, if

codime, . ([ Ori.z) = ) _ codimx Y. (2)

i=1 =1
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For example, two curves on a nonsingular surface are transversal at a
point of intersection if they are both nonsingular and their tangent lines are
different (Figure 7).

Figure 7. Transversal Curves on a Sur-
face

Using the inequality Chap I, 6.2, (4) for the subspaces Oy, - C Ox,z, and
the inequalities codir%gy_, z < codimy Y; we see that (2) implies the equality

dim Oy, ; = dimY;,

so that each Y; is nonsingular at z, and the equality

r r
codimeg, . (n By, z) = Z codim By, -,

i=1 =1

so that the vector subspaces Oy, . C Ox,; are transversal, in the sense that
their intersection is as small as possible for their dimensions. From the inclu-
sion (\]_, Oy, = D Oz, where Y =Y, we deduce in the same way that Y
is nonsingular at z.

Thus Theorem 1 asserts that the subvarieties V'(u;) are transversal.

Let X’ be an affine neighbourhood of z in which (}.X; = =z = (0,...,0).
If X’ ¢ AN and ¢; are coordinates in A¥, then z is defined by equations
t, = =ty =0, and [} X; is defined in X’ by uy = --- = u, = 0.
By the Nullstellensatz it follows that (1, ...,t8)* C (u1,...,un) for some
k > 0, where {t;,...,ty) and (uy,...,Uun) denote ideals of k[X’]. A fortiori
the same holds for the ideals (t;,...,tn) and (uy,...,un) in O,. Note that
(t1,...,tn) = mg, so that m¥ C (uy,...,un). In fact & more precise statement
holds.

Theorem 2. Local parameters at z generate the mazimal ideal mz of O;.

Proof. This is an immediate consequence of Nakayama's lemma (Appendix,
$6, Proposition 3) applied to the maximal ideal m; as an O,-module. By 1.1,
Lemma, m,, is a finite O,-module. Since local parameters generate m_ /m,,
they generate m, by Nakayama’s lemma. The theorem is proved.
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Ezample. Let X be a nonsingular affine variety and G a finite group of auto-
morphisms of X, as in Chap. I, 2.3, Example 11. Suppose that G acts freely
on X, that is, g(x) = x implies that g = e for any g € G and z € X, where
e is the identity map. We prove that under these assumptions the quotient
variety X/G is again nonsingular. Let X — Y = X/G be the quotient map
constructed in Chap. I, 2.3, Example 11, and set n = dim X = dimY. Choose
z€ X,sety= f(z) €Y and let uy,...,un be local parameters at = with
u; € k[X]. Then uy, ..., un generate m,. For each u;, we construct a function
T; € k[X] such that T; = v, mod m} and T; € mJ,, for all g € G with g # e.
For this, we need only multiply u; by the square of an element h € k[X] with
h(z) =1 and h(g{z) =0 for all g #e.

Set v; = S(%;), where the averaging operator S is as in Appendix, §4,
Proposition 1 and Chap. I, 2.3, Example 11. Since ¢*%; € m2 for g # e, we
have v; = u; mod m2, and hence vy, . . ., vy, are local parameters at . But v; €
k[Y] and v;(y) = 0. Let us prove that m, = (v1,...,v,). Let h € my Nk[Y].
Then f*(h) € m, and f*(h) = Y h,v;. Applying the operator S to this, in
view of S(f*(h)) = f*(h) and S(v;) = v;, we get that f*(h) = > S(ki)w.
Thus dimm, /m2 < n, and it follows that y is nonsingular. :

It is important to note that nonsingularity of a point z is characterised
by a purely algebraic property of the local ring O,. By definition z € X is
nonsingular if and only if dimy m,/m2 = dim, X. The left-hand side of the
equality is defined for any Noetherian local ring O. The right-hand side can
also be expressed as a property of the local ring O,. Namely, by Chap. I,
6.2, Theorem 5, Corollary 1, the dimension of X at z can be defined as the
smallest r for which there exist r functions u;,...,u4, € m; such that, in
some neighbourhood of z, the set defined by u; = --- = u,. = 0 consists of =
only. By the Nullstellensatz, this property is equivalent to (uy,...,us) D mk
for some k > 0. .

For an arbitrary Noetherian local ring O with maximal ideal m, the small-
est number r for which there exist r functions uy,...,u, € m, such that
(u1,...,u:) O mk for some k > 0 is called the dimension of O and denoted
by dim O. By Nakayama’s lemma, the ideal m itself is generated by n ele-
ments, where n = dimg,m{m/m?). Hence

dimO < dimg/m(m/m?).

If diim O = dimo/m(m/m?) then the local ring O is said to be regular. We
see that z is a nonsingular point. if and only if the local ring O, is regular.
This is the algebraic meaning of nonsingularity of a point.

.
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2.2. Power Series Expansions

The idea of associating power series with elements of the local ring O, is
based on the following arguments. For any function f € O,, set f(z) = ao
and f, = f —ap; then f; € m;. Let u,,...,u, be asystem of local parameters
at z. By definition, w1, ..., un generate the whole of the vector space m,/m2.
Thus there exist ay,...,an € k such that fi ~ Yo a;u; € m2. Set fy =
fi-Tr iy = f-cn—Y i, asu;. Since f2 € m2, we can write f, = Y gjh;
with g;, h; € m,. As above, there exist §ji,7;ji € k such that

n n
95 — Zﬂji‘u-i € mz and hj - Z’Yj,’u,‘ € mi
=1 i=1
Now set Zj (z‘ ﬂj,‘u,‘) (z‘ 'ngug) = Z?,k=l aruiuk. Then fo — Z kUi €
m3, and therefore f3 = f — ag — 3o, @it — Y cktyux € m3. Continuing
in the same way, we can obviously find forms F; € k[Ty,...,Ty] of degree
deg F; = i such that f — Zf=0F‘,~(u1, vy lly) € mETL

Definition 1. The formal power series ring in variables (Ty,...,T,) =T is
the ring whose elements are infinite expressions of the form

S=F+F+F+-, (1)

where F; € k[T is a form of degree i, and the ring operations are defined by
the rules: if ¥ = Gy + Gy + G2 + --- then

¢+!p=(Fo+G0)+(F1+G1)+(F2+G2)+"', and

U =Hy+H, +Hy +---, where H; = Z G;F.
) JH=i

The formal power series ring is denoted by k[[T]]. It contains k as the
power series with F; = 0 for ¢ > 0. If i is the first index for which F; # 0 then
F, is called the leading term of (1). The leading term of a product is equal to
the product of the leading terms, so that k[[T]] has no zerodivisors.

The arguments discussed above allow us to associate a power series § =
Fo+ F1 + F3 + --- with a function f € O,.

We arrive at the following definition.

Definition 2. A formal power series  is called the Taylor series of a function
f € O, if for every k > 0 we have
/

k
f=Se(ur,...,un) €mEt, with S, =) F,. ()

1=0
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Ezample. Let X = A! with coordinate ¢, and let x be the point ¢ = 0. Then
m, = (t), and one can associate a power series 3 ov_o Qt™ with any rational
function f(t) = P(t)/Q(t) with Q(0) # 0 such that

k

P(t) k
—_ - amt™ =0 modtFt!,
20 "X

that is,

k
P(t) - Q(t) Y amt™ =0 modt*+!,

m=0

This is the usual procedure for finding the coefficients of a power series of a
rational function by the method of unknown coefficients. For example,

1 oa k tk+1 "
T—_t=ztm’ because l—t_zt'n:m:O modt +l
m=0 m=0

The correspondence f — & depends in an essential way on the choice of
the system of local parameters uy,...,un.
The arguments we have just given prove the following assertion.

Theorem 3. Every function f has at least one Taylor series.

Up to now we have used in essence not that z is nonsingular, but only
that uy,...,u, generate m,/m2. Now we make use of the nonsingularity of
z.

Theorem 4. If x is nonsingular, then a function has a unique Taylor series.

Proof. It is obviously enough to prove that any Taylor series of the function
f = 0is equal to 0. By (2), this is equivalent to the assertion that if uy, ..., un
are local parameters of a nonsingular point z, then for a form Fi(T3,...,T,)
of degree k,

Fi(uy,...,up) €mE*Y = F(Ty,...,Tn) =0. (3)

Suppose that this is not the case. By means of a nondegenerate linear
transformation, we can arrange that the coefficient of T,’f in F} is nonzero.
Indeed, this coefficient equals Fi(0,...,0,1), and if Fi(ay,...,a,) # 0 (and
such ay, ..., an certainly exist, given that F} # 0), then we just have to carry
out a linear transformation taking the vector (ay,...,an) to (0,...,0,1).
Thus we can assume that

Fi(Th,...,To) = aTf + Gi(T1, ..., Tac))TE 1 + - + Gi(Th, - - -, Ta),



2. Power Series Expansions 103

where & # 0 and G; is a form of degree i in T1,...,T—1. By 2.1, Theorem 2,
it follows easily that any element of m5*1 can be written as a form of degree
kinuy,...,u, with coefﬁciepts in m,. Hence the left-hand side of (3) can be

expressed in the form

auk +Gi(t, eyt o Gr(ug, - Unm1)

k k-1 (4)
= pu, + Hl(ula RN TINERD A SRR Hk(uls ey Unat)s

where p € m, and H; are forms of degree i. It follows that (a — p)uk €
{tu1,--.,tn—1)- Since & # 0, it follows that a — p ¢ m, and (@ — p)™! € O,
and hence u% € (u1,...,up_1). We see that V{u,) D V{u)N-- NV (up-y). It
follows that 6, D 6, N---N6,,_;, where O, is the tangent space to V{u;) at
z, and hence 6,N---N6, = O,N---NB,_;. Therefore dim6G; N---N6, > 1,
and this contradicts 2.1, Theorem 1. The theorem is proved.

Thus we have a uniquely determined map 7: O, — k[[T]] that takes each
function to its Taylor series. A simple verification based on the definition
(2) of T shows that it is a homomorphism. We leave this verification to the
reader.

What is the kernel of 7?7 If 7(f) = 0 for a function f € O,, then by (2)
this means that f € m5*! for all k. In other words, f € (Yoo mE. Thus we
are talking about functions that are analogues of the functions in analysis
with every derivative at some point equal to 0. In our case such a function
must be equal to 0. This follows from Appendix, §6, Proposition 4 and 1.1,
Lemma.

As a corollary we get the following result.

Theorem 5. A function f € O, is uniquely determined by any of its Taylor
series. In other words, T s an isomorphic inclusion of the local ring O; into
the formal power series ring k[[T}}. O

Recall that in this section we have nowhere used that the variety X is
irreducible. Conversely, Theorem 5 allows us to make certain deductions con-
cerning irreducibility.

Theorem 6. If z is a nonsingular point of X then there is e unique compo-
nent of X passing through z.

Proof. We replace X by an affine neighbourhood U of z contained'in X' =
X\ U Z, where Z; are the components of X not passing through z. Then
k[U] C O,. By Theorem 5, O, is isomorphic to a subring of the formal power
series ring k[[T}]]. Since k[[T]} has no zerodivisors, the same holds for k{U],
which is isomorphic to a subring of k[{T]]. Hence U is irreducible, as asserted
in the theorem.

Corollary. The set of singular points of an algebraic variety X is closed.
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Proof. Let X = |JX; be a decomposition into irreducible components. It
follows from Theorem 6 that the set of singular points of X is the union of
the sets X; N X; for i # j and the sets of singular points of X;. As a union
of a finite number of closed sets, it is closed.

If z is a singular point, the best we can do is to send an element f € O,
into the sequence of residue classes £, = f + m? € O,/m". This sequence
has the following compatibility property: if fn41: Oz /mP+t! — O, /m? is
the quotient map then 6,,1(&n+1) = &n. The set of all such compatible se-
quences {£,} under componentwise addition and multiplication forms a ring
0., called _the completion of O.. We have just defined a homomorphism
T: 0y —» Og by 7(f) = {£.}, where £, = f + m? € O,/m?. The same
argument as in_the case of a nonsingular point shows that r is an inclu-
sion. The ring O, is local, with maximal ideal 9 consisting of all compatible
sequences {£,} with §n € m;. It can be shown that applymg the same con-
struction again to 0z gives nothing new, that is, (0 )" 0,, and 7 in this
case is an isomorphism. If  is nonsingular, then 0, is just the formal power
series ring. In the general case, O, is an important characteristic of a sin-
gular point. If for z € X and y € Y the completed local rings O and O
are isomorphic, we say that the varieties X and Y are formally an_a.lytzcally
equivalent in neighbourhoods of these points. Since for a nonsingular point =
of an n-dimensional variety the local ring O, is isomorphic to that of a point
z' € A", all nonsingular points of all varieties of the same dimension have
formally analytically equivalent neighbourhoods. Compare §3, Ex. 8-16.

2.3. Varieties over the Reals and the Complexes

Suppose that k = R or C. We prove that in this case, the formal Taylor series
of a function f € O, converges for small values of T}, ...,T,.

Let X C AN be a variety, with Ax = {F,...,Fn), and suppose that
dim; X =n. If £ € X is a nonsingular point then the matrix

OF;
—~ 5]—'}(3:) i=l...rﬁ
has rank N — n. Suppose that the minor

OF;
det | 57 (@)

i=1.N-n 70, 1)
j=n+l..N

and that z is the origin. Then the restrictions ¢y,...,%, to X of the first n
coordinates form a system of local parameters on X at z. Write X’ for the
union of all components of the variety defined by

Fi=-=FyN_,=0 )
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that pass through . By (1), the dimension of the tangent space 6’ to X' at
z equals n, and by the theorem on dimension of intersections, dim, X’ > n.
Since dim©’ > dim, X', then dim; X’ = n and z is a nonsingular point
of X’. From this it follows by Theorem 6 that X’ is irreducible. Obviously
X' D X, so that dim X’ = dim X implies that X' = X.

We see that X can be defined in some neighbourhood of £ by the N —n
equations (2), and that these satisfy (1). By the implicit function theorem (see
for example Goursat {30}, Vol. 1, Chap. IX, §§187-190 or Fleming [25], 4.6),

there exists a system of power series &,,...,$y_n in n variables T3,..., T,

and an € > 0 such that $,(T},...,T,) converges for all T; with |{T;| < &, and

F(T,...,Tn, 81 (T), ..., n-n{T)) = 0; (3)

moreover, the coefficients of the power series &,...,8n_y are uniquely de-
termined by the relation (3).

However, assuming that ¢y, ...,%, are chosen as local parameters, the for-

mal power series 7(Tr41), ..., 7(Tn) also satisfy (3), and hence must coincide

with @1,...,8N_pn, and it therefore follows that T(T,.+1), ., 7(Tn) converge
1f|T|<sforJ.-1

Any function f € O can be written in the form f = P/Q, where P =
P(Th,...,T,) and @ = Q(T1,...,Ty) are polynomials and Q(z) # 0; and

then
f) = P(T(Tl),...,T(Tn)).
Qr(Th),...,m(Tn))
The convergence of 7(f) then follows from standard theorems on convergence
of power series.

In the same way, one can show that if u,, ..., uy is another system of local
parameters then

or(u;)
det ©,...,0)|.
oT; it
is nonzero, the Taylor series of ¢j,...,t, with respect to the system of
local parameters u,,...,u, are obtained by inverting the series 7(u;) =

&;(Ty,...,T,) for i = 1,...,n, and hence they also have positive radius of
convergence. Therefore for f € O, with respect to any choice of the system
of local parameters, the series 7(f) has positive radius of convergence.

The implicit function theorem asserts not only that the convergent series
&y,...,PN_n exist, but also that there exists > 0 such that any point
(t1,...,tN) € X with |t;] <npfori=1,...,N is given by the form t,4; =
Di(t1,...,tp) fori=1,...,N — n. It follows that (t1,...,tx) — (t1,...,tn)
is a homeomorphism of the set {(t1,...,tn) € X | |t:| <7} to a domain of
n-dimensional space.

Since in our case k = R or C, projective space PV over k is a topolog-
ical space. An algebraic variety X C PV is also a topological space. In the
respective cases k = R or C, this topology on X is called the real or complex
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topology of X. This topology and notions deduced from it should not be con-
fused with the terms of topological nature such as closed set, neighbourhood,
open set, closure, etc. used up to now.

The preceding arguments show that for an n-dimensional variety X, any
nonsingular point has a neighbourhood in the real topology that is homeo-
morphic to a domain of R™. Hence if every point of X is nonsingular then
X is an n-dimensional manifold in the sense of topology. If k = C then a
nonsingular point € X has a neighbourhood in the complex topology that
is homeomorphic to a domain in n-dimensional complex space C", and hence
to a domain in R?". Therefore if all points of X are nonsingular, X is a
2n-dimensional manifold.

It is easy to prove that PV over k = R or C is compact in the real
or complex topology. Thus if X is projective, it is compact. If k = C, the
converse also holds: a quasiprojective variety X that is compact in its complex
topology is projective. See Chap. VII, §2, Ex. 2.

In conclusion we note that everything we have said in this section (ex-
cluding the preceding paragraph) carries over word-for-word to the case that
k is a p-adic number field.

Exercises to §2

@ Prove that for an n-dimensional variety X, the set of points where n given
functions fail to form a system of local parameters is closed.

2. Prove that a polynomial f € k[T] = k[A'] is a local parameter at the point
T = « if and only if a is a simple root of f.

3. Prove that a formal power series = Fy + Fy + .-+ has an inverse in k[[T]] if
and only if Fo # 0.

4. Let T be an indeterminate. Consider the ring k((T')) of expressions of the form
AeaT™ "+ o1 T 4. 4 a0+ T +--. Prove that k({T)) is a field, and is
isomorphic to the field of fractions of k[[T}]. (It is called the field of formal Laurent
series.)

5. Let S C A? be the circle given by X2 +Y? = 1, over a field k of characteristic 0.
Prove that X is a local parameter at = (0, 1), and that the Taylor series expansion
of Y is given by

r(Y) = i(—l)"(l/z)(l/2 -1)---q/2-n+ I)XZn.

n!
n=0

6. Prove that if z is a singular point then any functlon f € Oz has an infinite
number of different Taylor series.

7. Let X = A'! and z € X. Prove that 7(Oy) is not the whole of [[T7]].
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3. Properties of Nonsingular Points

3.1. Codimension 1 Subvarieties

The theory of local rings allows us to prove an important property of non-
singular varieties analogous to Chap. I, 6.1, Theorem 3. The question under
discussion is that of defining a codimension 1 subvariety Y C X by means
of a single equation. For a singular variety, this property fails in general;
(compare Chap. I, 6.2, Corollary 5, Remark 2). We prove, however, that it
holds locally on a nonsingular variety. To state the result, we introduce the
following definition.

Definition. Functions fi,...,fm € O are local equations of a subvariety
Y € X in a neighbourhood of z if there exists an affine neighbourhood X’
of r such that fi,...,fm € k[X'] and ay’ = (f1,..-, fm) in k[X'], where
Y=YnX.

It is convenient to restate this condition in terms of the local ring O, of
z. For this, consider the ideal ay; C O, consisting of functions f € O, that
are equal to 0 on Y in some neighbourhood of . For an affine variety X, we
obviously have

ay,s = {f = u/v | u,v € k[X] with u € ay and v(z) # 0},

and if all components of Y pass through z, then ay = ay; N k[X].

Lemma. Functions fi,...,fm € Oy are local equations of Y in a neighbour-
hood of x if and only if ay» = (f1,.--, fm)-

Proof. If ay = (fi,...,fm) in k{X] then obviously also ay,;, = (fi,...,fm)
in 0.

Conversely, suppose that ay,; = (f1,..., fm) with f; € Oz, and let ay =
(91,--.,9s) with g; € k[X]. For i = 1,..., s, since g; € ay 5, we can write

m

=1

The functions f; and h;; are all regular in some principal open neighbourhood
U of z. Suppose that U = X \ V(g) with g € k[X]. Then k[U] consists of
elements of the form u/g! with u € k[X] and { > 0. Then by (1), inside k[U]
we have

(911---19s) = avk{U] C (f1,...) fm).

We prove that ay k[U] = ay+, where now ¥’ = Y N U. From this, it then
follows that ay+ C (f1,---,fm), and since f; € ay-, this implies the assertion
of the lemma.
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It remains to prove that ayk{U] = ay+. The inclusion ayk[U] C ay- is
obvious. Let v € ay:. Then v = u/g’ with u € k{X], and hence u = vgh;
hence u € ay, and since 1/g* € k[U], we get v = u/g' € ayk{U]. The lemma
is proved.

~ Our aim is to prove the following result.

Theorem 1. An irreducible subvariety Y C X of codimension 1 has a local
equation in a neighbourhood of any nonsingular point z € X.

The proof follows exactly the steps of the proof of Chap. I, 6.1, Theorem 3.
There, however, we used the fact that k{T] is a UFD. Here the part of k[T
is played by the local ring O_. It has the analogous property.

Theorem 2. The local ring O, of a nonsingular point is a UFD.

The proof of Theorem 2 is based on first establishing that the power
series ring k[{T]] is a UFD. This is a fairly elementary fact, similar to the
corresponding result for polynomial rings. We indicate only the main steps
of the proof. An entirely elementary proof (not depending on the remainder
of the book) can be found in Zariski and Samuel 78], Vol. 2, Chap. VII, §1,
Theorem 6.

We say that a power series ¢(T,...,T,) is regular with respect to the
variable T,, if its initial form is of degree m, say, and contains the term c,,T™
with ¢, # 0. A linear transformation of the variables T1,...,T;, obviously
induces an automorphism of k[[T}]. We can, in particular, carry out a linear
transformation so that any given nonzero power series ¢ becomes regular
with respect to T,,.

Lemma 1 (Weierstrass preparation theorem). Suppose that a power series
& € k[[T)] is regular with respect to T,, and has initial form of degree m; then
there erists a power series U € k([T)] with nonzero constant term such that
the series U is a polynomial in Ty, over k[[T},...,Tn-1]}, that is,

SU =TT+ R\ TP '+ -+ Rm,
with R; = Ri(T1,+ ,Ta=1) € k[[T1, -+ Tn=i]] fori=1,...,m.
Proof. See Zariski and Samuel [78], Vol. 2, Chap. VII, §1, Theorem 5. O
Lemma 2. The formal power series ring k([T is a UFD.
Lemma 1 allows us to prove this assertion by induction on the number of
variables T3, . . ., T, by reducing it to the analogous statement for polynomials

in T,, with coefficients in k[[T},. .., Tn-1]]- The proof is carried out in detail
in Zariski and Samuel [78], Vol. 2, Chap. VII, §1, Theorem 6.
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Proof of Theorem 2. We write (’3, for the ring of formal power series, and
view O, as a subring O, C O, (this is possible by 2.2, Theorem 5). Write
m,, for the ideal of 5, consisting of formal power series with constant term
0. Then mX is the ideal of formal power series having no terms of degree
< k. By definition of the inclusion O — O, (see 2.2, (2)), it follows that
Mk N O, = m*. Thus the assumptions of Appendix, §7, Proposition 1 are
satisfied, and this guarantees that O, a UFD (Lemma 2) implies O, a UFD.
The theorem is proved.

Proof of Theorem 1. As we have already said, the proof of Theorem 1 is
exactly the same as that of Chap. I, 6.1, Theorem 3. Since the assertion is
local in nature, we can assume that X is affine. Let f € O, be any function
that vanishes on Y. Factorise f into prime factors in O,. By the irreducibility
of Y, one factor must also vanish on Y. We denote this by g, and prove that
it is a local equation of Y. Replacing X by a smaller affine neighbourhood of
z, we can assume that g is regular on X.

Since V(g) D Y, and both are codimension 1 subvarieties, we have V(g) =
YUY’ IfY’ 3 z there exist functions k and A’ such that kh’ = 0 on V(g), but
neither h nor b’ are 0 on V(g). Therefore, g divides (Ah')™ in k{X] for some
r, and so a fortiori g | (Rh')" in O,. Since O, is a UFD it then follows that
g divides either h or k' in O_. Then either h or A’ vanishes on V(g) in some
neighbourhood of z, and hence, after passing to a smaller neighbourhood, on
the whole of V(g). This contradicts the assumption Y’ > z. Thus ¥’ & z,
and again replacing X by a sufficiently small affine neighbourhood of z, we
can assume that V(g) = Y. If now u vanishes on Y then g divides u* in k{X]
for some s > 0, and hence a fortiori in O;. It follows that g divides u in O,.
Thus ay,» = (g) and the theorem is proved.

Theorem 1 has many applications. Here is the first of these (compare
Chap. I, 1.6, Theorem 2).

Theorem 3. If X is a nonsingular variety and p: X — PV q rational map
to projective space, then the set of points at which ¢ is not regular has codi-
mension > 2.

Proof. Recall that the set of points at which a rational map ¢ is not regular
(the locus of indeterminacy of ) is a closed set. The assertion of the theo-
rem is local in nature, and it is enough to prove it in a neighbourhood of a
nonsingular point z € X. We can write ¢ in the form ¢ = (fo : -+ : fa)
with f; € k(X), and without changing ¢, we can multiply the f; through
by a common factor in such a way that all the f; € O, and they have no
common factor in O,. Now ¢ fails to be regular only at points at which
fo = --- = fn = 0. But no codimension 1 subvariety ¥ can be contained
in the locus defined by these equations; indeed, by Theorem 1, ay, = (g)
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and all the f; would have g as a common factor in O,, which contradicts the
assumption. The theorem is proved.

Corollary 1. Any rational map of a nonsingular curve to projective space is
regular. [

Corollary 2. If two nonsingular projective curves are birational then they
are isomorphic. [

Let k = C be the complex number field. It follows from Corollary 2 that
if two curves X’ and X" are birational then the set of points of X’ and X"
with their complex topologies are homeomorphic. Indeed, in this case, regular
functions, hence also regular maps, are defined by convergent power series,
and are hence continuous.

The same holds for the set of real points of curves X’ and X" defined
by equations with real coefficients, and such that there exists a birational
map ¢: X' — X" defined over R, that is, defined by rational functions with
real coefficients. This sometimes allows us to deduce easily that two curves
are not birational over R. For example the curve X defined by 32 = 2% — z
consists of two connected components (Figure 8). Therefore X is not rational
over R, since P! is homeomorphic to the circle, and has only one connected
component.

4 )

real locus

\
\

() .

\

the complex curve

3

Figure8. y?> = 2> —z over R Figure9. y* = z® —z over C

Using similar ideas, we can prove that the curve X given by 2 =23 -z
is also irrational over C. For this, we need to compare the topological spaces
of complex points of X and of P! with their complex topologies, and prove



3. Properties of Nonsingular Points 111

that they are not homeomorphic. Indeed, the first is homeomorphic to the
torus and the second to the sphere. This is a particular case of results proved
in Chap VII, 3.3. Figure 9 shows what the real points of X look like as a
subset of its complex points.

3.2. Nonsingular Subvarieties

Theorem 1 does not generalise to subvarieties ¥ C X of codimension greater
than 1; compare, for example, Chap. I, §6, Ex. 2. But a similar statement
does hold for a subvariety that is nonsingular at z. We prove a slightly more
precise fact. We start with an auxiliary assertion.

Theorem 4. Let X be an affine variety, £ € X a nonsingular point, and
suppose that uy,...,u, are regular functions on X that form a system of
local parameters at x. Then for m < n, the subvariety Y defined by uy =
-+ = Uy =0 is nonsingular at x, we have ay = (uy,...,un) in some affine
neighbourhood of x, and Um4y,...,Un form a system of local parameters on
Y atx.

Proof. The proof is by induction on m. For m = 1, Theorem 1 shows that
ay = (f) in some affine neighbourhood of z. Suppose that u;- = fv; then
dzu; = v(z)d, f. Now dyu; # 0, since u; is an element of a system of local
parameters at . Thus v(x) # 0, so that ay = (u;) in some smaller open set.
Since dyu; # 0 it follows that x is a nonsingular point of Y.

“The tangent space By, to Y at x is obviously obtained from Ox ; by
imposing the condition d,u; = 0. Therefore d, u,,...,d,u, is a basis of
6y ., that is, us, ..., u, is a system of local parameters on Y at x.

In the general case, we let X' C X be the subvariety defined by u; = 0.
Then ¥ C X’ is defined in X’ by the equations ug = -*- = uy, = 0, and we
can use induction. The theorem is proved.

Now we prove that any subvariety ¥ C X that is nonsingular at « is given
by the procedure described in Theorem 4 in some neighbourhood of .

Theorem 5. Let X be a variety, Y C X a subvariety, and suppose that
z € Y is a nonsingular point of both X and Y. Then we can choose a system
of local parameters us,...,u, on X at x and an affine neighbourhood U of =
such that ay = (uy,...,Uy) in U.

In the special case X = A™ and k = R or C, a similar fact has already
been proved in 2.3.

Proof. The inclusion of the tangent spaces Oy,; — Ox , corresponds to
a surjective map of the dual spaces ¢: mx./m% . — myz/m},, defined
by restricting functions from X to Y. We can choose a basis u;,...,u, of
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mx,z/m% , such that uy,...,um € ay and such that the restrictions to Y of
Um4ly .-+ Un fOrm a basis of my, /m%,,,. Consider an affine neighbourhood
of z in which all the u; are regular, and in this consider the subvariety Y’
defined by u; = --- = u,, = 0. By construction, Y’ O Y. We prove that
Y =Y, so that the assertion will follow by Theorem 4.

By Theorem 4, Y’ is nonsingular at x, and hence is irreducible in a
neighbourhood of z by 2.2, Theorem 6. It follows by Theorem 4 that
dimY’ = n — m. It is clear by construction that dim Oy, = n — m. Hence
Y = Y’, and since ay+ = (u1,...,Um) by Theorem 4, also ay = (u),...,um)
in some neighbourhood of z. The theorem is proved.

Exercises to §3

1. Prove that if ¢ is a local parameter of a nonsingular point of an algebraic curve
then any function f € O, can be uniquely written in the form f = {"u withn >0
and u an invertible element of O;. Use this to deduce 3.1, Theorem 2 for curves.

2. Prove the converse of 2.1, Theorem 1: if codimension 1 subvarieties D1,..., Dy,
intersect transversally at « and u,,...,un are their local equations in a neighbour-
hood of z then ui,...,u, form a system of local parameters at x.

3. Is 3.1, Theorem 3, Corollary 2 true without the nonsingularity assumption?
What about Theorem 3 itself?

4. Prove that a point z of an algebraic curve X is nonsingular if and only if  has
a local equation on X.

5. X C A® is the cone given by z? + y? — z2. Prove that the generator L defined
by the equations z = 0, y = z does not have a local equation in any neighbourhood
of (0,0,0).

6. Let w: P2 — P? be the rational map defined by
w(zo : 1 : T2) = (T1%2 : ToT2 : ToZ1).

Consider the point z = (1:0:0) and a curve C C P? that is nonsingular at z. By
3.1, Theorem 3, the map ¢ restricted to C is regular at x, and therefore maps x to
some point that we denote by wc(z). Prove that ¢¢, (z) = pc,(z) if and only if C)
and C2 touch at z, that is, 6¢,,« = 6c, ..

7. Prove that if ¢ = f/g is a rational function, f and g are regular at a nonsingular
point z and the power series 7(f) is divisible by r(g) then ¢ is regular at z. [Hint:
Use the arguments of Appendix, §7, Proposition 1.|
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8. We use the following assertion in subsequent exercises. Let X C A" be an affine
variety and z € X. Suppose that ax = (f1,..., fm). Prove that

Oz = k[[Th, ..., Tall/8x,  wheredx = ('r(fl),...,r(f,,.)),

and 7(f;) is the Taylor series of f; as in 2.2. [Hint: Use the results of Atiyah and
Macdonald (7], Chap. 10.]

9. Prove that a formal analytic equivalence of A™ with itself (that is, a formal
analytic automorphism) in a neighbourhood of 0 is given by power series &,,...,%,
with no constant terms such that the determinant formed by the linear terms is
nonzero.

10. Prove that two plane curves with equations F = 0 and G = 0 passing through
the origin 0 € A? are formally analytically equivalent in a nexghbourhood of 0 if
and only if there exists a formal analytic automorphism of A? given by power series
&, P2 such that F(P,,P2) = GU, where U is a power series with nonzero constant
term.

11. Prove that any nonsingular algebraic curve having the origin 0 as a double
point with distinct tangents is formally analytically equivalent in a neighbourhood
of 0 to the curve zy = 0. [Hint: Use Ex. 10. Look for &, &, modulo higher and
higher powers of the ideal (z,y).] §

12. Classify double points of algebraic plane curves up to formal mﬂyﬁcAWMW
lence over a field k of characteristic 0.

13. Let X be the hypersurface in A™ with equation F = Fo(T) + F3(T) + --- +
Fk(T) = 0, where F3(T) is a quadratic form of maximal rank n. Prove that X
is forma.lly ana.lytlcally equivalent in a neighbourhood of 0 to the quadratic cone
T2+ +T2=0.

14. Construct an infinite number of nonsingular projective curves, with no two
isomorphic over R.

15. Suppose that a nonsingular irreducible affine n-dimensional variety X C A" is
given by equations Fy = - .. = F,;, = 0, and that for every z = (z1,...,2n) € X the
space defined by Z(BF,- /a’.I})(:c)(Tj — z;) = 0 is n-dimensional. Prove that then
ax = (Fx, e ,Fm).

16. Deduce from Ex. 15 that if the Pliicker equations zAz = 0 of the Grassmannian
Grass(2, r) are written out as F} = - -- = F,, = O then Fy, ..., Fi, generate the ideal
of Grass(2,r). (Compare Chap. I, 4.1, Example 1 and the remark after Chap. 11,
1.3, Example 1.)
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4. The Structure of Birational Maps

4.1. Blowup in Projective Space

We proved in the preceding section that a birational map between nonsingular
projective curves is an isomorphism (3.2, Theorem 3, Corollary 2). This is
no longer true for higher dimensional varieties. For example, stereographic
projection establishes a birational equivalence between a nonsingular quadric
surface Q C P? and the projective plane P2, but this is not a regular map (see
Chap. I, §4, Ex. 7 and compare Chap. I, 6.2, Proposition, Corollary 5). This
section defines and studies the simplest and most typical case of a birational
map that is not an isomorphism, the blowup.

We consider the two projective spaces P* with homogeneous coordinates

Zo,...,Z, and P! with homogeneous coordinates yi,...,yn. For points
T=(zo:  :Tp) EPPandy = (y1: - :yn) € P*"1, we denote the point
(z,y) € P* x P*~! of the product also by (To : -+ : Tn;¥1 : -+~ : Yn). Consider

the closed subvariety I7 C P™ x P*~! defined by the equations
Tiy; = T;¥i fori,j=1,...,n. (1)

Definition 1. The map o: II — P" defined by restricting the first projection
P™ x P*~1 — P" is called the blowup® of P* centred at £.

Write £ for the point £ = (1:0:---:0) € P*. If (zg: -+ : Tp) # £ then
equations (1) imply that (y1 : +-- +yn) = (z1 : -+ : Tn), so that the map
o~ : P\ £ — IT defined by

(To:- -2 Ta) > ((To: - Tn)y (T1 2+ 2 Tn) 2)
is the inverse of o. However, if (zo : -+ : Tn) = £ then equations (1) are

satisfied by any values of the y;. Thus 0~1(¢) = £ x P*~1, and o defines an
isomorphism between P™ \ £ and IT \ (£ x P*~!). The point ¢ is called the
centre of the blowup o.

Let us describe the structure of II in a neighbourhood of points of the
form (&;41,...,Yn). We have y; # 0 for some i, so that the chosen point is
contained in the open set U; of II defined by o # 0, y; # 0; in U; we can
even assume that zq = 1, y; = 1. Then equations (1) take the form z; = y;z;
for j =1,...,n with j # i. It follows that U; is isomorphic to affine space A"
with coordinates yy,..., %, Ti,. .-, ¥n.

We see in particular that IT is nonsingular, and thus by 2.2, Theorem 6
is irreducible in a neighbourhood of every point. We will see presently that
1T is actually irreducible.

8 This notion appears in the literature under many other names: o-process, monoidal
transformation, dilation, quadratic transformation, etc.
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For this, to get a clearer idea of the effect of the blowup, we consider o
over some line L through £. Suppose that L is given by z; = a;z; for some i
and j = 1,...,n with j # i. On L the map (2) takes the form

o N zo - i Ta)=(To: 1Ty el ),

with a; = 1 in the ith placé. We see thus that o~} is regular on L and maps
it to a curve 0~1(L) C IT that intersects £ x P*~! in the point (§;ay :---:
1:...: ay). We can interpret this result as follows: ¢~! is not regular at
£, but considering it on L we get a regular map ¢~1: L — IT. We can use
this to extend the definition of ~! on L over the point &; over R or C, this
means that we define 0~1(z) for € L\ ¢ and define o ~1(¢) by letting x tend
to £ along the direction of L. However, the result depends on the choice of
L, since passing to the limit £ — £ depends on the direction along which z
approaches £, Choosing different lines L we get all possible points of £ x P*~!.
Thus, although ! is not regular at £, on resolving the indeterminacy arising
from this we don’t get arbitrary points of II, but only points of £ x P*~1,
Bearing this picture in mind one says that o~! blows up £ to £ x P*~1,
Note that at the same time we have proved the irreducibility of IT. Indeed,

O=(ExPY) U (IT\ (€ xP*Y).

Since IT \ (€ x P*~!) is isomorphic to P™ \ £ it is irreducible, hence so is its
closure IT \ (¢ x P*~1). Thus we need only show that

Ex Pl T\ (€ x Pr-).
But obviously ¢~1(L) C IT \ (¢ x P*~1), so that also
oTHL)N(ExP*Y) T\ (¢ x Pr1).

But we have just seen that for suitable choice of L the left-hand side here is
an arbitrary point of £ x P*—1,

For n = 2 we have an intuitive picture of the map o: I7 — P? and its
effect on the lines L: 0 ~!(L) intersects the line £ x P! in a point that moves
as L rotates around £. Thus IT looks like one twist of a helix {Figure 10).

4.2. Local Blowup

For an arbitrary quasiprojective variety X and a nonsingular point £ € X,
we now construct a variety ¥ and a map o: Y — X analogous to that
constructed in 4.1 for X =P* and { =(1:0:---:0).

We begin with an auxiliary construction. Let X be a quasiprojective va-
riety and £ € X a nonsingular point, and suppose that u;,...,u, are func-
tions that are regular everywhere on X and such that (a) the equations
u; = - -+ = u, = 0 have the single solution £ in X; and (b) uy,...,u, forma
local system of parameters on X at £.



116 Chapter II. Local Properties

£xp

Le L3

Figure 10. The Blowup o: IT — P?

Consider the product X x P*~! and the subvariety Y ¢ X x P"~! con-
sisting of points (z;t) : --- : t,) with 2 € X and (3 : --- : t,,) € P"~!, such
that

ui(z)t; = us(z)ts fori,j=1,...,n.

The regular map o: ¥ — X obtained as the restriction to Y of the first
projection X x P*~! — X is called the local blowup of X with centre in £.

Note that in general this construction does not apply to the case that X is
projective, since we require the existence of nonconstant everywhere regular
functions vy, . . ., un on X. Thus the new notion does not include the previous
notion of blowup in the case X = P". The two are related as follows: write
X C P™ for the affine subset defined by xo # 0, and set ¥ = 0~}(X). Then
the map o: Y — X induced on Y by the blowup IT — P” is a local blowup.

The following properties proved in 4.1 for the blowup of P” are proved in
exactly the same way for a local blowup. The map o: ¥ — X is regular and
defines an isomorphism

Y\ (exP 1) S X\&

At a point y € o~1(£), we have t; 3 O for some 4, and we can set s; = t;/t;
for j # i. Then the equations of ¥ take the form u; = u;s; for j =1,...,n
with j # i. We see from this that the maximal ideal of y is given by
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my = (w1 —u1(y),- - tn — un(9), 81 — 81(¥),- .., 80 — 3n(v))
= (31 - sl(y))-"ru‘i _ui(y)v"'vs"l = s"l(y))'

Hence dim Oy, < n, and since dimo~(X \ £) = n, the variety Y is
nonsingular at every point y € o~(X \ £). Since

Y=(¢xP*"1) uol(X\¢),

Y is either irreducible, equal to the closure o=1(X \ £) of the set o~1(X \ £),
or has a second component isomorphic to P*~1. In the second case, the two
components would have to intersect: for otherwise = (X \ ¢) would be closed
in X x P*=!, but then by Chap. I, 5.2, Theorem 3 also its image X \ £ C
X would be closed. But a point of intersection of the two components is
nonsingular, and this contradicts 2.2, Theorem 6. Thus Y is irreducible and
nonsingular and sy —s1(y), ..., ui —ui(¥), .- ., Sn — sn(y) are local parameters
at a point y € o~ 1(£) at which ¢; # 0.

A local blowup is obviously a proper map (see Chap. I, 5.3, Remark after
the proof of Theorem 3).

We now prove a property that can reasonably be called the independence
of the local blowup of the choice of the system of Jocal parameters uy, ..., tn.

Lemma. Let vy,...,v, be another system of functions on X satisfying the
above conditions (a) and (b) and o’: Y' — X the local blowup constructed as
above in terms of vy,...,vn. Then there erist an isomorphism ¢: Y — Y’
such that the diagram
y & v
d\. / a’
X

ts commutative.

Proof. We have Y’ C X x P*~!, where the homogeneous coordinates in P*~1
are t{,...,t,. In the open sets Y \ 0=2(£) and Y’ \ 0'~1(£), we set

@zt i ty) = (zyv(x) £ -+ va(2)),
Yty oot} = (Tun(z) 0ot ua(T)).
It follows from property (a) of the u; that ¢ and ¢ are regular maps
e:Y\o Tl (€)Y and Y \o"HE) oY

1)

We now consider the open set of Y in which ¢; # 0 and set s; = £;/t,.
Since v£(€) =0, and uy,...,un is a basis of the ideal m;, we have

n
v = th,-uj with hg; € Og. (2)
jsl
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Since in our open set u; = u;s;, it follows that

n n
vk = Uy Z o*(hi;)s; = uigk, where g = Zo‘(hk,-)sj. (3)
j=1 j=t1

We set p(z;t1 @ +- : tn) = (301 ¢ -+ : gn). Obviously this map coincides
with (1) wherever both are defined, since there gy = vi/u;. Let us check that
¢ is regular. For this, we must prove that gy,...,gn are not simultaneously 0
at any point 5 € o~ 1(£). Suppose that g1(n) = - -- = g,(n) = 0. Since not all
the s;(n) = 0 (because s; = 1), it follows from (3) that det |hx;(£)| = 0. But
v = Y hi;(§)u; modulo m? and it would follow from this that the vy are
linearly dependent in m¢/ m'g', whereas they form a system of local coordinates
at £. Thus we have defined a global map ¢: Y — Y, and similarly a map
¥: Y’ — Y. It is enough to prove that these are mutually inverse on the
open sets where the formulas (1) bold; and there it is obvious. The lemma is
proved.

4.3. Behaviour of a Subvariety under a Blowup

Let X C P¥ be a quasiprojective subvariety, and o: [T — P¥ the blowup
defined in 4.1. We investigate the inverse image o ~1(X) of the subvariety X,
which is, of course, a quasiprojective subvariety of IT.

Theorem 1. Suppose that X C PV is an irreducible quasiprojective variety,
with X # PV, and that X is nonsingular at €. Then the inverse image o~ (X)
of X under the blowup of PV centred at € is reducible, consisting of two
components

o7} (X) = (¢x P! Y. 1)

The restriction of o to the component Y defines a regular map 0: ¥ — X,
which is an isomorphism of some neighbourhood U of z if x # € and a local
blowup o0~ (U) — U with centre € if z = €.

Proof. Let Y denote the closure g-3(X \ €) of 0=}(X \ €). Since o~! is an
isomorphism on PV \ £, it follows that o~ (X \ £) is isomorphic to X \ £, and

.is hence irreducible. Hence also Y is irreducible. (1) is obvious by definition:
if z € X \£then 0-1(z) € Y,and o~1(€) = £ x PN-1,

The fact that : Y — X is an isomorphism in a neighbourhood of any
points x € X other than z = £ has already been noted. It remains to study
o:Y — X over a neighbourhood of €.

Now we use the fact that the blowup can be described as a local blowup
for an affine space AY containing £, together with the independence of the
local blowup of the choice of local parameters. Namely, by 3.2, Theorem §,
we can choose a system of local parameters u;,...,uy at £ € PV such that
in some neighbourhood of €, the subvariety X has local equations
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Unp1 = =uy =0, (2

and the functions u,,...,un define a system of local parameters on X at .
We can choose a neighbourhood U ¢ PV of £ such that uy,...,un satisfy
conditions (a) and (b) of 4.2, Lemma, so that the proof of the theorem reduces
to the special case when X is given by equations (2).

From conditions (a) and (b) and u;t; = u,t; we get that tny1(z) =--- =
ty(z) = 0 for  # £ Hence Y is contained in the subspace Y’ ¢ X x PN-1
defined by the equations

==ty =0 -
uit; =auji; fori,j=1,...,n 4)

If we write P"~! for the subspace of projective space PV ! of points satisfying
(3) then we see that Y/ C X x P*~! and is defined there by equations (4).
Thus Y’ is the same thing as the variety obtained as a result of the local
blowup. We have proved that Y’ = ¢~1(X \ £). Hence Y = Y’, which proves
the theorem.

Now we can give the most general definition of blowup centred at a point.
If X ¢ PN is a quasiprojective variety, £ a nonsingular point of X and Y the
variety introduced in the statement of Theorem 1 then ¢: ¥ — X is called
the blowup of X with centre £. From what we proved concerning the local
blowup, it follows that Y is irreducible if X is, and o~1(¢) & ¢ x P*~!, with
all points of o~!(£) nonsingular points of Y.

Notice that a blowup is an isomorphism if X is a curve. Thus nontrivial
blowups are a typical phenomenon of higher dimensional algebraic geometry.

4.4. Exceptional Subvarieties

The example of a blowup shows a difference of principle between algebraic
curves and varieties of dimension n > 1: whereas for nonsingular projective
curves a birational map is an isomorphism, a blowup shows that this is not
always the case in higher dimensions.

Notice one peculiarity of a blowup: it is a regular map, and only fails to
be an isomorphism because the rational map o~! is not regular at a point £.

In this section we study a map f: X — Y where f is a regular map and
is birational, that is, ¢ = f~!: ¥ — X is a rational, but not regular, map.
In the example of a blowup we saw that a codimension 1 subvariety in Y is
contracted to the point £. We prove that the same property always holds in
this situation.

Theorem 2. Let f: X — Y be a regular birational map. For x € X, assume
that y = f(z) is a nonsingular point of Y and that the inverse map g = f~!
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is not regular at y. Then there erists a subvariety Z C X with Z 3 x such
that codim Z = 1, but codim f(Z) > 2.

Proof. We can if necessary replace X by an affine neighbourhood of z, and
,thus assume that X is affine. Suppose that X C AY, with coordinates
t1,...,tn, and that g = f~! is the map given by t; = ¢; fori = 1,...,N,
with g; € k(Y).

Obviously g; = g*(t;); since g is not regular at y, at least one of the
functions g; is not regular at y. Suppose this is g;, so that g; ¢ Op. We can
write g; in the form g, = #/v with u,v € O, and v(y) = 0, and since O, is a
UFD (because we assume that y is nonsingular), we can suppose that u and
v have no common factors. Since g = f~1, we have t; = f*(g1) = f*(u/v) =
fe(u)/f*(v), and hence

F@)t = £ (). (1)

Now f*(v)(z) = v(y) = 0, so that x € V(f*(v)). Set Z = V'(f*(v)). By the
theorem on dimension of intersection, codimZ = 1, and since x € Z it is
nonempty. It follows from (1) that f*(u) = 0 on Z, so that t; is a regular
function. Hence also u = 0 on f(Z), and thus f(Z) C V(u) N V(v).

It remains to check that codim(V(u) N V(v)) > 2. But if V(u) N V(v)
contained a component Y’ with y € Y’ and codimY’ = 1 then by 3.1,
Theorem 1, Y’ would have a local equation h. This means that u,v € (h),
which contradicts the assumption that u and v have no common factor in
O,. The theorem is proved.

Definition. Let f: X — Y be a regular birational map. A subvariety Z ¢ X
is ezceptional for f if codim Z = 1, but codim f(Z) > 2.

Corollary 1. If f: X — Y is a regular birational map between nonsingular
varieties, not an isomorphism, then f has an erceptional subvariety.

Corollary 2. Let f: X — Y be a regular birational map between curves X
and Y, and suppose that Y is. nonsingular; then f(X) is open in Y and f
defines an isomorphism from X to f(X).

Proof. f(X) open in Y follows from the fact that X and Y have isomorphic
open subsets U and V' (4.3, Proposition); indeed, since f(U) = V is obtained
by discarding a finite number of points, a fortiori so is f(X), and therefore it
isopenin Y. If f: X — f(X) were not an isomorphism, we would get a con-
tradiction to Theorem 2, since in our case only the empty set has codimension
>2.
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4.5. Isomorphism and Birational Equivalence

Consider a birational equivalence class of quasiprojective varieties, that is, a
class consisting of all quasiprojective varieties birationally equivalent to one
another. A representative of this class is called a model.

In 5.3 below, we prove that there exists a nonsingular projective model
Xo in every birational equivalence class of algebraic curves. 3.1, Theorem 3,
Corollary 2 asserts that there is at most one such model up to isomorphism in
every birational equivalence class. Therefore, sending a birational equivalence
class of curves to the unique nonsingular projective model contained in it re-
duces the question of the classification of curves up to birational equivalence
to that of the classification of nonsingular projective curves up to isomor-
phism.

The function field k(X) of an algebraic curve X is an extension field of
k generated over k by finitely many elements and of transcendence degree
1. Hence we can establish a one-to-one correspondence between such fields
K and nonsingular projective curves X. This correspondefice is given by
K = k(X). We will also say that X is a model of K.

One can attempt to find the nonsingular projective model X directly from
algebraic properties of K. We make this question more precise by asking how
the local rings O, of points z € X are characterised within K. It is easy to
see that every local ring O, of a point z € X has the following properties:

(1) O is a subring of K with k G O G K;;

(2) O is a local ring, and its maximal ideal m is principal, that is m = (u);

(3) K equals the field of fractions of O.

It can be proved (see Ex. 7-9) that any subring O C K satisfying (1-3)
is the local ring O, of some point z € X. Thus the nonsingular projective
model X is universal: it contains all the local rings of K satisfying the natural
conditions (1-3).

What about these questions in dimension n > 1? Things turn out rea-
sonably well as far as the existence of a nonsingular projective model goes:
it is proved for n = 2 or 3 (Walker, Zariski over fields of characteristic 0,
Abhyankar over fields of characteristic p > 5), and for arbitrary n in char-
acteristic 0 (Hironaka). For arbitrary fields and arbitrary n the existence of
a nonsingular projective model seems extremely plausible. The uniqueness
of the nonsingular projective model, on the contrary, is a wholly exceptional
feature of the case n = 1. This can be seen already in the example of the pro-
jective plane P? and the nonsingular quadric @ C P3, which are birational,
but not isomorphic.

One might ask for the existence, in each birational equivalence class, of
a model X that would be universal in the sense that the local rings O, of
points z € X exhaust all the local subrings of the field K = k(X) that satisfy
conditions (1), (2) and (3), as in the case n = 1, where m = (u) in condition
(2) is replaced by the appropriate n-dimensional version m = (uy,...,un).
However, no such model can exist, for the same reasons. Namely ifo: X' — X
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is the blowup of X with centre in £, then the local rings of points y € o~ !(£)
are not equal to any of the local rings O, with z € X. The reader can easily
prove this as an exercise. Admittedly, putting together all the nonsingular
points of all models of a birational equivalence class one does obtain a certain
object, the so-called Zariski Riemann surface with this universal property,
but this object is not a finite dimensional algebraic variety. Some information
about this “infinite model” can be found in Zariski and Samuel [78], Vol. 2,
Chap. VI, §17.

Given that there does not exist a distinguished model, the problem arises
of studying the relations between the nonsingular projective models in each
birational equivalence class. We describe here without proof the main results
in this area known to date. From now on, all varieties considered will be
assumed to be irreducible, nonsingular and projective.

We start with two definitions. We say that a model X’ dominates X if
there exists a regular birational map f: X’ — X. A variety X is a relatively
minimal model if it does not dominate any variety not isomorphic to itself.
For example, a nonsingular projective curve is always a relatively minimal
model. By Theorem 2, a.variety is a relative minimal model if it does not
contain any exceptional subvarieties. '

It can be proved that every variety dominates at least one relatively min-
imal model. Thus every birational equivalence class contains at least one
relatively minimal model. The question thus arises of the uniqueness of a
relatively minimal model. If every birational equivalence class had such a
unique relatively minimal model then this would again reduce the birational
classification of varieties to the classification up to isomorphism.

However, for n > 1 this does not work. An example is provided by the
projective plane P? and the nonsingular quadric Q C P3, which, as we know,
are birational, that is, they both belong to the same birational equivalence
class. We prove that P2 and Q are both relatively minimal models, that is,
they do not contain any exceptional curves. Since P? and Q are not isomorphic
(Chap. I, 6.2, Remark 1), this gives the required example.

In our case, an irreducible exceptional curve C C X must be contracted
to a point by a regular birational map f: X — Y, thatis, f(C) =y €Y.
Here X and Y are projective surfaces. Curves of this type have a series of
very special properties (hence the name “exceptional”). We discuss just one
of these.

By 3.1, Theorem 3, the map f~! is not regular at only finitely many
points y; € Y. Suppose that U is a affine neighbourhood of y, sufficiently
small that f~! is regular at all points of U other than y. Set V = f~1(U)
and C = f~}(y). Obviously V is an open subset of X and V > C. We prove
that V' does not contain any irreducible curve C’ that is closed in Y and
not contained in C. Indeed, C’ is a projective curve and its image f(C") is
again projective. But f(C’) C U, which is affine. According to Chap. I, 5.2,
Theorem 3, Corollary 2, this is only possible if f(C’) =y’ is a point. If y' # y
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then, since f~! is an isomorphism, C’ would also have to be a point. If ¢’ = y
then C' C f~Y(y) = C.

Thus C is isolated in X, in the sense that there exists a neighbourhood V
of C that does not contain any irreducible projective curve except for those
contained in C. In other words, it is impossible to “wiggle C slightly”. We can
deduce from this that many surfaces do not contain any exceptional curves.

For example, let X = P? and let C be an exceptional curve with C c V =
P?\ D. Then dim D = 0, since otherwise, by the theorem on the dimension
of intersection, C and D would intersect. But if dim D = 0, that is, D is a
finite set of points, then V' contains any number of curves C not intersecting
D, for example lines.

Now let X = Q be the nonsingular quadric of P*. Here we make use of
the existence of a group G of projective transformations taking @ to itself.
Recall that transformations of G are given by 4 x 4 matrixes satisfying the
relation A*FA = F, where F is the matrix of the quadratic form defining Q.
It follows that G is an algebraic variety in the space of all 4 x 4 matrixes.
Hence we will from now on assume that G is an algebraic affine variety. It is
easy to see that G acts transitively on Q.

If C is a curve and C C Q\ D, then we construct a transformation p € G
such that p(C) ¢ C and ¢(C) C Q \ D, which contradicts the property of
exceptional curves obtained above. For this, it is enough to prove that the
set of p € G such that (C)ND # 0 is closed. Then we have at our disposal
a whole neighbourhood of the identity transformation e € G consisting of
elements with the required property. In order to describe the set S of elements
@ € G such that ¢(C)N D # @ we consider the direct product G x Q and the
subset I' C G x Q of pairs (p, ) such that z € C and p(z) € D. Obviously
I is closed. If f: G x @ — G is the projection then § = f(I'), and f(I)
is closed by Chap. I, 5.2, Theorem 2. This complete the proof the Q is a
relatively minimal model, and hence the existence of two different relatively
minimal model.

Thus it is all the more surprising that uniqueness of minimal models does
hold for algebraic surfaces, provided only that we exclude some special types
of surfaces. Namely, as proved by Enriques, a birational equivalence class of
surfaces contains a unique relatively minimal model provided that it does not
contain a surface of the form C x P!, with C an algebraic curve. (A surface
birational to C x P! is called a ruled surface.) The proof of Enriques’ theorem
is treated in Shafarevich [67], Chap. II or Barth, Peters and van de Ven [8].

There has recently been significant progress in the direction of construct-
ing a theory of minimal models in dimension > 3. In this case, minimal
models cannot exist in the class of nonsingular varieties, but there is reason
to hope that the theory can be generalised if we allow a certain class of rather
well-controlled singularities. For this, see for example the surveys Kawamata,
Matsuda and Matsuki [44] and Shokurov [68].
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Exercises to §4

1. Suppose that dim X = 2 and that £ € X is a nonsingular point. Let C,,C2 C X
be two curves passing through £ and nonsingular there, 0: ¥ — X the blowup
centred at £, and set C; = g=1(C: \ £) and Z = o~ (£). Prove that C{NZ = C;NZ
if and only if C) and C: touch at &.

2. Suppose that dim X = 2 and that £ € X is a nonsingular point. Let C be a
curve passing through £ and f the local equation of C in a nelqhbourhood of
In local parameters u,v at £, suppose that f = Il (asu + Biv)" modulo m
where k = }_[; and the forms a;u + B;v are not proportional.

AsinEx. 1,0: Y — X and C' = 0=}(C \ €). Prove that C' N Z consists of r
points.

3. Use the notation of Ex. 2, and suppose also that f = (ayu + Siv)(azu + B2v)
modulo me, where the linear forms anu + f1v and azu + B;v are not proportional.
Prove that both the points of C’ N Z are nonsingular on C’.

\7/ Consider the rational map ¢: P? — P* given by

(Zo : 21 : 23) = (Zo1 : Loz : 22 : T122 : T2).

Prove that ¢ is a birational map to a surface p(P?), and that the inverse map
¢(P?) — P? coincides with the biowup.

5. In the spirit of Ex. 4, study the map ¢: P2 — P® defined by all the monomials
of degree 3 except for £3,z} and z3.

6. For any n > 2, construct an example of a regular birational map f: X —» Y
between n-dimensional nonsingular varieties having an exceptional codimension 1
subvariety Z whose image f(Z) C Y has codimension 2.

7. Let X be a nonsingular projective curve and O C k(X) a local subring of the
function field k(X) satlsfymg the conditions 4.5, (1-3). Prove that for any u € k(X)
either u € O or u™' € O. Suppose that X C P" with z,,...,zn homogeneous
coordinates of P*. Prove that there exists an i such that z;/z; e Oforj=0,...,n.

8. Use the notation of Ex. 7. Let X' be the affine curve X’ = X N A7, Prove that
k[X'] € O, and that k[X]Nm is the ideal of some point £ € X’ with O, C O.

9. Prove that if O) and O are two subrings satlsfying the conditions 4.5, (1-3).
and O C O; then O; = O3. Deduce from this, using the results of Ex. 7-8, that
O = O; (in the notation of Ex. 8).

10. Let V C A3 be the quadratic cone defined by zy = 2?%; let X' — A3 be the
blowup of A® with centre in the origin, and V' the closure of ¢~(V' \ 0) in X".
Prove that V' is a nonsingular variety and that the inverse image of the origin
under 0: V' — V is a nonsingular rational curve.
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5. Normal Varieties

5.1. Normal Varieties

We start by recalling a notion of algebra: a ring A with no zerodivisors is
integrally closed if every element of its field of fractions K that is integral
over A (Chap. I, 5.3) is in A.

Definition. An irreducible affine variety X is normal if k[X] is integrally
closed. An irreducible quasiprojective variety X is normal if every point has
a normal affine neighbourhood.

We will prove presently (Theorem 1) that a nonsingular variety is normal.
Here is an example of a nonnormal variety: on the curve X defined by 3% =
z? + z3, the rational function t = y/x € k(X) is integral over k[X], since
t? =1+ 1z, but t ¢ k[X]. (See Chap. I, §3, Ex. 7.)

This example shows that the condition that a variety is normal is somehow
related to singular points of a variety. We now give an example of a variety
that is normal although it has a singular point. This is the cone X ¢ A3
given by 72 + y? = 2? (we assume that the ground field k has characteristic
#2). :

Let us prove that k[X] is integrally closed in k(X). For this we use the
simplest properties of integral elements (see Chap. I, 5.3 and Atiyah and °
Macdonald [7], Chap. 5). The field k(X)) consists of elements of the form
u+vz with u, v € k(z,y), where z and y are independent variables. Similarly,
k[X] consists of elements u + vz = k(X) with u,v € k[z,y]; hence k[X] is
a finite module over k[z,y], and hence all elements of k{X] are integral over
klz,y). If & = u+vz € k(X) is integral over k[X| then it must be also integral
over k(z,y]. Its minimal polynomial is

T? — 2T +u? — (2% + y?)v?;

hence 2u € k(z,y], so that u € k[z,y). Similarly, u? ~ (22 + y?)v? € k[z,y),
and hence also (z? + y2)v? € k[z,y]. Now since z2 + y? = (z + iy)(z — iy) is
the product of two coprime irreducibles, it follows that v € k[z,y|, and thus
a € k[X].

We prove some simple properties of normal varieties.

Lemma. If X is ¢ normal variety then its local ring Oy at any irreducible
subvariety Y C X (see the end of 1.1 for the definition) is integrully closed.
Conversely, if X is irreducible and the local ring O, at each point z € X is
integrally closed then X is normal.

Proof. Since the definition of normal is local in nature, we can restrict to
the case that X is affine. Suppose that X is normal, and let Y € X be an
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irreducible subvariety. We prove that Oy is integrally closed. Suppose that
a € k(X) is integral over Oy, that is,

o +a @™+ +a,=0 with a; € Oy. (1)

Since a; € Oy we have a; = b;/¢; with b;,¢; € k[X] and ¢; ¢ ay. Set
do = ¢1 - -+ Cn, and multiply (1) by do. We get that

doa™ +dia™ '+ +dy =0 withd;€ek{X]anddo ¢ay. (2)

Multiplying (2) through again by dj~! and setting doa = 3, we get that
3 is integral over k[X]. By assumption k[X] is integrally closed, and hence
doa = 8 € k[X]. Then a = g/dy € Oy, because do ¢ ay. This proves that
Oy is integrally closed.

Conversely, suppose that all the local rings O, are integrally closed. We
prove that k[X] is also. If a € k(X) is integral over k[X] then a™ +a1a™"! +
.-+ 4an = 0 with a; € k[X). But then a fortiori a; € O, for every x € X, and
since O is integrally closed by assumption, it follows that a € O,. Therefore
a € N,ex Oz Now by Chap. I, 3.2, Theorem 4, (¢ x Oz = k[X], and hence
a € k[X]. The lemma is proved.

Theorem 1. A nonsingular variety is normal.

~ Proof. By the lemma, it is enough to show that if z is a nonsingular point then
O, is integrally closed. We know by 3.1, Theorem 2 that O; is a UFD. Any
element a € k(X) can be represented in the form a = u/v, were u,v € O, and
have no common factors. If a is integral over O then @™ +a10™ "1+ - +a, =
0 with a; € O,. Hence 4™ + a1u™ v+ - +a,v™ = 0, and we see that v | u™.
But now, since u, v have no common factors and O, is a UFD, it follows that
a € O,. The theorem is proved.

Theorem 1 shows that the definition of normal is a certain weakening of
the notion of nonsingularity. This is also reflected in the properties of normal
varieties. In particular, we show that one of the basic properties of nonsingular
varieties (3.1, Theorem 1) extends in a weak form to normal varieties.

Theorem 2. If X is a normal variety andY C X a codimension 1 subvariéty
then there erists an affine open set X' C X with X' NY # @ such that the
ideal of Y' = X' NY in k[X'] is principal.

Proof. We can of course assume that X is affine. Moreover, it is enough to
prove that the maximal ideal my is principal in the local ring Oy. Indeed,
if my = (u) with u € Oy then u = a/b with a,b € k[X] and b ¢ ay.
Suppose that ay = (v1,...,Um). Since ay C my, we can write v; = uw;,
where w; = ¢;/d;, with ¢;,d; € k[X) and d; ¢ ay. Then the ideal ay- of the
variety Y’ = X' NY is the principal ideal (u) in k[X'], where we set
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m
X=X\ (V) | V().
i=1
Suppose that 0 # f € k[X] and f € ay C Oy. Then Y C V(f), and
since both of these are codimension 1 subvarieties (by assumption and by the
theorem on dimension of intersection), Y consists of components of V(f).
Suppose that V(f) =Y UY; with Y ¢ Yj. Setting X; = X\ Y}, we get that
YNX; #0and YNX; =V(f)N X;. Thus we can assume from the start
that Y = V(). '
By the Nullstellensatz, Y = V(f) in X implies that a% C (f) for some k >
0, and hence m¥ C (f) in Oy. Suppose that k is the minimal number having
this property. Then there exist ay,...,ax_) € my such that ay - -- a1 ¢ (f)
but aj -+ ax-1my C (f). That is, setting g = a1 -:- ax—1 we have g ¢ (f)
but gmy C (f), or in other words, u = f/g satisfies

u~! ¢ Oy, but  u 'my C Oy.

Now we use the fact that, by the lemma, Qy is integrally closed. It follows
from this that u~'my ¢ my; for otherwise, by the basic relation between
finite modules and integral elements, the “determinant trick” (Atiyah and
Macdonald [7], Proposition 2.4), #~* would be integral over Oy and therefore
contained in it, which is not the case. But my is the maximal ideal of Oy,
so that u~lmy C Oy but u~'my ¢ my implies that u~'my = Oy. This
means that my = (u). The theorem is proved.

Theorem 3. The set of singular points of @ normal variety has codimension
>2.

Proof. Suppose that X is normal, with dim X = n, and let S be the set of
singular points of X. We have seen in 1.4 that S is closed in X. Suppose that
S contains an irreducible component Y of dimension n — 1. Let X’ be the
open subset whose existence we established in Theorem 2 and Y/ =Y n X'.
There js at least one point y € Y’ that is a nonsingular point of the variety
Y’ (but not of X’, by assumption). Let Oy, be the local ring of Y* at y,
and uy,...,Un-y local parameters.
. By Theorem 2, ay: = (u) is a principal ideal of k[X’], and hence
k[Y'] = k[X']/(u). Similarly Oy, = Ox:,/(u), and obviously my, is
equal.to the inverse image of my- ; under the natural map Ox., — Oy .
Choose arbitrary inverse images vy,...,%-1 € Oxsy of the local parame-
ters uy,...,Un-1 € Oyry. Then mx: , = (vy,..., 51, ). This proves that
dimmx: ,/m%. < n, and hence that y is a nonsingular point of X, which
contradicts the assumption y € Y C S. The theorem is proved.

Corollary. For algebraic curves, normal and nonsingular are equivalent con-
ditions.
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Ezample. Let X be a normal affine variety and G a finite group of automor-
phisms of X. We prove that the quotient variety Y = X/G (see Chap. I, 2.3,
Example 11) is normal. Suppose that h € k(Y') is integral over k[Y]. Then h
is a fortiori integral over k[X], and hence h € k[X]. But h € k(Y), so that
g°(h) = h for any g € G, and hence h € k[X]® = k[Y].

In particular, suppose that X = A% and G = {1,g}, where g(z,y) =
(—z, —y). It is easy to check that k[X]|® = k[z, y]C is generated by w = 1y,
u = £2 and v = y?. In other words, Y is the quadratic cone defined by uv = w?
constructed at the start of this section. Since X is normal by Theorem 1, we
get another proof that Y is normal.

We now compare the nonsingular and normal properties of varieties we
have introduced. We first note that the proof of Theorem 1 did not make
full use of the nonsingularity of X; we only used that O, is a UFD. In
this connection, it is natural to distinguish the class of varieties with the
property that each local ring O; is a UFD; these are called factorial varieties.
Thus nonsingular varieties are factorial, and factorial varieties normal; in
essence, that is what is proved in Theorem 1. One can show that these three
classes of varieties are really different. For example, it is known that for
n > 5, a hypersurface X C A™ with just one singular point is factorial
(Grothendieck [32] (SGA2), Chap. XI, 3.14). A beautiful example of a surface
that is singular, but factorial, is the surface given by z%2 + % + 25 = 0. An
example of a variety that is normal, but not factorial, is given by the quadratic
cone considered above: z2 = (z + iy)(z — iy) are two different factorisations
into irreducibles of the same element.

Theorem 3 focuses attention on a new property of varieties: the set of
singular points has codimension > 2. A variety with.this property is said to
be nonsingular in codimension 1. Theorem 3.asserts that this class includes,
in particular, normal varieties. These two classes of varieties are also distinct.
Constructing a counterexample is a bit more complicated here; the point is
that normal is equivalent to nonsingular in codimension 1 for a hypersurface.
Hence the simplest possible example would be a surface in A%, An irreducible
variety X is not normal if there exists an affine variety Y and a surjective
regular map f: Y — X, not an isomorphism, that restricts to an isomorphism
of open subsets V C Y and U C X, and such that k[Y] is a finite module
over f*(k[X]). A first approximation to the counterexample is thus given by
X = L, U Ly, where L; and L, are two planes of A* meeting in a point
(defined by z = 2t = yz = yt = 0 in coordinates z,y,z,t of A?) and
Y = L, U Ly the disjoint union of L; and L; (for example, in A%). But this
is a reducible variety, and our definition of normal assumes irreducibility. We
therefore construct an example that imitates this situation near the singular
point. For this, it is enough to construct a finite regular map f: A2 — A?
birational onto its image X = f(A?), with X C A* closed in A? such that two
points, y1, Y2, say, have the same image z € X and f: A2\ {y1,¥%:} — X\ {2z}
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is an isomorphism. Thus f is very similar to the parametrisation Chap I, 1.2,
(2) of the curve (1). The existence of the map f means that X is not normal,
and z will be the unique singular point of X.

Writing £, 7 for coordinates in A? and z,y, 2,t for coordinates in A%, we
define f by

g=¢(1-n), y=n(n-17% z=¢, t=n’(n-1).
One sees easily that the ideal Ax is generated by the four equations
gz=—~(t-y)z+2), st=-pz=(t-y)(z+2), yt=(-y>

The relations £ = £ + z and n? — n = t — y prove that £ and 7 are integral
over f*(k[X]), so that f is finite. The remaining properties of f we need are
very easy to check. It is easy to see that the tangent cone to X at origin (see
1.5) is Ly U L,.

5.2. Normalisation of an Affine Variety

Consider the simplest possible example of a nonnormal variety, the curve X
defined by y? = 22 4 z3. Its parametrisation, using the parameter ¢ = y/z,
defines a map f: Al — X, or equivalently, an inclusion k[X] — k[t]. Since
f is birational, we have k{X] C k{t] C k(X) = k(t). The line A! is normal,
of course, corresponding to that fact that k[t] is integrally closed. Moreover,
the ring k[t] can be characterised as the set of all elements u € k(X) that
are integral over k[X]. Indeed, t2 = 1 + z, hence t and all elements of k[t]
are integral over k[X]; moreover, if u is integral over k[X] then it is also
integral over k[t], and hence u € k|t] since k{t] is integrally closed. Finally, in
geometric terminology, k{t] integral over k[X] says that f is a finite map. We
show that for any irreducible affine variety X, there exists a variety X’ and
amap X’ — X having the same properties. We start with a definition that
relates to arbitrary irreducible varieties.

Definition. A normalisation of an irreducible variety X is an irreducible
normal variety XV, together with a regular map v: X” — X, such that v is
finite and birational. (If X = |J X; is a reducible variety then one can define
X =JXr.)

Theorem 4. An affine irreducible variety has a normalisation that is also

affine.

Proof. Let A be the integral closure of k[X] in k(X), that is, the set of
elements u € k(X) that are integral over k[X]. It follows from elementary
properties of integral elements that A is a ring, and is integrally closed.
Suppose that we can find an affine variety X’ such that A = k[X']. Then X’
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is normal and the inclusion k[X] — k[X'] defines a regular birational map
f: X' — X. Obviously X’ is a normalisation of X.

By Chap. I, 2.3, Theorem 1, the required affine variety X' exists if and
only if A is finitely generated over k and has no zerodivisors. We will prove
more, that A is a finite module over k[X]. If A = k[X]w; +: - + k[X]wm, then
wy, . .., W, together with the generators of the algebra k[X] over k, provide
a finite system of generators of A as a k-algebra.

To prove that A is a finite k[X}-module, we use Noether normalisation,
Chap. I, 5.4, Theorem 10. By this theorem, there exists a subring B C k[X]
such that B is isomorphic to a polynomial ring B 2 k(T,..., ;] and k[X]
is integral over B. We write out all the current rings and fields:

k(Ty,....,T,) C kX)=K

U U
B CkXjc A

From this diagram and from basic properties of integral elements, one sees
that A is equal to the integral closure of B in k(X). Moreover, K = k(X)
is a finite field extension of k(T3,...,T;), since Ty,...,T, is a transcen-
dence basis of k(X). Finally, B is integrally closed, since A" is normal,
indeed, nonsingular. Thus the final result we are aiming for, that A is a
finite k[X]-module, follows from the fact that if B = k[T1,...,T,}, L =
k(Ty,...,T;), and K is any finite extension field of L, then the integral clo-
sure of B in K is a finite B-module. For the proof of this assertion, see
Appendix, §8, Proposition 1. The theorem is proved.

Theorem 5. (i) If g: Y — X is a finite regular birational map, then there
erists o reqular map h: XV — 'Y such that the diagram
XI/
h / \u

Y — X
g

is commutative.

(i) If g: Y — X is a regular map, g(Y) is dense in X and Y is normal
then there exists a regular map h: Y — XV such that the diagram

Y
N
Xr — X
v
is commutative.

Proof of (i). By assumption we have inclusions k{X] C k[Y] C k(X), with
k[Y] integral over k[X]. Now by definition of integral closure, k[Y] C k[X"],
which provides the required regular map h: X¥ - Y.
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Proof of (ii). An element u € k[X"] is integral over k[X] and contained in
k(X) C k(Y); since k[X] C k[Y], it is a fortiori integral over k[Y], and thus,
since k[Y] is integrally closed, u € k[Y]. Hence k{X"] C k{Y'], which provides
the regular map h: Y — X" with the required properties.

The theorem is proved.

Corollary. The normalisation of an affine variety X is unique. More pre-
cisely, if v: X¥ — X and V': X' — X are two normalisations of X then
there eTists an isomorphism g: XY = X"’ such that the diagram

xv 9, xXv!
u\ /v'
X

is commutative.

This follows from either of the assertions of Theorem 5. O

We do not prove the existence of the normalisation for arbitrary quasi-
projective varieties; the proof is discussed in Chap. VI, 1.1 in a more general
context. Note that for those varieties for which the normalisation is known
to exist, it has the properties established in Theorem 5, as follows at once
from considering affine covers.

5.3. Normalisation of a Curve

Theorem 6. An irreducible quasiprojective curve X has a normalisation X,
and X" is again guasiprojective.

Proof. Let X = |JU; be a cover of X by affine open sets. Write U} for the
normalisation of U;, which exists by Theorem 4, and f;: UY — U, for the
natural regular map, which is birational and finite.

We embed the affine space containing U} into projective space, and write
V; for its closure in projective space. Note that all the varieties appearing
so far are birational to X: for U; C X is open, f: UY — U; is a birational
map, and UY C V; is also open. Therefore U and V; are birational; write
i;: U¥ — V; for the corresponding birational map.

By 5.1, Theorem 3, Corollary, U} is a nonsingular curve, and, since V; is
projective, ¢;;: UY — Vj is a regular map by 3.1, Theorem 3, Corollary 1. Set
W= I-Ij V; and ¢; = []; pi5: Uy — W, thatis, pi(u) = (pir (), piz(u),...).
Write X’ = J;(U¥) C W for the union of all the ¢;(U}). We claim that
X' = XV. For this we have to show that X’ is (a) quasiprojective, (b) irre-
ducible and (c) normal, and (d) that it has a finite birational map v: X' — X.
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To prove these statements, set Uy = [ U;; this is an open subset of X.
By construction of ¢; it follows easily that Uy C U7, and all the y; coincide
on Uy. Write ¢ for their common restriction to U}. Then

e(Ug) € wilUY) C o(Ug),

where p(UY) is the closure of o(T§) in W. Obviously p(U¥) is an irreducible
quasiprojective curve and @(Ug)\ p(Ug) consists of a finite number of points.
By construction, p(Ug§) C X’ C ¢(U¥) and hence p{U¥)\ X’ also consists of
a finite number of points. This proves (a) and (b).

Let z € X’; then x € ¢;(U}) for some i, and p;(UY) is a neighbourhood
of z. We prove that @;: Uy — ¢;(UY) C W is an isomorphism; since UY is
normal, it follows that X’ is normal, proving (c). For this, note that p;; is an
embedding of U} to its projective closure V;. Hence (u1,us,...) — <p;.1(u,-)
is an inverse to y;, which proves that y; is an isomorphic embedding.

Finally for the proof of (d) we construct the map

9i=fiopi 'l i(UY) - U; C X.

By what we have said above, all the g; are finite maps. We prove that all the
9; define on X' a single finite map f: X’ — X. For this, note that all the
gi coincide on Ug. If g: U§y — Up is the normalisation map then g; = g on
U§. Hence the maps g; and g; coincide on the open set of (U}) contained in
(p,'(Ui") Ng;(UY). But two regular maps that coincide on an nonempty open
set coincide everywhere. This follows from the same statement for functions.
Thus g; and g; coincide at all points at which they are both defined, so that
they all define a regular map v: X’ — X. Obviously v is birational. The
theorem is proved.

Theorem 7. The normalisation of a projective curve is projective.

Proof. Let X be a projective curve and X" its normalisation, with v: X¥ —
X the normalisation map. Suppose that X" is not projective, and write Y
. for its closure in projective space. Choose a point £ € Y '\ X¥; let U be an
affine neighbourhood of x in Y and U" its normalisation, with v/: U¥ — U
the normalisation map. We have a diagram

vr Ao xv X x

v e
U—Y
¥
where ¢: XY «— Y and ¢: U — Y are the inclusions of open sets. The
composite map ¥ o g oy ov': U¥ — X is birational, and since U” is
nonsingular, it is regular by 3.1, Theorem 3, Corollary 1. By Theorem 5,
there exists a regular map &: U¥ — X" as in the diagram, making the square
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commute, o h = Yor'. However, the existence of h leads to a contradiction:
o(M(U¥)) C XV, and ¢(v'(U¥)) > z, since the normalisation map is finite,
and hence surjective by Chap. I, 5.3, Theorem 4. This contradiction proves
the theorem.

Corollary. An irreducible algebraic curve is birational to a nonsingular pro-
Jective curve.

This is a combination of 5.1, Theorem 3, Corollary and Theorem 7. Nor-
malisation allows us to study properties of curves in more detail.

Theorem 8. A regular map p: X — Y from an irreducible nonsingular
projective curve X is finite (Chap. I, 5.3) if Y = ¢(X) is a variety with
dimY > 0.

Proof. Write V for an affine neighbourhood of a point y € Y, and B = k[V].
We view k(Y) as a subfield of k(X) under the inclusion ¢*. In particular,
B C k(X); let A be the integral closure of B in k(X). In the proof of the
existence of the normalisation of an algebraic variety, we proved that A is
a finite B-module, and hence A = k[U], where U is an affine normal curve.
Since U is birational to X, by 4.4, Theorem 2, Corollary 2, we can assume
that U is an open subset of X. Let us prove that U = »~*(V). This will
guarantee the finiteness of .

Suppose that for some point yo € V there is a point z¢ ¢ U with p(zo) =
yo. Consider a function f such that f ¢ O;, but f € O, forallz; € U
with o(z;) = yo and z; # Tp. Such a function can easily be constructed by
putting o and x; in one affine open set. If f has poles at points z’ € U, then
o(z’) = y' # Yo, and hence we can find a function h € B such that h(yo) # 0
and fh € Oy, that is, fh € A, for this, we need only take a sufficiently high
power of a function that vanishes at y’. Then fi = fh is integral over B, that
is

4P 4. 4+b,=0 with b; € B,

sothat fi = —by —bo/f1— - —bn/fP" ). Since f; ¢ Oy,, we get f]' € mg,.
Hence the final equality is a contradiction: the right-hand side is regular at
zg, but the left-hand side is not. The theorem is proved.

Another application concerns curve singularities: the existence of the nor-
malisation allows us to introduce some useful invariants of singular points of
curves.

Let X be a curve and p € X a point, possibly singular; write v: XV — X
for the normalisation and q,..., gk for the inverse images of p in X¥. The
points g; are called branches of X at p. The terminology is explained in that if
k = C (or R) and U; are sufficiently small complex (or real) neighbourhoods
of the ¢;, then some neighbourhood of X is the union of the branches v(U;).
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Write 6; for the tangent line to X¥ at ¢;. The differential dy,v of v maps
6; onto a linear subspace of the tangent space to X at p. Obviously (d, ¥)(6;)
is either the point p or a line; in the second case, we say that ¢; is a linear
branch, and (dg,v)(6;) the tangent line to the branch.

A branch ¢; is linear if and only if v* takes m,,/m onto the whole of
mq_ /m . Suppose that p is the origin in A™ with coordmates t1,...,tn. Then

(m,,/m ) is generated by v*(t;) +m2,,...,v*(ts) + mZ,. Since g; is nonsin-
gular we have dlm(mq /m2)=1,and therefore a branch is linear if and only
if v*(t,) ¢ m . for at least one s = 1,...,n. In other words, v*(t,) should
be a local parameter at ¢;. Since m, = (tl,...,t,.), in invariant form the

condition for ¢; to be a linear branch takes the form v*(m,) ¢ mgi. As a
measure of how far ¢; fails to be a linear branch, we can take the number k
such that v*(m;) C mgi but v*(m,) ¢ m';;“. This is called the multiplicity
of the branch g;.

The point (0,0) of y? = z2 + z3 gives an example of two linear branches
with the tangent lines y = = and y = —z, and the point (0,0) of the cusp
y? = 2% an example of a nonlinear branch of multiplicity 2. If z is the centre
of a single branch, and this is linear, then z is a nonsingular point. This
is a corollary of a lemma that we prove at the end of this section. Thus
the simplest invariants measuring how singular a point is are its number of
branches, and their multiplicities. We say that a point of an algebraic curve in
the plane is an ordinary singularity, or a singular point with distinct tangent
lines if it has only linear branches and all its branches have distinct tangent
lines.

Suppose that X is given by F(z,y) = 0, and that chark = 0. Let (0,0) =
p € X and let ¢ € XY be one of the branches corresponding to p. If t is a
local parameter at ¢ then there are formal power series expansions

= apt" + anprt™ 4o

with n,m > 0 and ay,, b 0. (1
Y=bnt™ + apprt™ -, e b 7 @

There exists a formal power series 7 = rit + rat? + .-+ with r; # 0 such
that 7" = z. This is easy to check: we have first to set r; = a,l./ " and from
then on, for each i > 1 we get a linear equation for r;, to solve which we
must divide by n, which is possible under the assumption char k = 0. On the
other hand, ¢ can also be expressed in terms of 7 as a formal power series,
t= rl’lr +5572 4 -+, as can also be checked at once by equating coefficients.
Finally, substituting this expression in (1), we get a parametrisation z = 7,
Y =CmT™ 4 cmp1™™ 1! + .+, that can be rewritten

y= cmzm/n +Cm+l$m+l/n +.e (2)

A parametrisation of a branch of this type is called a Puiseur expansion of
y. This is particularly useful in problems of analysis, where y is viewed as a
function of z.
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To find explicitly the Puiseux expansions corresponding to different
branches, there is an extremely convenient method using the Neuwton polygon
of a polynomial F. Suppose that F(z,y) = 3 Aijz'y. In the plane, we draw
the points with coordinates (i, j) for which A;; # 0 (Figure 11).

A

> Figure 11. The Newton Polygon

A necessary condition for the expansion (2) to satisfy F(x,y) = 0 is
that after substituting (2) in F, the lowest powers of z arising from the
various monomials Aijz‘yj must cancel out. In order for this to be possible,
at least two monomials Ay jz* 37 and Ay j»z''y” must give terms of the
same degree d in z, and other monomials terms of degree > d. In other words,
the exponent @ = m,/n should satisfy the condition i’ +j'a = i +j"a < i+ja
for all (i,7) with A;; # 0. In Figure 11 this is expressed by saying that « is
minus the slope of the line through points (4, j') and (", j”), with all other
points drawn in the picture either on or above the line. In other words, the
only exponents « that can appear are minus the slopes of the lower convex
boundary of the convex hull of the set of points drawn in the picture.

We rewrite the expansion (2) in the form y = 3" ¢,,x*, where v; are
increasing rational exponents, and c,, # 0. Certain of these exponents play
an especially important role as invariants of the singularity. Suppose that
the first nonintegral exponent is my/n;. Obviously, n; | n, and if n; # n
then there must be exponents with denominators strictly divisible by n;.
Suppose that the first of these beyond my/ny is mz/(n1n2); then suppose
that mg/(ninanz) is the first exponent with denominator strictly divisible
by ninz2, and so on, up to mg/(n,---ng), where ny.-.nx = n. The pairs
(my,n1), (ma,n2), ..., (Mg, ng) are called the characteristic pairs of the
branch. We state in its simplest form a result that illustrates the significance
of characteristic pairs. Consider only singularities having a single branch. For
any sequence of characteristic pairs there exists a natural number [ such that
the singularities with given characteristic pairs are uniquely determined up
to formal analytic equivalence (see 2.2 for the definition) by the first ! terms
of the expansion (2). Thus singularities with given sequence of character-
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istic pairs form a finite dimensional space. For a simple proof and various
generalisations, see Hironaka [37] ot Walker [74], Chap. IV, §§2-3.

5.4. Projective Embedding of Nonsingufar Varieties

The nonsingular projective model of an algebraic curve constructed in the
preceding section is contained in some projective space P*. The natural ques-
tion arises as to how small n we can take to be. We answer this by proving
a general result on varieties of arbitrary dimension.

Theorem 9. A nonsingular projective n-dimensional variety is isomorphic
to a subvariety of PAn+!,

Let X C P be a nonsingular projective variety. Theorem 9 will be proved
if for N > 2n + 1 we can choose a point £ € PY \ X such that the projection
from £ is an isomorphic embedding of X into PN~!. We therefore start by
elucidating when a regular map is an isomorphic embedding.

Lemma. A finite map f from a variety X is an isomorphic embedding if and
only if it is one-to-one and dz f is an isomorphic embedding of the tangent
space O, for everyz € X.

Proof. Set f(X) =Y and ¢ = f~!. The lemma will be proved if we show
that ¢ is a regular map. The assertion is local in nature. Fory € Y,let r € X
be such that f(z) = y. Write U and V for affine neighbourhoods of z and
y with f(U) = V and such that k[U] is integral over k[V], and continue to
write f: U — V for the restriction of f. It is enough to prove that f is an
isomorphism for suitable choice of U and V/, since then ¢ = f~! is a regular
map at y. )

Recall that the tangent space O, is the dual vector space to m,/m2,
where m, is the maximal ideal of the local ring O,. The second hypothesis
of the lemma is that f*: m,/m2 — m;/m? is surjective. In other words, if
my = (uy,...,ux), then the elements f*(u;)+m2 generate m, /m2. We apply
Nakayama’s lemma (Appendix, §6, Proposition 3) to m. as an O.-module.
It then follows from this that m; = (f*(x,),..., f*(ux)), or in other words

m, = f*(m,)O,. (1)

We check that O is a finite module over f*(0,). Since k{U] is a finite
k[V}-module, it is enough to prove that each element of O, can be expressed
in the form £/f*(a) with £ € k{U] and a ¢ m,. For this, it is enough to
check that for a € k[U] with o ¢ m, there exists an element a € k[V] with
a ¢ my, such that f*(a) = aff with 8 € k[U]. By Chap. I, 5.3, Theorem 4 the
set f(V(a)) is closed, and since f is one-to-one, y ¢ f(V(a)). Hence there
exists a function ¢ € k[V] such that ¢ = 0 on f(V(a)) and ¢(y) # 0. Then
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f*(c) =0o0n V(a) and f*(c)(z) # 0. By the Nullstellensatz, f*(c)" = af for
some n > 0 and § € k[U]. We can set a = c™.

Now we can apply Nakayama'’s lemma to O, as a f*(O,)-module. The
equality (1) shows that O,/ f*(m,)O0; = O,/m, = k, and hence is generated
by the single element 1. It now follows by Nakayama’s lemma that O, =
£(0,). |

Let uy,...,u be a basis of k[U] as a module over k[V]. By what we
have proved, u; € O; = f*(0,). Write V/ = V' \ V(h) for a principal affine
neighbourhood of y such that all (f*)~?(u;) are regular in U’ = U\V(f*(h)).
Then k[U’] = 3" f*k[V’]u;. By assumption u; € f*(k[V"']), and it follows that
k[U’] = k[V'], which means that f: U’ — V' is an isomorphism. The lemma
is proved.

Corollary 1. Let X C PN be a variety and £ € PN \ X. Suppose that every
line through € intersects X in at most one point, and £ i3 not contained in the
tangent space to X at any point then the projection from € is an isomorphic
embedding X — PN-1.

It it enough to apply the lemma, together with Chap. I, 5.3, Theo-
rem7. [

Proof of Theorem 9. It is enough to prove that if X C PV is a nonsingular
n-dimensional variety and N > 2n + 1 then there exists { as in Corollary 1;
this is a standard dimension count. Let U; and Uy € P¥ be the sets of points
£ € PN not satisfying the two assumptions of Corollary 1.

In PN x X x X consider the set I' of triples (a,b,¢) witha € P¥,b,ce X
such that a, b, ¢ are collinear. I' is obviously a closed subset of PN x X x X.
The projections of PY x X x X to PV and to X x X define regular maps
@: T - PY and o: I' = X x X. Obviously if y € X x X with y = (b,¢),
and b # c then ¥~!(y) consists of points (a,b,c) where a is any point of the
line through b and ¢. Hence dim+~!(y) = 1 and it follows by Chap. I, 6.3,
Theorem 7 that dimI" = 2n + 1. By definition U; = ¢(I'), and the same
theorem gives dimU; < dimI" =2n + 1.

In a similar way, to study the set U, we consider in PV x X the set I"
consisting of points (a, b) such that a € 6. In exactly the same way we have
projections ¢: IV — X and ¢: I" — PV For b € X we have dimy~1(b) = n
since X is nonsingular, and hence dim I’ = 2n, and since U, = ¢(I"'), also
dimU, < 2n.

We see that dimU; < dimI” = 2n + 1 and dimU; < 2n; therefore if
N > 2n +1 then U, UU, # PV, which was what we wanted. The theorem is
proved.

Corollary 2. Any nonsingular quasiprojective curve is isomorphic to a curve
in B3
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We will see later that not every curve is isomorphic to a curve in the
projective plane. That is, not every algebraic curve has a nonsingular plane
projective model.

However, it can be proved that, continuing the process of projection used
in the proof of Theorem 9, we can obtain a plane curve all of whose singular
points are ordinary double points (we assume here that chark = 0). By
Theorem 9, every nonsingular projective surface is isomorphic to a surface in
P5; in general, it cannot be projected isomorphically into P*. However, one
can choose a projection to P4 so that it is an isomorphism outside finitely
many points. In this way we easily arrive at isolated surface singularities that
are not normal, one example of which was constructed at the end of 5.1.

Exercises to §5

1. Let X be an affine variety and K a finite extension of k(X). Prove that there
exists an affine variety Y and amap f: Y — X with the properties (1) f is finite; (2)
Y is normal; (3) k(Y) = K with f*: k(X) — k(Y) = K the given inclusion. Prove
that Y is uniquely determined by these properties. It is called the normalisation of
X in K.

2. Let X be the cone z° = zy. Prove that the normalisation of X in the field
k(X)(/Z) equals the affine plane, and the normalisation map is of the form z = u?,
y=v% z=uv.

3. Prove the assertions analogous to those of Ex. 1 for an arbitrary quasiprojective
curve X. Prove that if X is projective then sois Y.

4. How is the normalisation of X x Y related to those of X and Y?

5. Prove that z is a normal point of X if the completed local ring O. of 2.2 has
no zerodivisors and is integrally closed. [Hint: Extend §3, Ex. 7 to singular points
and apply.]

\AProve that the cone X C A™ given by z? + -+ + z2 = 0 is normal.
7. In §3, Ex. 13, prove that the origin is a normal point of the hypersurface X.

8. Is the Steiner surface of §1, Ex. 15 normal?

9. Prove that any algebraic curve has a plane projective model all of whose singu-
larities have only linear branches.
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6. Singularities of a Map

When studying a regular map f: X — Y, the following question arises: to
what extent do the fibres f~!(y) over points y € Y inherit properties of
X. As a rule, there are relations that do not hold everywhere, but hold over
“most” points y € Y, that is, over points of some dense open set U C Y. Over
other points y ¢ U, the fibres f~!(y) may suffer some kind of degeneration,
or acquire singularities not present on X. The situation should be compared
with that of Chap. I, 6.3, Theorem 7 on the dimensions of fibres.

6.1. Irreducibility

Of course, even if X is irreducible, we cannot hope that almost all the fi-
bres of f: X — Y are irreducible. For example, if f is finite, its fibres are
finite collections of points. We now formulate a restriction that allows us to
guarantee the irreducibility of “most” fibres.

Suppose that X and Y are irreducible, and that f(X) is densein Y. A
variety X defined over k can also be viewed as a variety over the bigger field
k(Y) D k. Since all our considerations so far related to algebraically closed
fields, we have to view it over an even bigger field, the algebraic closure
k(Y) of k(Y). Now over k(Y), our variety X may no longer be irreducible.
For example, let X be the pencil of conics defined by 23,,':0 ai;(t)&; =0
in P2 x Al. Set D(t) = det|a;;(t)|. If D(¢) is not identically 0, the conic

0 a,] (t)€i€; = 0 is nondegenerate, and X is irreducible over k(t). But
if [5 = 0, then over k(t), the equation of the conic can be reduced to
a(t)fo + b(«‘.)é2 = 0. If —b(t)/a(t) is not a square in k(t)_then a(t)&3 + b(t)£}
is irreducible over k(t), but nevertheless reducible over k(t).

In the general case, it can be shown that a variety X is irreducible over
HY—) if and only if the map f: X — Y cannot be factored as a composite
X =Y’ — Y where k(Y’) is a nontrivial finite extension field of k(Y'), or in
other words, if and only if f*: k(Y) — k(X ) embeds k(Y’) as an algebraically
closed subfield of k(X). This is a purely algebraic fact, see Zariski and Samuel
[78], Chap. VII, §11, Theorem 38.

Theorem 1 (The first Bertini theorem). Let X andY be irreducible varieties
defined over a field of characteristic 0, and f: X —Y a regular map such that
f(X) is_dense in Y. Suppose that X remains irreducible over the algebraic
closure k(Y) of k(Y). Then there exists an open dense set U C Y such that
all the fibres f~1(y) overy € U are irreducible.

Remark 1. The theorem also holds over a field of characteristic p; the proof
just becomes slightly more complicated.



140 Chapter II. Local Properties

Remark 2. By the remark just before the statement of the theorem, the only
reason for “most” fibres of f: X — Y to be reducible is the existence of a
factorisation X — Y’ — Y where Y’ — Y is a generically finite maps.

Proof. We can replace Y by an affine open subset Y3, and so by Chap. I, 6.3,
Theorem 7, we can assume that for y € Y} all the components of the fibres
F~!(y) have the same dimension r = dim X — dimY. In this situation, we
can also replace X by any open subset X;. Indeed, set X \ X; = Z and let
Z = |J Z; be its decomposition into irreducible components. By passing to a
smaller open set Y2 C Y if necessary, we can discard the components Z; for
which f(Z;) # Ya. If f(Z;) is dense in Y3, possibly shrinking Y> still further,
we can once more assume that all components of fibres of f: Z; — Y, have
the same dimension equal to dim Z; — dimY; < r. Therefore they meet the
fibres of f: X — Y3 in subsets of smaller dimension, and since all components
of these fibres have equal dimension, discarding subsets of smaller dimension
from them does not affect their irreducibility.

We now make use of the fact that our fields have characteristic 0. We
can find r 4+ 1 elements u,, ..., up, urs1 € k(X) such that u,...,u, are alge-
braically independent over k(Y'), and such that u,,; is a primitive element
for the field extension k(Y)(uy,...,u,) C k(X), and is integral over k[Y2].
Let X, be the affine variety for which k[Xy] = k[Y2]{u1,...,%r, trs1]. By
construction X, is birational to X, and hence they contain isomorphic open
subsets, so that it is enough to prove the theorem for X, in place of X, with
the map f: Xy — Y5 defined by the inclusion k{Ya] C k[Y2][u1, ..., ur, Uryp1]-

Let F = TF 4+ ay(up,...,u)T% 1 + .-+ + ax(uy,...,u,) be the irre-
ducible polynomial with a; € k[Y2){uy,...,u,] of which u.;; is a root. The
assumption that X is irreducible over the field k(Y) means that F is ir-
reducible over the ring k(Y)[T,uy,...,u,]. Now the thing that we have to
prove is that there exists an open subset U C Y, such that F remains
irreducible on making the substitution e¢; — a;(y) for each y € U, that
is, replacing each coefficient a; € k{Y2] of F by its value a;(y) at y. But
this follows at once from Chap. I, 5.2, Proposition, Remark 2 according to
which the reducibility of a polynomial is expressed by polynomial relations
R;(ay,...,ax) = 0 between its coefficients. At least one of these relations fails
for F,say Rj(a1,...,ax) = R # 0 € k{Yz2]; but then for any point y € Y2 with
R(y) # 0, the polynomial obtained by substituting a; — g;(y) for the coeffi-
cients of F is also irreducible. In other words, U = Y; \ V(a). The theorem
is proved.
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6.2. Nonsingularity

In the theory of differentiable manifolds, one proves that for a smooth map
f: X — Y, the points y € Y over which the fibre f~!(y) is not a smooth
manifold form a subset of measure 0in Y (an analogue in differential topology
of a subvariety of smaller dimension). This is called Sard’s theorem (see Lang
(54], Chap. VIII, §1 or Abraham and Robbin, [2], §15). Theorem 2 below is
an algebraic geometric equivalent of this over a field of characteristic 0. We
will see in 6.4 that the same assertion in characteristic p is false.

Theorem 2 (The second Bertini theorem). Let f: X — Y be a regular map
of varieties defined over a field of characteristic 0, with f(X) dense in Y;
assume that X is nonsingular. Then there ezists a dense open set U C Y
such that the fibre f~1(y) is nonsingular for every y € U.

Theorems 1 and 2 and their various generalisations are called the Bertini
Theorems.

Set dim X = n and dimY = m. By Chap I, 6.3, Theorem 7, there exists
a dense open subset of Y over which all components of the fibres f~!(y) are
of the same dimension n — m. We can assume that Y is the whole of this
open set. In the same way, we can assume that Y is nonsingular. We prove
first two lemmas.

Lemma 1. The fibre f~1(y) is nonsingularifd; f: ©x ; — Oy, is surjective
for all points z € f~(y).

Proof. Note that the tangent space ©f-1(y) ; to the fibre f~!(y) is contained
in the kernel of d. f. Indeed, the composite of ©4-1(y) . — Ox with d.f
is 0, To check this, by duality we must check that the composite of the dual
my/m2 — my/m2 of d.f with m;/m2 — W./m2 is 0, where T, is the
maximal ideal of z on the fibre f~1(y), and m; — . the restriction from
X to the fibre. But this is obvious. Thus d; f surjective implies that

dimBOj-1(y) . < dimkerd; f =dimOx ; ~dimBy,y <n-m

(here we use the fact that X is nonsingular, that is, dim6x ; = n). Since all
the components of the fibre f~1(y) have dimension n — m, it follows that it
is nonsingular.

Lemma 2. There exists a nonempty open subset V C X such that d. f is
surjective forx € V.

Proof. The surjectivity of d.f: &x,: — Oy, is dual to the injectivity of
m,/m% — mg/m2, that is, if u1,...,um are local parameters at Y, to the
linearly independence of d;uy,...,dzum. Using the inclusion of O, to the
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formal power series ring as in 2.2, it is easy to see that uy,...,um, are al-
gebraically independent, and since f(X) is dense in Y, it follows that they
are also algebraically independent as functions on X. We complete them to
a system uy, ..., U, of n = dim X algebraically independent functions.

Lemma 2 will be proved if we check that for any system uy,...,u, of al-
gebraically independent functions on X, the set of points at which uy,...,u,
are local parameters is open and nonempty. We can assume that X is affine,
X C AV, with coordinates z1,...,zy. We prove that for points z of a
nonempty open set U C X all the d,z; can be expressed as linear com-
binations of d,u,,...,d u,. If these were linearly dependent it would then
follow that dim6x . < n.

Each z; is related to u;,...,u, by a relation Fi(z;,uy,...,u,) =0, with
F; an irreducible polynomial, and hence (using that chark = 0), OF;/8z;
is not identically 0. Suppose that F; = eoz}* + alz:‘"l + .- + a,, with
a; € k[uy,...,u,]. Now d;a; are linear combinations of d;uy,...,d up.
Using the basic properties 1.3, (5) of the differential d, it follows from
Fi(zi,ugy...,un) =0 that

%g—(z)dzz,- +zdza0 + - +dean =0

at any point z € X. The points at which all 8F;/8z;(z) # 0 form a nonempty
open set, and at such points d;z; can be written as linear combinations of
d;uy,...,dzu,. Lemma 2 is proved.

Proof of Theorem 2. It is now easy to complete the proof of Theorem 2. Let
Z C X denote the subset of points £ € X at which d; f is not surjective. It
is easy to see that it is a closed subset, since it is defined by the vanishing of
certain minors. We need to prove that f(Z) is contained in a proper closed
subset of Y. If not, then f(Z) is dense in Y. Applying Lemma 2 to Z, we
find a nonempty open set V' C Z such that 8z . — By g(;) is surjective at
all points of V. But 8z, C Ox ;, and thus a fortiori the map Ox,; — Oy,
must be surjective. This contradiction proves the theorem.

6.3. Ramification

We consider now an especially simple case of maps, those with 0-dimensional
fibres. For a finite map f: X — Y, as we saw in Chap. I, 5.3, Theorem 5, the
inverse image f~!(y) of any point y € Y is a finite number of points. Let us
study this number. By analogy with the theorem on dimension of fibres, it
is natural to expect that it is constant for all y in some open set, deviating
from this value only on some closed subset Z C Y. This is what happens in
the simplest case

f: Al = A' givenby y= f(z) =22 1)
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To state in a general form the specific property of this example, we introduce
the following notion.

Definition. Let X and Y be irreducible varieties of the same dimension and
f: X — Y a regular map such that f(X) C Y is dense. The degree of the
field extension f*(k(Y)) C k(X), which is finite under these assumptions, is
called the degree of f:

deg f = [k(X) : f*(k(Y))]-

The map (1) has deg f = 2, and if char k # 2, every point y # 0 has two
distinct inverse images, and the point y = 0 one only. Is it always true that
the number of inverse images is < the degree of a map? This is not so for
the example of the parametrisation f: Al — Y of the cubic curve with an
ordinary double point (Chap. I, 1.2, (1-2)): here deg f = 1, but the inverse
image of the singular point consists of two points. It turns out that the reason
here is that Y is not normal.

Theorem 3. If f: X — Y is a finite map of irreducible varieties, and Y is
normal, then the number of inverse images of any point y € Y is < deg f.

Proof. In view of the definition of a finite map, we can restrict to the case
that X and Y are affine. Set

kX]=A4, k(X)=K,

KY]= B, k(Y)=L with’ [K:L]édegf=n.

Since Y is normal, B is integrally closed, and since f is finite, A is a finite
B-module. Hence for any a € A, the coefficients of the minimal polynomial
of a are in B. This is a simple property of integrally closed rings, whose proof
can be found in Atiyah and Macdonald [7], Proposition 5.15.

Suppose that f~1(y) = {z1,...,Zm}. Consider an element e € A taking
distinct values a(z;) at the points z; fori = 1,...,m;if X C AV, the point is
to find a polynomial on A" with this property, which is entirely elementary.
Let F € B[T] be the minimal polynomial of a. Obviously deg FF < n. We
replace all the coefficients of F by their values at y, writing F(T) for the
resulting polynomial. Then this has m distinct roots a(z;). Thus

m<degF =degF < n,

so that m < n, as asserted. The theorem is proved.

In what follows, throughout this section, we consider a finite map f: X —
Y between irreducible varieties, and assume that Y is normal.
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Definition. f is unramified over y € Y if the number of inverse images of y
equals the degree of the map. Otherwise, we say that f is ramified at y, or
that y is a ramification point or a branch point of f.

Theorem 4. The set of points at which a map is unramified is open, and is
nonempty if f*(k(Y)) C k(X) is a separable field extension.

Proof. We preserve the notation introduced in the proof of Theorem 3. If f
is unramified at y then deg F' = deg F = n, and F has n distinct roots. Write
D(F) for the discriminant of F.. As we have seen, a sufficient condition for f
to be unramified at a point y can be written

D(F) = D(F)(y) #0. 2)

But then D(F)(¢) # 0 for points %’ in some neighbourhood of y. This is
what we had to prove. Thus the set of branch point is a closed set; it is called
the branch locus or ramification locus of f.

The question remains as to whether it is a strict subset. Suppose that
Fr(k(Y)) C k(X) is separable. In this case we also say that f is separable.
We can again assume that X and Y are affine, and use the previous notation.
If a € A is a primitive element for the field extension f*(k(Y)) C k(X) and
F(T) its minimal polynomial, then deg F' = n and D(F) # 0. Therefore,
there exist points y € Y such that D(F)(y) # 0, so that f is unramified.
This proves Theorem 4.

Remark. In the case of an inseparable map, every point is a ramification
point; the standard example of this is the map A! — A! defined by z ~— zP.

We see that if f: X — Y is finite and separable, with X and Y irreducible
and Y normal, then the picture is as in the example (1): points of some
nonempty open subset U C Y have deg f distinct inverse images, and points
“ in the complement have fewer inverse images. See Chap. VII, 3.1, Theorem 1
for a more concrete local description of the ramification of amap f: X - Y
between algebraic curves of over C.

Now suppose that Y is nonsingular. The preceding considerations allow
us to describe finite unramified maps f: X — Y in a very explicit form.
Consider a function a € A = k[X] that takes distinct values at all the points
of the inverse image f~!(y) of some point y € Y. Then k(X) = k(Y)(a). If
B = k[Y], and F = F(T) € B[T] is the minimal polynomial of a. then by
(2), the discriminant D(F)(y) # 0, and hence F'(a)(z) # 0 for z € f~!(y).
From now on, we write Y for an affine neighbourhood of y on which D(F)
is nonzero, and X for its inverse image. Set A’ = Bla] = B[T]/(F(T)). Then
A’ = k[X'], where X’ C Y x Al is defined by the equation F(T) = 0. We
prove that, in view of the nonsingularity of Y, also X’ is nonsingular. But
then X’ is normal, and therefore A’ is integrally closed; since A’ C A and the



6. Singularities of a Map 145

two rings have the same field of fractions, we have A = A’ and X = X', that
is, the explicit construction of X’ actually describes X.
It remains to prove that X’ is nonsingular. Suppose that

F(T)=T* +b5T" ' +..-+b, withb; € B.

We prove that the map d;f: 8x/; — By,; is an inclusion for any point
z € X', where z = f(z). By duality, this is equivalent to m,/m2 — m,/m2
surjective. Let uy,...,um be local parameters at z. We need to prove that
d.ui,...,d;u, generate m,/m2. By definition this space is generated by
elements d,b for b € B (which are linear combinations of d,uy,...,d um)
together with d.a. It remains to prove that d;a can be written as a linear
combination of d ui,...,dsum. For this, we use the fact F(a) = 0, and the
properties 1.3, (5) of differentials. We get

F'(a)(z)dza +a™ }(z)dzby + -+ + dzbs = 0.

Since F'(a)(z) # 0, this expresses d;a in terms of d uy,...,d;um.

Now recall that Y is nonsingular and dimX’ = dimY = m. Hence
dimBy, = m, and in view of the inclusion d.f: Ox/ ;. — Oy, also
dim6x, ; = m. Hence X' is nonsingular and X’ = X. But we have proved a
little more. We summarise what we have proved.

Theorem 5. An unramified finite map f: X — Y to a nonsingular variety Y
is locally described as the projection to Y of a subvariety X C Y x Al, where
X is defined by an eguation F(T) =0 and D(F) #0 on Y. The differential
df defines an isomorphism Ox, ; = Oy, s(,) on the tangent spaces. O

In the case k = C, this theorem shows that as a map of topological
spaces, f: X — Y is an unramified cover, that is, any point y € ¥ has a
neighbourhood U such that f~!(U) decomposes as a disjoint union of open
sets, each of which is mapped homeomorphically to U by f. Indeed, suppose
that f~(y) = {z1,...,Zn}, and that u;,...,u;m are local parameters in a

neighbourhood of y and vg'), .. ,vs,i.) local parameters at z;. The isomorphism

dg,: Ox,z, = Oy, shows that det |8v,(")/8u,-|(a:,-) #0foralli=1,...,n By
the implicit function theorem it follows from this that there exist neighbour-
hoods V; of z; and U of y such that f define a homeomorphism from each V;
to U. We can choose these neighbourhoods sufficiently small that V; and V;
do not intersect for i # j. We check that f~1(U) = JV;. If ¥ € U then, since
f is unramified, f~!(y') consists of n = deg f points. But since y’ already
has n inverse images in {JV;, we have f~1(U) = JV;.
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6.4. Examples

Ezemple 1. Pencil of quadrics. Assume that chark $# 2, and consider the
hypersurface X C P™ x Al defined by the equation sz___o a;;(t)&:& = 0,
where a;;(t) € k[AY] = kit], and the projection X — A! induced by the
projection P™ x Al — Al. This is called a pencil of quadrics, and the poly-
nomial D(t) = det|a;;(t)| the discriminant of the pencil. Pencils of conics
have already appeared in Chap. I, 6.2, Example 1.

We determine first of all when X is nonsingular, and secondly, over what
points & € A! the fibre of X — A! is singular.

Set F = a,;(t)&:€;. If D(a) # 0 at a point t = o then the equations
OF/0¢; =0fori=0,...,n and t = o have only the solution 0, so that points
of the fibre over t = a are nonsingular both as points of X and as points of
the fibre. It remains to consider the values t = a for which D(a) = 0. We
will assume that o = 0.

Write F for the quadratic form F = 3 6,;(0)¢:€;, and r for its rank. We
can make a nondegenerate linear transformation with coefficients in k to put
F in the form €3 +--- + £2_,. Now we apply to F the standard method of
completing the square; we can make a linear transformation with coefficients
in the local ring Qg of the origin of A! (that is, the coefficients are rational
function with no ¢ in the denominators), and with determinant invertible in
Oy, to put F in the form

F = Go(t)fg +-o 4 Grfx(t)fg—x + tG(f,-, e yfn)»

with a;(t) € Op and a;(0) # 1 for i = 0,...,7 — 1. Any points with ¢t = 0,
& = --- = £&r_; (and arbitrary &,,...,&,) lie on X, and there OF/9¢; = 0 for
all <. Suppose that

Gllr,...,&n) = C(Ery-- . &n) +tG1(Ery- . 6n),

with G € k¢, ...,&n]. Then at our point, 8F/8t = G(£;,...,&n
then there exist &,...,&,, not all 0, such that G(&,,...,&,) =
point is singular on X. For r = n, the equation looks like

F =0o(t)5 + -+ + an_1(t)3_; + tFaa(t)E2,

with 6;(0) #0 for i = 0,...,n and some k > 1. If k > 1 then 8F/8t = 0 at
the point t = 0, (&,...,&) = (0,...,0,1), and this is a singular point of X.
There remains the case k = 1, when it is easy to seen that no point of the

fibre over t = 0 is a singular point of X. Thus we have proved the following
result.

) Ifr<n
0, and the

Proposition 1. The quadric bundle X is a nonsingular variety if and only
if its discriminant has no repeated roots. The singulor fibres are precisely the
fibres over the roots of the discriminant. In particular, the number of singular
fibres of X — Al equals the degree of the discriminant. 0O
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Ezample 2. Pencil of elliptic curves. Assume that the characteristic of k is
not 2 or 3, and consider the surface X C P2 x A! defined by the equation

~€360 = £} +a()6i€3 +b(t)EF  with a(t),b(t) € K[A] = K[t].

The projection P2 x A! — A! defines a map f: X — Al. The fibre f~!(a)
over a point ¢ is the cubic curve £26, = £} + a(a)£:£3 + b()€3. This cubic
has a unique point on the “line at infinity” § = 0, the flex (0: 1 : 0); in
the chart A? with & # 0, it is given in affine coordinates z = £ /£ and
y = &2/€0 by y? = 2% + a(a)z + b(e). If the fibre f~(a) is nonsingular, then
as in Example 1, X has no singular points on it.

Suppose that f~1(a) is singular. It is easy to see that (0 : 1 : 0) is nonsin-
gular. Thus there must be a simultaneous solution of y = 0, 322 + ¢(a) = 0
and y? = 2% +a(a)z + b(a), from which it fellows that 4a(a)? + 27b(a)? = 0.
The polynomial D(t) = 4a(t)® + 27b(t)? is called the discriminant of the pen-
cil X — Al. We will assume that D(t) is not identically 0. We have proved
that if D(a) # O then all points of the fibre f~1(c) are nonsingular both on
the fibre and on the surface X.

If D(a) = 0 then the same argument shows that the fibre f~!(a) has a
singular point, and it follows from the equations 3z2 + a(a) = 0 and z3 +
a(a)z + b(a) = O that the z-coordinate of this point is given by 2a(a)z +
3b(a@) = 0. In order for this to be a singular point of X, it must also satisfy
a'(a)z+b(a) = 0, whence 2ab’ ~3b'a = 0. Since moreover 4a(a)?+27b(c)? =
0, either a(a) = b(a) = 0 or a(a) # 0 and b(a) # 0. When a(a) = b(a) =0
our relations are equivalent to b’(a) = 0, and when a(a) # 0 and b(a) # 0,
they can be expressed as (a3/b%)'(a) =0, or D'(a) = (b*(4a3/b? +27)') () =
0. This proves the following result.

Proposition 2. The pencil of elliptic curves X — A! is a nonsingular sur-
face if the discriminant has simple roots or are common roots of a and b
that are simple roots of b. Singular fibres correspond to roots of the discrim-
tnant. O

Ezample 8. Pathologies in finite characteristic. We can construct examples
in which the assertion of Theorem 2 fails in characteristic 2. For this, consider
the finite part of the pencil of elliptic curves £2& = £} + a(t)£1€2 + b(t)&3,
given by y2 = 23 + a(t)z + b(t) . In characteristic 2 every fibre y2 = 2% +
a(@)z + b(a) is singular at the point z = a(a)'/?, y = b(c)'/?, and at no
other point. In order for this to be a singular point of the surface, we must
have @' (@)z + b () = 0, that is, ((a')*a + (V')%)(a) = 0. Thus all the fibres
of X — Al are singular, but the surface X itself only has singular points
in the fibres f~!(a), where a is a root of (a')2a + (b')2. If S is the set of
these roots, then the surface X \ f~!(S) is nonsingular, but all the fibres of
X\ f~%(8) — A\ S are singular.

There is a similar example in characteristic 3, the pencil with equation
y? = 23 4 a(t). It can be proved that such “pathological” pencils of cubic
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curves exist only in characteristic 2 or 3, although of course similar examples
oceur for all p for curves of higher degree, for example y? = zP + a(t).

An example of a finite map f: X — Y such that every point y € Y is a
branch point is given by the Frobenius map, Chap. I, 2.3, Example 6 in char-
acteristic p > 0. It has p(ay, ..., o) = (of, ..., ab), so that in characteristic
p, every point z has a unique inverse image ¢ l(a:).

In the theory of curves, the Frobenius map particularly reflects the specific
properties of finite characteristic. For this, we need to generalise somewhat. If
C is the plane curve f(z,y) = ¥ a:jz'y’ = 0, we let C’ be the curve g(z,y) =
S af;x*y = 0. In characteristic p, the map u = z”, v = zP obviously defines
a rat.xonal map ¢: C — C’ (in fact, a regular map). This is also called the
Frobenius map, and coincides with that introduced in Chap. I, 2.3, Example 6
if a;; € Fp, when afj = a4, and therefore C = C".

Theorem 6. The Frobenius map of an algebraic curve has degree p. Every
inseparable rational map of curves f: X — 'Y factors as a composite f = gop
where g: X' = Y is some map and ¢: X — X' the Frobenius map.

Proof. This follows from general properties of fields of characteristic p and
transcendence degree 1; see Appendix, §5, Proposition 2. It is proved there
that {k(X) : ¢*(k(X'))] = p, and this means that degy = p. Moreover,
Fr(k(Y)) D k(X)?, but k(X)?P = k(X’). The inclusion of fields f*(k(Y)) C
©*(k(X") and the isomorphism ¢*: k(X’) — ¢*(k(X")) define an inclusion
(@*)"H(f*(k(Y))) C k(X'), that is, a rational map g: X’ — Y such that
f = g o . The theorem is proved.

Exercises to §6

1. Classify singular points of pencils of quadrics over the point ¢ = 0 up to formal
analytic equivalence, under the assumption that the rank of the quadric drops by
latt=0.

2. Consider the net of conics X on P? defined in P? x A? by 32 =0 i3 (3, t)§:i&; = 0.
Assume that the rank of a conic over every point a € A% drops by at most 1. Prove
that X is nonsingular if and only if the discriminant curve det |a;;(s,t){ = 0 is
nonsingular.

3. Prove that if a pencil of elliptic curves (6.4, Example 2) is a nonsingular surface
then its singular fibre is irreducible. Is this true for any family of cubics?
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4. Determine the branch locus of the map X — P", where X is the normalisation
of P* in the quadratic extension of k(P") = k(zy,...,zn) defined by the equation
y?> = f(z1,...,Zn), where f is a polynomial of degree m. [Hint: The answer depends
on the parity of m.]

5. Prove that if char k = p then the curve ¥ + y = f(z) where f is a polynomial
is an unramified cover of the line A with coordinate z.

6. Prove that for the surfaces y* = z° + a(t)z + b(t) over a field of characteristic 2
and 32 = z* + a(t) over a field of characteristic 3, the singular points of fibres form
a nonsingular curve having projection to the line A! with coordinate t of degree
p = 2 or 3 respectively.



Chapter III. Divisors and Differential Forms

1. Divisors

1.1. The Divisor of a Function

A polynomial in one variable is uniquely determined up to a constant factor
by specifying its roots and their multiplicities; that is by specifying a set
of points z,,...,z, € A! with multiplicities k;,...,k,. A rational function
¢(x) = f(z)/g(z) with f,g € k[A!] is determined by the zeros of f and g,
that is, by the points at which it is 0 or is irregular. To distinguish the roots
of g from those of f, we take their multiplicities with a minus sign. Thus the
function g is given by points z;,...,z, with arbitrary integer multiplicities
ki,... ke

The task we set ourselves here is to find a similar way of specifying a
rational function on an arbitrary algebraic variety. The starting point is that,
according to the theorem on the dimension of intersections, the set of points
at which a regular function is 0 is a codimension 1 subvariety. Thus the
object we associate with a function is a collection of irreducible codimension 1
subvarieties, together with assigned multiplicities; the multiplicities we assign
are integers, both positive and negative.

Definition. Let X be an irreducible variety. A collection of irreducible closed

subvarieties Cy,...,C;, of codimension 1 in X with assigned integer multi-
plicities ki,. .., k. will be called a divisor on X. A divisor is written
D=kC;+--- +kC,. (1)

If all the k; = 0, we write D = 0. If all k; > 0 and some k; > 0 then we write
D > 0; in this case D is said to be effective. An irreducible codimension 1
subvariety C; taken with multiplicity 1 is called a prime divisor. If all the
k; # 0 in (1) then the variety Cy U.-- U C, is called the support of D and
denoted by Supp D.

We define an addition operation on divisors. For this, note that, provided
we also allow the coefficients to take the value 0 in (1), any two divisors D
and D’ can be written
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 D=kC+ - +kC, and D =kC+- +k.Cy,
with the same collection of prime divisors C),...,Cy. Then by definition,
D+ D' = (ki +K)Ci + - + (ke + kL)Cr.

Thus divisors on X form a group, equal to the free Z-module with the ir-
reducible codimension 1 subvarieties C of X as generators. This group is
denoted by Div X.7

We now describe the map taking a nonzero function f € k(X) into its
divisor div f. Let C be a prime divisor; first of all, to each nonzero f € k(X),
we assign an integer vo(f). If X = Al then v (f) is the order of zero or pole
of a function at a point.

This can be done only under one restriction on X. Namely, we assume
that X is nonsingular in codimension 1 (see Chap. II, 5.1); in other words,
we assume that the set of singular points of X has codimension > 2. Let
C C X be an irreducible codimension 1 subvariety, and U some affine open
set intersecting C, consisting of nonsingular points, and such that C is defined
in U by a local equation. Such an affine set U exists by the assumption on
X and by Chap. II, 3.1, Theorem 1. Thus ac = () in k[U]. We prove that
for any 0 # f € k[U], there exists an integer k > 0 such that f € (w*)
and f ¢ (m*+1). If this were not the case, that is, if f € (n*) for every k,
then f € ((7*); the same then holds in the local ring O¢ at an irreducible
subvariety C. Hence f = 0 by Chap. II, 2.2, Theorem 5 and Appendix, §6,
Proposition 4.

The number k just determined is denoted by vc(f). It has the properties

ve(fif2) = ve(fi) +ve(f2),  and
ve(fr + f2) 2 min{ve(f1),vc(fe)},  if fi+ fa #£0,

as follows easily from the definition and the irreducibility of C. In the case of
a nonsingular plane curve, we have already defined this function in Chap. I,
1.5, Theorem 1.

If X is irreducible, then any function f € k(X) can be written in the form
f =g/h with g, h € k{U]. If f # 0 we set ve(f) = ve(g) — ve(h). It follows
at once from (2) that vc(f) does not depend on the representation of f in
the form g/h, and that (2) holds for all f € k(X) with f #0.

Our definition of v¢(f) depends at present on the choice of an open set
U, and hence we temporarily write vZ(f) in place of vc(f). Let us show that
in fact v%(f) is independent of U. Suppose first that V C U is an affine
open set with V N C # §. Then r is a local equation for C also in V, and

(@)

7 The current literature is inconsistent, some authors using Div.X for the group
of “ordinary” divisors 3 k:C; (Weil divisors) described here, some for locally
principal divisors (Cartier divisors) (see 1.2 below). In case of ambiguity, one can
write WDiv or CDiv.
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obviously then vZ(f) = v¥(f). However, if V is any open set satisfying the
same conditions as U then U N C and V N C are open in C and nonempty,
and since C is irreducible they have nonempty intersection. Taking W' to
be an affine neighbourhood in U NV of some point z € U NV NC, by the
preceding remark, we get that v¥(f) = v (f) and v¥%(f) = W& (f), and
hence v%(f) = v&(f). Thus we have justified that the notation vc(f) is well
defined.

Notice that if X = A and C = 7 is the point ¢ then v;(f) equals the
multiplicity of a as a root of f for any nonzero f € k[T}]; the general definition
essentially copies this particular case.

If vo(f) = k > O then we say that f has a zero of order k along C;
if vo(f) = —k < O that f has a pole of order k along C. Note that these
notions are defined for codimension 1 subvarieties, rather than for points.
For example, if f is the function f = z/y on A? then the point (0,0) is
contained both in the locus of zeros (z = 0) and the locus of poles (y = 0) of
f.

We now prove that for a given function f € k(X), there are only a finite
number of irreducible codimension 1 subvarieties C such that vo(f) # 0.
Consider first the case that X is an affine variety and f € k[X]. Then it
follows from the definition that if C is not a component of the subvariety
V(f) then ve(f) = 0. If X is still affine, but f € k(X) then f = g/h with
g,h € k[X], and we see that vc(f) = 0 if C is not a component of V(g) or
V(h). Finally, in the general case, let X = [JU; be a finite cover of X by
affine open sets. Then any subvariety C intersects at least one U;, so that
ve(f) # 0 only for C that is the closure of an irreducible codimension 1
subvariety C’ C U; for some i, with ve(f) # 0 in U;. Since there are only
finitely many U; and finitely many C’ in each U;, there are only finitely many
C with ve(f) # 0. Thus we can consider the divisor

> welf)e, (3)

where the sum takes place over all the irreducible codimension 1 subvarieties
C for which vc(f) # 0. This divisor is called the divisor of f, and denoted®
by div f.

A divisor of the form D = div f for some f € k(X) is called a principal
divisor. If div f = 3~ k;C; then the divisors

divof= Y kC: and divef= Y -kC
{ilk: >0} {ilk:<0}

are called respectively the divisor of zeros and divisor of poles of f. Obviously
divg f,divee f > 0 and divy = divp f ~ dive f. Notice 2 number a simple
properties: div(fi1f2) = div(f;) + div(f2), and divf = 0 for f € k; and
div f 2 0 for f € k[X].

8 The divisor div f is also traditionally denoted by (f) in the literature.
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Let us prove that for a nonsingular irreducible variety the converse also
holds, that is, if div f > 0 then f is regular on X. The same thing holds if X
is only normal, but we omit the proof. Let £ € X be a point at which f is
not regular. Then f = g/h with g,h € O, but g/h ¢ O,. It follows from the
fact that O, is a UFD (Chap. II, 3.1, Theorem 2) that we can choose g and h
without common factors. Let 7 be a prime element of O, that divides & but
not g. In some affine neighbourhood U of z, the variety V(r) is irreducible
and of codimension 1. Write C for its closure in X. Then obviously ve(f) < 0.
This proves that div f > 0 = f regular.

Since an everywhere regular function on an irreducible projective variety
X is a constant (Chap. I, 5.2, Theorem 3, Corollary 1), it follows from the
result just proved that on a nonsingular projective variety X, if divf > 0
then f = a € k. In particular, on a nonsingular projective variety, a rational
function is uniquely determined up to a constant factor by its divisor: if
div f = div ¢ then div(f/g) = 0, so that f = ag with a € k.

Ezample 1. X = A™. By Chap. I, 6.1, Theorem 3, any irreducible codimension
1 subvariety C is defined by one equation, A = (F) with F' € k[X]. It follows
that C = div F, that is, every prime divisor, hence every divisor, is principal.

Ezample 2. X = P*. Any irreducible codimension 1 subvariety C is defined
by a single homogeneous equation F, and moreover, if F has degree k then
in the affine chart U;, we have ac = (F/T;¥). From this we get a method
of constructing the divisor of a function f € k(P™) as follows: represent f as
f = F/G with F and G forms of the same degree, and factor F and G into
irreducibles: F =[] Hf* and G =[] L]". Then

divf = Z kiCy - ij'Djy 4)

where C;-and Dj are the irreducible hypersurfaces defined by H; = 0 and
L;=0.

’ Write deg F' for the degree of the form F. Since deg F' = deg G it follows
that 3 k;deg H; = Y m; deg G;. Define the degree of a divisor D = }_ k;C;
as the integer deg D = 5 k; deg H;. We have proved that if D is a principal
divisor then deg D = 0. The converse is also easy to prove: if }_ k; degC; =0
and C; is defined by a form H; then f = [ H¥ is homogeneous of degree 0
and div f = 3 k:C;.

Ezample 8. X =P™ x --- x P**. This case js treated similarly. A codimen-
sion 1 subvariety C is again given by one equation H = 0 by Chap. I, 6.1,
Theorem 3', although now H is homogeneous separately in each of the k sets
of coordinates of P™, and correspondingly has k different degrees deg; H for
i=1,...,k. In the same way as in Example 2 one can introduce the degrees
deg; D of a divisor D on X and prove that a divisor D is principal if and
onlyifdeg; D=0fori=1,...,k.
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Principal divisors form a subgroup P(X) of the group Div X of all divisors.
The quotient group Div X/P(X) is called the divisor class group of X, and
is denoted by C1X. A coset of Div X/P(X) is called a divisor class. Divisors
in the same coset of Div X/P(X) are said to be linearly equivalent: Dy ~ Dy
if Dy — D, = div f for some nonzero f € k(X).

In the three examples just worked out, we have respectively

ClA™) =0, CI(P")=Z and CIP™ x--.x P™)=ZF

1.2. Locally Principal Divisors

Suppose that the variety X is nonsingular. In this case, for any prime divisor
C C X and any point z € X there exists an open set U 3 z in which C is
defined by a local equation 7. If D = 3" k;C; is any divisor, and each of the
C; is defined in U by a local equation =, then we have D = div f in U, where
=TI 1r£“'. Thus every point r has a neighbourhood in which D is principal.
From among all such neighbourhoods we can choose a finite cover X = |JUj;,
and D = dlv(f,) on Ug.

Obviously, the functions f; cannot be chosen arbitrarily: f; is not identi-
cally 0, and in U; NU; the divisors div(f;) and div(f;) coincide. As we saw in
1.1, it follows from this that f;/f; is regular in U; N U; and nowhere O there.
We say that a system {f;} of functions corresponding to, the open sets U; of a
cover X = |JU; is compatible if the f; satisfy these conditions, that is, f;/f;
is regular in U; N U; and nowhere O there.

Conversely, any compatible system of functions defines a divisor on X.
Indeed, for any prime divisor C we set k¢ = ve(f;) if U; N C # §, where f;
and C are considered as a function and a prime divisor for the variety U;.
From the compatibility of the system of functions it follows that this number
is independent of the choice of U;. Hence we can consider the divisor D =
3" kcC. Obviously the given {f;} are then a compatible system corresponding
to D.

Finally, it is easy to determine when a system of functions {f;} corre-
sponding to the open sets of a cover X = {JU; defines the same divisor as
another system {g;} corresponding to the open sets of a cover X = {JV;. For
this, a necessary and sufficient condition is that f;/g; should be regular in
U; NV, and nowhere 0 there. We leave the simple verification to the reader.

Specifying divisors in terms of compatible systems of functions allows us
to study their behaviour under regular maps. Let ¢: X — Y be a regular
map of nonsingular irreducible varieties, and D a divisor on Y. Suppose that
¢(X) ¢ Supp D. We prove that, under this restriction, one can define the
pullback *(D) of a divisor D by analogy with the definition of the pullback
of a regular function. First we determine when we can construct the pullback
of a rational function f on Y, and when it will not be identically 0 on X.
For this it is sufficient that there is at least one point y € o(X) at which f is
_regular and f(y) # 0; these points then form a nonempty open set V, and f
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is regular and nowhere 0 on V. Therefore ¢*(f) defines a regular function on
@~1(V) that is not identically 0 (in fact, nowhere 0). Since ¢~ *(V') is open in
X, ¢*(f) defines a rational function on X. In terms of divisors, our condition
on the map ¢ and the function f boil down to ¢(X) ¢ Supp(div f).

Now suppose that D is given by a compatible system of functions {f;}
with respect to a cover X = |JU;. We consider the U; with o(X)NU; # 9, and
prove that o(X) N U; ¢ Supp(div f;). Indeed, the irreducibility of X implies
that @(X) is irreducible in Y. If we assume that ¢(X) N U; C Supp(div fi)
then since ¢(X) is irreducible and (X)NU; # 8, it would follow that ¢(X) C
Supp(div f;). Finally, from the fact that Supp(div f;)NU; = Supp DNUj, the
irreducibility of ¢(X) and the fact that o(X) N U; is nonempty, it would
follow that ¢(X) C Supp D, contradicting our assumption.

Therefore, for every i such that o(X) N U; # @, the rational function
©*(f:) is defined on V; = ¢~ !(U;). Then X = |JV; is an open cover of X,
with respect to which {¢*(fi)} is a compatible system of functions defining
a divisor on X. This divisor is obviously unchanged if we define D using a
different system of functions. The divisor obtained in this way is called the
pullback or inverse image of D and denoted by ¢*(D).

- Brample. Suppose that X and Y are two curves, and f: X — Y a map
taking X toapointae Y. Ifa #be Y and D = b is the divisor consisting
of b with multiplicity 1, then 1 is a local equation of D in a neighbourhood
of @, so that f*(D) =0.

In particular if ¢(X) is dense in Y then the pullback of any divisor De
DivY is defined.

If D and D’ are two divisors on Y defined by systems of functions {fi}
and {g;} with respect to covers X = [JU; and X = [JV; then the divisor
D + D' is defined by the system of functions {f;g;} with respect to the cover
X = UU; nV;). It follows at once that ¢*(D + D') = ¢*(D) + ¢*(D'), so
that if p(X) is dense in Y, the pullback ¢* defines a homomorphism

¢*: DivY — DivX.

The principal divisor div f is given by the system of functions f; = f, and
hence o*(div f) = div(g*(f)). Therefore ¢* maps P(Y) to P(X), and so
defines a homomorphism ¢*: ClY — C1X.

As an application of the idea of a divisor defined by a compatible system
of functions, we show how one can associate a divisor not with a function, but
with a form in the coordinates on a nonsingular projective variety. Suppose
that X C PN and let F be a form in the coordinates of PV that is not
identically 0 on X. For any £ € X, consider a form G of the same degree
d = deg F, but with G(z) # 0; such forms exist, of course: if, say, = = {op :
.- : ay) and a; # 0 then we can take G = T¢. Then f = F/G is a rational
function on X and is regular on the open set where G #0.
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It is easy to see that there exist forms G; such that the open sets U; =
X \ Xg, form a cover of X. One checks just.as easily that the functions
Jfi = F/G,; form a compatible system of functions with respect to the open
sets U;, and therefore define a divisor on X. A different choice of the forms G;
does not change this divisor, which therefore depends only on F. It is called
the divisor of F, and denoted by div F. Since the functions f; are regular in
the Uj, it follows that div F > 0. If F, is another form with deg F, = deg F
then div F — div Fy = div(F/F}) is the divisor of the rational function F/F).
Therefore deg F = deg F implies that div F ~ div F;.

In particular, all the divisors div L, where L is a linear form, are linearly
equivalent. Obviously Supp(divL) = X is the section of X by the hyper-
plane L = 0. These divisors are thus called hyperplane section divisors of
X.

Taking F; = L? as the form in the above argument, where d = deg F, we
get div F' ~ ddiv L, where div L is a hyperplane section divisor.

All the arguments concerned with using compatible systems of functions
to specify divisors generalise to arbitrary, possibly singular, varieties. How-
ever, for this, we must take the specification by compatible systems of func-
tions as the de‘gnition of divisor. The object we get is called a locally principal
divisor. More precisely, we have the following definition.

Definition. A locally principal divisor or Cartier divisor on an irreducible
variety X is a system of rational functions {f;} corresponding to the open
sets U; of a cover X = |JU; satisfying the conditions: (1) the f; are not
identically 0; (2) fi/f; and f;/fi are both regular on U; N U;. Here functions
{fi} and open sets U, define the same divisor as functions {g;} and open sets
V; if fi/g; and g;/ fi are regular on U; NV,

Every function f € k(X) defines a locally principal divisor div f if we set
J. = f. Divisors of this form are said to be principal.

The product of the two locally principal divisors defined by functions
{fi} corresponding to open sets U; and functions {g;} corresponding to open
sets V; is the divisor defined by functions {fig;} and open sets U; N V;. All
locally principal divisors form a group, and principal divisors a subgroup.
The quotient group is called the Picard group of X, and denoted by Pic X.

Any locally principal divisor has a support. This is the closed subset which
in U; consists of points at which f; is either not regular, or equal to 0. Just as
for divisors on nonsingular varieties, one can define the pullback of a locally
principal divisor D on Y under a regular map ¢: X — Y if ¢(X) is not
contained in Supp D.

We note an important special case. If X is a nonsingular variety and Y a
possibly singular subvariety of X, then any divisor D on X with SuppD Y
defines a locally principal divisor D on Y. For this, we need to consider the
inclusion map ¢: Y — X and set D = p*(D). We call D the restriction of
D to Y, and denote it by py(D). From the definition it follows that for a
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principal divisor div f we have py(div f) = div( £ }, where £ is the restriction
of ftoY.

Of course, the distinction between divisors and locally principal divisors,
and between the groups Cl X and Pic X, occurs only for singular varieties.

1.3. Moving the Support of a Divisor away from a Point

Theorem 1. For any divisor D on a nonsingular variety X, and any. finite
number of points z,,...,x, € X, there exists a divisor D' with D' ~ D such
that z; ¢ Supp(D’) fori=1,...,m.

Proof. We can assume that D is a prime divisor, since otherwise we need
only apply the assertion to each component separately. Choose an open affine
subset of X containing z,,...,In; it is enough to prove the theorem for this,
so that we can assume that X is affine. By induction, we can assume that
Zi,...,Tm-1 ¢ Supp D but z,, € Supp D, and it is enough to find a divisor
D’ such that D' ~ D and x,,...,Tn ¢ Supp(D’).

Consider some local equation 7’ of the prime divisor D in a neighbourhood
of z,,. We prove that we can choose a local equation 7 for D with 7 € k[X]
(by assumption X is affine). Indeed, =’ is regular at z,,, so that, if ' has
divisor of poles divoo(n') = 3 ki Fy, then z,,, ¢ Fi. Thus for each I there exists
a function fi € k[X] that vanishes along F; and such that fi(z,,) # 0. Then
the function m = 7' ] f,k' is obviously regular on X and is a local equation
of D in a neighbourhood of z,;,.

Foreachi=1,...,m —1,sincez; ¢ DU {z},...,%i=1,Tit+1,...,Tm} by
assumption, there exists a function g; € k[X] such that g;(z;) #0, but g; =0
on that set. Now adjust the constants a; € k such that the function

m-1
f=m+) o}, satisfies f(z)#£O0fori=1,...,m—-1 (1)
i=1

For this it is sufficient to take o; # —m(z;)/(gi(z:)?). We claim that D' = D—
div f satisfies the conclusions of the theorem. First, (1) shows that z; ¢ div f,
and hence z; ¢ Supp(D') fori=1,... m~1.

Now since by construction the g; vanish on D, we get 7 | ¢; in the local
ring O, so that 3 a;92 = 72k with h € O,,_, and therefore f = n(1 +h).
Since (1 + mh)(z,,) = 1, it follows that f is a local equation of D in a
neighbourhood of z,,,. Therefore div f = D+ Y r,D,, with no prime divisor
D; passing through z,,. This means that z,, ¢ Supp(D’). The theorem is
proved.

The same holds for a locally principal divisor on a singular X (the proof
is very similar).

Here is a first application of Theorem 1. In 1.2 we defined the pullback
f*(D) of a divisor D on a variety X by a regular map f: Y — X under the
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assumption that f(Y) ¢ SuppD. Theorem 1 allows us to replace D by a
linearly equivalent divisor D’ so that Supp(D’) # x, where z is an arbitrarily
chosen point of f(Y). Then automatically f(Y) ¢ Supp(L'), so that the
pullback f*(D’) is defined. This shows that we can define the pullback of -
a divisor class C € Cl X without any restriction on f. For this, we must
choose a divisor D in the class C such that f(Y) ¢ Supp D and consider the
divisor class on Y containing the divisor f*(D). One checks easily that we
thus obtain a homomorphism

f*: ClX = QY.

In other words, C1 X is a functor from the category of irreducible nonsingular
algebraic varieties to the category of Abelian groups.

Erample. Let f: X — Y be the constant map f(X) = ¢ € Y (see 1.2,
Example). Then by Theorem 1, the divisor a is linearly equivalent to 3 r;b;
with b; # a, and if C, is the divisor class containing a then again f*(C,) = 0.

1.4. Divisors and Rational Maps

Associating divisors with functions is useful for studying rational maps of
" varieties to projective space. Let X be a nonsingular variety and ¢: X — P"
a rational map. We determine the points of X at which ¢ is not regular.

A rational map is defined by the formulas

p=(fo:---:fa),  with fi € k(X), (1)
and we can assume that none of the f; is identically 0 on X. Suppose that
div(f) = kiiCi)
=1

with the C; prime divisors; here we allow some of the k;; to be 0.
To determine whether ¢ is regular at a point € X, write 7; for a local
- equation of C; at z. Then

fi= (H n;.“") u;  with u; € O, and uy(z) #0.

Since @ is a UFD, there exists a highest common factor d of the elements
fos- .., fn, that is, an element d € k(X) such that f;/d € O,, and if d; € k(X)
is some element for which f;/d, € O then d | d, that is, d/d; € O,. Since
the local equations =; of prime divisors are prime elements of O, we have

1 .
d=H1r.’ where l; = min k;;.
i T 7 ocign ¥

Now ¢ is regular at r if there exists a function g € k(X) such that
fi/g € O, for all i = 0,...,n, and not all the (f;/g)(z) are 0 at z. By
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definition of the highest common factor d it follows that g | d. If d = gh with
h € O, and h(z) = 0 then h | (fi/g), and hence all the (f;/g)(z) = 0. Thus
the required conditions can only be satisfied if d = gh with h(z) # 0. Then
filg = (fi/d)h, that is

filg= (Hﬂf"'"")uih,
j
kii—1,

and g is regular at z if and only if not all the functions [] i
there.

To translate this answer into the language of divisors, we define quite
generally the highest common divisor of given divisors D; = 3 ki;C; for
i=1,...,n to be the divisor

are zero

hed{D1,...,Dn} =Y 1iCj,  wherel; = min kij.

Obviously D} = D; — hed{D,...,Dn} = 0, and the D! have no common
components. We set in particular D = hed{div(fy),...,div(f,)} and D} =
div(f;) - D.

Then in some neighbourhood of z we have

div (H n;‘j_lj) = D],
H

- and we can say that y is regular at x if and only if not all the subvarieties
Supp(D;) pass through z.
We have proved the following result.

Theorem 2. The rational map {1) fails to be reqular precisely at the points
of N Supp(D;), where D} = div(f;) — hef{div(fo),...,div(fa)}} 20 fori =
0,...,n. O

Since the D) have no common irreducible components, {)Supp(D;} is a
subvariety of codimension > 2. Thus Theorem 2 is a more precise version of
Chap: I1, 3.1, Theorem 3.

Remark. The divisors D] can be interpreted as the pullbacks of the hyper-
planes x; = 0 under the map ¢: X — P". Indeed, if z ¢ (\Supp D} and
D = divh in a neighbourhood U of z, then in U the regular map is defined

by

The pullback of the hyperplane x; has local equation f;/h, that is, it is equal
to Dj.
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More generally, if A = (Xg : --- : A;) and E), C P" is the hyperplane
Y Aiz; =0, then

¢*(Ex) = div (3 \fi) - D.

1.5. The Linear System of a Divisor

The fact that all the polynomials f(t) of degree < n form a finite dimensional
vector space has the following interpretation in terms of divisors. Write z, for
the point at infinity on the projective line P! with coordinate ¢. A polynomial
in ¢t of degree k has pole of order k at z.,, and no other poles. Hence the
condition deg f < n can be expressed as the statement that div f + nz is
effective.

In the same way, for an arbitrary divisor D on a nonsingular variety X, we
consider the set consisting of 0 together with the nonzero functions f € k(X)
such that

divf+D>0. 1)

This set is a vector space over k under the usual algebraic operations on
functions. Indeed, if D = Y n;C; then (1) is equivalent to

ve(f) 2 —n;  and  we(f) >0 for C# C;,

and because of this, our assertion follows at once from 1.1, (2).

The space of functions satisfying (1) is called the associated vector space
of D, or the Riemann-Roch space of D, and denoted by £(D) or L(X, D).

The analogue of the finite dimensionality of the vector space of polynomi-
als of degree < n is the fact that £(D) is finite dimensional if X is a projective
variety and D any divisor. We prove this theorem in 2.3, Theorem 5 for the
case of algebraic curves. The proof in the general case can be deduced from
this without special difficulty using induction of the dimension. However, the
status of the theorem becomes clearer if it is obtained as a particular case of
a much more general assertion on coherent sheaves; we prove it in this form
in Chap. VI, 3.4, Corollary 1.

The dimension of £(D) is also called the dimension of D, and denoted by
(D).

Theorem 3. Linearly equivalent divisors have the same dimension.

Proof. Suppose that Dy ~ D,. This means that D; — Dy = divg, with
g € k(X). If f € L(D,) then div f + D; > 0. It follows that div(fg) + Da =
Wdivf + Dy > 0, that is, fg € L(D2), so that g - £(D1) = L(D3). Thus
'multiplying functions f € £(D,) by g defines an isomorphism of the vector
spaces £(D,) and £(D;), and the theorem follows.
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Thus we see that it makes sense to speak of the dimension £(C) of a divisor
class C, that is, the common dimension of all the divisors of this class. This
number has the following meaning. If D € C and f € £(D) then the divisor
Dy = div f+ D is effective. Obviously, since Dy ~ D also Dy € C. Conversely,
any effective divisor D’ € C is of the form Dy, for f € L(D). Obviously, if X
is projective, f is uniquely determined by Dy up to a constant factor. Thus
we can set Up a one-to-one correspondence between effective divisors in the
class C and points of the (£(C) — 1)-dimensional projective space P(L(D))
corresponding to a divisor D (recall that the projective space P(L) of a vector
space L consists of all the 1-dimensional vector subspaces of L).

The space L(D) is useful when specifying rational maps in terms of divi-
sors, as described in 1.4. If

o= (for i fa): X =P )
is a rational map, and, in the notation of 1.4,
D = hed{div(fo),...,div(fa)} with D; =div(f;) - D, (3)

then D; > 0 and hence all the f; € £L(-D).

The choice of the functions f; depended on the choice of the projective
coordinate system in P"*. Thus in an invariant way, ¢ corresponds to the set of
all functions ¥ 7. A; fi that are linear combinations of the functions f;. These
functions form a vector subspace M C £(—D). From now on we assume that
¢(X) is not contained in any proper linear subspace of P*. Then }_ X;fi #0
on X, provided that not all the A\; = 0. The set of effective divisors that
correspond to these functions, that is, the divisors divg — D with g € M, is
called a linear system of divisors. If M = L(—D) then we have a complete
linear system. The meaning of the divisors divf — D for f € M is very
simple: they are the pullbacks of the hyperplane divisors of P® under ¢. In
this way we can construct all rational maps of a given nonsingular variety X
into different projective spaces. For this, we need to take an arbitrary divisor
D, and a finite dimensional subspace M C L(—D). If fy,..., fa is a basis of
M then (2) gives the required map. Note that the divisors D; € £(—D) have
an additional property: they have no common components.

Since multiplying all the f; through by a common factor g € k(X) does
not change the map ¢, and replaces the divisor D by the linearly equivalent
divisor divg + D, the class of the divisor D is an invariant of a rational
map. Thus we have the following method of constructing all rational maps
@: X — P™ such that ¢(X) is not contained in any proper subspace of P™:
take an arbitrary divisor class on X, and for any divisor D in this class,
a finite dimensional vector subspace M C L(—D) such that the effective
divisors div f — D for f € M -have no common components. If fo,..., fn is
a basis of M then our map is given by (2). Of course, it can happen that
L(—D) = 0, or that all the divisors divf — D for f € L(-D) = 0 have
common components, and then this divisor class does not lead to any map.
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We observe one interesting feature of the picture we obtain. Among all
the rational maps corresponding to a divisor class C, there is a maximal
one: that obtained by taking M to be the whole space M = L(—D) with
D € C. (Here we take on trust the so far unproved theorem that £(—D) is
finite dimensional.) All other maps corresponding to this class are obtained
by composing this map X — PV with the various projection maps PN — P~.
Indeed, if o = (fo : --- : fn), and, say, ¥ = (fo : -+ : fu) With n < N then
Y =mop, where m(zg : -+ : ZN) = (Zo : -+ : z,,) is the projection, viewed
as a rational map.

Let’s see how this scheme of things works if we take X to be projective
space P™. We know that C}{P™) = Z, and the class C; corresponding to
an integer k consists of hypersurfaces of degree k. If £ > 0 and D € C;
then obviously £(—D) = 0. If k¥ € 0 then we can take —D to be the divisor
kE, where E is the divisor of the hyperplane at infinity z¢ = 0. In this
case L(kE) consists of polynomials of degree < k in the inhomogeneous
coordinates x,/zg,...,ZTm /:co (see Ex. 15). If we multiply the formula for the
resulting map throu%h by z¥ we get the Veronese embedding vi: P™ — PN
where N = vy ., = (*1™) - 1 (see Chap. 1, 4.4, Example 2). Thus we see that
any rational map from P™ is obtained by composing the Veronese map with
a projection.

Example. Suppose that X < P**! is an irreducible n-dimensional hyper-
surface defined by F = 0, with degF = k. We find the space L(D),
where D = div H, with H a form of degree m. Since divH ~ mkE, where
E = div(zy) is the hyperplane section divisor, we can assume that D = mE.
Obviously if & is any form .of degree m then &/z* € L(mE). We prove that
these functions exhaust £L(mE).

If o € L(mE) then ¢ € k[Up|, where Uy C X is the affine open set
given by zg # 0. Let y; = z;/z¢ for ¢ = 1,...,n 4+ 1 be inhomogeneous
coordinates. We that ¢ = P(y1,-.-,¥n+1), where P is a polynomial,
which can be alt,!j; by adding multiples of the defining equation Fy = F/zk
of the hypersurface Uy C A™*!, Our claim is that after adding such a multiple
we get a polynomial P of degree deg P < m.

By contradiction, suppose that deg P = [ > m, and that the degree of
P cannot be reduced by adding a multiple of Fy. We choose the coordinate
system in such a way that the intersection of X with 2o = z; = 0 has
dimension n — 2. This means that if fi is the homogeneous component of
Fo(y1,- -+ Yns1) Of top degree then fi is not divisible by y;.

We pass to the open subset U; C X with z; # 0, and set z; = zo/z; =
1/y1 and 2; = 7;/%y = %/t for i>1. Then y; =1/, = zifz fori> 1,
and ¢ = P(y1,.. ., ¥Yns1) = 27 P(zl, -y Zri+1), Where Pisa polynomial of
degree . By assumption, mdivz; +dive > 0 in U, that is, 2[*¢ € k[U4],
or z;""l‘; Q(zl, -y Zny1) on Uy, where Qisa polynomlal Let degQ =r.
By assumption, 2" -ip= Q + AF,, where F; = F/z¥ is the equation of Uy,
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and A is a rational function whose denominator does not have F as a factor.
Returning to Up, we get

yi™P=y;"Q+BF, @
where é(yl, -+Yns1) is a polynomial of degree r, and the denominator of
B does not | have Fy as a factor. If m 2> r then multlplymg (4) by y* gives
P—CFy = y~"Q, where now C is a polynomial. Since deg(y”"rQ) m<l,

this r‘ontradlcts the assumption that the degree of P cannot be reduced. If
r > m then similarly, we get y{”""P — CFp = Q Write pi, ¢r, fx and ¢
for the homogeneous components of top degree in P, Q, Fy and C. Since
deg(y; ™P) = I+ r — m > degQ, we have ¥ "p; = cfi. By the choice
of coordinates, fx is not divisible by y;, and hence p; is divisible by fx,
say p1 = gi—kfx- Then deg(P — gi—mFo) < l, which again contradicts the
assumption on P.
This proves the following result.

Proposition. Let X C P™*! be an irreducible hypersurface defined by F = 0,
with deg F = k. Then L(X,mFE) is the vector space of forms of degree m,

modulo the subspace of multiples of F by forms of degree m — k. Therefore
(mE)y= (") ifm<kor ("IN~ (2 m>k O

1.6. Pencil of Conics over P!

We conclude this section with an example that is very pretty, and will be
useful later. Let X be a nonsingular projective surface and ¢: X — P! a
regular map. Suppose that the point oo € P! is chosen so that the inverse
image ¢~1(0o) is nonsingular, P' \ co = A!, and the map ¢~ !(A!) — A!
defines a pencil of conics as in Chap. I, 6.2, Example 1 and Chap. II, 6.4,
Example 1. In this situation, X, together with its map @: X — P!, is called
a pencil of conics over P'. The open set ¢ ~!(A') is defined in P2 x A! by the

equation
2

Y ai(t)ég; =0, 1)

1,j=0

where ¢ is a coordinate on A!. In Chap. II, 6.4, Proposition 1, we saw that the
singular fibres of ¢ correspond to the roots ¢ = ay,. .., a., of the discriminant
A(t) = det|a;;(t)], that these roots are simple and that the corresponding
singular fibres Fy,..., F, are of the form F; = L; + L}, where L; and L] are
distinct lines.

Since A(t) has only simple roots, it is not identically 0, and the conic (1)
is nondegenerate. In Chap. I, 6.2, Proposition, Corollary 4, we saw that ¢
has a section s: A! — ¢~1(A!), a rational map such that s(a) is contained
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in the fibres ¢~ () for each a € Al, that is, ¢ o s = id. This rational map
extends from A! to P!, and gives a regular map s: B* — X. Write S for the
curve s(P!). We choose some fixed nonsingular fibre F.

Theorem 4. The divisor class group C1 X is a free Abelian group with m 42
generators, the classes defined by Ly,...,Ly,, F and S.

Proof. Let C be a prime divisor on X. Then C C X is an irreducible curve,
and ¢ either maps it to a point ¥ € P! or onto the whole of P!. In the first
case, C is contained in a fibre p~1(¥).

Suppose that (C) = P1. Then the map ¢: C — P! defines an inclusion
k(P') C k(C) of the function fields, and a nonzero function u € k(P!) does
not vanish on C; here we identify u and its pullback ¢*(u) € k(X). In other
words,

ve(u) =0  for any 0 # u € k(P"). (2)

Hence vc defines a function v: (k(X)\ 0) — Z that satisfies (2) and is
a valuation in the sense of 1.1, (2). Chap. I, 6.2, Proposition, Corollary 4
proves that the conic (1) is rational over the field K = k(P!) = k(¢t), that is,
k(X) = K(T); the birational map X — P} uses the point of the conic (1)
corresponding to a section s, and in particular, it can be chosen so that T has
a pole of order 1 at this point. Thus v is a function on K(T')\ 0 that satisfies
(2) and 1.1, (2). It is easy to determine all such functions. Suppose that
v(T) > 0. Then it follows from (2) that v(H) > 0 for every H € K[T), and if
v is not identically 0 then v(H) > 0 for some H. Therefore v(P) > 0 for some
irreducible factor P of H. But then v(Q) = 0 for every irreducible polynomial
in T not proportional to P: indeed, there exist polynomials U,V € K[T) such
that PU+QV = 1; soif v(P), v(Q) > 0 it would follow that v(1) > 0, whereas
v(u) = 0 for u € K. It follows that v(f} = vp(f) = m is the exponent of f
when written in the form f = P™g, where P divides neither the numerator
nor the denominator of g. In particular, for the divisor C we are considering,
there exists an irreducible polynomial P € k[T such that vp(f) = ve(f), and
the divisor C is uniquely determined py P. Hence vg(P) = 1, and since P
determines C uniquely, divo P does not contain any irreducible curve except
for components of fibres:

divyP=C+) G, (3)

where G; are conics of the pencil or their components.

If v(T) < 0 then we set U = T-! and find that v corresponds in the same
way to the polynomial U € k[U] C k(T'). In terms of KT, as we see easily,
v(F) = — deg H, where H € KT, so that there is only one such function v.
Since by assumption T has a pole at the point corresponding to the section
s, we must have v = vg. As before, vs(H) = —deg H, and S is the unique
curve with this property, so that for any H € K[T], we have
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diveo H = (deg H)S + 3 G}, (4)

where G| are conics of the pencil or their components. In particular, if P is the
irreducible polynomial corresponding to a curve C # S, we have dive, P =
(deg P)S +3_ G and

divP=C—(degP)S+ > Gi— > Gj.

Hence C ~ (deg P)S + }_niG}, where G| are components of conics of the
pencil. It remains to consider these. They can either be nondegenerate conics,
that is, fibres ¢*(a) with a € P'. But since all points of P! are linearly
equivalent, all fibres of X — P! are also linearly equivalent, therefore linearly
equivalent to the chosen fibre F, say. Or they can be components L; or L; of
reducible fibres. But since L; + L, ~ F; ~ F, we can express L/ in terms of L;
and F. As a result, we see that every irreducible divisor is linearly equivalent
to a linear combination of S, F and L,,..., L. Hence the divisor classes of
these curves generate C1 X.

It remains to check that the classes of S, F and L,,...,L,, are linearly
independent in ClX. Suppose that nF + 1S + $_i* | r;L; ~ 0. We consider
the restriction of this divisor to various nonsingular curves. It must again
be linearly equivalent to 0. Consider the restriction to an irreducible fibre
F' # F.Since FNF' =0, L;n F' = 0 and the restriction to S gives a
point £, we must have I£ ~ 0. This is only possible if | = 0. Considering the
restriction to L] we get that r; = 0. The relation that remains is nF ~ 0. If
n # 0 then we can assume that n > 0. This is impossible: an effective divisor
cannot be principal. The theorem is proved.

Exercises to §1

1. Determine the divisor of x/y on the quadric surface zy ~ zt =0 in B3.

2. Determine the divisor of the function z ~ 1 on the circle z? + 22 = z3, where
=12 / Zo.

3 Determme the pullback f*(Da.) where f(z,y) = z is the projection of the circle
z? + 42 = 1 to the z-axis, and D, = a is the divisor on A! consisting of the point
with coordinate a with multiplicity 1.

4, Let X be a nonsmgular projective curve and f € k[X ] Viewing f as a regular
functlon f: X — P!, prove that div f = f*(D), where D is the divisor D =0 - o0
on P!

5. Let X be a nonsingular affine variety. Prove that C1. X = 0 if and only if the
coordinate ring k[{X] is a UFD.
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6. Suppose that X C PV is a nonsingular projective variety. Let k[S] be the poly-
nomial ring in the homogeneous coordinates of PV and Ax C k[X ] the ideal of X.
Prove that if k[S]/x is a UFD then C1X 2 Z, and is generated by the class of a
hyperplane section.

7. Find CI(P™ x A™).

8. The projection p: X x A' — X defines a pullback homomorphism p*: C1X —
Ci(X x A'). Prove that p* is surjective. [Hint: Use the map ¢*: CI(X xA!) — CL X,
where ¢: X — X x Al is given by ¢(z) = (z,0).]

9. Prove that for any divisor D on X x A! there exists an open set U C X such
that D is a principal divisor on U x A!. [Hint: You can suppose that X is affine, and
that D is irreducible. Then it is defined by a prime ideal of k(X x A!] = k[X][T].
Use the fact that every ideal in k(X)[T)] is principal, and then replace X by some
principal affine open set.

10. Prove that CI(X x A') = Cl1X. [Hint: Use the results of Ex. 8-9.]

11. Let X be the projective curve defined in affine coordinates by y® = =% + 2.
Prove that every locally principal divisor on X is equivalent to a divisor whose sup-
port does not contain the points (0, 0). Using this, together with the normalisation
map ¢: P' — X, for which ©~1(0,0) consists of two points z;,z2 € P!, describe
Pic X as D/P, where D is the group of all divisors on P! whose support does not
contain r1, Z2, and P the group of principal divisors div f such that f is regular at
Z1,22 and f(z1) = f(z2) # 0. Prove that Pic X is isomorphic to Z x k”, where k*
is the multiplicative group of nonzero elements of k.

12. Determine Pic X where X is the projective curve y* = z°.

13. Let X be a quadratic cone. Using the map ¢: A? — X described in Chap. 11,
§5, Ex. 2, determine the image ¢"(DivX) C Div(A?). Prove that the principal
divisor D = div F € Div(A?) is contained in ¢"(Div X) if and only F(-u,—v) =
xF(u,v), that is, F is either an odd or an even function. Prove that the principal
divisors on X correspond to even functions. Deduce that Cl X = Z/2Z.

14. Using Theorem 2, determine the points at which the birational map ¢: X — P?
is not regular, where X is a surface of degree 2 in P* and ¢ the projection from a
point. The same for ¢!,

15. Prove that if E is the hyperplane zo = 0 in P™ then the space £(kE) consists
of polynomials of degree < k in the inhomogeneous coordinates z,/zo, ...,z /0.
[Hint: f € L(kE) implies that f € k[A3].]

16. Prove that any automorphism of P™ takes hyperplane divisors to one another.
[Hint: The class of a hyperplane is determined in CI(P") by intrinsic properties,
and the hyperplane divisors are determined as the effective divisor in this class.]

17. Prove that any automorphism of P" is a projective transformation. [Hint: Use
the result of Ex. 16.]

18. Suppose that Y is nonsingular, and let 0: X — Y be a blowup with centre
y €Y. Prove that CLX 2 ClY & Z.
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2. Divisors on Curves

2.1. The Degree of a Divisor on a Curve

Consider a nonsingular projective curve X. A divisor on X is a linear com-
bination D = ¥_ k;x; of points z; with coefficients k; € Z. The degree of D is
the number deg D = ¥ k;.

The case n = 1 of 1.1, Example 2 shows that when X = P!, a divisor D is
principal if and only if it has degree 0. We prove that the equality deg D =0
holds for a principal divisor on any nonsingular projective curve. For this we
use the notion of the degree deg f of a map f introduced in Chap. II, 6.3.

Theorem 1. If f: X — Y is a regular map between nonsingular projective
curves and f(X) =Y then deg f = deg(f*(y)) for any point y €Y.

In Theorem 1, f*(y) is the divisor on X obtained as the pullback of the
divisor on Y consisting of y with multiplicity 1. Thus deg f equals the number
of inverse images of any point y € Y, taken with the right multiplicities. This
makes the intuitive meaning of the degree of a map f easier to understand:
it counts how many times X covers Y under the map f.

Corollary. The degree of a principal divisor on a nonsingular projective
curve equals 0.

Proof. Indeed, any nonconstant function f € k(X) defines a regular map
f: X — P'. Moreover, we have f*(0) = divo f, where the right-hand side is
the pullback of the point 0 € P!, as follows at once from the definition of the
two divisors. Similarly, f*(00) = dive f. By Theorem 1,

deg(div f) = deg(divo f) — deg(dives f)
= deg(f*(0)) — deg(f*(c0)) = deg f — deg f = 0.

If X and Y are varieties of the same dimension then a regular map f: X —
Y with f(X) dense in Y defines an inclusion f*: k(Y) — k(X). We use this
in what follows to view k(Y') as a subfield of k(X). (That is, for u € k(Y) we
write u instead of f*(u) when this does not cause confusion.)

Theorem 1 follows from two results. To state these, we introduce the

following notation. Let z;,...,2, € X be points of X, and set
- T
0=)0.,. (1)
i=1
Thus © consists of functions that are regular at all the points xy,...,z.. If

{z1,...,2,} = f~}(y) for y € Y then the ring O, viewed as a subring of
k(X) according to the convention just explained, is contained in O.
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Theorem 2. O is a principal ideal domain with a finite number of prime
ideals. There exist elements t; € O such that

vz, (t5) = 645 for 1 <i,j <r (Kronecker delta). (2)

Ifu€5 and u # O then
u=ty . thy, (3)

where k; = vz, (u) and v is invertible in O.
Theorem 3. If {z1,...,2,} = f~!(y) then Oisa free Oy-module of rank
n = deg f, that is, O = O%"

Proof of Theorem 2 + Theorem 8 == Theorem 1. Let t be a local parameter
onY aty, and {z),...,2.} = f~'(y). By Theorem 2, t = t¥' ...t~y where
ki = vz, (t) and v is invertible in O. Recalling the definition of the pullback
of a divisor, we see that

T T
Fr)=> kz: and  degf(y) =) ki
i=1 i=1
Since t,,...,t, are pairwise relatively prime in 5, it follows that
—~ r —~
O/(t) = PO/ (tF).
i=1
Fix attention on one of the summands O/ (tf") in the direct sum. One sees
easily that any element w € O can be written in a unique way in the form
w=ag+agti+-+ g1ttt ™! modt, (4)
with ¢; € k. Indeed, if we already have an expression

wEag+mt + 0+ apot]”t modt,

then _
u=t(w-qo— -t ) €O C Oy,

Set u(z;) = a, € k. Then v;,(u — a,) > 0, and it follows from Theorem 2
that u = o, modulg ¢;, that is,

wEag+art+ -+ ot dagt] modt!t

This proves (4) by induction. It follows from (4) that dim O/ (t*) = ki. Hence

dim O/(t) = ik,-. (5)
i=1
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Now apply Theorem 3. It follows from this that O/(t) = (O, /(t))®". But ¢
is a local parameter at y, and hence

O,/t)=k and  dimO/(t) = n = deg f. (6)
The equalities (5) and (6) prove Theorem 1.

Proof of Theorem 2. Write u; for a local parameter at ;. Then z; appears
in the divisor div(u;) with muitiplicity 1, that is, div(u;) = z; + D, where
z; does not appear in D. By 1.3, Theorem 1 we can move the support of
D away from z,,...,z,, that is, we can find a function f; such that none
of these points appear in D + div(f;). This means that the relations (2) are
satisfied by ¢; = u; f;.

Let u € O. Set vz, (u) = ki. By assumption, k; > 0. The element v =
ut7* ... ¢7k satisfies v, (v) = O for all i = 1,...,r, from which it follows
that v € O and v~! € O. This  gives an expression (3) for u.

It remains to check that Oisa principal ideal ring. Let a be an ideal
of O. Set k; = infyeq vz (u) and a = t’“- -tk=. Then ua~! € O for any
© € a, that is, a C (a). We prove that a = (a). For this we denote by o’
the set of functions ua~! with u € a. Obviously o’ is an ideal of O and
also inf,egq vz, (u) = 0. Hence for any i = 1,...,r, there exists u; € a’ such
that vz, (u;) = 0, that is u;(z:) # 0. An obvxous verification shows that the
element ¢ = 37_ yUsti- -+ te € o satisfies v, (c) = 0 fori = 1,.

This means that ¢~ € (5, and hence o' = 5, and a = (a). Theorem 2 is
proved.

We proceed to the proof of Theorem 3. We first prove that O is a finite
O,-module. For this, recall that by Chap. II, 5.3, Theorem 8, the map f is
finite. Therefore the result we need follows from the next lemma.

Lemma. Let f: X Y be a finite map of curves, with X nonsingular; for
y €Y, write f~1(y) = {z1,..-,2,} and O = NO,,. Then O is a finite
Oy-module.

Proof. Since the assertion is local, we can assume that X and Y are affine.
Let k[X] = A and k[Y] = B. Then B C A and A is a finite B-module. We
prove that O = AO,.

Indeed, if p € (5 and z; are the poles of ¢ on U then f(z;) = y; # y. There
exists a function A € B such that A(y) # 0 and h(y;) = 0, and moreover
wh € O,, and hence ph € A. Since h™! € O, we get ¢ € AO,; this proves
that O C AQ,. The converse inclusion is obvious.

Obviously, generators of A over B = k[Y] provide at the same time gener-
ators of AO, over O,. Hence O is a finite O,-module. The lemma is proved.

Proof of Theorem 3. Now it is easy to complete the proof of Theorem 3. By
the main theorem on modules over a principal ideal domain, @ is the direct



2. Divisors on Curves 171

sum of a free module and a torsion module. However, both O, and O are
contained in the field k(X), so that it follows that the torsion module is 0,
and O = O®™ for some m.

It remains to determine m, that is, the rank of O over O,. It equals
the maximal number of elements of @ that are linearly independent over
O,. Since linear independence over a ring and over its field of fractions is
the same thing, and the field of fractions of O, is k(Y), our m equals the
maximal number of elements of O that are linearly independent over k(Y).

By assumption [k(X) : k(Y')] = n, so that obviously m < n. It remains to
prove that O contains n elements that are linearly independent over k(Y).
Suppose that ay,...,ap, is a basis of the field extension k(Y') C k(X). Let ¢
be a local parameter on Y at y, and write k for the maximum order of poles of
the a; at the points z;. Then obviously the functions a;t* are regular at these
points, and are hence contained in O. Hence they are linearly independent
over k[Y]. Theorem 3 is proved.

It follows from Theorem 1, Corollary that on a nonsingular projective
curve X, linearly independent divisor have the same degree. Hence it makes
sense to talk about the degree of a divisor class. Thus we have a homomor-
phism

deg: Cl1X - Z,

whose image is the whole of Z, and whose kernel consists of divisor classes
of degree 0, and is denoted by CI° X. The role of this group is clear already
from the following result.

Theorem 4. A nonsingular projective curve X is rational if and only if
cXx =o0.

Proof. Indeed, if X = P! then we are in the case n = 1 of 1.1, Example 2.
We saw there that CI(P!) = Z, and hence CIlxX =0.

Conversely, suppose that CI° X = 0. This means that any divisor of degree
0 is principal. In particular, if z # y € X are two points then there exists a
function f € k(X) such that z — y = div f. Viewing f as a map f: X — P!
we get from Theorem 1 that k(X) = k(f), that is, f is birational. Since X
and P! are nonsingular projective curves, it follows that f is an isomorphism.

2.2. Bézout’s Theorem on a Curve

We now indicate the simplest applications of the theorem on the degree of
a principal divisor. They are very special cases of more general theorems,
that we will prove in connection with the theory of intersection numbers in
Chap. IV. However, it is convenient to treat these simple cases already at
this stage, since we will find them useful in 2.3.
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Suppose that X C P™ is a nonsingular projective curve and z € X a
point. Let F be a form in the coordinates of P", not identically 0 on X; we
write P% for the hypersurface defined by F = 0. We introduced in 1.2 the
divisor div F of F on X. Its degree deg(div F) is also denoted by X F, and is
called the intersection number of X and the hypersurface P%.

An important corollary follows at once from Theorem 1: this number
deg(div F) is the same for all forms of the same degree. Indeed, if deg F =
deg Fy then f = F/F, € k(X). From the definition of the divisor div F it
follows at once that divF = divFy + div f, and hence div F ~ div F). By
Theorem 1, Corollary, deg(div F) = deg(div F}).

To determine how the number X F depends on the degree of F, it is
enough to take F to be any form of degree m = deg F'. In particular we can
take F = L™ where L is a linear form. Then

XF =mXL = (deg F)XL. (1)

Finally, we explain the meaning of X L.

Definition. The degree of a curve X C PV, denoted by deg X, is the maxi-
mum number of points of intersection of X with a hyperplane not containing
any component of X.

Since XL = 3",y Vz(div L), we have deg XC' < X L. Here we use the
notation v, (D) for the multiplicity of a divisor D at z, that is, the coefficient
k; in the expression D = 3 k;z;.

For any form F, we now determine when v (div F') = 1. Since the function
v, is additive, it is enough to consider an irreducible form.

Lemma. Let X C P" be a curve, F' an irreducible form andY = P} C P™ the
hypersurface given by F = 0. Then v,(divF) =1 is equivalent to F(z) = 0
and Oy, P Ox. Here we view both these spaces as vector subspaces of
epn'z.

Proof. We obtain a proof by putting together a number of definitions from
Chap. II. Let G be a form such that G(z) # 0 and degG = degF. By
definition, v, (div F) = v,(f), where f = (F/G)IX‘ We know that v, (div f) >

1 is equivalent to f € m2, or equivalently, d;f = 0. But d.f € O%,¢» and
is the restriction to ©x . of the differential d.(F//G) of the function F/G,
which is a rational function on P*, regular at z. Thus v.(divF) > 1 is
equivalent to d.(F/G) = 0 on Ox ,. Furthermore, F/G is a local equation
of the hypersurface Y in the neighbourhood of = given by G # 0. Hence
d;(F/G) = 0 is the equation of Oy,z, and d-(F/G) = 0 on B ; if and only
if By x D Ox . The lemma is proved.

We apply this to compute the intersection number X L. Since X L is the
same for all linear forms L, the number of points z € X with L(z) =0 isa



2. Divisors on Curves 173

maximum when all the v;(L) = 1. By the lemma, this is equivalent to saying
that the hyperplane L is not tangent to X at any point. Taking L to be such
a linear form, we get

degX =XL. . (2)

We need only verify that linear forms with the required property actually
exist. This is easy using the dimension counting argument that we have used
many times: in the product X x P™* (where P™* is the dual projective space of
hyperplanes of P*), consider the set I" of points (z, L) such that L is tangent
to X at z. A standard application of the theorem on the dimension of fibres
of a map then shows that the image of I" under the projection X xP** — Pn*
has codimension > 1. ’

Putting together (1) and (2) we get the relation

XF = (deg F)(deg X), (3)

which is called Bézout’s theorem. Thus we have finally proved this theorem,
already stated in Chap. I, 1.6.

2.3. The Dimension of a Divisor

In 1.5, we associated with a divisor D on a nonsingular variety X a vector
space L(D).

Theorem 5. L(D) is finite dimensional for any effective divisor D on a
nonsingular projective algebraic curve.

Proof. First of all, the assertion reduces easily to the case D > 0. Indeed,
let D = Dy — Dy with Dy, D > 0. Then £(D) C £(D,): indeed, f € L(D)
means that divf + Dy — Dy = D' >0, and hence div f + Dy = D'+ Dy > 0,
that is, f € £(D,). The required reduction follows from this.

Let D > 0 and let x be a point appearing in D with multiplicity r > 0,
that is D = rz 4+ Dy. Set (r — 1)z + Dy = D', and let ¢ be a local parameter
on X at x. For a function f € L(D), set A(f) = (t"f)(x). Then X: £L(D) — k
is obviously a linear function, with kernel equal to £(D’). Carrying out the
same construction deg D times, we see that L£(0) is a vector subspace of
L(D) defined by the vanishing of deg D linear forms. But we know that
L£(0) = k by 1.1 (just before Example 1). It follows from this that £(D) is
finite dimensional, and in fact "

¢(D) <degD +1. (1)

The theorem is proved.

Remark 1. Equality holds in (1) for X = P!. Indeed, in this case any divisor
D is linearly equivalent to rz, where z € P! is the point at infinity. Then
L(D) equals the space of polynomials of degree < r and £(D) = r + 1.
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Remark 2. If X is not rational then (1) can be improved. Namely, in this case,
for any point £ € X-we have £(z) = k. Indeed, if £(z) contains a nonconstant
function, then we would have dive f = z. Then by Theorem 1, Corollary,
deg(divp f) = 1, that is, div f = y — , which contradicts the irrationality
of X (see the proof of Theorem 4). Therefore in the process of proving (1)
we already get to a divisor z after deg D — 1 steps, for which £(z) =1, and
hence

{D)<degD ifD>0. (2)

Thus rational curves are characterised by the fact that for them (D) =
deg D +1 for D > 0.

Remark 8. The same argument shows that, quite generally, for divisors D,
and Do,

Dy < D; = #(D;) < (D)) + deg(D — Dy) (3

The inequalities (1) and (2) are particular cases of this, with D, = 0 and
D, = z respectively.

Exercises to §2

1. A linel is a double tangent or bitangent to a plane quartic curve X if / and X are
tangent at any point of I M X. Prove that the set of quartic curves having a given
line [ as a double tangent has codimension 2 in the space of all quartics. Prove that
any irreducible quartic curve has a double tangent.

2. For a singular projective curve X, define the divisor of a form F on the normal-
isation X" using the pullback of functions v*(F/G) as in 1.2, and the intersection
number X F as the degree of this divisor on X". Prove that Bézout's theorem
continues to hold in this context.

3. Prove that the number of singular points of an irreducible plane curve of degree
nis < (";'). [Hint: Pass a curve of degree n through (";1) + 1 singular points, and
as many nonsingular ones as possible. Then apply Bézout's theorem.]

4. If X is a nonsingular plane curve and { a line, and the multiplicity of tangency at
z € X is r > 2, we say that r — 2 is the inflezion multiplicity of X at z. Prove that
the sum of the inflexion multiplicities of a curve of degree n taken over all inflexion
points it equal to 3n(n —2). [Hint: Prove that the multiplicity of flex points at z is
equal to the multiplicity of the zero of the Hessian at z (Chap. I, 6.2).]

5. Let X be a nonsingular curve and z,...,Zm € X. Prove that we can take the
functions ¢; in Theorem 2 to be the equations of hypersurfaces E; such that E; 3 x;,
E; # z;, for i # j, and Ei  Ox,z;, that is, E; is not tangent to X at z;.

6. Prove that a curve of degree n in P™ not contained in any hyperplane is rational.
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3. The Plane Cubic

3.1. The Class Group

We have seen in 2.1, Theorem 4 that CI° X = 0 holds for rational curves X,
and for them only. We now work out the simplest example for which C1° X #
0. This is the nonsingular plane cubic curve X, one of the most beautiful
examples in algebraic geometry, with a wealth of unexpected properties. We
proved in Chap. I, 6.2 that X always has an inflexion point, and hence can
be put in Weierstrass normal form. It follows from this, as we have seen in
Chap. I, 1.6, that X is irrational.

Theorem 1. Pick any point oy of a nonsingular plane cubic curve X, and
consider the map X — CI° X that sends @ € X to the divisor class Cy
containing a—aq. Then a — C, defines a one-to-one correspondence between
points a € X and divisor classes C € CI° X

Proof. If C4 = Cpg then a — op ~  — ap, so that a ~ . If a # B, it would
follow from the proof of 2.1, Theorem 4 that X is rational, whereas we know
that it is not rational.

It remains to prove that any divisor class C of degree 0 contains a divisor
of the form a — ag. Suppose first that D is any effective divisor. We show
that there exists a point & € X such that

D ~ a + kag. 1

If deg D = 1, then (1) holds with k = 0. If deg D > 1 then D = D’ + 8 with
deg D’ = degD - 1 and D’ > 0. Using induction, we can assume that (1) is
proved for I, that is, D’ ~ ¥+ lag. Then D ~ 44 +lag. If we can find a
point a such that

B+v~a+ag, 2)

then (1) will follow. Suppose first that 8 # ~. Pass the line given by L =0
through 3 and . By Bézout’s theorem, LX = 3, hence

divL=f8+v+6 for some 6 € X. 3)

Suppose moreover that § # ag and pass the line given by L, = 0 through é
and ag. In same way as for (3), we get divLy =6 + ag + a for some a € X.
Since divL ~ divL, we get 8 +v+ 6 ~ 6 + ap + a, and (2) follows.

We still have to treat the cases with 8 = v or § = ag. If 8 = v we pass
the tangent to X at 3; let L = 0 be the equation. According to 1.2, Lemma
vg(L) > 2, and hence div L = 28 + 6. Thus (3) holds in this case. The case
§ = ay is treated similarly. '

Now suppose that D is any nonzero divisor with deg D = 0. Then D =
Dy — D, with Dy, D, > 0 and deg Dy = deg D3. Applying (1) to both D,
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and Dj, we get Dy ~ B + kag and Dy ~ v + kap with the same k, since
deg Dy = deg D;. Hence D = Dy — Dy ~ 3 —~, and we need only find a point
a such that 8 — v ~ a — ay. This relation is equivalent to 8 + a9 ~ a + 7,
and is the same as (2) up to the notation. The theorem is proved.

The proof of Theorem 1 allows us to determine explicitly the function
£(D) for divisors D on a nonsingular plane cubic.

Theorem 2. Let X 'C P? be a nonsingular cubic; then
(D) =degD  for every effective divisor D >0 on X. 4)

Conversely, a curve for which (4) holds is isomorphic to a nonsingular cubic.
(Compare also 6.6, Corollary 4.)

Proof. By 2.3, Theorem 5, Remark 2, £(D) < deg D for a divisor D > O on X,
and it is enough to prove that ¢(D) > deg D. In the proof of Theorem 1 we
proved that D ~ a + mag. Thus it is enough to prove that £(a + mag) > m
(strict inequality!). If m = 1, then [{(a + ap) > 1; because L{a + ag) contains
the nonconstant function L,/Ly, where L, is defining equation of the line
through a and oy and L, any line through the third point of the intersection
of Ly and X (see Figure 12, (a)).

@) . ®)

Figure 12. Constructing Functions on a Plane Cubic

Hence for m > 1 it is sufficient to exhibit a function fp, with diveo(f) =
may; indeed, then fm, € L(may) C L{a + mag) and fr, ¢ L{a+ (m — 1)),
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whence £(a + mag) 2 #(a + (m — 1)ag) + 1, and our assertion is proved by
induction. It is easy to find f,, with this property for m = 2 or 3. Namely,
f2 = Ly/Lg, where Ly is the tangent line to X at ag, and L, is any line
through the third point of the intersection of Ly and X (see Figure 12, (b)).
Similarly, fs = L1L3/LgLs, where Ly and L, are as before (see Figure 12,
(b)), L is the defining equation of the line through ag and one of the other
points of intersection of Iy and X, and L3 = 0 a line through the third point
of intersection of L and X. Finally, if m = 2r is even, then f,, = f]; and if
m = 2r + 3 is odd and > 3 then f,, = faf;. This proves the equality (4).

Conversely, suppose that X is a nonsingular projective curve X such that
(4) holds for any divisor D > 0. Take any point p € X. Since L(2p) >
1 by (4), there exists a function z € k(X) with diveoz = 2p (note that
divee z = p is impossible, since then the curve would be rational). By (4)
L(3p) # L(2p), so that there exists a function y € k(X) with dims, y = 3p.
Finally, by (4), L£(6p) = 6. But we already know 7 functions belonging to
L(6p), namely 1, z,z2, 2%, y,zy, y*. Hence there must be a linear dependence
relation between these

ao +a1T + 6222 + a3z + boy + bizy + bay? = 0. (5)

Thus the functions z and y define a rational, hence regular map from X to
the plane cubic Y C P2 with the equation (5) in inhomogeneous coordinates.
This is the rational map defined by the linear system L£(3p).

The map f defines an inclusion of function fields f*: k(Y) — k(X). Let
us prove that f*(k(Y)) = k(X). For this, remark that ¥(Y) D k(z) and
k(Y) D k(y), and the functions £ and y each defines a map of X — P!. By
assumption divy, z = 2p, which means that the map g defined by z satisfies
g*(00) = 2p. From 2.1, Theorem 1 it follows that degg = 2, that is, [k(X) :
k(f*(z))] = 2. Similarly, [k(X) : k(f*(y))] = 3. Since [k(X) : f*(k(Y))] has
to divide both these numbers, k(X) = f*(k(Y)), that is, f is birational. The
cubic (5) cannot have singular points, since then it, and X together with it,
would be a rational curve, which contradicts (4). Therefore Y is a nonsingular
cubic, and hence f is an isomorphism. The theorem is proved.

Thus nonsingular cubic curves in P? are characterised by (4) in exactly
the same way that rational curves are characterised by ¢(D) = deg D + 1 for
D>0.

3.2. The Group Law

Theorem 1 establishes a one-to-one correspondence between the points of a
nonsingular cubic curve X C P? and the elements of the group CI° X, under
which a point & € X corresponds to the class C, of the divisor & — o, where
ag is the fixed point used to define the correspondence.
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Using this, we can transfer the group law from CI° X to X itself. The
corresponding operation on points of X is called addition, and written &,
with subtraction denoted by ©. By definition, a @ g = v if Co + C5 = C,,
that is ,

a+f~7+o. (1)

g is obviously the zero element. From now on we denote it by o, so that (1)
can be rewritten
at+f~(adf) +o. (2

Figure 13. The Group Law on a Plane Ciibic

The proof of Theorem 1 allows us to describe the operations ® and © in
elementary geometric terms. Namely, if the tangent to X at o meets X at =
and the line through = and o meets X in a third point o' then

2o+r~r+a+a  sothat a+a ~2, (3)

which means that o/ = ©a is the inverse of « in the group law (Figure 13,
a). If a = m, passing a line through a and = should be replaced by drawing
the tangent line to X at a.

Similarly, to describe @, pass a line through o and f; let ' be the third
point of intersection with X, and « the third point of intersection of X with
the line through o and ' (Figure 13, b). Then

a+B+Y ~y +v+0

thatis, y=a® 8. 4
at B0, ¥ B (4)
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If a = B or 4" = o then passing a secant through & and S, or through v’ and
o, should be replaced by drawing the tangent line to X at a or v'.

This description becomes especially simple if we take o to be an inflexion
point of X, which from now on we always assume. Then the section of X by
a line is linearly equivalent to 3o: to see this, take the inflexional tangent line
to X at o. If v; is the third point of intersection of X with the line through
~ and o then

“Y+714 0~ 30, (6)
that is, y1 ~ ©y (Figure 14).

Yo

Figure 14. The Inverse Map v — 7,

To describe the operation @, pass a line through a and 8. Let v/ be the
third points of intersection of X, and v the third point of intersection of X
with the line through v’ and 0. Then (Figure 13)

a+f+v ~y+9 +o,

a+f~v+o. M

If a = B then the secant line through a and f should be replaced by the
tangent line to X at .

Another form of relation (7) is that «, (8, are collinear if and only if
a® [ @ v = o. In particular, 3 lies on the tangent line at « if and only if
200@ B = o (where 2a = a @ a in the sense of the group law). Finally, also
B = a if « is an inflexion point; then 3« = 0. Thus the inflexion points of a
cubic are precisely the elements of order 3 in the group law, together with
the zero element.
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A cubic in Weierstrass normal form has an inflexion point at infinity.
We will assume that the characteristic of k is different from 2 or 3. (This is
exclusively for the purpose of simplifying the formulas.) Then the equation
of X can be written

y?=z+az+bd (8)

and its point at infinity o is on the lines z = ¢ for all ¢ € k. Hence the minus
operation of the group law is particularly simple to write down:

&(z,y) = (z,-y). 9)
To write out the operation a @ 3, pass a line through o = (z;,%1) and
B = (z2,42):
_[(¥%2—Nn _
y-n= <I2_Il) (z —z1). (10)

The three points of intersection of this line with the cubic (8) are obtained
from the equation

2
<y1+(u) (1—11)) =z} +az+b,

T9— Iy

2
IS-(M) 24 =0,
T2 — I

We know two of the roots z; and z- of this equation. Therefore the third

root is given by

2

Ty = (u) — Ty — I3 (11)
T2 — Iy

that is,

The coordinate y3 is given by (10), and finally
a®f = (z3,-ys)-

When a = 8, we should take the tangent line to X at (z;,y;). Similar
transformations give its third point of intersection as (z3,ys), where

32 2
Ty = (3z1 +a)

RCETED N 42

and y; is obtained by substituting for z2 from (12} into the equation of the
tangent line. Then 2a = (%2, —¥2)-

A remarkable property of the group law we have constructed is that it is
given by rational formulas, that is, it defines a rational map X x X — X.
We can even say more.

Theorem 3. The maps ¢: X — X given by p(a) = éa andy: XxX - X
given by Y(a, B) = a® [ are regular.
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Proof. For ¢ this is obvious from (9). Similarly, it follows from (10) that  is
regular at a point (o, 8) provided that a = (z1,¥1), B = (z2,y2) and z; # zo;
or in other words, since z2 = z; implies that y, = +y;, provided that a # §
and a # 0.

Now for any point v € X, consider the reflection map s, that takes a
point o # v into the third point of intersection of X with the line through
a and v. Obviously s,(a) = 6(a & v). It can be seen explicitly from the
formulas that this map is rational, hence regular by Chap. II, 3.1, Theorem 3,
Corollary. Moreover, s?, = id, so that s, is an automorphism. Let us prove
that s, (v) is the third point of intersection of X with the tangent line at «.
For this we apply s, to the relation

o+ + sy(a) ~ 3o.

Since s, is an automorphism of X it obviously preserves linear equivalence
of divisors, and moreover, s, (0) = ©7. Hence

5(@) + 54(7) +a ~ 3(©7).

Substituting in this the expression s, = S6(a & v), we get s4(7) = 2(6)
(multiplication by 2 in the group law of X), and this is the third point of
intersection of X with the tangent line at «.

Now we can consider the translation automorphism t,(a) = a & v for
a # v. Obviously t, is the composite of the two reflections t, = s¢ 0 s, from
which it follows that if & = v then t,(a) = 2a. Finally, for any a,8 € X, we
have

¢(av ﬁ) = t;édd)(tﬁ (a)’ tﬁ(ﬁ))

Hence if ¢ is regular at any point (ag,Bo), then it is regular at any point
(a, B) = (t4(ag),ts(Bo)), where v = a @ (6ag) and § = B & (Sf). But it
is regular where a # 8 and a # 64, and hence is regular everywhere. The
theorem is proved.

The map 9: X x X — X has a differential at (o, 8) € X x X,

d(a,0)¥: 6(a,8) — Caep-

Obviously 8, g) = 6, ® B, and the linear map from the direct sum is
determined by the map on the summands. Finally, the composite map 6, —
6, ® 63 — B,gp comes from X — X x X — X, where the first map is the
inclusion v — (v, B), and the second the group law 1. The composite map
X — X is simply the translation tg, and hence the restriction of dy to 6,
equals dtg and finally dy = dt, + dtg. We have proved the next result.

Lemma. The differential d: ©(, gy — Gaag of the group law p: X x X —
X is given by dy = dt, + dtg. In particular, it is surjective. O
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3.3. Maps

We study regular maps A: X — X of the cubic to itself. An example is the
translation t, given by t,(a) = a @ . If A(0) = v then tg, 0 A = X’ fixes
o. From now on we always assume this, that is, A(0) = 0. We prove in 4.3,
Theorem 3 below that then A is a homomorphism of the group law on X,
but we do not use this at present.

Just as with any maps to a group, we can add maps, defining A + p
by (A + p)(a) = A(a) & p(a). Obviously all regular maps A: X — X with
A(0) = o form a group. If A(X) is not just a point then A(X) = X. Then the
degree deg A is defined, and is positive; we write n(A) for deg A. If A(X) =0
then we set n(A) = 0.

The basic result is the following theorem, which has many applications.

Theorem 4. There ezists a scalar product (A, ) on the group of regular
maps A: X — X with A(0) = o such that (A, A) = n(A).

Here by scalar product, we mean that a number (A, u) € Q is defined for
any elements A, u, with the properties

(Ai F') = (F’v A) and (Al + A21"") = ('\1111-) + (A21P')

For any Q-valued function n(A) with n(A) > 0 for A # 0 and n(A) = 0 for
A = 0, there exists a scalar product (A, u) with (A, A) = n(A) if and only if

n(A + ) + 1A — ) = 2(n(A) + n(p)). (1)

This is an elementary and purely algebraic fact (see Appendix, §1, Proposi-
tion 1). Thus to prove the theorem, it is enough to check the relation (1) for
n(A) = degA.

We write A C X x X for the diagonal subvariety of pairs (a,a) with
a€ X,and ¥ ¢ X x X for the set of pairs (o, ©ar). Obviously these are both
nonsingular irreducible subvarieties isomorphic to X . For A, compare Chap. I,
2.3, Example 10; and X' = ¢(A) where ¢ = (id, 8) is the involution (o, 8) —
(a, ©8). Consider the regular map 7: X x X — X given by ¥(z,y) =z ®y,
and the divisor ¥*(0). By 3.2, Lemma, dv is surjective. It follows from this
that ¢*(0o) = X is the prime divisor X with multiplicity 1. Indeed, if ¢, is a
local parameter on X at o then ¥*(t,) is a local equation of Z. Since dy is
surjective, the dual map m,/m2 — m, gq/m2 o, is injective. Hence 9*(t,) ¢
m?2 5o, and it follows that 9" (o) is nonsingular. In the same way, the map
P1: X x X — X defined by 91 (a, 8) = a& 3 differs from 1 by the involution
¢, and a similar argument gives ¥;(0) = A. Finally, set p;{a,8) = a and
p2(a, B) = B. Obviously pj{0) = 0 x X and p}(0) = X x o. The identity (1)
follows easily from the next assertion.
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Lemma. The linear equivalence
A+ X ~20x X+ X xo) =2(pj(0) + p3(0) 2
holds on the surface X x X.

Proof. To prove this, we exhibit a function f on X x X for which divg f
equals the left-hand side of (2) and div, f the right-hand side. We assume
that an affine piece of X is given in the Weierstrass normal form 2.2, (8);
then « defines a map z: X — P! such that z(a) = z(8) only if & = 8 or
a = ©f8. Moreover, degz = 2, and since z-!(00) = {0}, we have diveo z =
z*(o0) = 20.

The affine product vanety XxX xs the subset of A? (with coordmatm
T1,y1, T2, y2) defined by y?¥ = f(z1), ¥2 = f(z2). Inside X x X, A is defined
by Ty = I3, y1 = Y2, and ' by Ty = 3, y1 = —y2. The function f we réquire
to establish the linear equivalence (2) is f = 2, — x5. The verification is an
almost tautological calculation. The divisor defined on the affine surface by
Iy ~ Iy is A+ X. In fact

(1 — v2)(W1 +92) = (v} - 3) = (21 — 22)g9(z1, z2),

where g(z;,22) = (f(z1) — f(z2))/(z1 — z2). Now (y; — y2) is invertible
outside 4, so r; — 2 is a local equation for L' there, and similarly (y; + y2)
is invertible outside X, so 1 — 5 is a local equation for A there. Therefore
divo(z, —~z2) = A+ X.

Now since dive z = 20, it’s clear that on the projective vanety XxX
we have diveo (21 — 72) = 2(0 X X + X X 0), so that finally,

div(z; —z2) = A+ 2 -2(0x X + X x 0).
This proves the lemma.

Proof of Theorem 4. Consider the map f: X — X x X given by f(a) =
(Ma), u(a)). Obviously pyo f = A and py o f = p, so that f*(p}(0)) = A*(0)
and f*(p3(0)) = u*(o) for A, # 0. Similarly, ¥ o f = A + p, so that, since
2 =9y*(0), we get f*(Z) = (A +p)*(0) for A+ p # 0, and similarly f*(4) =
(A = w)* (o) for A — p 3 0. Therefore applying f* to (2) gives

(A +1)7(0) + (A = )" (0) ~ 2(3(0) + " (0))

(linear equivalence of divisor on X), provided that A, u, A + u, A — u # 0.
Since linearly equivalent divisors have the same.degree, and degA*(0) =
deg A = n(A), and similarly for u, A + p,A — g, (1) follows, provided that
A, A+ p,A—p #0.If A =0or g =0 then (1) is obvious. If, say, A+ p =0
then we need only use the assertion in 1.3, Example, together with n(A+p) =
0; similarly if A — p = 0. This proves (1) and the theorem.
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3.4. Applications

Ezample 1. m-torsion points of X. Consider the homomorphism §,,,: X — X
of multiplication by m in X, that is,

dp(ad)=a®---Ba.
m times

By 3.3, (1) with A = g = & it follows that n(8;) = 4, and, by induction
on m, one sees that n(6,,) = m?. Suppose that k has characteristic 0. By
Chap. II, 6.3, Theorem 4, there exists a nonempty open set U C X such that
points & € U have exactly m? inverse images under §,,. But 8, is a group
homomorphism, so that the number of inverse images of any point is equal
to the order of the kernel. We deduce that the number of solutions in X of
the equation ma = 0 is equal to m2.

Suppose now that k has characteristic p > 0, but m is not divisible by p.
In order to be able to apply Chap. II, 6.3, Theorem 4, we need to prove that
6m is separable. If this were not the case, then by Chap. II, 6.4, Theorem 6,
we could write §,, in the form go ¢, where ¢ is the Frobenius map of X, and
then deg 6,, would be divisible by p, whereas we know that deg 6, = m? and
p{ m. Thus the number of solutions of ma = 0 equals m? provided that m
is not divisible by char k.

In particular, the equation 3a = 0 has 9 solutions if chark # 3. We
saw in 3.2 that the points satisfying 3a = 0 are the inflexion points of X.
Hence a nonsingular plane cubic has 9 inflexion points. These enjoy a number
of remarkable properties. For example, the line through any two of them
intersects X again in an inflexion point. This follows at once from the fact
that the sum of two solutions of 3a = 0 in a group is again a solution.

Ezample 2. Hasse-Weil estimates. Suppose now that X c P2 is a nonsin-
gular plane cubic curve defined by an equation with coeflicients in the field
F, with p elements. In Chap. I, 2.3, Example 6, we defined the Frobenius
map ¢: (ay,...,0,) — (af,...,al) for affine varieties defined over F,,. This
definition extends automatically to arbitrary quasiprojective varieties. By
Chap. II, 6.4, Theorem 6, degp = p.

We apply Theorem 4 to maps A: X — X of the form a + by with a,b € Z,
given by

at+bp:a—a® - Gade(a)® - Dpa).

a times b times

By 3.3, Theorem 4, we know that n(a + bp) = (a + bp,a + by), and hence

n(a + by) = a’n(1) + 2ab(1, ) + b*n() (1)
= a? + 2ab(1, ¢) + b7p.

By definition n(a + bg) > 0 for all a and b, so that, viewed as a quadratic
form in a, b, n(a + by) has positive discriminant, and therefore
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I(1,9)| < vB. @)

On the other hand, it follows from (1) that 2(1, ¢)=n(l-¢)—p-1,and
hence (2) gives
In(1 - ) -p-1| < 2vp. 3)
Moreover, n(1—¢) = deg(1—¢)*(0), and Supp((1—¢)*(0)) consists of points
a € X with (1 — p)(a) = o, that is, a = ¢(a). These are the points of X
with coordinates in Fp,. We prove that all these points appear in the divisor
(1 — ¢)*(0) with multiplicity 1. As in the preceding example, referring to
Chap. II, 6.3, Theorem 4, it is enough to prove that the map 1 —¢ is separable.
For this, by Chap. 11, 6.4, Theorem 6, we need to prove that 1 — ¢ # g for
any map p: X — X. But it would follow from this that 1 = (1 + p)ep, and
this contradicts degy =p > 1.
Thus (3) can be rewritten

|N-p-1| <2y, (3)

where N is the number of points of X with coordinates in F, (including
the point at infinity). In other words, the number Ny of solutions of the
congruence

¥=2+az+b modp (4)

satisfies the inequality .
|No — p| < 24/p. (5)

This result has the following interpretation: for a given residue = modulo
p, the congruence (4) has

no solutions  if (?i“'—“—’ﬂ) =—1,
2 solutions if (ESL;“-'I'—”) =1,

where (%) is the Legendre symbol. Hence Ny —p =3 7", (ﬂ) and (5)

gives the estimate
pz—:l (3:3 +az+ b)
=0 P

The estimates (5) and (6) have many applications in number theory.

< 2/p. (6)

3.5. Algebraically Nonclosed Field

Suppose that the coefficients e, b in the equation 3.2, (8) belong to some field
kg, not necessarily algebraically closed. Write k for the algebraic closure of
ko. The definition, or the explicit formulas for the group law on X, show that
the points of X with coordinates in k¢ form a subgroup, denoted by X (ko).
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Ezample 1. The Mordell-Weil theorem. Suppose that ky = Q is the rational
number field. In this case, the theorem known as the Mordell theorem asserts
that the group X(Q) is finitely generated. In principle, this is a description
of the set of rational solutions of equation 3.2, (8) in finite terms, just as that
provided in the case of conics by the parametrisation of Chap. I, 1.2.

Erample 2. Divisors and rationality. In the more general situation, when X is
a nonsingular projective algebraic curve defined by equations with coefficients
in a field kg, we can apply the preceding theory to the field extension ko C k.
In what follows we assume that kg is a perfect field (just to simplify the
arguments somewhat). With X we associate a function field ko(X) C k(X)
over kg consisting of rational functions in the coordinates with coefficients
in ko. Suppose that D = Y n;z; is a divisor with z; € X such that the
coordinates of the points z; are contained in an intermediate field k; with
ko C k1 C k; we can assume here that kg C k, is a Galois extension. An
automorphism o of the field extension kg C k; applied to the coordinates
of a point z; € X(k;) obviously takes it into a point o(z;) € X (k). If for
every point z;, and every automorphism ¢ € Gal(k, /kg), the conjugate points
o(z,) appears in D with the same multiplicity, then we say that the divisor
D is rational over ko. This applies, in particular, to the divisor of a function
f € ko(z).

We write Ly,(D) for the subspace of functions f € ko(X) such that
div f + D > 0. This is a vector space over kg. Set £, (D) = dimy, Ly, (D).
The automorphisms of k; over kg take functions of £(D) to one another and
preserve the subspace Lk, (D). They are not, however, linear maps: o(af) =
o(a)o(f) for a € k and f € £(D); transformations of this type are said to be
quasilinear. The so-called main theorem on quasilinear maps (Appendix, §3,
Proposition 1) asserts that £(D) is generated over k by the kg-vector subspace
Lo (D) of invariant elements, that is £(D) = k - L, (D). In particular,

&k (D) = {(D). 1)

If divisors D and D’ are rational over ky and linearly equivalent then there
exists a function f € kg(X) such that D — D’ = div f. To prove this one must
apply the main theorem on quasilinear maps to the 1-dimensional space of
functions g € k;(X) for which divg =D - D’.

Example 3. Zeta functions and the Weil Riemann hypothesis. We return to
the cubic X. In Chap I, 2.3, we defined the zeta functions Zx (t) and {x(s) for
an affine variety defined by equations with coefficients in F,. The definition
obviously extends to arbitrary quasiprojective varieties. If X is a curve then
the cycles defined in Chap. I, 2.3 are rational divisors over Fy,, and as such, are
obviously irreducible, that is, cannot be expressed as sums of other rational
divisors. The Euler product Chap. I, 2.3, (2) can then be rewritten, as in the
case of the Riemann zeta function, in the form
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Zx(t) = ) t%eP,

D>0

where D runs through all rational divisors over F,. In other words,

Zx(t) =Y ant",

where a,, is the number of effective rational divisors D of degree n. We are
now in a position to determine this number explicitly when X is a cubic
curve.

We first find the number of linear equivalence classes of rational divisors
of degree n. We proved in 3.1 that if deg D = n then D ~ z+ (n —1)o. From
the fact that D is rational over F,, it follows that z € X(F}). Indeed, if the
coordinates of z are contained in a Galois extension k; of & then o(z) ~ z for
any automorphism of this extension, and hence o(z) = z. Thus the number
of divisor classes of degree n equals N, where N is the number of points
z € X(Fp). Now we find the number of divisors in a given class, that is, the
number of divisors D ~ Dg where Dy is given. They correspond to nonzero
functions f € Lg,(D), considered up to constant factors in F,. Thus the
number of rational divisors with D ~ Dg and D > 0 is equal to the number
of points of P4-o(P)=1  that is, (p®o(?) —1)/(p — 1). By (1) &, (D) = ¢(D),
and by 3.1, Theorem 2, (D) = n. Therefore a, = (E;_—'IL) N, and we get that

. o pn_]_ n
Zx(t)=1+NZ 7)—_-—1- t
n=1

N pt t
_1+p—1(1——pt—1—t)

_ 1+ (N-p-1)i+pt?
T (1-n-pt)

We see that the zeta function Zx (t) is a rational function of t. Moreover,
the inequality 3.4, (3') shows that the roots a; and a; of the quadratic
polynomial 1 + (N — p — 1)t + pt? are complex conjugate algebraic integers.
Since their product equals 1/p, we have |a;] = p~!/2. For the zeta function
(x(s) = Zx(p~*) this gives that the zeros 3; and 3, lie on the line Re s = 1/2.
We get in this way an analogue of the Riemann hypothesis.

Analogous results hold for arbitrary nonsingular projective varieties, but
their proofs are very much harder (see for example Hartshorne {35}, Ap-
pendix C for a survey).
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Exercises to §3

1. Find all points of order 2 on a cubic curve in Weierstrass normal form.

2. Prove that if two cubic curves intersect in exactly 9 points then any cubic
through 8 of these points also passes through the 9th.

3. Ptove that the :c-coordmates of the inflexion points of the cubic curve 3.2, (8)
satisfy f(z) = 2%+ 2az® + 4bz + a®. Prove that if ¢,b € R then not all four of these
points can be real. [Hint: Use the fact that f'(z) = 4(z® + az + b).] Prove that a
real cubic has one or 3 real inflexion point. In the latter case, they are collinear.

4. Prove that there are 4 tangent lines to a cubic X through every point of X. (We
only count £ € T X if z is an inflexion point.)

5. Prove that the points of tangency of the 4 tangent lines to a cubic X through a
point a € X lie on a conic tangent to X at a.

6. Prove that if two cubics X 1 and X2 with equation y? = 23 + a;z + b; fori = 1
and 2 are isomorphic, then there exists an isomorphism that takes their points at
infinity to one another. -

7. Under the assumptions of Ex. 6, prove that an isomorphism between X; and
X that takes their points at infinity to one another is given by a linear map.

8. Under the assumptions of Ex. 6-7, prove that if b1, b2 # 0, then the two cubics
X1 and X; are isomorphic if and only if o} /b? = a}/b3.

9. Prove that the zeta function {x (s) associated with a cubic satisfies the functional
equation {x(1 — s} = {x(s)-

10. Prove that over a field of characteristic p, any map of the cubic a: X — X
with a(X) = X can be written in the form a = ¢"( where ¢ is the Frobenius map,
r > 0 and f is separable.

4. Algebraic Groups

The results of the preceding sections lead to an interesting topic in algebraic
geometry, the theory of algebraic groups. We will not go very deeply into
this theory, but in order to give the reader at least an impression, we discuss
some of its basic results, leaving out most of the proofs.

4.1. Algebraic Groups

The plane cubic curves of the preceding section are one of the most important
examples of a general notion that we now introduce.
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Definition. An algebraic group is an algebraic variety G which is at the
same time a group, in such a way that the following conditions are satisfied:
the maps ¢: G — G given by ¢(g) = ¢7! and ¥: G x G — G given by
¥(91,92) = 9192 are regular maps (here g~! and g,g; are the inverse and
product in the group G).

Examples of algebraic groups

Ezample 1. A nonsingular plane cubic curve with the group law @. 3.2, Theo-
rem 3 asserts that the conditions in the definition of algebraic group are
satisfied.

Ezample 2. The affine line A!, with the group law defined by addition of
coordinates of points. This is called the additive group, and denoted by G,.

Ezample 3. The variety A'\ 0, where 0 is the origin, with the group law
defined by multiplication of coordinates of points. This is called the multi-
plicative group, and denoted by G,,.

Ezample 4. The open subset of the space A" of n x n matrixes consisting of
nondegenerate matrixes, with the usual matrix multiplication. This is called
the general linear group.

Erample 5. The closed subset of the space A" of n x n matrixes consisting
of orthogonal matrixes, with the usual matrix multiplication. This is called
the orthogonal group.

We give a very simple example illustrating how being an algebraic group
affects the geometry of the variety G.

Theorem 1. The variety of an algebraic group is nonsingular.

Proof. It follows from the definition of an algebraic group that for any h € G
the map
th:G— G givenby tp=nhg

is an automorphism of the variety G. For any g1, g2, we have t5(g91) = g2,
where h = 9291_1, and the property that a point is singular is invariant under
isomorphism, so that if any point of G is singular, then so are all its points.
But this contradicts the fact that the singular points of any algebraic variety
form a proper closed subvariety. Therefore G does not have singular points.
The theorem is proved.

A generalisation of this situation is the case when a variety X has a group
G of automorphisms, with the property that for any two points z;,72 € X
there exists ¢ € G such that g(z;) = z;. In this case we say that X is
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homogeneous. The argument just given shows that a homogeneous variety is
nonsingular. An example is the Grassmannian (Chap. 1, 4.1, Example 1).

4.2. Quotient Groups and Chevalley’s Theorem

This section contains statements of some of the basic theorems on algebraic
groups. Theorems are labelled with letters (Theorem A, etc.) to indicate that
proofs are omitted.® (

Definition. An algebraic subgroup of an algebraic group G is a subgroup
H C G that is a closed subset in G. As in the theory of abstract groups,
a subgroup H C G is a normal subgroup if g~*Hg = H for every g € G.
Finally, a homomorphism ¢: Gy — G2 of algebraic groups is a regular map
that is a homomorphism of abstract groups.

The problem of constructing the quotient group by a given normal sub-
group is quite delicate. The difficulty, of course, is how to turn G/N into an
algebraic variety.

Theorem A. The abstract group G/N can be made into an algebraic variety
in such a way that the following conditions are satisfied:
1. The natural map ¢: G — G/N is a homomorphism of algebraic groups.
2. For every homomorphism of algebraic groups v: G — Gy whose kernel
contains N, there exists a homomorphism of algebraic groups f: G/N — &,
such that ¢ = foyp. O

The algebraic group G/N is obviously uniquely determined by conditions
1 and 2. It is called the quotient group of G by N.

An algebraic group G is affine if the algebraic variety G is affine, and is
an Abelian variety if G is projective and irreducible. The general linear group
(4.1, Example 4) is obviously an affine group. Indeed, it is the principal open
set (Chap. I, 4.2) of A" defined by det M # 0. Hence any algebraic subgroup
of the general linear group is affine.

Theorem B. An affine algebraic group is isomorphic to an algebraic sub-
group of the general linear group. O

Theorem C (Chevalley's theorem). Every algebraic group G has a normal
subgroup N such that N is an affine group, and G/N an Abelian variety. The
subgroup N is uniquely determined by these properties. O

? For a modern introduction to algebraic groups, including proofs of Theorems A-B,
see Humphreys [38].
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4.3. Abelian Varieties

In the definition of Abelian variety, the projectivity condition on the alge-
braic group G contains a surprising amount of information; many unexpected
properties of Abelian varieties flow from it. We deduce here the simplest of
these, which only require application of simple theorems already proved in
Chap. I.

We need a property of arbitrary projective varieties. Define a family of
maps X — Z between varieties tobeamap f: X xY — Z, where Y is some
algebraic variety, the base of the family. Obviqusly for any y € Y we have a
map fy: X — Z defined by fy(x) = f(z,y), which justifies the terminology.

Lemma. Suppose that X and Y are irreducible varieties with X projective,
and let f: X xY — Z be a family of maps from X to o variety Z with base
Y. Suppose that for some point yg € Y, the image f(X xy)) =20 € Z isa
point. Then f(X X ) is a point for everyy €Y.

Proof. Consider the graph I of f. Obviously ' C X xY x Z and I' is
isomorphic to X x Y. Write p: X xY x Z — Y x Z for the projection to the
second and third factors, and T = p(T). Since X is projective, T is closed
by Chap. I, 5.2, Theorem 3. Now let q: I' — Y be the restriction of the first
projection Y x Z — Y. The fibre of q over y is of the form y x f,,(X x y), and
50 is nonempty, so that ¢(T') = Y. On the other hand, by assumption, the
fibre over yp consists of a single point ¥4 x 2. By the theorem on dimension
of fibres, Chap. 1, 6.3, Theorem 7, we see that dim ' = dim Y.

Choose any point o € X. We obviously have {(y, f(zo,¥)) |y € Y} C T,
and this is a variety isomorphic to Y. Now since both of these varieties are
irreducible and of the same dimension, they must be equal, and therefore
F(X x y) = f(zo,y). The lemma is proved.

Remark. Without the assumption that X is projective, the lemma is false, as
shown by the family of maps f,: A — A! given by f(z,y) = Ty. The reason
is that the set T" is not closed, and Chap. I, 6.3, Theorem 7 is not applicable
to it. In the example I C A x Al = A? consists of all points (u,v) except
those with u = 0,v # 0. That is, it is the plane with the line u = 0 deleted,
but the origin u = v = 0 kept (Figure 15). Chap. I, 6.3, Theorem 7 is really
false for the projection q: (u,v) — u: the domain has dimension 2, the image
dimension 1, but the fibre over 0 has dimension 0.

Theorem 2. An Abelian variety is an Abelian group.

Proof. Consider the family of maps from G to G with base G given by
f(g,h) = g~'hg. Obviously when h = e is the identity element we have
f(g,€) = e, and hence by the lemma, f(G,h) is a point for every h. Hence
fg, k) = f(e,h) = h, and this means that G is Abelian.
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Y Figure15. The Map f(z,y) = zy

Theorem 3. If Y: G — H is a regular map of an Abelian variety G to
an algebraic group H, then ¥(g) = y(e)p(g), where e € G is the identity
element, and ¢: G — H a group homomorphism.

Proof. We set ©(g) = ¥~ (e)¥(g) and prove that ¢ is a homomorphism. For
this, consider the following family of maps G — H with base G:

f:GxG—H givenby f(d',9) = (g )e(9)e(g'g)™".

Then since p(e) = €’ is the identity element of H, we have f(G,e) = ¢’. By
the lemma, f(G, g) is a single point for every g € G, that is, f(¢’,g) does not
depend on ¢'. Setting ¢’ = e we get f(g',9) = f(e,g) = ¢/, and this means
that ¢ is a homomorphism.

Corollary. If two Abelian varieties are isomorphic as algebraic varieties,
they are isomorphic as groups; that is, “the geometry determines the algebra”.

In particular, the maps of the cubic curve A: X — X with A(o) = o
considered in 3.3 are homomorphisms.

4.4. The Picard Variety

The only examples of Abelian varieties appearing so far are the plane cubic
curves considered in §3. The group law on these was defined starting out from
the study of their divisor class groups. This example is typical of a much more
general situation. Starting from an arbitrary nonsingular projective variety
X, we can construct an Abelian variety whose group of points is isomorphic
to a certain subgroup of the divisor class group Cl X, corresponding to C1° X
in the case of the cubic curve. We give this definition, omitting proofs of all
but the simplest assertions.

We now define a new equivalence relation for divisors, algebraic equi-
valence. It is a coarser relation than the linear equivalence of divisors con-
sidered up to now (that is, linear equivalence implies algebraic equivalence).
Our aim is to study divisors on nonsingular varieties, but divisors on arbi-
trary varieties will appear at intermediate stages of the argument. In this
case, we always take divisors to mean locally principal divisors.
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Let X and T be two arbitrary irreducible varieties. For any point ¢t € T
the map j;: £ — (z,t) defines an embedding X — X x T. Every divisor C
on X x T with Supp C 2 X x t defines a pullback divisor j;(C) on X. In this
case we say that j; (C) is defined.

Definition. A family of divisorson X with base T isany map f: T — Div X.
We say that the family f is an algebraic family of divisors if there exists a
divisor C € Div(X x T) such that j;(C) is defined for each t € T and
J: (C) = f(¢t). Divisors Dy, D; on X are algebraically equivalent if there exists
an algebraic family of divisors f on X with base T, and two points t;,t, € T
such that f(t;) = D; and f(t2) = D,. This equivalence relation is denoted
by D1 = Dg.

Thus algebraic equivalence of divisors means that they can be “alge-
braically deformed” into one another. Algebraic equivalence is obviously re-
flexive and symmetric. It is easy to prove that it is transitive: if an algebraic
equivalence between D; and D, is realised by a divisor C on X x T and
an algebraic equivalence between D, and D3 by a divisor C' on X x T7,
then to prove that D; and Dj are equivalent we need to consider the divisor
(CxTY)+(C'"xT)—DyxT xT on X xT x T'. We leave the detailed
verification to the reader.

Finally, one sees easily that algebraic equivalence is compatible with ad-
dition in Div X: divisors D with D = 0 form a subgroup. We denote this by
Div®* X.

Linear equivalence of divisors implies algebraic equivalence. It is enough
to prove this for equivalence to 0. Suppose that D € DivX and D ~ 0,
that is, D = div g with g € k(X). Consider the variety T = A%\ (0,0), and
write u, v for coordinates on A2, We can view g,u,v as functions on X x T,
meaning the pullbacks p*(g), ¢*(u) and ¢*(v), where as usual p: X xT —'X
and ¢: X x T — T are the projections. Set C = div(u + vg) and consider the
algebraic family of divisors f defined by the divisor C on X x T. One checks
that f(1,0) = 0 (the zero divisor) and f(0,1) = D, and hence D = 0.

Finally, consider algebraic equivalence of divisors in the example of a
nonsingular projective curve X. Then z = y for any two points z,y € X.
For this, it is enough to consider the family of divisors f parametrised by
X itself, and defined by the diagonal A C X x X; it is easy to check that
f(z) = z for every z € X. Hence for every divisor D = 3 n,x; and any point
zo € X we have D = (3 n;)zy, that is, any two divisors of the same degree
are algebraically equivalent.

It is slightly more complicated to prove the converse implication, that
algebraically equivalent divisors have the same degree. We do not give the
proof here.!? Thus for divisors on a nonsingular projective curve X, algebraic

19T he so-called “Principle of conservation of number” (roughly, algebraically equiv-
alent cycles have the same numerical properties) is discussed in Fulton [27],
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equivalence of divisors is equivalent to them having equal degree. Therefore
DivX/Div* X = C1X/CI° X =Z.

A generalisation of this is the following theorem proved by Severi (for fields
of characteristic 0) and Néron (in the general case).

Theorem D. (The Néron—Severi Theorem). FrXa nonsingular projective
variety, the group NS X = Div X/ Div® X is finitely generated. O

One can show that algebraic and linear equivalence of divisors coincide
on X = P™ x...x P, This example shows that Div X/ Div® X can be more
complicated that Z.

When X is a plane cubic curve, the quotient C1° X = Div® X/P(X), where
P(X) is the group of principal divisors, is a 1-dimensional Abelian variety.
In a similar way, for any nonsingular projective variety X there exists an
Abelian variety G whose group of points is isomorphic to Div® X/P(X), that
is, divisors algebraically equivalent to 0 modulo divisors linearly equivalent
to 0, and having the following property: for any algebraic family of divisors
f on X over a base T there exists a regular map p: T — & such that
f(2) = f(to) € p(t), where tg is some fixed point of T. (Here G is identified
with Div® X/ P(X), so that (t) is considered as a divisor class.)

The Abelian variety G is uniquely determined by this property. It is called
the Picard variety of X. The Picard variety of a nonsingular projective curve
X is also called the Jacobian of X.

Exercises to §4

1. Let G be an algebraic group, ¥: G x G — G the regular map defined by the
group law, and 6, and 6., the tangent spaces to G and G X G at their respective
identity elements. Prove that 8,, = 6, ® 6, and that d.y: 6, ® 6, — O, is given
by addition of vectors.

2. In the notation of Ex. 1, suppose that G is an Abelian group, and define ¢n: G —
G by ¢n(g) = g". Supposing that the ground field has characteristic 0, prove that
d.¢n is a nondegenerate linear map. Deduce from this that in a Abelian algebraic
group the number of elements of order 7 is finite, and that every element has an
nth root.

Chap. 10, although the proof given there is very high-powered and abstract.
§19.3 of the same book also contains a condensed discussion of the Néron—Severi
theorem over C.
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5. Differential Forms

5.1. Regular Differential 1-forms

We introduced the notion of the differential d; f of a regular function f at a
point z € X of a variety in Chap. II, 1.3. By definition, d f is a linear form
on the tangent space 8; to X at z, that is, d; f € ©;. We now study how
this notion depends on z.

Fix a function f regular everywhere on X. Then, as a function of z, the
differential d. f is an object of a new type that we have not met before: it
sends each point z € X to a vector d.f € € in the dual space of the tangent
space at z. Objects of this nature will appear all the time in what follows.
Perhaps the following explanation will be helpful. In linear algebra, we deal
with constants, but also with other quantities, such as vectors, linear forms,
and arbitrary tensors. In geometry, the analogue of a constant is a function,
which takes constant values at points. The analogue of a vector, linear form
or whatever, is a “field”, or “function” that sends each point z of an algebraic
variety (or differentiable manifold) into a vector, linear form or whatever, of
the tangent space 8, at the point z.

Consider the set ${X] of all possible functions ¢ sending each point z € X
to a vector ¢(z) € O%. This set is of course much too big to be of any
interest, just as the set of all k-valued function on X is too big. Now, just
as we distinguished the regular functions among all k-valued functions on
X, we now distinguish in @[X] a subset that is more closely related to the
structure of X. For this we note that ${X] is an Abelian group, if we set
(¢ + ¥)(z) = p(z) + ¥(z). Moreover, $[X] is a module over the ring of all
k-valued functions on X, if we set (f@)(z) = f(z)p(z) for f: X — k and
¢ € ®{X]. In particular we may view @[X] as a module over the ring k[X] of
regular functions on X.

As we have seen, a regular function f on X defines a differential d; f € 6}
at z. Thus any function f € k{X] defines an element ¢ € ${X] by p(z) =d.f.
We denote this function by df.

Definition. An element ¢ € $[X] is a reqular differential form on X if every
point £ € X has a neighbourhood U such that the restriction of ¢ to U
belongs to the k[U}-submodule of S[U] generated by the elements df with
f € k[U}.

All the regular differential forms on X obviously form a module over k[X];
we denote it by 2[X]. Thus ¢ € 2[X] if it can be written in the form

m
o=Y fidg, (1)
=1
in a neighbourhood of every point z € X, where fi,..., fm,91,...,9m are

regular functions in a neighbourhood of z. -
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Taking the differential of functions defines a map d: k{X] — 2{X]. The
properties Chap. II, 1.3, (1) then take the form

d(f +9)=df +dg and d(fg) = fdg + gdf. @

From these formulas one deduces easily an identity that holds for any poly-
nomial F € k[T, ..., ] and any functions fi,. .., fm € k[X]:

A(F(fuoees ) = Y- g s Fmdf ®
=1t

To obtain this, using (2), one reduces the proof to the case of a monomial, and
then, using (2) again, proves it by induction of the degree of the monomial.
We leave the details of the verification to the reader.

Once (3) is proved for polynomials, it generalises immediately to rational
functions F. Here we should note that if a rational function F is regular
at x, then so are all the 8F/8T;; indeed, then F = P/Q, where P, @ are
polynomials and Q(z) # 0, and so

ar 1 aP aQ
ey (Qﬁ.- ‘Pﬁ.-)’

whence regularity.

Ezample 1. X = A™. Since the differentials d;t;,...,dzt, of the coordinates
form a basis of the vector space O at any point z € A", any element ¢ €
&[A"] can be written uniquely in the form ¢ = 37, ¥:dt;, where the y; are
k-valued functions on A™.

If ¢ € 2[A"] then ¢ must have an expression (1) in a neighbourhood
of any point z € A". Applying the relations (3) to g; gives an expression
@ = 3 hidt;, in which the h; are rational functions regular at z. Since such
an expression is unique, the 3; must be regular at every z € A", that is,
¥: € k[A"]. Therefore

QA" = @ K[A™dt;.

Ezample 2. Let X = P! with coordinate t. Then X = A} U A}, where A} =
Al 2 A!. By the result of Example 1, any element ¢ € £2[P!] can be written
@ = P(t)dt on A} and ¢ = Q(u)du on Al, where u = t~!. The final relation
gives du = —dt/t?, so that if n = deg @, we have in A} N Al

P(t)dt = ~tl2 (1/t)dt,  that is, P(t)=:t%@,

where Q*(¢) = t"Q(1/t), so that Q*(0) # 0. A relation of this kind between
polynomials is only possible if P = Q =0, and hence 2[P!] = 0.
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Ezample 8. Suppose that X C P? is given by the equation z3 + z3 + 23 =0,
and that chark # 3. Write Uj; for the open set in which z;,z; # 0. Then
X = Uy U U3 UUsyp. We set

) T3 d i
r=—, y=— and =—!2/ in Up;;

b o Xo T

2% To dv .
u=—, v=— and ¢=—2 in Uyg;

I I U

To T dt .
§=—, t=-— and == in Uyg.

T2 z2 $

Obviously ¢ € 2[Uoi], ¥ € R2[Ui2] and x € 2[Uyp]. It is easy to check
that ¢ = Y = x in Uy NUyp = Upy NUy = Ujz N Uzg. Hence ,9 and x
define a global form w € 22[X]. This example is interesting, in that £2[X] # 0,
whereas X is a projective variety, and so has no everywhere regular functions
other than the constants.

In the general case one can prove a weaker version of the result of Exam-
ple 1.

Theorem 1. Any nonsingular point T of an algebraic variety X has an affine
neighbourhood U such that QU] is a free k[U]-module of rank dim; X.

Proof. Let X c AN, and suppose that Fi,..., Fy, are polynomials forming a
basis of the ideal Ax. Then F; = 0 on X, and hence by (3) we have

N
OF;
——dt; =0. (4)
=190
If £ € X is a nonsingular point and dim, X = n then the matrix

((8F;/8T;)(z)) has rank N — n. Suppose, for example, that ti,...,t, are
local parameters at z. Then it follows from (4) that all the dt; can be ex-
pressed in terms of dty,...,dt, with coefficients that are rational functions,
regular at z. .

Consider a neighbourhood U of z in which all these functions are regular.
Then dyt;, ..., dyts form a basis of 6; for every y € U. Let p € R[U]. By
what we have said above, there exists a unique expression

p= Z¢idt¢, )
i=1

where 1; are k-valued functions on U. By the expression (1) and formula (3)
it follows that ¢ can be written in a neighbourhood of any point y € U as a
linear combination of dty,. .., dty with coefficients functions that are regular
at y. As we have seen, dt;,...,dty can in turn be expressed in the same
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way in terms of dty,...,dt,. Hence ¢ = 3 7., gidt;, where the g; are regular
in a neighbourhood of y. Since the expression (5) is unique, it follows that
¥; = 9; in a neighbourhood of each y € U, and hence v; € k[U]. We see that
QU] =0, k[Uldt..

Suppose that dty,...,dt, are related by 3 -, 9:dt; = 0, with, say, gn #
0. Then dt;,...,dt, are linearly dependent in the open set g, # 0, which
contradicts the linear independence of dyt; € 6; for all y € U. Therefore
Q[U} = @7, k[U]dti. The theorem is proved.

Corollary. If u1,...,u, is any system of local parameters at a point z, then
du,,...,du, generate 2{U] as a k[U]-module for some affine neighbourhood
U of z.

Proof. Let dty,...,dt, be the basis of the free module 2[U] in a neighbour-
hood U of z that exists by Theorem 1. Then du; = E'-'___l gi;dt;, and since
the u; are local parameters, det [g;;(z)| # 0. Therefore in the neighbourhood
U’ where det [g;;| # 0, the elements du,, ..., duy generate 2[U’}.

5.2. Algebraic Definition of the Module of Differentials

We saw in Chap. I that the category of affine varieties is equivalent to the
category of rings of a special type. Thus the whole theory of affine varieties
can be seen from a purely algebraic point of view; in particular, we can try
to understand the algebraic meaning of the module of differential forms.

Consider an affine variety X, and write A = k[X] for its coordinate ring
and 2 = 2[X] for the module of differentials. Taking the differential of a
function defines a k-linear homomorphism d: A — 2.

Proposition 1. 2 is generated as an A-module by the elements df with
feA.

Proof. This is analogous to Chap. I, 3.2, Theorem 4, and the proof is entirely
similar. If w € {2 then, by definition, for any z € X we can write w =
> fizdgiz with fiz, iz € Oz. Every function u € O, can be expressed as
u = v/w with v,w € A and w(z) # 0. Using such expressions for f;z,g;z
and taking a common denominator for all the fractions, we obtain a function
p< such that p.(z) # 0 and

Pow = zh,,dh,-', with 7y 2, hiz € A.

Now because py(z) # O for each x € X, there exist a finite set of z and
functions g; € A such that 3 p;q; = 1. Therefore w = 3,3, ¢z7 zdhi 5.
This proves Proposition 1.

Proposition 1 suggests the idea of trying to describe £ in terms of its
generators d f with f € A. The following relations obviously hold:
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d(f +g) =df +dg,

and da=0 forack. i
d(fg) = fdg + gdg, @
Proposition 2. If X is a nonsingular affine variety and A = k[X] then the
A-module 12 is defined by the relations (1).

Proof. Write R for the A-module having -generators df in one-to-one cor-
respondence with elements f € A, and relations (1). There is an obvious
homomorphism £: R — 2, and Proposition 1 shows that £ is surjective.

It remains to prove that ker £ = 0. Suppose that ¢ € R and £(p) = 0. We
observe that the arguments in the proof of Theorem 1 only used the relations
(1). Hence they are applicable also to R and show that for any x € X there
exists a function p € A such that p(z) # 0 and pp = ¥ g;dt; with g; € 4,
where now the local parameters t; are chosen as elements of A. If {(¢) =0,
then ¥ g;dt; = O in the module 2, and it follows from Theorem 1 that
all the g; = 0. Thus pp = 0. We see that for every x € X there exists a
function p € A such that p(z) # 0 and py = 0. Arguing as in the proof of
Proposition 1, we see that = 0. The proposition is proved.

Remark. 1t follows easily from what we have just said that for any A-module
M we have
Homa(24/4,: M) = Der (A, M),

where Ders,(A, M) is the module of derivations of A into M, that is, of
Agq-linear maps D: A — M satisfying D(ab) = aD(b})+bD{(a) for all ¢,b € A.

Thus in this case £2[X] can be described purely algebraically starting
from the ring k[X]. This suggests the idea of considering a similar module
for any ring A, with A an algebra over a subring A¢. The module defined by
generators d f for f € A and relations (1) (where of course a € Ay in the final
relation) is called the module of differentials or module of Kdhler differentials
of A over Ag and denoted by {24 or 24/4,-

If X is singular, then the module £24 defined in this purely algebraically
way no longer coincides with £2[X] in general (see Ex. 9). Proposition 1, which
still holds for a singular variety X, shows that £24 contains more information
on X than £2[X]. However, in what follows, we mostly deal with nonsingular
varieties, and the distinction will not be important for us.

5.3. Differential p-forms

The differential forms considered in 5.1 were functions sending each point
z € X to an element of 6. We now consider more general differential forms,
that send x € X to a skewsymmetric multilinear form on 8,, that is, to an
element of the rth exterior power A" 67 of 6.
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The definition is entirely analogous to that considered in 5.1. We write
&7[X] for the set of all possible functions sending each point z € X to an
element of A" O}. Thus if w € ¢"[X] and £ € X then w(z) € A"6:. In
particular, #°[X] is the ring of all k-valued functions on X and &'[X] is the
set $[X] considered in the preceding section. Hence d f € #![X] for f € k[X].

We recall the operation of exterior product A, which is defined for any
vector space L. If p € A" Land ¢ € A® L, then oAy € A" L. Moreover, the
exterior product is distributive, associative and satisfies p Ay = (—1)™ 9 A
If e1,...,en is a basis of L then a basis of A" L is given by all the products
e, A---Ae;, with1 <i; <--- <ip <n. Hencedim \"L = (?) (the binomial
coefficient), and in particular dim A" L =1and A" L =0 for r > n.

We define the exterior product on the sets &"[X]. If w, € $"[X] and
ws € 9°[X] then we define w = wr Aw, by w(z) = wp(z) Awy(z) for all z € X.
Obviously w € ¢"+*[X]. For r = 1 and s = 0 we return to the multiplication
of elements of $'[X] = S[X] by k-valued functions on X. Taking any r and
§ = 0, we see that elements of #"[X] can be multiplied by functions on X.
In particular all the #7[X] are modules over k[X].

Definition. An element ¢ € ¢"[X] is a regular differential r-form on X if
any point £ € X has a neighbourhood U such that ¢ on U belongs to the
submodule of $7[U] generated over k[U] by the elements df; A--- Adf, with
fi.-.., fr € k[U). In terms of this definition, the differential forms considered
in 5.1-2 are regular differential 1-forms.

All regular differential r-forms on X form a k[X]-module, denoted by
£27[X]. Thus an element w € £27[X] can be written in a neighbourhood of
any point z € X in the form

W= gi.sdfiy Ao Adfi, (1)

where g;,..;. and fi,,..., fi. are regular functions in a neighbourhood of z.
The exterior product is defined on regular differential forms, and for w, €
£7[X] and w, € 2°[X], we obviously have w, A w, € 272 X].

5.2, Theorem 1 has an analogue for the forms 27[X] for any r.

Theorem 2. Any nonsingular point £ € X of an n-dimensional variety has
a neighbourhood U such that 27[U) is a free k[U]-module of rank (7).

Proof. In the proof of Theorem 1, we saw that a nonsingular point z has a
neighbourhood U on which there are n regular functions u;, ..., u, such that

dyuy,...,dyu, form a basis of 6” for any y € U. It follows from this that
any element ¢ € $7[U] is of the form

= Z'ﬁi,...i,duil A Adug,

where the 1;, ;. are k-valued functions on U.
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If ¢ € 27[U] then ¢ can be expressed in the form (1) in a neighbourhood
of any point y € U. Applying Theorem 1 to the forms df; we see that ¢, ;
are regular at y; but since y is any point of U, they are regular functions
on U. Thus the forms du;, A+« Ady;, for 1 <4, <. < i, < n generate
7[U]. It remains to see that they are linearly independent over k[U]. But
any dependence relation

Zg,-,,,,,-,du,-, A A C"LL,'r =0
gives a relation
> i (@)dat, Av Adyuy, =0 2)

at any point z € U. Since d;u,...,d;u, form a basis of 63, the elements
dzui, A - Adgu; form a basis of A" ©2. Hence from (2) it follows that
Giy...i. () =0 for all z € U, that is, g;, . ;. = 0. The theorem is proved.

Of special importance is the module 2"[U], which under the assumptions
of Theorem 2 is of rank 1 over k[U]. ! Thus if w € 2"[U], we have

w=gdui A---Adu,  with g € k[U]. (3)

This expression for w depends in an essential way on the choice of the local
parameters 41, .. ., U,. We determine what this dependence is. Let v,,...,v,
be another n regular functions on X such that vy —v1(%),..., vy — vq(z) are
local parameters at any point z € U. Then also

QU] = k[Uldv, & - - - ® k[U]dv,.

and in particular the du; can be expressed

n
d’l.l,,' = Zh,-jdvj fori= 1,...,71.. (4)
=
Since d;u;,...,d;u, form a basis of the vector space 8} for each z € U,

it follows from (4) that det|h;;(x)| # 0. By analogy with what happens
in analysis, det |h;;(z)| is called the Jacobian determinant of the functions
Uy,. .., Uy, With respect to vy, ..., v,. We denote it by J(';‘)—:—’%f) As we have
seen,

J(%‘ﬂ)ek[U], and J(u)(x);éo (5)

ly-++3Un Viy...,Un

forallz € U.
Substituting (4) in the expression for w and simple calculations in the
exterior algebra shows that

UElements of 2"[U] are called canonical differentials, following a suggestion of
Mumford.
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w =gJ(ylL”’—u")dvI/\--~/\dvn. (6)
Viy.eeoyUn

Thus although w € 27([U] is specified by a function g € k[X]; this specifica-

tion is only possible once local coordinates have been chosen, and depends in

an essential way on this choice.

. 'We recall that the expression (3) is in general only possible locally (see
the statements of Theorems 1-2). If X = [JU; is an open cover, and in each
U; an expression (3) is possible, we still cannot associate with w a global
function g on the whole of X: the functions g; obtained on different U; are
not compatible. We have already seen an example of this in 5.1, Exaple 2.

5.4. Rational Differential Forms

5.1, Example 2 shows that there may be very few regular differential forms
on an algebraic variety X (for example, £2'{P!] = 0) whereas there are lots on
its open subsets (for example, 2}(U] = k[u]du). A similar thing happened in
connection with regular functions, and it was precisely these considerations
that led us to introduce the notion of rational functions, as functions regular
on some open subset. We now introduce the analogous. notion for differential
forms.

Consider a nonsingular irreducible quasiprojective variety X. Let w be a
differential r-form on X. Recall that it makes sense to speak of w being 0 at
a point = € X; for w(z) € A\” 63, and in particular, it can be 0 there.

Lemma. The set of points at which a regular differential form w is 0 is
closed.

Proof. Since closed is a local property, we can restrict ourselves to a suffi-
ciently small neighbourhood U of any point £ € X. In particular we can
choose U so that 5.1, Theorem 1 and 5.3, Theorem 2 hold for it. Then there
exist functions u1,...,un € k[U] such that 27[U} is the free k[U]-mo'dule
based by

duj, A - Aduy, for1<i; <---<ip<n.

Hence w has a unique expression in the form w = 3" g;, ;. dui, A--- Adu,,,
and the conditions w(z) = 0 is equivalent to g;, ;. = 0, which define a closed
set. The lemma is proved.

It follows in particular from the lemma that if w(z) = 0 for all points =
of an open set U then w = 0 on the whole of X.

We now introduce a new object, consisting of an open set U C X and a
differential r-form w € 27[U]. On pairs (w, U) we introduce the equivalence
relation (w,U) ~ (o', U’) if w = o' on U NU’. By the above remark, it is
enough to require that w = w’ on some open subset of UNU’. The transitivity
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of the equivalence relation follows from this. An equivalence class under this
relation is called a rational differential r-form on X. The set of all rational
differential r-forms on X is denoted by £27(X). Obviously £2°(X) = k(X).

Algebraic operations on representatives of equivalence classes carry over
to the classes, and define the exterior product: if w, € 27(X) and w, € 2°(X)
then wr Aw, € 27F*(X). When s = 0 we see that 27(X) is a k(X)-module.

If a rational differential form w (an equivalence class of pairs) contains a
pair (w, U) then we say that w is regular in U. The union of all open sets on
which w is regular is an open set U, called the domain of reqularity of w.
Obviously w defines a regular form belonging to 27[U,]. If z € U, then we
say that w is regular at z. Obviously £27(X) does not change if we replace X
by an open subset, that is, it is a birational invariant.

We determine the structure of 27(X) as a module over the field k(X).

Theorem 3. 27(X) is a vector space over k(X) of dimension (:)

Proof. Consider any open set U"C X for which 27[U] is free over k[U], as in
Theorems 1-2. Then there exist n functions 4, ..., u, € k[U] such that the
products

duy, A--- Adug, for1<ij<---<i.<n (1)

form a basis of 27[U] over k[U]. Any form w € 27(X) is regular in some
open subset U’ C U, over which (1) still gives a basis of 27[U’] over k[U'}.
Hence ' can be uniquely written in the form :

Z Giy..i dug A Aduy,

1<i1 < <ir<n

where g;,..;, are regular in some open set U’ C U, that is, are rational
functions on X. This just means that the forms (1) are a basis of 27(X) over
k(X). The theorem is proved.

For which n-tuples of functions 41, ..., %, € k(X) is dus, A--- Adu;, for
1 <14 <+ <i €£n a basis of 27(X) over k(X)? We give a sufficient
condition for this — in fact it is also necessary, but we do not need this.

Theorem 4. If uj,...,un i a separable transcendence basis of k(X) then
the forms dug, A--- Adu;, forl1 <i; <:-- < i, <n form a basis of 27(X)
over k(X).

Proof. Since 127(X) and k(X) are birational invariants, we can assume that
X is affine, X ¢ AV, Let u;,...,u, be a separable transcendence basis of
k(X). Then any element v € k(X) satisfies a relation F(v,u;,...,us) = 0
that is separable in v. In particular for each of the coordinates t; of A, there
is a relation Fy(t;, u1,...,us) =0, fori =1,..., N. It follows from these that
the relations
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3Fidt<+i3Fidu~ =0 fori=1,...,N
ot ;T ori=1,...,
hold on X. Since F; is separable in ¢; it follows that 8F;/8t; # 0 on X. Hence

Z. (dF; /3u])
2
]; (8F;/8t;)

All the function (8F;/8u;) / (8F;/8t;) and u; are regular on some open set
U C X, and then (2) shows that at any point y € U, the differentials d,u; gen-
erate 6. Since the number of these differentials is equal to dim X = dim 6;,
they form a basis. Hence the du; form a basis of £2![U] as a k{U}-module, and
the products (1) a basis of £27[U] over k[U], hence a fortiori of £27(X) over
k(X). The theorem is proved.

Exercises to §5

1. Prove that the rational differential form dz/y is regular on the affine circle X
defined by z2 + y? = 1. We suppose that the ground field has characteristic # 2.

2. In the notation of Ex. 1, prove that £2'[X] = k[X](dz/y). [Hint: Write any form
w € 2'{X] in the form w = fdz/y, and use the fact that dz/y = —dy/z.]

3. Prove that dim £2'{X] = 1 in 5.1, Example 3.
4. Prove that 2"[P"] = 0.
5. Prove that 2'[P*] = 0.

6. Prove that 227[P"] =0 for any r > 0.

7. Let w = (P(t)/Q(t))dt be a rational form on P!, with coordinate ¢, where P

and Q are polynomials with deg P = m, deg @ = n. At what points z € P! is w not
regular?

8. Prove that for a nonsingular variety X, the tangent fibre space introduced in
Chap. II, 1.4 is birational to the product X x A™. {Hint: For the open set U in 5.1,
Theorem 1, construct an isomorphism of the tangent fibre space of U to U x A™ by
(z,8) — z,(dzu1)(§), ..., (dzun)(€), for £ € 62]
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9. Compute the module R = 24 constructed in the proof of 5.2, Proposition 2
when X is the curve y? = z3, and prove that 3ydz — 2zdy is a nonzero element of
4, but £(3ydz — 2zdy) = 0 € 2'[X] (where £: R = 24 — 2[X] is as in the proof
of 5.2, Proposition 2). Show also that

y(3ydz — 2zdy) = 2*(3ydz — 22dy) = 0.

[Hint: Use the fact that k{X] = k{z] + k[z]y. The point is that on a singular variety
Kihler differentials (5.2) and regular differentials are different notions.]

10. Let K be an extension field of k. A derivation of K over k is a k-linear map
D: K — K satisfying the conditions D(zy) = yD(z) + zD(y) for z,y € K. Prove
that if u € K and D is a derivation, then the map D;(x) = uD(z) is also a
derivations, so that all the derivations of K over k form a vector space over k. This
is denoted by Derx(K).

11. Let D be a derivation of K = k(X) over k, and w = ¥ fidgs € 2'(X). Prove
that the function (D,w) = Y fiD(g:) is independent of the representation of w in
the form }_ fidg;. Prove that it is a scalar product, and establishes an isomorphism
Derx(K) = (£2'(X))" = Homy(x) (21 (X), k(X)).

6. Examples and Applications of Differential Forms
6.1. Behaviour Under Maps

We first study the behaviour of differential forms under regular maps. If
p: X — Y is a regular map, z € X and y = ¢(z) € Y then d;y is a map
d.p: Ox,; — Byy, and its dual a map (d;p)*: 6}, — O ;. Hence for w €
&[Y] we have a pullback ¢*(w) € $[X] defined by ¢*(w)(z) = (dz¢)* (w(¥)).

It follows easily from the definition that (d;¢)* is compatible with taking
the differential, that is, (dzp)*(dyf) = dz(¢*(f)) for f € k[Y]. It follows
that if w € 2'[Y] then ¢*(w) € 2'[X], and ¢* defines a homomorphism
p*: PYY] —» 2'[X] that is compatible with taking the differential of f €
kY.

[ %7‘ inally, it is known from linear algebra that a linear map ¢: L — M be-
tween vector spaces determines a linear map A" ¢: AL — A" M. Applying
this to (dzp)*, we get a map A\'(dz¢)*: A" 6y, — A" 6% ., hence maps
&7[Y] — &7[X] and 27[Y] — £27[X]. These maps will also be denoted *.

From what we have said above, it follows that the effective computation
of the action of ¢* on differential forms is very simple: if

W= Zgh...irdu;i; A A duiry
then
¢ W) =D 0" (g )" (W) A Ad(" (0s,)). (1)
Now suppose that X is irreducible, and ¢: X — Y a rational map such
that @(X) is dense in Y. Since y is a regular map of an open set U C X to
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Y, and any open set V' C Y intersects p(U), the preceding arguments define
amap ¢*: 27(Y) — 27(X). This is again given by (1).

‘We know that for r = 0, in other words, for functions, the map ¢*: k(Y) —
k(X) is an inclusion. For differential forms this is not always so. Suppose, for
example, that X = Y = P!, with respective coordinates ¢ and u, so that
k(X) = k(t) and k(Y) = k(u). Suppose that k has finite characteristic p
and that ¢ is given by the formula u = tP. Then ¢*(f(u)) = f(t*), and
*(df) = d(f(tP)) =0 for all f € k(u) (because dt? = ptP~1dt = 0), so that
@*(21(Y)) = 0. The situation is clarified by the following result.

Theorem 1. If k(X) has a separable transcendence basis over k(Y) then
p*: 2T(Y) — 27(X) is an inclusion. Here we identify k(Y') with the subfield
¢ (k(Y)) C K(X).

Proof. Suppose that the extension k(Y) C k(X) has a separable transcen-
dence basis vy, ..., vs. This means that v;,...,v, are algebraically indepen-
dent over k(Y), and k(X) is a finite separable extension of the subfield
k(Y)(v1,...,vs). The field k(Y) has a separable transcendence basis over
k (see Chap. I, 3.3, Theorem 5, Remark 1). Denote this by u;,...,u:. Then
Ul,.-.,U¢ U1, .., Vs i8 a separable transcendence basis of k(X) over k.

We write any differential form w € 27(Y) in the form

W= g idu, A Adug,, 2

and apply (1) to it, giving an expression for ¢*(w) as a linear combination of
elements dg* (u;, ) A- - Ady* (us,), which, by 4.4, Theorem 4, are a subset of a
basis of £27(X) over k(X), since the ©*(u;) are part of the separable transcen-
dence basis uy, ..., U, vy,..., Y. Hence p*(w) =0 only if all p*(g;,..4,) =0,
and this is only possible if all g;,. ;. = 0, that is w = 0. The theorem is
proved.

So far everything has been more or less obvious. We now arrive at an
unexpected fact.

Theorem 2. If X and Y are nonsingular varieties, with Y projective, and
w: X = Y a rational map such that ¢(X) is dense in Y, then

©*27[Y] € 27[X).

In other words, ¢* takes regular differential forms to regular differential
forms. Since ¢ is only a rational map, this seems quite implausible, even for
functions, that is, the case r = 0. In this case we are saved by the fact that,
since Y is projective, the only regular functions on Y are constant, and the
theorem is vacuous. In the general case, the theorem is less obvious.
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Proof. We use the fact that by Chap. 1I, 3.1, Theorem 3,  is regular on
X\ Z, where Z C X is a closed subset and codimx Z > 2. If w € £27[Y] then
*(w) is regular on X \ Z. Let us prove that regularity on the whole of X
follows from this. For this, we write ¢*(w) in some open set U in the form

P (w) = Z Giy..i dugy, Ao Adyy,

where uy,...,un are regular functions on U such that dug, A--- Adu, is
a basis for 27[U] over k[U]. Then from the fact that ¢*(w) is regular on
X\ Z it follows that all the functions g;,...., are regular on U\ (UN Z). But
codimy (U N Z) > 2, and this means that the set of points where gy, ;. is
not regular has codimension > 2. On the other hand, this set is a divisor
divoo(gi,...i.)- This is only possible if diveo(gi;...;,) = 0, and hence g;, . ;, are
regular functions. The theorem is proved

Corollary. If two nonsingular projective varieties X and Y are birational
then the vector space £27[X] and 27[Y] are isomorphic. O

The significance of Theorem 2 and its corollary is enhanced by the fact
that for projective varieties X, the vector spaces 27X | are finite dimensional
over k. This result is a consequence of a general theorem on coherent sheaves
proved in Chap. VI, 3.4, Theorem. For the case of curves we prove it in 6.3
below. Set A" = dim 27[X]. The corollary means that the numbers A" for
r=0,...,n are birational invariants of a nonsingular projective variety X.

6.2. Invariant Differential Forms on a Group

Let X be an algebraic variety, w a differential form on X, and g an auto-
morphism of X. We say that w is invariant under g if g*(w) = w. Suppose in
particular that G is an algebraic group (see 4.1 for the definition). It follows
at once from the definition that for any element g € G, the translation map
tg: G — G given by
tg (z) =gz

is regular and is an automorphism of G as an algebraic variety. A differential
form on G is invariant if it is invariant under all the translations t,.

An invariant rational differential form is regular. Indeed, if w is regular
at a point £ € G then t}(w) is regular at g~1zo. But ty(w) =w, so that w is
. regular at all points gzo for g € G, and these are all the points of G.

‘We show how to find all invariant differential forms on an algebraic group.
For this, consider the vector spaces ¢7[G] as in 5.1 and 5.3, and their auto-
morphisms t; corresponding to the translations t;,. We determine first the
set of elements ¢ € ¢7[G] that are invariant under all t} for g € G. This set
contains in particular all the invariant regular differential r-forms.

The condition t;(¢) = ¢ means that for any point z € G,
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o(z) = (A dt3) (p(92))- (1)

In particular, for g =z},

(A dtz-1)(ele) = o(z). (2

This formula shows that ¢ is uniquely determined by the element y(e) of the
finite dimensional vector space A" ©7. Conversely, if we specify an arbitrary
element n € A" 6}, we can use (2) to construct the element ¢ € $7(G] given
by

() = (A dtz-1) (@(m)-

A simple substitution shows that it also satisfies (1), that is, is invariant under
t5. Thus the subspace of elements of ¢ € 67[G] that are invariant under ¢ is
momorphlc to A" O, with the isomorphism defined by

@ ple).

Now we show that all the ¢ just constructed are regular differential forms,
that is, are elements of £27[G]. In view of their invariance, it is enough to show
that the forms are regular at any point, for example at the identity element
e. Moreover, it is enough to restrict ourselves to the case r = 1. Indeed,
ifnp=73 ai A Aoy, with o; € /\ 6;, and we prove that the forms ¢,
corresponding by (2) to the a; are regular, then the form ¢ = 3" @i A+ Ay,
is regular, and it corresponds by (2) to 7.

We choose an affine neighbourhood V' of e such that £2*[V] is free over
k[V], and write du;,...,du, for a basis. Then there exists an affine neigh-
bourhood U of e such that (U x U) C V, where u: G x G — G is the
multiplication map of G. Just as any function of k[U x U], the elements
p*(u) can be written in the form

' (u)(g1, 92) = Zvlj(gl)wlj(g'z) for (91,92) e UxU CGxG,

where vy;, wi; € k[U]. By definition, t, = p o sp, where s is the embedding
G < G x G given by sn(g) = (h,g). Hence ¢} (w;)(g) = 3 i ( h)w;,(g) and

since (t}(du))(g) = dng (¢} (w)), we have (t' (dur))(9) = Y vij(h)dag(wij).
In particular, setting h = g, we get

(-1 (duw))(g) = Y vij(g7")dew;.

Expressing dwy; in terms of dug, we obtain the relations

tooi(du) =Y cu(g)dux,  with ciy € kU], (3)
k

where
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Swy;
-1 15

cri(g) = E Uy —(e). 4

Now write the invariant form ¢ in the form v = }_ ¢xdui and consider
the relation ¢;(p) = ¢ at e. Substituting (3) and equating coefficients of du,
we get

> et = pile). (5)

Since (cki(e)) is the identity matrix, we get det |cii|(e) # 0, and it follows
from the system of equations (5) that ¢, € O,.
We state the result we have proved:

Proposition. The mapw — w(e) establishes an isomorphism from the vector
space of invariant regular differential r-forms on G to A"62. O

6.3. The Canonical Class

‘We now consider more particularly rational differential n-forms on an n-dim-
ensional nonsingular variety X (compare 5.3). In some neighbourhood of a
point z € X, such a form can be written w = gduy A --- A du,. We cover
X by affine sets U; such that on each U; we have such an expressien w =
_g(")du(!") A--- Adul?. On the intersection U; N Uj, by 5.3, (6), we get

@
o) = g J(ﬂ__“_"_)
O

Since the Jacobian determinant J is regular and nowhere zero in U; N U;
(see 5.3, (5)), the system of functions ¢ on U; is a compatible system of
functions in the sense of 2.1, and hence defines a divisor on X. This divisor
is called the divisor of w, and is denoted by divw.

The following properties of the divisor of a rational differential n-form on
a nonsingular n-dimensional variety follow at once from the definition:

(a) div(fw) = div f + divw for f € k(X).

(b) divw > 0 if and only if w € Q™[ X].

By the case r = n of 5.4, Theorem 3, 2*(X) is a 1-dimensional vector
space over k(X). Hence if wy € 2™(X) and w; # 0, then any form w € 2*(X)
can be written w = fw;. Hence property (a) shows that the divisors of all
forms w € 2™(X) are linearly equivalent, and form one divisor class on X.
This class is called the canonical class of X, and is denoted by K or Kx.

Let wy € £27(X) be a fixed n-form, so that any other can be written fw,.
(b) shows that w is regular on X if and only if div f + div(w1) > 0. In other
words, in terms of the notion of vector space associated with a divisor intro-
duced in 1.5, we have 2™[X] = L(div(w;)). Thus h® = dimy 2"[X| = {(Kx).
We see that the invariant A" introduced in 6.1 is equal to the dimension of
the canonical class.
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Ezample. Suppose that X is the variety of an algebraic group. We showed in
6.2 that the vector space of invariant differential r-forms on X is isomorphic
ta A" ©:, where O, is the tangent space to X at the identity element e. In
particular, the space of invariant differential n-forms is 1-dimensional, since
A" 62 2 k. If w is a nonzero invariant form then w € 2™[X), that isdivw > 0.
But if w(z) = 0 for some point z € X, then by invariance also w(y) = 0 for
every y € X. Hence w(x) #£ 0 for all z € X, that is, w is regular and nowhere
vanishing on X. This means that divw = 0, that is Kx = 0.

In 2.3, Theorem 5, we proved that the number £(D) is finite for any divisor
D on a nonsingular projective algebraic curve. It follows in particular that the
number h! = dim; 2![X] = ¢(Kx) is finite for any nonsingular projective
algebraic curve X. This number is called the genus of the curve X, and
denoted by g = g(X); that is, for curves, h! = g. There are several other
characterisations of the genus of a curve, see for example 6.6, Corollary 1 and
Chap. VII, 3.3.

In the case dim X = 1 we know that all divisors in one linear equivalence
class have the same degree, so that it makes sense to speak of the degree
deg C of a divisor class C. In particular, the degree deg K'x of the canonical
class is a birational invariant of a curve X.

The invariants g(X) and deg K'x we have introduced are not independent.
It can be proved that the relation deg Kx = 2¢(X) — 2 holds between them;
see 6.6, Corollary 1. In particular, if a nonsingular projective curve X is an
algebraic group then Kx = 0, as we have just seen. Hence g(X) = 1, that
is, of all projective curves, only the curves of genus 1 can have an algebraic
group law defined on them. We will see in 6.6 below that the curves of genus
1 are exactly the nonsingular cubic curves.

6.4. Hypersurfaces

We now compute the canonical class and the invariant A*(X) = ¢(Kx) in
the case that X ¢ PV is a nonsingular n-dimensional hypersurface, with
N = n + 1. Suppose that X is defined by the equation F(zg:---: zn) =0
with deg F' = deg X = m. Consider the affine open set U with z¢ # 0. Our X
is defined in U by G(vs,.-.,yn) =0, where y; = x;/x¢ and G(y1,...,yn) =
F(lvyh--'vyN)'

Define the open subset U; C U by 8G/3y; # O; then yy,...,¥i,--- YN
(with y; omitted) are local parameters in U;, and the form

dyxA---/\@.-/\---/\dyN

is a basis of £2™[U;] over k[U;]). However, it is more convenient to take as basis
the form ' A
(-1

BG/ay, dyl dy| dva

Wy
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which is permissible, since 8G/8y; # 0 in U;. The advantage is that then the
forms wy,...,wy are equal: multiplying the relation

Z——dy, =0

i=1

by the product dy; A--- /\@,- A--e /\&Z/J- A---Adyn, and using the fact that
dy; A dy; = 0 we see that X
Wi = Wi, (1)
Since X is nonsingular, U = (JU;, and it follows from :(1) that the w; fit
together to give a form w that is regular and everywhere nonzero on U, so
that divw =0 in U.
It remains to study points not in U. Consider, say, the open subset V in

which z; # 0. This affine space has coordinates zy, ..., zy with
1 .
Z1=— and z‘-=-y—'— fori=2,...,N;
n )
1 Z; .
y1=-z—1 and y.'=;: for1.=2,.‘..,N.
Hence
dz: — 2
dy;=—d—‘;l and dy.-=:°'1—lﬁ—2—z'—(ﬁ fori=2,...,N.
% z

We substitute these expressions in wy, and use the fact that dz; Adz =0,
obtaining
(-~
w=——7———dz; A--- Ad2zn_;.

z; (0G/9yn)
The equation of X in V' is

H(z,...,28) =0, where H = zI* G(l 2 ’Z_N)
21 21 E4Y
From the relation
BH _ .m-1 BG 1 Z ZN m—1 aG
m_z! ayN 21,21,...,21 =2y ay (yh ’yN)
it follows that
(=¥
z{"-"'“(aH/,azN)

All the arguments that we carried out for U are also valid for V, and show
that

w=- dz; A---Adzy-;. (3)

Q"[V] = dzy A< - Adzy-). (4)

1
V5 o
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Hence in V we have divw = —(N — m + 1) div(z;). Obviously div(z;) in V
is the divisor of the form z¢ on X, as defined in 1.2. Finally, we get that the
relation divw = (m — N — 1)div(zg) = (m — n — 2) div(zo). Thus Kx is the
divisor class containing (m — n — 2)L, where L is the hyperplane section of
X. ,

We now determine 2™[X|. Writing any form n € 2%(X) as n = pw, we see
that 7 € 2"[X) if and only if p € L((m - n — 2) div(zo)). By 1.5, Example,
this is equivalent to ¢ = P(zy,...,2,), where P is a polynomial, and

degP<m-—-n-2 (5)

From this it is easy to compute the dimension of £2*[X]. Namely two different
polynomials P,Q € k[yi,...,yn] satisfying (5) define different elements of
k[X], since otherwise P — Q is divisible by Q, which contradicts (5). Thus
the dimension of £2*{X] equals the dimension of the space of polynomials P
satisfying (5). This dimension is equal to the binomial coefficient (™y') =
(m—_!w Thus

M) = 8K x) = (’" - 1). (6)

n+1
The simplest case of this formula is when N = 2, that is, n = 1. We get the

formula 1 ) .
9(X) = (m; ) = (l____)é(l"__‘_.).

for the genus of a nonsingular plane curve of degree m. Compare Chap. IV,
2.3, Example 1.

We can make an important deduction at once from (6). Namely, inter-
preting the binomial coefficients as the number of combinations, we get at

once that ) I
m= s (™" form>m'>n+1.
n+l n+1

Since by 6.1, Theorem 2, h*(X) is a birational invariant, (6) thus implies
that hypersurfaces of different degrees m,m’ > n + 1 are not birational. We
see that there exist infinitely many algebraic varieties of any given dimension
not birational to one another.

In particular, when N = 2, m = 3 we get g(X) = 1, and since g(P') =0,
we see once again that a nonsingular cubic curve in P? is not rational.

It follows from (6) that A"(X) = 0 if m < N. In particular, k*(P") = 0.
‘We verified this directly for n =1 in 5.1, Example 2.

Consider the case m < N in more detail. If N = 2 then this means m =1
or 2. For m = 1 we have X = P!, and we already know that h!(IP') = 0. For
m = 2 we have a nonsingular plane curve of degree 2, which is isomorphic to
P!, so that in this case also h1(X) = 0 tells us nothing new.

Suppose that N = 3. For m = 1 we have P2, and we already know that
h?* = 0. If m = 2 then X is a nonsingular surface of degree 2, which is
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birational to P2, so that A%(X) = 0 is a consequence of h%(P?) = 0 and 6.1,
Theorem 2. If m = 3 then X is a nonsingular cubic surface. If such a surface
contains two skew lines then it is birational to P? (Chap. I, 3.3, Example 2).
One can show that every nonsingular cubic surface contains two skew lines,
so that h2(X) = 0 is again a consequence of h%(P?) = 0 and 6.1, Theorem 2.

The examples we have considered lead to interesting questions on nonsin-
gular hypersurfaces of small degree, X C PV with degX = m < N. We see
that for N = 2,3, X is birational to projective space P*, with n = N — 1,
which “explains” the equality A"(X) = 0.

For N = 4 we run into a new phenomenon. For m = 3, for example,
already for the cubic hypersurface X given by

3+ 23 +2d+23+23 =0, (N

the question of whether X is birational to P? is very subtle. However, one
can show that there exists a rational map ¢: P2 — X such that o(P?) is
dense in X and k(X) C k(P3) is a separable extension (see Ex. 13). Already
this, together with h3(P%) and 6.1, Theorems 1-2, implies h3(X) = 0. The
following terminology arises in connection with this: we say that a variety is
rational if it birational to P® where n = dim X, and unirational if there exists
a rational map ¢: P* — X such that ¢(P") is dense in X and k(X) C k(P")
is separable. It follows from §5, Ex. 6 and 6.1, Theorems 1-2 that all A* =0
for a unirational variety.

The question of whether the notions of rational and unirational varieties
are the same is typical of a series of problems arising in algebraic geometry.
This question is called the Liroth problem. It can obviously be stated as a
problem in the theory of fields: if K is a subfield of the rational function field
k(Th,...,T,) such that K C k(T1,...,T,) is a finite separable extension,
then is it true that K is isomorphic to the rational function field?

For n = 1 the answer is positive, in fact even without the assumptions
that k is algebraically closed and K C k(T) is separable. For n = 2 the
answer is negative without these assumptions, but positive with them, but
the proof is very delicate. It is given, for example, for fields of characteristic
0 in Shafarevich [67], Chap. III or Barth, Peters and van de Ven [8], and in
the general case in Bombieri and Husemoller [12].

For n > 3 the answer is negative even if k = C. This is a delicate result of
the theory of 3-folds. One of the examples of a unirational but not rational
variety is the nonsingular cubic 3-fold, in particular the hypersurface (7) (see
Clemens and Griffiths [21]). Another example of an irrational variety is the
nonsingular quartic hypersurface of P* (see Iskovskikh and Manin [41]); some
of these hypersurfaces are unirational. For another type of example, see Artin
and Mumford [6].

Whereas for 3-folds the Liiroth problem is a subtle geometric problem, in
higher dimension it turns out to be more algebraic in spirit, and its solution
more elementary. For example, there are examples of finite group G of linear
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transformations of variable zi,...,Z, such that the subfield of invariants
k(z1,...,2n)C of this group is not isomorphic to the field of rational functions
(see Bogomolov [11] or Saltman [65]).

6.5. Hyperelliptic Curves

As a second example we consider one type of curves. Write'Y for the affine
plane curve with equation y* = F(z), where F(z) is a polynomial with no
multiple roots and of odd degree n = 2m + 1 (we proved in Chap. I, 1.4 that
the case of even degree reduces to the odd degree case). We suppose that
char k # 2. The nonsingular projective model X of Y is called a hyperelliptic
curve. We compute the canonical class and the genus of X.

The rational map Y — A! given by (z,y) ~ x defines a regular map
f: X — PL. Obviously deg f = 2, so that, by 2.1, Theorem 1, if a € P! and
u is a local parameter at a, the inverse image f~!(c) either consists of two
points 2/, 2 with vy (u) = v,#(u) = 1, or f~1(a) = z with v,(u) = 2.

It is easy to check that the affine curve Y is nonsingular. If Y is its
projective closure in P? then X is the normalisation of Y, and we have a
map ¢: X — Y which is an isomorphism of ¢~1(Y) and Y. It follows that if
€ € A! has coordinate a then

1 {',2"} if F(a) 9& 0;
©= { if F(a) =

Now consider the point at infinity ay € P!. If = denotes the coordinate
on P! then a local parameter at au is u = =71, If f"‘(am) = {7,2"}
consisted of 2 points then u would be a local parameter at 2/, say It would
follow that v,:(u) = 1 and hence v, (F(z)) = —n; but since y* = F(z),
we have v, (F(z)) = 2v.(y), and this contradicts n odd. Thus f~!(acw)
consists of just one point 24, and Vie (z) = -2, v, (y) = —n. It follows that
X =0 Y)VUzqp.

We proceed to differential forms on X. Consider, for example, the form
w = dz/y. At a point £ € Y, if y(£) # O then z is a local parameter, and
veg(w) = 0. If y(£) = O then y is a local parameter, and v¢(z) = 2, so that it
again follows that ve{w) = ve(dz) — ve(y) =1 -1 = 0. Thus divw = kze,
and it remains to determine the value of k. For this, it is enough to recall
that if ¢ is a local parameter at z,, then x = ¢t~?u and y = t~"v, where
u,v,u",v"! € O,. Hence w = t"~3wdt with w,w™" € O,,,, and therefore
divw = (n — 3)ze0 = (2m ~ 2)20o.

Now we determirie £2![X]. As we have seen, w is a basis of the module
2[Y], that is, 2'[Y] = k[Y)w, so that any form in £2*[X] is of the form ww,
where u € k[Y), and hence u is of the form P(z) + Q(z)y with P,Q € k[X].
It remains to see when these forms are regular at zo,. This happens if and
only if

9 (w) 2 —(n - 3). (1)
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We find all such u € k[Y]. Since v,__(z) = -2, it follows that v, (P(z)) is
always even and since v, (y) = —n, that v,_ (Q(z)y) is always odd. Hence

Uz, (U) = ¥, (P(:c) + Q(I)y) < min{"zm(P(z))vvzm(Q(m)y)}

and so if Q # 0 we have v, (u) < —n. Thus u = P(z) and (1) gives 2deg P <
n— 3, that is, deg P < m — 1, where n = 2m + 1.

We have found that £2![X] consists of forms P(z)dz/y where the degree
of P(z) is < m~1. It follows from this that g(X) = h}(X) = dim 2'[X] = m.

It is interesting to compare the results of 6.4 when N = 2 and of 6.5. In
the second case we saw that there exist algebraic curves of any given genus.
In the first case, the genus of a nonsingular plane curve is (";1), that is,
is a long way from giving an arbitrary integer. Thus not every nonsingular
projective curve is isomorphic to a plane curve. For example, a hyperelliptic -
curve of genus 4, with n = 9 is not.

6.6. The Riemann—Roch Theorem for Curves

One of the central results of the theory of algebraic curves is the Riemann-
Roch theorem. This is the equality

¢D)~-¢K-D)=1-g+degD, (1)

where D is an arbitrary divisor on a nonsingular projective curve, K the
canonical class and g the genus. We omit the proof of this theorem, which
would requires us to go into the details of the theory of algebraic curves in
some depth. We prove instead a weaker statement, the Riemann inequality,
which, together with the inequality 2.2, (1), determines the order of growth
of the function £(D).

Lemma. Let X be a nonsingular projective curve X. Then there exists a
constant y = y(X) such that

¢(D) > degD — v (2)

for every divisor D on X.

Proof. The point is of course to construct lots of functions ¢ € L£(D). We
do this first for certain divisors of a special form. As in 2.1, Theorem 1, we
consider any map f: X — P! defined by a nonconstant rational function
f € k(X), and set deg f = n. Write P! = AYU oo and let ¢ be the coordinate
on Al. We set Do, = f*(00), and prove (2) for the divisors r Do, with r 3> 0.

Write Do = Y_ niz; with n; > 0. Then n; = —v,, (t), where we use the
inclusion f*: k(t) — k(X) to identify ¢t with f*(t) = f € k(X). By 2.1,
Theorem 1, 3~ n; = n, where n = deg f = [k(X) : k(t)]. Let wy,...,wn be a
basis of k(X) over k(t). If some w; has a pole at a point z ¢ Supp D with
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t(z) = a then v,((t — @)*w;) > 0 for sufficiently large k. Therefore, multiply-

ing each w; by a suitable polynomial in ¢, we get a new basis u),...,u, of

k(X)) over k(t) such that the poles of all the u; are concentrated in Supp Deo.
Set vz, (u;) = —m;;. Then for a polynomial p € k[t], ‘

vz, (pu;) = —n;k — myj, where k = degp.

Hence pu; € L(rDy) provided that n;k +m;; < rny, that is, k+my;/n; <.
Set m = max{m;;j/n;}. Then Y p;ju; € L(rDo) for all p; € k[t] for j =
1,...,n with degp; < r — m. This is a subspace of L{r D) of dimension
(r —m+ 1)n = rn — (m — 1)n, which implies (2) for the divisors r D, with
the constant y = (m — 1)n.

Now let D = Y k;y; be an arbitrary effective divisor. For y; ¢ Supp D
with k; > 0, suppose that ¢(y;) = ;, and set u = [J(t — o4)*, where the
product runs over all i with y; ¢ Supp Dy with k; > 0. Then D' = D-divuis
adivisor with D’ ~ D and by construction vy (D’) < 0 for every y ¢ Supp Doo.
Therefore D’ < rD, for some large r. Now by 2.3, Remark 3, inequality (3),
YrDy) < ¢(D’) + deg(rDo, — D'}, so that

¢(D') > deg D'¢(rDy,) — deg(rDoo) > deg D' — 1.
Since £(D’) = £(D) and deg D’ = deg D, the lemma follows.

‘We now point out some of the consequences of the Riemann-Roch formula
(1), which clarify its significance for the theory of curves.

Corollary 1. Setting D = K, since ¢(K) = g and ¢(K — K) = £(0) = 1, we
get that deg K = 2g — 2. This equality was mentioned in 6.3, and verified for
hyperelliptic curves in 6.5. O

Corollary 2. Ifdeg D > 2g — 2 then {(D) =1-g+deg D.

This follows because deg D > 2g — 2 implies that deg(K — D) < 0, and
hence £(K — D) = 0; indeed, K — D ~ D’ > 0, which would contradict
degD'<0. O

Corollary 3. g(X) = 0 is a necessary and sufficient condition for X = P!,

Proof. We have seen that g(P') = 0in 5.1, Example 2. f g=0and D=1z is
a point of X then £(D) ® 2 by (1). This means that £(D) contains a function
f with dive f = z in addition to the constants. That is, if we interpret f as
amap f: X — P! then deg f =1 by 2.1, Theorem 1. It follows that X 2 PL.
The corollary is proved.

Corollary 4. If g =1 then X is isomorphic to a cubic in P2
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t(z) = a then v, ((t — @)*w;) > O for sufficiently large k. Therefore, multiply-
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k(X)) over k(t) such that the poles of all the u; are concentrated in Supp Doo.
Set v, (u;) = —my;. Then for a polynomial p € k(t], ’

vy, (pu;) = —nik — my5, where k = degp.

Hence pu; € £(rDy,) provided that n;k +m;; < rn;, that is, k+my;/n; < 7.
Set m = max{m;/n;}. Then Y pju; € L(rDy) for all p; € k[t] for j =
1,...,n with degp; < r — m. This is a subspace of £(rDs) of dimension
(r —m+1)n = rn — (m — 1)n, which implies (2) for the divisors r Do, with
the constant y = (m — 1)n.

Now let D = 3 k;y; be an arbitrary effective divisor. For y; ¢ Supp Do
with k; > 0, suppose that t(y;) = o, and set u = [](t - a;)*, where the
product runs over all i with y; ¢ Supp Do, With k; > 0. Then D’ = D—divuis
a divisor with D’ ~ D and by construction v, (D’) < 0 for every y ¢ Supp Deo.
Therefore D’ < 5D, for some large r. Now by 2.3, Remark 3, inequality (3),
(r Do) < £(D') + deg(rDo, — D'), so that

¢(D') > deg D'¢(rDo;) — deg(rDy,) > deg D' — 4.
Since £(D') = ¢(D) and deg D' = deg D, the lemma follows.

We now point out some of the consequences of the Riemann-Roch formula
{1), which clarify its significance for the theory of curves.

Corollary 1. Setting D = K, since {(K) =g and {(K — K) = £(0) = 1, we
get that deg K = 2¢ — 2. This equality was mentioned in 6.3, and verified for
hyperelliptic curves in 6.5. OO

Corollary 2. Ifdeg D > 2g — 2 then £(D) =1 — g +deg D.

This follows because deg D > 2¢ — 2 implies that deg(K — D} < 0, and
hence 4(K — D) = 0; indeed, K — D ~ D’ > 0, which would contradict
degD' <0. O

Corollary 3. g(X) = 0 is a necessary and sufficient condition for X & P!

Proof. We have seen that g(P') = 0in 5.1, Example 2. fg=0and D=1z is
a point of X then £(D) » 2 by (1). This means that £(D) contains a function
f with dives f = z in addition to the constants. That is, if we interpret f as
amap f: X — P! then deg f = 1 by 2.1, Theorem 1. It follows that X = P!.
The corollary is proved.

Corollary 4. If g = 1 then X is isomorphic to a cubic in P2.
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Proof. Indeed, for g = 1, Corollary 2 gives £(D) = deg D for D > 0, and the
assertion follows from 3.1, Theorem 2. O

Corollary 5. Consider a basis fo,..., fn of the space L(D) with D > 0, and
the corresponding rational map ¢ = (fo : ---: fn): X — P*. Then ¢ is an
embedding provided that :

{D-z)=¢D)-1 and ¢{D-z-y)=(D)-2 foralz,yeX. (2)

In particular, (2) holds if deg D > 2g + 1 by Corollary 2, so that in this
case @ is an embedding.

Proof. Note first that, in the terminology of 1.4, the first condition of (2)
implies that —D = hcd{div(f;)}. Indeed, hed{div(f,})} > =D by definition
of £(D). If equality does not hold, then there exists a point z such that
div(f;) > -D + z, that is, L(D) = L(D - z), so that {(D) = ¢(D — ),
which contradicts (2). Thus by the remark at the end of 1.4, the divisors
Dy = div(Y Aifi) + D are the pullbacks of hyperplanes under the map .

To prove that ¢ is an isomorphic embedding, we use Chap II, 5.3, Theo-
rem 8 and Chap. II, 5.4, Lemma, the assumptions of which we verify using
the above remark. If ¢(z) = ¢(y) then every hyperplane E through ¢(z) also
passes through ¢(y). This means that if Dy —x > 0 then also Dy —z—y > 0,
that is, (D) — z) = {(Dy — = — y), which contradicts the second condition
of (2).

We prove that the tangent space at a point is mapped isomorphically.
This is equivalent to saying that

" )y — e

is surjective. If this does not hold then ¢*(my;)) C m2, since dimm,/m2 =
1. In other words, for any function % € m, ;) we have v;(p*(u)) > 2. Applied
to linear functions, this shows that if Dy —z > 0 then Dy —2z > 0. We again
get £(Dy — z) = &(Dy — 2z), which contradicts the second condition of (2).
This completes the proof of Corollary 5.

Obviously, changing the choice of basis of £(D) changes ¢ by composing
it with a projective transformation of P*. On the other hand, changing D
to another divisor D + div f leads to an isomorphism £{D) = £(D + div f)
given by u + uf, and so does not change ¢. Thus it makes sense to talk of
the map ¢ associated with a divisor class.

Suppose, for example, that X is a curve of genus 1, and o € X. The
conditions of Corollary 5 are satisfied for 3. Hence the map ¢ corresponding
to 3z is an isomorphism of X to a curve Y C P2 (since £(31o) = 3 by
Corollary 2). As we have seen, 3zo is the pullback of a section of Y by a
line, and since deg3zo = 3, also degY = 3. Thus every curve of genus 1



218 Chapter III. Divisors and Differential Forms

is isomorphic to a plane cubic. (For more details, compare the proof of the
converse part of 3.1, Theorem 2.)

The most interesting maps ¢ are those corresponding to classes intrinsi-
cally related to X, for example, the multiples nK of the canonical class. Corol-
lary 1 shows that deg(nK) > 2g+1ifn>2forg>2,andifn >3 forg=2.
Thus for ¢ > 1 the class 3K always satisfies the conditions of Corollary 4.
The corresponding map @3x maps X to P™, where m = {(3K)-1=59-6
(by Corollary 2). Moreover, two curves X and X' are isomorphic if and only
if their images 3k (X) and 3k (X’) can be obtained from one another by
a projective transformation. The question of birational classification thus re-
duces to the projective classification.

The map ¢ corresponding to the canonical class itself is not always an
embedding. However, one can enumerate all cases where this fails (see Ex. 11-
12). .

As a simple application of these ideas, consider plane curves of degree
4. By the result of 6.4, the canonical class of X C P? equals the class of
the intersection of X with a line of P2. Hence the map g corresponding to
this class is just the natural embedding X — P2. It follows from what we
have said above that two such curves are isomorphic if and only if they are
projectively equivalent. This leads to an extremely important conclusion. The
set of plane quartics can be identified with the projective space P4, where
14 = (g) — 1, as in Chap. I, 4.4, Example 2. On the other hand, the group
of projective linear transformations of P? has dimension 8 (it is the group of
nondegenerate 3 x 3 matrixes up to constant multiple). Using the theorem on
the dimension of fibres one can deduce from this that P!* contains an open
set U and a map f: U — M such that two points u;,uy € U correspond
to projectively equivalent curves only if they lie in the same fibre of f. The
dimension of the fibre is therefore equal to 8, so that dimM =14 -8 =6.

Thus two plane curves of degree 4 are by no means always isomorphic:
for this they must correspond to the same point of a 6-dimensional variety
M. This shows that the genus is not a complete set of birational invariants
of curves. In addition to their integer invariant, the genus, curves also have
continuous invariants, called moduli. It can be proved that the set of all curves
of given genus g > 1 form (in a sense that we do not make precise) a single
irreducible variety of dimension 3g — 3. In the case of plane quartic curves,
g =3 and 3g — 3 =6 = dim M. A similar thing happens for curves of genus
1 (see §3, Ex. 8). Only for g = 0 are all curves of the same genus isomorphic.

6.7. Projective Embedding of a Surface

We discuss here how to generalise to surfaces the facts proved in the previous
section for algebraic curves. We do not give any proofs. The reader can find
them in Shafarevich [67], Bombieri and Husemoller [12] or Barth, Peters
and van de Ven [8]. We restrict ourselves, moreover, to the case of a field of
characteristic 0.
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The analogue of curves of genus > 1 are surfaces for which some muitiple
of the canonical class defines a birational embedding. These are called sur-
faces of general type, and their classification reduces in a certain sense to a
projective classification. ‘The main result on surfaces of general type is that
already 5K defines a regular map that is a birational embedding.

It remains to enurnerate the surfaces not of general type. They play the
role of curves of genus 0 and 1 and are given by analogous constructions.

The analogue of rational curves are first the rational surfaces, that is,
surfaces birational to P2, and then ruled surfaces. These are the surfaces that
can be mapped to a curve C such that all the fibres of the map are isomorphic
to P!. These are thus algebraic families of lines.

There are three types of surfaces that play the role of curves of genus 1.
The first type are the Abelian surfaces, that is, 2-dimensional Abelian vari-
eties. The surfaces of the second type, called K3 surfaces have the property
in common with Abelian varieties that their canonical class is equal to 0.
However, in distinction to Abelian varieties, they have no regular differential
1-forms. According to 6.2, Proposition, Abelian varieties have invariant (and
therefore regular) differential 1-forms. The third type are elliptic surfaces,
that is, families of elliptic curves. These surfaces have maps f: X — C to
a curve C such that for all y € C for which f~!(y) is a nonsingular curves
(that is, for all but finitely many y}, this nonsingular fibre is a curve of genus
1.

The main theorem asserts that all surfaces not of general type are ex-
hausted by the above 5 types, the rational, ruled, Abelian, K3 and elliptic
surfaces.

To get a better idea of these classes of surfaces, it is convenient to classify
them by the invariant &, the maximal dimension of the image of X under the
rational map given by a divisor class nK for n = 1,2,.... If £(nK) = 0 for
all n then there are no such maps, and wel? set x = —oo. Here is the result
of the classification. The surfaces of general type are the surfaces with x = 2.
Surfaces with k = 1 are all elliptic; more precisely, these are all the elliptic
surfaces for which nK # 0 for all n > 0. For an elliptic surface X, the order
of the canonical class in Cl X is either infinite or a divisor of 12. The surfaces
with x = 0 are characterised by 12K = 0. Thus these are the elliptic surfaces
for which 12K = 0, the K3 surfaces and 2-dimensional Abelian varieties.
Surfaces with kK = —oo are rational or ruled. '

Each of these 5 types of surfaces can be characterised by invariants, in
the same way that g = 0 characterises rational curves. We only give such a
characterisation for the two first types. For this we use the result of Ex. 7,
according to which the numbers &(mK) for m > 0 are birational invariants

12c — _1 also occurs in the literature. The invariant « is usually called the Kodaira

dimension, although it was introduced in different contexts by the Shafarevich
seminar [67] and by litaka.
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of nonsingular projective varieties. They are called plurigenera, and denoted
by P,,. In particular, P; = " = dim 2*[X] where n = dim X.

Rationality criterion. A surface X is rational if and only if 2*[X] = 0
and P, =P, =0. O

The positive solution of the Liiroth problem (discussed in 6.4) for surfaces
follows at once from this criterion.

Ruledness criterion. A surface X is ruled if and only if Ps = Py =0. {1

Generalisations of the results of this section to varieties of dimension > 3
are not known, although there has been a lot of progress on this question
in recent years. For this see the surveys Esnault [24], Kawamata [43] and
Wilson [77], and for the relation with minimal models, Kawamata, Matsuda
and Matsuki [44].

Exercises to §6

1. Prove that an element f € k(X) satisfies df = 0 if and only if f € k (in the case
of a field of characteristic 0), or f = g” (in the case char k = p > 0). [Hint: Use 6.1,
Theorem 1 and the following lemma: if L C K is a finite separable field extension
in characteristic p > 0, and z € K has the property that its minimal polynomial is
of the form )~ aPz* with a; € L then £ = y” withy € K]

2. Let X and Y be nonsingular projective curves and ¢: X — Y a regular map
such that ¢(X) =Y and z € X, y = f(z) € Y, and let ¢ be a local parameter on
Y at y. Prove that the number ez = v=(f"(dt)) does not depend on the choice of
the local parameter ¢t and that ec > 0 if and only if z is a branch point of ¢. The
number e, is the ramification multiplicity of  at z. (Compare Chap. VII, 3.1.)

3. In the notation of Ex. 2, suppose that °(y) = ) liz; where y is a divisor
consisting of the single point y. Suppose that the characteristic of k is equal either
to 0, or to a prime p > l;. Prove that ez, = ; — 1.

4. In the notation of Ex. 2-3, suppose that Y = P'. Prove that g(X) is given by
29(X) — 2 = —2degyp + Y, o x €= (the Hurwitz ramification formula). Generalise
this relation to the case of Y an arbitrary curve.

5. Suppose that ¢: X — Y satisfies the conditions of Ex. 2. Prove that a rational
differential w € £2'(Y) is regular if and only if ¢*(w) € 2'[X].
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6. Write Wy, for the set of all functions 3 of mn vectorsz;; € Lfori=1,...,mand
j=1,...,n, where L is an n-dimensional vector space, satisfying the conditions:
(8) ¢ is linear in each argument; (b) ¢ is skewsymmetric as a function of z;,;, for
any fixed ip and j = 1,...,n; (c) ¥ is symmetric as a function of z;j,, for any
fixed jo and ¢ = 1,...,m. Suppose that chark > m. Prove that every function
¥ € ¥ is determined by its values ¢y,..y, at vectors z;; = yj, and that ¥y, 4, =
d™%e,...en, Where d is the determinant of the coordinates of the vectors #1,...,¥n
in the basis el,...,e,..'§uppose that £),...,6n € ’e'. The function i for which

Vyroym = (det |E,-(y_,»)|) is written (51 A /\5,.) . Prove that dim¥,, =1 and
that (51 /\---AE,.)m is a basis.

7. Generalise the construction of regular and rational differential n-forms, replacing
throughout the space A" O; by ¥n. The resulting object is called a differential form
of weight m. Prove that in the analogue of 5.3, (6) we should replace J by J™. Prove
that a differential form of weight m has a divisor, that all these divisors belong to
one divisor class, and that this class is m K. Generalise 6.1, Theorem 2.

8. Compute the space of regular differential forms of weight 2 on a hyperelliptic
curve. [Hint: Write in the form f(dz)?/y%.]

9. Verify the relation deg K = 2¢g—2 for hyperelliptic curves and nonsingular curves
in the plane.

10. Prove that for a hyperelliptic cufve, the ratio between regular differential forms
generate a subfield of k(X) isomorphic to the field of rational functions. From this
deduce that a nonsingular plane curve X,, C P? of degree m > 3 is not hyperelliptic.

11. Prove that for a hyperelliptic curve, the rational map corresponding to the
canonical class is not an embedding.

12. Prove that if the map corresponding to the canonical class of a curve X is
not an embedding then X is rational or hyperelliptic. [Hint: If one or other of
the conditions 6.6, (2) fails then the Riemann-Roch theorem gives £(z) > 2 or
Hz+y) > 2]

13. Prove that a nonsingular cubic 3-fold X3 C P* is unirational. [Hint: Use
Chap. 1, 6.4, Theorem 10 to show that X contains a line . Using §5, Ex. 8, prove
that there exists an open set U C X with U N! # @ such that the tangent fibre
space to U is isomorphic to U x A3. Write P? for the projective plane consisting of
lines through the origin of A3, For a point § = (u,a) with u € /N U and a € P?,
denote by (£) the point of intersection of the line a lying in Ox,4 with X. Prove
that @ defines a rational map P' x P? — X |

14. Let o be a point of an algebraic curve X of genus g. Using the Riemann-Roch
theorem, prove that any divisor D with deg D = 0 is equivalent to a divisor of the
form Dg —go, where Do > 0, deg Do = g. This is a generalisation of 3.1, Theorem 1.
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15. Let X C P? be an irreducible nonsingular plane curve with equation F = 0,
and suppose that & = (ao : o1 : aa) ¢ X and £ € X. The multiplicity c; of z
in the divisor of the form Z?=o OF/0z; is called the multiplicity of tangency at z.
Prove that ¢, = e, is the ramification multiplicity of z with respect to the map
@: X — P! given by projecting from a. Deduce that ¢ = 3" .« ¢ is the number
of tangent lines to X through «, counted with multiplicities. It does not depend on
a. It is called the class of X. Prove that ¢ = n(n — 1) where n = deg X.

16. Prove that if X is a nonsingular affine hypersurface then Kx = 0.



Chapter IV. Intersection Numbers

1. Definition and Basic Properties

1.1. Definition of Intersection Number

The theorems proved in Chap. I, 6.2 on the dimension of intersection of
varieties often allow us to assert that some system of equations has solutions.

. However, they do not say anything about the number of solutions if this
number is finite. The distinction is the same as that between the theorem
that roots of a polynomial exist, and the theorem that the number of roots
of a polynomial equals its degree. The latter result is only true if we count
each root with its multiplicity. In the sanie way, to state general theorems
on the number of points of intersection of varieties, we must assign certain
intersection multiplicities to these points. This will be done in the present
section. ,

We will consider intersection of codimension 1 subvarieties on a nonsin-
gular variety X. We are interested in the case that the number of points
of intersection is finite. If dimX = n and C,,...,C) are codimension 1
subvarieties with nonempty intersection, then by Chap. I, 6.2, Theorem 4,
Corollary 5, we have dim(CyNn---NCy) > 0 if k < n. Hence it is natural to
consider the case k = n. The theory that we apply in the following is simpler
if we consider arbitrary divisors in place of codimension 1 subvarieties. Thus
we consider n divisors Dy,..., Dy on an n-dimensional variety X. If z € X
with £ € {}Supp D; and dim,{}Supp D; = 0 then we say that D;,..., Dy,
are in general position at z. The condition means that in some neighbour-
hood of z, the intersection {7 Supp D; consists of z only. If Dy, ..., D, are in
general position at all points of the subvariety ] Supp D; then this subvariety
either consists of a finite number of points, or is empty. We then say that
Dy,...,D, are in general position.

We define intersection numbers first of all for effective divisors in general
position. Suppose that D, ..., D, are effective and in general position at z,
and have local equations fi,..., f, in some neighbourhood of z. Then there
exists a neighbourhood U of z in which fy,..., f, are regular and have no
common zeros on U other than z. It follows from the Nullstellensatz that the
ideal generated by fi,..., fn in the local ring O, of z contains some power
of the maximal ideal m,. Suppose that
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(fl)“"f'n) Dm: (1)

We consider the quotient O./(fi,--., fn) 88 a vector space over k; it is
finite dimensional. Indeed, in view of (1}, for this it is enough to prove that
dimy O, /m < oo. This last condition follows at once from the theorem on
power series expansion (Chap. II, 2.2): dimy O «/mE equals the dimension of
the space of polynomials of degree < k in n variables.

From now on we write £(E) for the dimension of a k-vector space E.

Definition 1. If D,,..., D, are effective divisors on an n-dimensional non-
singular variety X, in general position at a point # € X, and having local
equations fi,..., fn in some neighbourhood of z, then the number

O/ (frs-- -1 fn)) (2)

is the intersection multiplicity or local intersection number of Dy,..., D, at
z. We denote it by (Dy - Dy)q.

The number (2) actually only depends on the divisors Dy,..., D, and
not on the choice of local equations f1,..., fa: if f1,..., f, are other local
equations then f! = fig; with g; a unit of O, and hence (f1,...,fn) =
(fls- oo fn)-

' Now suppose that Dl, , Dy, are not necessarily effective divisors. Write
D; in the form D; = D} — D" , with D}, D! > 0 having no common com-
ponents; this expression is unique. Suppose that D,,..., D, are in general
position at z. Then, since Supp D; = Supp D; U SuppD , it follows that

the divisors D} ,..., D}, D}, ,..., D] arein general position at x for any
permutation iy, ...,%, and any k. '
We now deﬁne the intersection number of Dy,...,D, at z by multi-

linearity, that is, we set

©1-+-02). = ([T0t - 21)

o on 3)
= > S (-yMDi---D, D, - Dil)e.
11...tn k=0
Definition 2. If divisors Dy,..., D, on an n-dimensional variety X are in

general position, then the number
D,--.D, = Z (Dy---Dy),
zeﬂ Supp D,

is called their intersection number.

‘We can formally extend the sum over all points z € X, although of course
only the terms with = € () Supp D; are nonzero.
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Remark. We can also define intersection numbers without requiring X to be
a nonsingular variety; however, we then have to restrict attention to locally
principal d1v180rs (Chap. III, 1.2). All the definitions given above preserve
their meaning.!3

We now give some examples, with the aim of showing that the definition
of intersection multiplicity just introduced agrees with geometric intuition.

Example 1. Suppose that dimX = 1, and that ¢ is a local parameter at a
point z. Let f be a local equation of a divisor D with v,(f) = v.(D) = k.
Then (D). = £(O./(f)) = £(0:/(t*)) = k. Thus in this case the local
multiplicity (D), is just the multiplicity of z in the divisor D.

In the following examples we will assume that D; are prime divisors, that
is, irreducible codimension 1 subvarieties of X.

Erample 2. If z € D10\ ---N Dy, then (Dy--- D,), > 1 by definition. Let us
determine when (D, --- D), = 1.

Now f; € mz, so that (f1,..., fn) C m,, and since §(O,/m,) = 1, the con-
dition (D;---D,;), = 1 is equivalent to (fi,..., f,) = m.. In other words,
fi,..., Jn should form a local system of parameters at x. We saw in Chap. II,
2.1 that this holds if and only if the subvarieties D1, ..., D,, intersect transver-
sally at z, that is, = is a nonsingular point on each D;, and (6p, . = 0.

Ezample 8. Suppose that dim X = 2, and that the point z is nonsingular on
both curves Dy and Do. By Example 2, (D;D;); > 1 if and only if the two
tangent lines Op, ; and Op, . coincide. Let u,v be local parameters at x
and fy, f2 local equations of Dy, Dy, and write f; = c;u + ;v mod m2. Then
for i = 1,2, the tangent line Op, ; is given by the equation a;¢ + B = 0,
where £ = d,u and 7 = d,v are coordinates in 6x ;. Hence 6p, » = 6p, =
if and only if apu + B2 = y(oyu + B1v) for some nonzero 4 € k, or in other
words, fo = vfi modm2. It is thus natural to define the order of tangency
of D; and Dj at z to be the number k such that there exists an invertible
element g € O, such that f, = gf; mod m¥+!, and no such g exists for greater
values of the exponent k + 1. We now show that the intersection multiplicity
is one plus than the order of tangency of the curves D and D, at z, that is,
(DlDz): =k+1.

For this note that, because z is a nonsingular point of D;, we can assume
that f, is one element of a system of local parameters at z. On the other
hand, g~ !f; is a local equation of D,. Hence we can assume that u,v are

13Although the prime divisors [ that are components of a Cartier divisor D =
Y a:T; are not necessarily Cartier, it is still true that any locally principal divisor
D can be written D = D' ~ D’ with D’ and D" effective; this follows in a
neighbourhood of any point £ € X simply because the rational function field
k(X) is the field of fractions of O;.
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local parameters, the local equation of D is u, that of Dy is f, and f =
umodmi+l. Then f = u + (u,v) mod mk+2, where ¢ is a form of degree
k + 1. Moreover, ¢ is not divisible by u, since otherwise D; and D; would
have order of tangency > k. Hence

0(0,v) = v+, with c#0. (4)

By definition of intersection multiplicity,

(D1Da): = £(0:/(w 1) = ¢((0:/w) [ (w.£)/(w)).

Now obviously, O, /(u) = O is the local ring of the point z on D, and the
quotient map O, — O is restriction of functions from X to D,. Moreover,
(u, f)/(u) = ( F), where f is the image of f in O. Since, as an element of
O, we have f € (W,)**! and 7 = Pmod(W.)**?, and by (4) T ¢ (W.)*+?,
therefore v,(f) = k + 1 and £(0/(f)) = k + 1. Thus (D1 Dy), = k + 1.

Ezample 4. Suppose again that dim X = 2, and that the point z is singular
on D. This means that f € m2, where f is the local equation of D. Hence it
is natural to define the multiplicity of the singularity € D to be the greatest
k such that f € mX. We prove that for any curve D’ on X such that D and
D' are in general position at r,

(DD, > k, (5)

/

and that there exist curves for which (DD'); = k.

Let f' be a local equatlon of D’. Write O for O, /m% and f € O for the
image of f’. Since f € mk, we have (DD'), = £(0,/(f, f')) = ¢(O/(f))- B
the theorem on power series expansion (Chap. II, 2.2), O is isomorphic to
k{u, v}/ (u, v). Therefore it is isomorphic as a vector space to the space of
polynomials of degree < k in u, v, and has dimension 1+ 2+ -+ +k = (k Y.
If f € mL\mit! then elements of the ideal (§) correspond to polynormals of
the form f’ g where g runs through all polynomials of degree. < k — I. Hence
HF) <1+ + (k=1 = (* s¥1). Since f' € m, we have I > 1, and hence
4(0/()) = @) - (7)) > k.

Now we prove that equality in (5) can be achieved. Suppose that f =
o(u,v) mod mE+! where ¢ is a form of degree k. Consider a linear form in
u,v not dividing . At the cost of a linear transformation of u and v we
can assume that this is u, with ¢(0,v) # 0. Take D’ to be the curve with
local equation u. Then (DD'), = £(O;/(u, f)), and, as we have seen in the
treatment of Example 3, this number equals k.
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1.2. Additivity

)

Theorem 1. If Dy,...,Dn_1, D), and Dy,...,Dn_y, D! are in general po-
sition at x then

(Dl e Dn—l(D:n + D::)): = (Dl Tt Dn—lD:n): + (Dl Tt Dn—lDZ)r- (1)

Proof. First of all, it is obviously enough to prove Theorem 1 for effective
divisors Dy, ..., Dp_y, D}, D}.. From now on we assume that these divisors
are effective.

Let fi,..., fn—1,f}, [ be local equations of the divisors Dj,.. vy Dn—1,
D!, D!. We denote the ring O, /(f1,. .., fn—1) by O, and the i 1ma.ges in O of
fai fa by £, 9. Then

(D1-++Da1 D)z = £4(B/(f)), (D1-+-Dno1D})z = £(D/(9)),
and (Di---Dp_1(Dy, + D7) -—2(—/(fg

Since the sequence

0~ (9)/(f9) = O/(fg) - O/(g) — 0

is exact, it follows that

2O/ (£9)) = £(O/(g)) + £((9)/(f9))- (2)

If g is a non-zerodivisor of O then multiplication by g defines isomorphisms
O = (g) and (f) = (fg), hence an isomorphism O/(f) = (g)/(f9), and

therefore
£((9)/(f9)) = £(O/(f))- (3)

Thus (1) follows from (2) and (3), provided that we can prove that g is a
non-zerodivisor of @,

A sequence fy,. .., fn of n elements of the local ring O, of a nonsingular
point of an n-dimensional variety is called a regular sequence if each f; is a
non-zerodivisor of Oz /(f1,...,fi-1) fori=1,...,n.

The arguments just given show that Theorem 1 follows from the next
assértion.

Lemma 1. If the divisors Dy, ..., Dy are in general position at a nonsingular
point z, then their local equations fi,. .., f, form a regular sequence.

In turn, the proof of Lemma 1 requires the following simple auxiliary
result, which is a general property of local rings proved in Appendix, §6,
Proposition 5.

Lemma 2. The property that a sequence of elements is a regular sequence is
preserved under permuting the elemer\zts of the sequence. O
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Proof of Lemma 1. The proof is by induction on the dimension n of X. From
the assumptions of the lemma and the theorem on the dimension of intersec-
tion (Chap. I, 6.2) it follows that dimz(Supp(Dy) 01 --- 0 Supp(Dp-1)) = 1.
Hence we can find a function u such that u(z) = 0, z is a nonsingular point of
V(u) and the n divisors D,,..., D,_1,divu are in general position at . For
this, we need only take u to be the equation of a hyperplane through  not
containing O x . or any component of the curve Supp(D;)N---NSupp(Dy—1).
Consider the restriction to V(u) of fi,..., fa—1. They obviously satisfy all
the assumptions of Lemma 1, hence by induction form a regular sequence
on V(u). Since the local ring of £ on V(u) is of the form O./(u), we see
that u, fi,..., fa-1 is a regular sequence. It then follows from Lemma 2 that
fiy-- oy fa-1,u is also a regular sequence.

To prove that f1,..., fn-1, fn is a regular sequence, we need only prove
that f, is not a zerodivisor of O./(fi,..., fn-1). By the assumption on
f1,---» fn, in some neighbourhood of z, the equations f; = --- = f, =0
have no solution other than z. Thus the Nullstellensatz shows that

(fir-+-1fn) D mE  for some k.

In particular u* € (f1,..., fa), that is, u* = af, mod(f,. .., fo-1) for some
a€ O,

Now if f, were a zerodivisor of O;/(f1,--., fa1), it would follow that
u*, hence also u, is a zerodivisor of O, /(f1,..., fn—1). But this contradicts
the fact just proved that f,..., fn—1,u is a regular sequence.

Lemma 1 is proved, and with it Theorem 1.

1.3. Invariance Under Linear Equivalence

We come now-to the proof of the basic property of intersection numbers,
which is the cornerstone of all their applications.

Theorem 2. Let X be a nonsingular projective variety and Dy, ..., Dy, D,
divisors such that both Dy,...,Dy_1,Dy and Dy,...,Dp_y, D!, are in gen-
eral position, and suppose that D, and D!, are linearly equivalent. Then

Dy Dn-yDp =Dy Dn_DL.. 1)

By the assumption of the theorem D, — D}, = div f, and (1) is equivalent

to
Dy Doy div f =0, 2)
when Dy,...,D,_, and div f are in general position.
Representing D; for i = 1,...,n — 1 as a difference of effective divisors,

we see that it is enough to prove (2) when D; >0 fori=1,...,n - 1. We
assume this from now on.
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The proof of Theorem 2 uses a notion of intersection number more gen-
eral than that used so far. Namely, suppose given k < n effective divisors
Dy,..., Dy on an n-dimensional nonsingular variety X. We say that these

are in general position if dim ﬂf=1 SuppD; = n —k or ﬂf___l SuppD; = 0.
Suppose that this property is satisfied, and that
k
ﬂ Supp D; = UCJ" 3)
i=1

where the C; are irreducible (n — k)-dimensional varieties.

Under these conditions, we can assign a number to each component C},
called the intersection multiplicity of Dy, ..., Dy along Cj; this coincides with
the intersection multiplicity at a point if k = n, when each Cj is just a point.
The definition of intersection multiplicity along C; uses a general notion that
we now introduce.

Definition 1. A module M over a ring A is of finite length if it has a finite
chain of A-submodules

M=MyOM D ---ODM,=0 W'lth'Mi#M-,;_‘.l, (4)

such that each quotient M;/M;,, is a simple A-module, that is, does not
contain a submodule other than 0 and the module itself. It follows from the
Jordan—-Holder theorem that all such chains are made up of the same number
n of modules; this common length n is called the length of M, and denoted
by £(M), or £4(M).

If A is a field, the length of a module becomes simply the dimension of a
vector space. If M has finite length then so do all its submodules and quotient
modules. If a2 module M has a chain (4) such that each quotient M;/M;,
has finite length then also M has finite length, and {(M) = 5" ¢(M;/M;,,).

The definition of intersection multiplicity along C; mimics exactly that of
intersection multiplicity at a point. Let C be one of the components C; in (3).
We choose a point z € C and local equations f; of the D; in a neighbourhood
of . Then f; € O¢ (here O¢ = Ox ¢ is the local ring of X along C, see
Chap. II, 1.1), and the ideal a = (fi,..., fx) C O¢ does not depend on the
choice of the local equations f; or of the point . Indeed, if ¢;,...,gx are
other local equations in a neighbourhood of another point of C then the f;
and g; are both local equations of D; in a whole open set that intersects C. It
follows that the f;g; ! are units of Oc, and hence (fy,..., f) = (g1,-- -+ k).

Lemma 1. Oc¢/a is a module of finite length over O¢.
Indeed, since C is an irreducible component of the subvariety defined

by equations f; = --- = fx = 0, there exists an affine open set U € X
intersecting C in which these equations define C. Then by the Nullstellensatz,
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(fis...+ fx) D oF for some r > 0. Here ac C k{U] is the ideal of the affine
coordinate ring of U defining C N U. Now set A = k[U] and p = a¢, and
consider the local ring A, and the natural homomorphism ¢: A — A4, as in
Chap. II, 1.1. Then 4, = Oc, ¢(ac) = m¢ and ((f1,-.., fk)) = a. Hence
in O¢, we have a D mg,.

The lemma now follows from the following general property of local rings:
if a is an ideal of a Noetherian local ring O with maximal ideal m and a D m”
for some r > 0 then £p(0O/a) < oo. See Appendix, §9, Proposition 1. The
lemma is proved.

Definition 2. The number o (Oc/4a) is called the intersection multiplicity
of Dy,..., Dy along C, and denoted by (D, --- Di)c-

From now on, we consider the case k = n — 1, so that the components
C; of the intersection Dy N -+ N D,_; are curves. Write @ for the quotient
ring O;/a, where a = (fi,...,fn—1); this is obviously a local ring, with
maximal ideal m the image of the maximal ideal m C O, under the quotient
homomorphism O; — O.

We first need to determine the prime ideals of @. Write p; for the set of
functions of O; that vanish identically on the curve C;, and p; for its image
in O. Obviously O/p; = O /p; = Oc, ; is the local ring of z on C;.

Lemma 2. For a fized point z € X, suppose that Ci,...,C, are the compo-
nents of the intersection Dy N ---N Dy through z. Thenp,,...,p, and ™
are all the prime ideals of O.

Proof. This is equivalent to saying that p;,...,p, and m, are all the prime
ideals of O, containing a. Let p be a prime ideal with a C p C O,. Consider
an affine neighbourhood U of z such that f,..., fn_1 are regular in U, and
set A = k[U] and P = AN p. Obviously P is a prime ideal. Let V' be the
subvariety of U defined by P; because p D a, cleatly V c Cu--- U,
and V is irreducible since P is prime. Hence V is either equal to one of the
components C;, and then P = ANy, or is a point y € U (recall that the C;
are 1-dimensional). In the latter case, if y # x then P, hence also p, contains
a function that is nonzero at z. This gives p = O, in the local ring O,, but
O: does not count as a prime ideal. Thus the unique remaining possibility is
P = ANm,. Since p = PO, it follows at once that p =p; fori =1,...,ror
p = my, as asserted in the lemma. The lemma is proved

The ideals p; are obviously minimal prime ideals of ‘B. A local ring in
which every prime ideal except for the maximal ideal is minimal is said to be
1-dimensional. Thus @ is a 1-dimensional local ring.

If f € O is an element of a 1-dimensional local ring which is a non-
zerodivisor then the length L’(@/ (f)) can be expressed in terms of invariants
connected with the localisation of O at minimal prime ideals:
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t5(0/(£)) = Y_¢, (05.) x t5(0/(ps + £0)). (6)
P

This is a general property of 1-dimensional local rings. The proof is given
in Appendix, §9, Proposition 2. In our case f = f,, so that 0/( f) =
Oz/(f1,...,fn), and therefore the left-hand side is 2(—/(f)) = (Dy---Dy)s.

For the right-hand side, it is easy to check that Op, 2 Op, /¢y, (a), so that
t,, (Op,) = ¥Oc,/a) = (Dy -+ D,,_.l)c,.. Finally

O/(pi + fO) = (O/p:)/(f) = Oc. 2/ (f),

and therefore ¢5(0/(p; + fO)) = £(Oc.z/(fa)) = (pc.(Dn))z, Where
pc,(Dy) is the restriction of the divisor Dy, to the irreducible curve C; (see
Chap. III, 1.2). Thus (6) can be rewritten

,.),—Z(Dl Dn_1)c, % (pc.(Dn))z- (7)

We now prove that the multiplicity (D). at a point z of a locally principal
divisor D on a curve C is given by the formula

(D)z= Y (V" (D))y (8)
v(y)=z

where v: C¥ — C is the normalisation. Indeed, let f be the local equation of
a divisor D in a neighbourhood of a point z € C. Then (8) can be rewritten

©:/(N) = Y. 4Oy/(f) (9)

v(y)=z

where O, and O are the local rings of points z € C and y € C*.

Write O = ﬂvm _.0,. Since O is contained in the field of fractions of
0,, for every u € o there exists v € O, such that wv € O;. According to
Chap III, 2.1, Lemma, O is a finite O,-module. Suppose that O = Ozu; +

-+ Oztr, and for each i, let v; € O, be such that wy; € O;; set v =
v+ vp. Then v0 C O,. It follows in particular that #(0/0; ) < 4O /vO),
and by Chap. III, 2.1, Theorem 2, £(O/v0) = 3, vy(v) < 00, and hence
¢0/0;) < co.

From the diagram ~ ~

foco
u U
fO, C O

it follows that Z(O/(f)) + Z(fO/fO ) = 8(5/0,,) + £(0:/(f)). Since
& has no zerodivisors, 0/0, = fO/f0, and {O/0,) = L(fO/f0,),
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hence £(0:/(f)) = £(O/(f)). By Chap. III, 2.1, Theorem 2, £(8/(f)) =
Yoz () = Zoiy)=z £(Oy/(f))- This proves (9) and (8).

The proof of Theorem 2 follows almost at once by combining (7) and (8).
We write the intersection number in the form

DDy = Z(Dl“'Dn)z-
T€EX .

By (7),

Dy--- Dn = Z(Dl T Dn—l)C,- X Z (pC,—(Dn)):v
Jj=1 z€C;

and by (8),
Z (PCJ- (Dn))z = Z (V'(pcj(D,.)))y.

z€Cy yEC;‘

Now if D, = div f is a principal divisor, with f € k(X), then so are
the divisors v*(pc, (D)) on the curves C}: that is, v*(pg,;(Dn)) = divg,
where g = v*(pc;(f)) € k(C;), and therefore (div g), = vy(g). Because X
is projective, so are the Cj, and so are their normalisations C} by Chap. II,
5.3, Theorem 7. Now by Chap. 111, 2.1, Theorem 1, Corollary, tyEC; vy(g) =

deg(divg) = 0, and it follows from this that Dy --- Dy, div f = 0. Theorem 2
is proved.

1.4. The General Definition of Intersection Number

Theorem 2, together with Chap. III, 1.3, Theorem 1 on moving the support
of a divisor away from a point, enables us to define an intersection number
of any n divisors on an n-dimensional nonsingular projective variety with-
out assuming any restriction such as general position. For this we need two
lemmas.

Lemma 1. For any n divisors Dy,..., Dy, on an n-dimensional variety X,
there exist n divisors Di,..., D} such that D; ~ D} (linear equivalence) for
i=1,...,n and Di,..., D} are in general position.

Proof. Suppose that we have found divisors Dj,..., D} such that D; ~ D!
for i = 1,...,k, and either dim(Supp D] N---N Supp D) = n —k or this
intersection is empty. Let

SuppDin---NSupp D =CLU---UC,

be its decomposition into irreducible components. We choose a point z; € C;
on each component, and, using the theorem on moving the support of a
divisor, find a divisor D}, such that Di,, ~ Di41 and z; ¢ Supp Dy,
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for j = 1,...,r. Then a fortiori Supp D}, does not contain any of the
components C;, and by the theorem on dimension of intersections

dim(Supp D{ N---NSupp Dy, ) =n—k -1,

if this intersection is nonempty. Proceeding in the same way until k = n we
get the required system of n divisors. The lemma is proved.

Lemma 2. If Dy,...,D,, and Di,..., D! are two n-tuples of divisors in
general position and D; ~ D} fori=1,...,n then

Dy---Dp=Dj---D.,. 1)

Proof. If D; = D{ fori =1, ... ,n—1 then this is the assertion of Theorem 2.
Let us prove that (1) bold if D; = D, fori=1,...,n—k. For k = n we get
our assertion.

We use induction on k. Suppose that the assertion holds for smaller values
of k. Since both Dy,...,Dy and Dj,..., D], are in general position, both

Y= ﬂ SuppD; and Y'= ﬂ Supp D;
i#Fn—k+1 ign—k+1

are l-dimensional. We choose one point on each component of each of Y
and Y’, and, by the theorem on moving the support of a divisor, find
a divisor D}_, ., such that Supp D, _,,, does not contajn any of these
points and D,l k41 ~ Dn-k+1. Then both Dy,...,Dy—, D _,,..., Dy, and
Di,...,D;_4,D}_y,---, D, are in general posxtxon. Then by Theorem 2

Dy---Dn=Di--- Dy Dl _syi-Dn

2
and D)..-Di=D}.-D, DI . D (2)

Now the right-hand sides in (2) are equal by induction, since they involve
n — k + 1 equal factors. This proves Lemma 2.

Using Lemmas 1-2 we define the intersection number D, --- Dy, of any n
divisors on a nonsingular n-dimensional variety, without requiring them to
be in general position. For this, we find any divisor DY, ..., D}, satisfying the
assumptions of Lemma 1, so that the intersection number D] - - - D}, is defined,
and define D, --- D, by D;--- D, = D} ---D},. We need to verify that this
definition is independent of the choice of the auxiliary divisors Dy, ..., D},
but this is exactly what Lemma 2 guarantees.

For example, we can now speak of the selfintersection number CC of a
curve C on a surface X. This number is also denoted by C2. We give some
examples of how C? is computed.
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Ezample 1. Let X =P?, and let C C P? be a line. By definition C? = C'C"
where C/ ~ C” ~ C and C’ and C” are in general ‘position. We can, for
example, take G’ and C" to be two distinct lines. These intersect in a single
point x, and since they are transverse at z, we have C'C" = (C'C"), = 1.
Hence C? = 1.

Ezample 2. Let X C PV be an n-dimensional nonsingular projective variety.
Write E for the intersection of X with a hyperplane of PV. Obviously E €
Div X. Our aim is to give an interpretation of the number E™. (We have seen
in Chap. III, 1.4 that all hyperplanes define linearly equivalent divisors, so
that this number does not depend on the choice of the hyperplane E.)

By definition E® = EM ... E™ where E® for i = 1,...,n are hyper-
plane sections of X in general position. By Chap. I, 6.2, these always exist.
Then the points z; € EW N ... N E™ are the points of intersection of X
with a (N — n)-dimensional projective linear subspace L = PN~ in gen-
eral position with X. Since E()...E™ = 37 . (EW...EM), and
each (E...EM), > 0, it follows that E™ is > the number of points
of X N L. Now if L is transversal to X at every point of intersection then
(EW ... EM™)Y,. =1 for each z;, and E™ is equal to the number of points of
XN L. We check that such a subspace L does exist, which gives us the follow-
ing interpretation of the number E™: it is the maximum number of points of
intersection of X with a projective linear subspace PN~" of complimentary
dimension in general position with respect to X. This number is called the
degree of X and denoted by deg X. For the case of a hypersurface see 2.1,
Example 1.

The existence of the required subspace L is proved by the traditional
method of dimension counting (compare Chap. I, 6.4). Consider the variety
of projective linear subspaces L = PN-n PV, this is the Grassmannian
G = Grass(N — n + 1, V) (see Chap. 1, 4.1, Example 1), where PV = P(V),
that is, dimV = N + 1. In the product X x G, consider the subvariety
I' of pairs (z, L) such that the subspace L is not in general position with
Ox,z. This is obviously a closed subspace (for example, the conditions that
€ Land0S LNOx; C Opyjv,, can be written as the vanishing of
minors of matrixes made up by the linear equations of the subspace L).
The fibre of the first projection I' —» X above z € X consists of subspaces
L € Grass(N — n,6pn ;) that are in nongeneral position with respect to
6x,z- Its dimension is at most dim Grass(N —n,6Bpn~ ;) -1 = (N —n)n - 1.
Hence dimI' < (N — n)n — 1 4+ n. A fortiori the projection of I' to G has
dimension < (N = n)n —1+n. But dimG = (N — n + 1)n, and hence there
exists a point of G not contained in the projection of I'.

Ezample 3. Let X C P? be a nonsingular surface of degree m and L C X a
line; we calculate L2.

Consider a plane of P containing L and not tangent to X at at least one
point of L, and let E be the hyperplane section of X by this plane. Then L
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is contained in E as a component of multiplicity 1
E=L+C,  withC=) kC; and ) kidegCi=m-1.

We compute first C2, For this, we observe that the curve E is singular
at a point of intersection of L and C, which means that the plane cutting
out E equals the tangent plane to X at this point. Consider another plane
through L distinct from the tangent planes at all the points of L N C. This
plane defines a divisor E' = L + ", and the points of LNC and LN C" are
all distinct. This means that C N C’' = §; hence C? = CC' = 0.

Now using EL = 1 (since L C P? is a line), we get

m=E*=E(L+C)=EL+EC=1+EC,
and hence EC = m — 1; since we have just proved that C? =0,
m—-1=EC=(L+C)C=LC+C*=LC;
and finally,
1=EL=IL2+LC=L+m~1, therefore L2=2-m.

Note that L? < 0 if mm > 2. Lines can indeed lie on a nonsingular surface
of arbitrary degree, for example the line zg = z,, z; = z3 on the surface
ot — 0 4z -z = 0.

Exercises to §1

1. Let X be a surface, ¢ € X a nonsingular point, u, v local parameters at z, and f
a local equation of a curve C in a neighbourhood of z. If f = (au+bv)(cu+dv)+g
with g € m2, and the linear forms au + bv and cu + dv are not proportional then
we say that z is a double point with distinct tangent directions or node and the lines
in 8, with equations au 4+ bv = 0 and cu + dv = 0 are called the tangent lines to
C at z (compare Chap. 1I, §3, Ex. 12). Under the stated assumptions, let C' be a
nonsingular curve on X passing through z. Prove that (CC'); > 2 if and only if
B¢ . is one of the tangent directions to C at z.

2. Let C = V(F) and D = V(G) be two plane curves in A? and  a nonsingular
point on both of them. Let f be the restriction of F to the curve D and vz(f)
the order of zero of f at z. Prove that this number is unchanged if F and G are
interchanged.

3. Let Y be a nonsingular irreducible codimension 1 subvariety of an n-dimensional
nonsingular variety X. Prove that if D,,...,Dn_y are divisors on X in general

position with Y at = then (D1++-Dp1Y ), = (py(Dl) .- ~py(D,._l)) , where the
right-hand side is the intersection number computed in Y. b
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4. Find the degree of the surface v,, (P?), where um is the Veronese embedding.

5. Let X C P™ be a nonsingular projective surface and L = P"~? C P™ a projective
linear subspace of dimension n—2. Suppose that L and X intersect in a finite number
of points, and that at k of these points, L intersects the tangent plane Ox,: in a line.
Prove that the number of points of intersection of L and X is at most deg X — k.

6. Let X ¢ P" be a nonsingular projective surface not contained in any P*~! and
L = P"*~™ a (n—m)-dimensional projective linear subspace such that XML is finite.
Suppose that at k of these points, L intersects the tangent plane Ox, in a line.
Prove that the number of points of intersection of L and X is < deg X —k—m+2.
[Hint: Find a suitable projective linear subspace passing through L and satisfying
the assumptions of Ex. 5. Start from the case k = 0.}

7. Prove that if Dy, ..., D, _, are effective divisors in general position on a nonsin-
gular n-dimensional variety and C C Supp D; N --- N Supp D, -1 is an irreducible
component then (D1---Da_1)c = min(D;--- Dy_1D):, where the minimum is
taken over all x € C and all effective divisors with = € Supp D.

8. Compute (DyD;)c, where D;, D; C A% are given by z = Oand 2 +3y* +22=10
respectively, and C is the linez =y = 0.

2. Applications of Intersection Numbers

2.1. Bézout’s Theorem in Projective and Multiprojective Space

Theorems 1 and 2 of 1.2-3 allow us to compute intersection numbers of any
divisors on a variety X provided that we know the divisor class group Cl X
well enough. We illustrate this with two examples.

Example 1. X = P". We know that ClX 2 Z, and that we can take a
hyperplane divisor E as generator. Any effective divisor D is the divisor of
a form F, and if deg F' = m then D ~ mE. It follows that if D; ~ m;E for
i=1,...,n then

Dy Dy=my---maE” =my---m,y, 1)

since obviously E" = 1.

If the divisors D; are effective, that is, they correspond to forms F; of
degree m;, and are in general position, then the points of (Supp D; are
exactly the nonzero solutions of the system of equations

Fl(xOs---azn)="'=Fn(10a---axn)=0~

Here we only consider nonzero solutions, and consider proportional solutions
to be the same. For such a point z (or solution), it is natural to call the local
intersection number (Dy --- Dy,)z the multiplicity of the solution. Then (1)
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says that the number of solutions of a system of n homogeneous equations in
n + 1 unknowns is either infinite, or is equal to the product of the degrees of
the equations, provided that solutions are counted with their multiplicities.
This result is called Bézout’s theorem in projective space P™.

In particular, if Do, ..., Dy are hyperplanes then we see that DE™1 =
deg F, where F = 0 is the equation of D. If D is a nonsingular hypersurface
then by definition the intersection number DE"~! in P" is equal to the
intersection number E®~! on D. Therefore deg ' = deg D in the sense of the
definition in 1.5, Example 2.

Ezample 2. X = P" x P™. In this case C1X = Z @ Z, since by Chap. I,
5.1, Theorem 1, any effective divisor D is defined by a polynomial F' that is
homogeneocus separately in the two sets of variables zp,...,z, and yo,...,Ym
(the coordinates in P™ and P™ respectively). If F' has degree of homogeneity
k and I then D — (k,!) defines an isomorphism Cl X % Z @ Z. In particular,
we can take as generators of C1 X the divisors E and F' defined respectively
by linear forms in the z; and y;; then D ~ kE + [F.
Suppose that D; ~ k,E+ ;F fori=1,...,n+ m. Then

n+m
1 Dnym = [[ GE+LF) = ki sliy.s EF?, (2)

i=1
where the sum runs over all permutations (i;...4i-51-..7s) of {1,...,n + m}
with i} <ip < -+ < i, and j1 < j2 < -+ < j,. We now compute the inter-
section number E"F*. If r > n then we can find r linear forms E,,...,E,

having no common zeros in P, so that
E'F*=F,---E.F*=0.

The same thing happens if s > m. Since r + s = n + m, the intersection
number ETF*® can only be nonzero for r = n and s = m. In this case we
can take Ey,...,E, and Fi,...,F, to be the divisors defined by the forms
Zi,...,Zn and ¥1,...,Ym. These divisors have a unique common point, (1 :
0:---:0;1:0:---:0). They intersect transversally there, as one checks
easily on passing to the open subset zo # 0, o # 0, which is isomorphic to
A™™, Thus

n+m

Dl"'Dn+m= H kE-l-lF Zk" ;"l_-“ Jmo (3)
i=1

where the sum runs over all permutations (41 ...4rj1...7,) of {1,...,n+m}
with 41 < iz < --- <4, and j; < ja < +-- < j,. This result is called Bézout’s
theorem in P™ x P™.

One common feature of the two examples just treated is that Cl1X is
finitely generated. It is natural to ask whether this holds for any nonsingular
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variety X. This is not so; a counterexample is provided by the nonsingular
plane cubic curve, which has a subgroup C1° X ¢ Cl1X with C1X/CI° X > Z,
and the elements of CI° X are in one-to-one correspondence with points of
X. Hence, for example, if k = C then CI° is not even countable.

This big subgroup CI° X has, however, no effect on interséction numbers,
since deg D = 0 for D € CI° X. The same thing also holds for an arbitrary
nonsingular projective variety. Namely, one can prove'4 that if a divisor D
is algebraically equivalent to 0 (see Chap. III, 4.4 for the definition), then
Dy---Dp1 D = 0 for any divisors Dy, ..., D,-;. Thus intersection numbers
depend only on the classes of divisors in Div X/Div* X (the Néron-Severi
group NS X). Chap. III, 4.4, Theorem D asserts that this group is finitely
generated. Obviously, if Ey, ..., E, are generators of this group, then in order
to know any intersection numbers of divisors on X, it is enough to know
the finitely many numbers E}* - -- E¥ with iy + .- -4, = dim X, by analogy
with what we saw in Examples 1-2. In other words, an analogue of Bézout’s
theorem holds for X.

2.2. Varieties over -the Reals

The different versions of Bézout’s theorem proved in 2.1 have some pretty
applications to algebraic geometry over R.

We return to 2.1, Example 1, and suppose that the equations F; = 0
for i = 1,...,n have real coefficients, and that we are interested in real
solutions. If deg F; = m; and the divisors D; are in general position
then Dy---D, = my---my,, as proved in 2.1, Example 1. By definition,
Dy-++Dp =3 (D1+-+ D)., where the sum runs over solutions z of the sys-
tem of equations F; = -.- = F, = 0. In this we must of course consider both
real and complex solutions z. However, since the F; have real coefficients,
whenever z is a solution then so is the complex conjugate Z. By definition of
the intersection number it follows at once that (Dy---D,), = (D;--- D)z,
and hence D, --- D, = Y (D - -+ D), mod 2, where now the sum takes place
only over real solutions. In particular if D, - -- D, is odd (which holds if and
only if all the degrees deg F; = m; are odd), then we deduce that there exists
at least one real solution. This assertion is proved under the assumption that
the D; are in general position. But the following simple argument allows us
to get rid of this restriction.

The point is that in our case the theorem on moving the support of a
divisor can be proved very simply and in a more explicit form. Namely, we
can choose a linear form [ nonzero at all the points z,,...,z, we want to
move the support of the divisor away from. If D is defined by a form F of
degree m then the divisor D’ defined by the form F, = F + &l™ will satisfy
all the conditions in the conclusion of the theorem if F(z;) + el(z;)™ # 0 for

4See Fulton (27}, Chap. 10 for a proof (in much more advanced terms).
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j=1,...,r. These conditions can be satisfied for arbitrarily small values of
E.

We now show how to get rid of the general position restriction in the
assertion we proved above on the existence of a real solution of a system of
equations of odd degrees. Let

Fi=-=F,=0 (1)

be any such system. By what we have said above we can find linear forms
l; and arbitrarily small values of € such that the divisors defined by the
forms F; . = F; + el[™ are in general position. Now we proved above that
the system Fj = ... = F,, . = 0 has a real solution z,. Because projective
space is compact, we can find a sequence of numbers £, — 0 such that the
sequence T, converges to a point z € P*. Now Fj,., — F; as € — 0, so that
z is a solution of the system (1).
We state the result we have just proved.

Theorem 1. A system of n homogeneous real equations in n + 1 variables
has a nonzero real solution if the degree of each egquation is odd. O

Entirely analogous arguments apply to the variety P™ x P™ (see 2.1, Ex-
ample 2). We get the following result.

Theorem 2. A system of real equations
F(xo: - :Zp;yo: - :ym)=0 fori=1,...,n+m

has & nonzero real solution if the number Y k;, --- ki l;, ---1;, . is odd. Here
k; and l; are the degrees of homogeneity of F; in the two sets of variables,
and we consider a solution to be zero if either xg = - = 2, = 0 or yp =

Theorem 2 has interesting applications to algebra. One of these is con-
cerned with the question of division algebras over R. If an algebra over R has
rank n then it has a basis ¢;, . .., e,, and the algebra structure is determined
by a multiplication table

n
eje; = Zcfjek fori,j=1,...,n (2)
k=1

We do not assume that the algebra is associative, so that the structure con-
stants c{-‘j can be arbitrary. The algebra is called a division algebra if the
equation

ax=b (3)

has a solution for every ¢ # 0 and every b. It is easy to see that this is
equivalent to the nonexistence of zerodivisors in the algebra. For this it is
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enough to consider the linear map ¢ given by ¢(z) = ar in the real vector
space formed by elements of the algebra. The condition that (3) has a solution
means that the image of y is the whole space, and this is equivalent to
ker p =0, as is well known. This condition means just that the algebra has
no zerodivisors, that is zy = 0 implies eitherz =Qory =0.Ifz = 2:;1 Tie;
and y = 3.7, yj€;, then (2) gives

Ty = Z Zrer, where zp = ZZC,Jx,y_, fork=1,.

=1 j=1

Thus the algebra is a division algebra if the system of equations

n n
Fk(zyy)=zchjxiyj=0 fOl‘k—_-l,...,n (4)

=1 j=1

has no real solutions with (zi1,...,Zn), (31,---:¥n) # (0,...,0). These equa-
tions very nearly satisfy the conditions of Theorem 2. The difference is that
the F} define divisors in P*~! x P*~1, the number n of which is not equal to
the dimension 2n — 2 of the variety. We therefore choose any integer r with
1<r<n-1andset z,40 = -~~—:r:,._Oandy,._,+2=~--=y,.=0.
The equations Fix((z1,...,%r4+1,0,.--,0), (¥1,+ .+, ¥n-r+1,0,...,0)) = 0 for
k =1,...,n are now defined in JP’ x P"-7, and a fortiori have no nonzero
real roots. According to Theorem 2 this is only possible if the sum

Zktl ) 1r Jl' 'ljn—r (5)

is even, and this must moreover hold for all r = 1,...,n — 1. In our case the
forms Fj are bilinear, so that k; = I; = 1, and the sum (5) equals the number
of summands, which is (]). We see that if (4) has no nonzero real solutions
then all the integers (7) are even for r = 1,...,n — 1. This is only possible
if n = 2*. Indeed, our condition on (]) can be expressed as follows: over the
field with 2 elements Fo we have (T +1)® = T™ + 1. If n = 2'm with m odd
and m > 1 then over Fo,

T+)¥m =T 4 )" =T 4 mT? D 4o 1A TV 4L
We have proved the following result:

Theorem 3. The rank of a division algebra over R is a power of 2. O

It can be proved that a division algebra over R exists only forn =1, 2, 4
and 8. The proof of this fact uses rather delicate topological arguments.

Applying analogous arguments, one can investigate for which values of m
and n the system of equations
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n m
ZZcfj:rkyj=0 fori=1,...,n, (6)

k=1 j=1

does not have nonzero real solutions. Based on the interpretation of the tan-
gent space to P(V) given in Chap. II, 1.3, one can easily show that under
the stated assumption, (6) defines (m — 1) linearly independent tangent vec-
tors at each point of P"~!, that is, (m — 1) everywhere linearly independent
vector fields on P*~!. In this form, the question of the possible values of m
and n has been completely answered by topological methods. The question
is interesting because it is equivalent to that of knowing whether the system
of partial differential equations

E E C, __—0 foll_—-l,-..,m
L) ax‘
18 e]hptlc.

2.3. The Genus of a Nonsingular Curve on a Surface

The following formula plays an enormous role in the geometry on a non-
singular projective surface X. It is usually called the adjunction formule or
the genus formula, and expresses the genus of a nonsingular curve C C X in
terms of certain intersection numbers:

go = 3C(C+K) +1 )

here g¢ is the genus of C and K the canonical class of X.

This formula can be proved using only the methods we already know.
However, a clearer and more transparent geometric proof follows from the
elementary properties of vector bundles. This is given in Chap. VI, 1.4, Theo-
rem 4. Here we only discuss a number of applications.

Ezample 1. The projective plane. If X = P? then C1 X = Z, with generator L,
the class containing all the lines of P2. If C' C P? has degree n then C ~ nL.
In view of K = —3L and L? = 1, in this case (1) gives
-3 - -
g=n(n2 )+1= (n 1)2(n 2).

We obtained the same result in Chap, III, 6.4 by a different method.

Ezample 2 The nonsingular quadric surface. Let X C P® be a nonsingular
quadric surface in P?. Let’s see how to classify nonsingular curves on X in
terms of their geometric properties.
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The algebraic classification is clear. Since X = P! x P!, any curve on X
is defined by an equation F(zq : z1;y0 : 1) = 0, where F' is a polynomial
homogeneous in the two sets of variables xg, z, and yo,y1; write m and n for
the degrees of homogeneity. F has (m + 1)(n + 1) coefficients, and hence the
curves of bidegree (m, n) correspond to points of PV, where N = (m +1)(n+
1) — 1. There exists a nonsingular irreducible curve of any bidegree (m,n)
with m > 0, n > 0, for example the curve given by

2zg'yp +To ¥T +IT Yo +ITYL = 0;

thus nonsingular irreducible curves correspond to points of a nonempty open
set of PV,

We saw in 2.1 that C1 X = Z@Z, and that a curve C given by a polynomial
of bidegree (m, n) satisfies

C ~mE +1F, 2)

where E = P! x £ and F = z x P1. Thus the curves corresponding to the
given bidegree (m,n) are the effective divisors of the class mE + nF.

The classes E and F correspond to the two families of line generators on
X. It is easy to find the intersection number of curves given in the form (2):
if

C~mE+nF and C'~mE +nF' (3)
then
CC' =mn' +nm/. 4)
In particular
m=CF and n=CE. (5)

This shows the geometric meaning of m and n: just as the degree of a plane
curve equals the number of points of intersection with a line, so m and n are
the two degrees of C with respect to the two families of line generators E
and F on X.

Taking account of the embedding X C P® provides a new geometric in-
variant of a curve, its degree. We know that the families of curves on X are
simply classified by the invariants m and n. Our ailm at present is to recover
this classification in terms of the invariants deg C and gc.

We know that

degC = CH, (6)

where H is a hyperplane section of X. Now note that
H~E+F Q)

which follows at once from (5) and from the fact that H intersects both E
and F transversally in one point. Substituting in (6) and using (4) gives

degC=m+n. (8)
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Note that, except for the case C a line, any irreducible curve C has m > 0,
n > 0. Indeed, if C is not, say, in the first family of line generators, then
taking any point £ € C and the line E of the first family through z, we see
that C and E are in general position and CE =n > (CE), > 0.

We proceed to calculate gc. To apply (1), we need to know the canonical
class of X, which we now determine. We use the fact that X = P! x PL. It is
easy to solve the even more general question, to find the canonical class of a
surface X =Y) xY; which is the product of two nonsingular projective curves
Y, and Y;. We write 7;: X — Y] and ma: X — Y3 for the two projections,
consider arbitrary 1-forms w; € 2'(Y;) and w, € £2*(Y2) and the pullback
1-forms 7}(w;) and x3(wa) on X. Then w = w}(w1) A 73(w2) is a 2-form on
X and its divisor divw belongs to the canonical class. We now calculate this
divisor. .

Let £ = (y1,y¥2) € X where y; € Y] and y, € Y3, and write t,, ¢ for
local parameters on Y; and Y3 in a neighbourhood of y; and y;. An obvious
verification then shows that 7} (f1), 73(t2) is a local system of parameters at
z € X. Write wy and w, in the form w; = u;dt; and wa = uadts. Then
div(w;) = div(u;) and div(ws) = div(uz) in a neighbourhood of y; and ys,.
Obviously w = #{(u1)m3(uz) - dn}(t1) A dw3(t2), and it follows that in some
neighbourhood of z,

div(w) = div(n](u1)) + div(m3(u2)) = 7] (div(wy)) + 73 (div(ws))-

Since this holds for any point z € X it follows that div(w) = #}(div(w1)) +
w3 (div(wsz)), or in other words,

Kx = m(Ky,) + m3(Ky,)- 9

Now return to the case X = P! x P!. We know that Kp = —2y for a
point y € P'. Thus in our case, (9) gives Kx = —27}(y1) — 273 (y2). Since
7} (y1) = E and =3 (y2) = F, we finally get

Kx = —2E — 2F. (10)

Now for the genus of a curve C ~ mE 4 nF, we substitute this formula into
(1) and use (4). We get

gc =(m-1)(n-1). (11)

The numbers m and n are thus determined uniquely up to permutation
by the degree and genus of C. We see that curves on X of given degree d form
d+1 families My, ..., My. Curves in M have genus (k—1)(d— k —1); curves
in M, and M, have the same genus if and only if k = | or k4! = d, that is, the
two families are obtained from one another by the automorphism of P* x P!
that interchanges the two factors. The dimension of Mg is (k+1)(d—k+1)—1,
which in terms of the degree and genus is g + 2d — 1.

In his “Vorlesungen iiber die Entwicklung der Mathematik im 19. Jahr-
hundert,” Chap. VII, p. 319, Felix Klein gives the classification of curves
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(a) (b}
Figure 16. Curves on a Quadric Surface

of degree 3 and 4 on the hyperboloid as an example of the application of
ideas of birational geometry. We take pictures of curves with d = 4 from this
reference: Figure 16, (b) has m =1, n = 3 and Figure 16, (a) hasm =n = 2.

Ezample 3. Curves on the cubic surface. As a further application of (1), we
determine the possible negative values for the selfintersection of curves C on
a cubic surface of P®. According to the result of Chap. III, 6.4, in this case
K = —E, where E is the hyperplane section. Thus (1) takes the form

C% —degC =29 -2.
Obviously C? < 0 only if ¢ = 0 and deg C = 1, that is, C is a line of the

cubic surface. In this case C? = —1.

2.4. The Riemann-Roch Inequality on a Surface

Recall from Chap. I1I, 1.5 that we write £(D) for the dimension of the vector
space associated with a divisor D. Another fundamental relation involving
intersection numbers on an irreducible nonsingular projective surface X is
the Riemann-Roch inequality:

DY+ K -D)> %D(D ~ K) + x(Ox); (1)
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here D is an arbitrary divisor on X and x(Ox) is an invariant depending only
on X and not on D; in the case of a field of characteristic 0 we have x(Ox) =
1 — BY(X) + A*(X), where A" = dim £2"[X] are as defined in Chap. III, 6.1.
Inequality (1) is obtained by omitting one term from the Riemann-Roch
equality, which we do not treat here. The Riemann-Roch equalities for curves
and surfaces generalise to varieties of arbitrary dimension.

We illustrate the usefulness of the Riemann—Roch inequality by discussing
one of its consequences. As mentioned in 2.1, the intersection number of
divisors Dy, D2 € Div.X depends only on their images in Div X/Div* X,
which is a finitely generated group. We can also pass to the quotient by
the torsion subgroup, since torsion elements, of course, give zero intersection
numbers. As a result we get a group isomorphic to Z™, and if uy,..., Uy is
a basis, intersection numbers define a symmetric integral matrix (u;u;), that
is, an integral quadratic form. This is an extremely important invariant of a
surface.

‘We now determine the crudest invariant of this quadratic form, its index
of inertia. It certainly takes positive values, since E? = deg X > 0, where E
is a hyperplane section. It turns out that on reducing the quadratic form to a
sum of squares, all but one of the nonzero diagonal entries are negative. We
prove this result in a form that does not use the result that Div X/Div* X
is finitely generated.

Hodge Index Theorem. If D is ¢ divisor on a surface X and DE = 0,
where E is the hyperplane section, then D? < 0.

Proof. Suppose that D? > 0. We prove that for all sufficiently large n > 0,
either £(nD) > 0 or £(—nD) > 0. The theorem will follow from this: if, say,
£(nD) > 0, then nD is linearly equivalent to an effective divisor, that is;
nD ~ D' > 0; therefore nDE = D’E > 0, because every curve intersects
a hyperplane. Hence nDE > 0 and so also DE > 0, which contradicts the
assumption. .

Using (1), the assumption D? > 0 implies that

{nD) + (K —nD)2c(n) and £&(-nD)+¢(K+nD)2c(n), (2

where ¢(n) grows with n without bound. If £(nD) = ¢(-nD) = 0, we get
(K —nD) 2 ¢(n) and &(K + nD) > ¢(n). But now if ¢(D,) > 0, we always
have £(D, + D3) > ¢(D,); thus we would deduce that £(2K) > ¢(n), which
is an obvious contradiction. The theorem is proved.
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2.5. The Nonsingular Cubic Surface

Let X C P? be a nonsingular cubic surface. X contains a line L, by Chap. I,
6.4, Theorem 10. Through L, pass two distinct planes E) and E; with equa-
tions ¢; = 0 and g = 0, and consider the rational map ¢: X — P! given by
p(z) = (p1(x) : p2(z)). The linear system A;p; + A2z corresponding to this
map has L as a fixed component: if E),», is the section of X by the plane
with equation A1y + Aaye = 0 then Ey », = L + F, ,, where F) 5, is a
plane conic. The linear system F), y, obviously defines the same map . We
prove that ¢ is regular. For this it is enough to prove that Fj, », N Fy, 4, =0
if (A1 : A2) # (p1 : p2). Note that Fi, 5, cannot contain L as a component:
an equality Ej,,», = 3L or 2L + L' would contradict the relations L? = —1,
Ej 2, L=1and LL' > 0 (see 1.4, Example 3). Moreover, Fy, , and F,, ,,
cannot have a common component; indeed, this would have to be a line dis-
tinct from L, and would determine the plane containing it. Thus Fj, , and
Fy, u, are in general position, and it is enough to prove that Fy, z, F, ., =0,
t.hzat is, F2 = 0, where F = E — L. This follows from E* = 3, EL = 1 and
L= -1, '

If L is the line given by £ = £; = 0 then the equation of X can be written

A0, 61)8 + 2B (6o, £1)62bs + Cl60,1)63 )
+2D(&0,£1)&2 + 2E(&0,&1)&s + F(0,£1) =0,

where A,B,C,D,E and F are forms in £y,£; of degrees deg A = deg B =
degC =1, deg D = deg E = 2 and deg F = 3. We see from this that our map
@: X — P! represents an open set V = ¢~!(A!) C X as a pencil of conics
V — U over the affine line A' C P?; we always choose the coordinates so that
the fibre over the point at infinity P! \ A! is a nondegenerate conic. From
Chap. I, 6.4, Example 1, it follows that the degenerate fibres correspond to
zeros of the discriminant, each zero has multiplicity 1, and each degenerate
fibre is a pair of distinct lines. Then the number of degenerate fibres equals
the degree of the discriminant

A C D
C B E
D E F

A = det

1]

which is 5. The next result follows from this.

Proposition. Every line L on & nonsingular projective cubic surface X
meets exactly 10 other lines on X, which break up into 5 pairs of intersecting
lines. O

It follows from Chap. I, 6.2, Corollary 6 that a nonsingular cubic surface is
rational: A is not identically zero, since it has only simple roots. The ration-
ality of X can also be proved otherwise: consider any line L’ intersecting L,



2. Applications of Intersection Numbers 247

and apply Proposition 1 to it. Then L' meets 10 lines, of which only L and
one further line meet L. Therefore there exists a line M not intersecting L,
and the rationality of X follows by Chap. I, 3.3, Example 2.

The line M just found obviously satisfies MF = 1, where F is the fibre
of the conic bundle, since ME =1, ML = 0 and E ~ L+ F. Hence M
intersects F in exactly one point, and, in particular, it intersects exactly one
of each pair of lines meeting L. Write L for this one, and L; for the other, for
i=1,...,5 Then L;M = 0, L'M = 1. The configuration of lines obtained
thus is illustrated in Figure 17.

b1y 1y gty [y
¥y Yy ry

L, L, L L, L
\ \ \ \ \

NN Y TN TN

L; L L; L, L
Figure 17. Lines on the Cubic Surface

It follows from Chap. III, 1.6, Theorem 4 that the group Cl X has gen-
erators the classes defined by the divisors L,, Ly, L3, L4, Ls, F, S, where S is
some section of the conic bundle X — P!. We prove that S can be taken to
be the line M found above. Indeed, since M N L = §, the equations of M
can be written & = aég + b€y, €3 = co + d&;; that is, passing to inhomoge-
neous coordinates, To = §2/€ and x3 = £3/&o can be expressed as rational
functions of z; = £; /£, the coordinate of P!, and these expressions satisfy
(1). ’

We thus obtain the following result.

Proposition. Cl X is ¢ free group with T generators, the classes of the lines
Ly,Ls, L3, Ly, Ls,M and F. O

The intersection numbers of Ly, Ly, L3, Ly, Ls, M and F are easily deter-
mined; they are tabulated as follows:
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Ly L, Ly Ly Ls M F
Lyj-1 6 0 0 0 0 O
L,jo -1 0 0 0 o0 O
L3ylo 0 -1 0 0 o0 O
Lyijo ¢ 0 -1 0 0 O
Ls; 0O 0 0 0 -1 0 0
M|0O 0 0 0 0 -11
Flo o 0o o0 o0 1 0O

The group Cl X to a significant extent determines the geometry of X. In
particular, we now show how to use it to find all the lines on X. A line C on
X satisfies C? = —1. We know L and a further 10 lines intersecting it. We
now try to find the lines d1s301nt from L. These satisfy CL = 0, and therefore
CF = 1. Suppose that C ~ Z‘ z;L;+yM +zF. Then CF = 1 impliesy = 1,
and C? = -1 and CL =0 give

5 5
—z:c?+22=0, Zl‘i+22=0; (2)

1 1
It follows that Z?(zf + ;) = 0, that is, each z; = 0 or —1. Moreover, (2)
implies also that the number of i for which x; = —1 is even, so that either (a)

all z; = 0; or (b) all z; = —1 except one; or (¢} z; = x; = —1, and the three
remaining z, = 0. Of these possibilities, (a) gives the class of the line M, (b)
and (c) 5 and 10 cases, that is, 16 classes altogether. Each class contains at
most one line: for if C and ' are distinct lines then CC’ = 0 or 1, whereas
if C ~ C' are in the same class then CC' = C? = —1. Thus it remains to
exhibit at least one line in each class. In case (a), this is M.
In case (b), if z; = 0 and z; = —1 for j # i we get the class C; =

—3 ;4 Lj + M + 2F. We note that the lines L} and M lie in the same
pla.ne m whlch there must be a third line L, so that L, + LY + M = E.
Setting E ~ Y axLy + M + yF and arguing as before, we get that E ~
~Y" Lk +2M + 3F. Substituting this expression for £ and L} ~ F — L; for
L!, we find easily that L} ~ C;.

In case (c) we get a class D;; = —L; — Lj + M + F. Note that L{L; =
C;L; = 1, so that the lines L and Ly for i # j intersect, and hence there
is a third line L;; in the plane through them. Arguing exactly as before we
show that L;; ~ Dy;. Thus we have found 1 line in case (a), 5 in case (b) and
(10) in case (c), altogether 1+54-10=16. Together with L and the 10 lines
meeting it, this gives 27 lines. This proves the next result.

Theorem. A nonsingular cubic surface of P° contains exactly 27 lines. O
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2.6. The Ring of Cycle Classes

The theory of divisors and their intersection numbers is a particular case of
a general theory that deals with subvarieties of any dimension. The notion
of divisor is replaced by that of k-cycle. A k-cycle is an element of the free
Abelian group generated by irreducible k-dimensional subvarieties. Two irre-
ducible subvarieties ¥, and Y, are in general position, by definition, if every
irreducible component Z; of the intersection Y; NY, has the same dimension,
and
codim Z; = codimY] + codimY;.

Two k-cycles are in general position if all components of the first are in
general position with those of the second.

The foundation of the theory is a method of assigning to each component
Z; of Y1 NY; a positive integral multiplicity n;(Y;,Yz). The cycle Y7 - Y =
3" ni(Y1,Y2)Z; is called the product of the subvarieties Y; and Y. The notion
extends by additivity to any two cycles in general position. The reader can
learn about this theory from Fulton [27].

The basic property of this product is that it is invariant under an equi-
valence relation that we now describe. It generalises the algebraic equivalence
of divisors introduced in Chap. III, 4.4, and is defined in an entirely similar
way. Namely, let T be an arbitrary irreducible nonsingular variety and Z C
X x t a cycle such that Z and the fibre X x T are in general position for
every t € T. The set of cycles C; = Z - (X x t) is called an algebraic family
of cycles. Two cycles Cy and C; are algebraically equivalent if there exists a
family of cycles C; with t € T such that C;, = C; and C;, = C; for two
points ty,t; € T. The set of cycle classes under algebraic equivalence forms
a group.

The product of cycles on a nonsingular projective variety is invariant un-
der algebraic equivalence. There is a theorem on reducing to general position
(the so-called moving lemma), according to which for any two cycles Cy and
C, there exist cycles C] and Cj equivalent to Cy and C; respectively, and in
general position. These two results allow us to define the product of any two
cycle classes.

Now let X be a nonsingular n-dimensional projective variety, and write
A" to denote the group of cycle classes (under algebraic equivalence) of codi-
mension r on X. The group

n
A=Px
r=0
is a ring, where the product is defined on the individual summands as de-
scribed above, and on arbitrary elements by additivity. This ring is com-
mutative and associative. By the formula for the dimension of intersections
(Chap. 1, 6.2, (4)),
AT - Q(a C er+a,
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where we set A™ = 0 for m > n. That is, ™ is a graded ring. It is easy to prove
that all points of X, viewed as 0-cycles, are algebraically equivalent, and the
O-cycle z (for z € X) is not algebraically equivalent to 0. Therefore 2, =
Zu, with the standard generator ¥, the class of a point z € X. The classes
of divisors under algebraic equivalence form a group Al. For n elements
ai,...,a, € Al the product a; - -a,, € A™ = Zu, that is,

ara,=ku withkeZ

The number k equals the intersection number a; - - - @, defined in §1.

The ring 21 is a very interesting invariant of X, and is still not well stud-
ied. 2A° is isomorphic to Z, with generator X itself. As already pointed out,
A" = Z. The group A! is finitely generated, as asserted in Chapter III, 4.4,
Theorem D. However, already 2% may have an infinite number of generators.
The structure of these groups is quite mysterious.

Exercises to §2

1. Determine deg vm(P") where vm is the Veronese embedding (Chap. I, 4.4).

2. Suppose that a nonsingular plane curve C of degree r lies on a nonsingular
surface of degree m in P2, Determine C*. (This generalises 1.5, Example 3.)

3. Suppose that a form of degree [ on a nonsingular projective surface of degree m
in P® has divisor consisting of one component of multiplicity 1 that is a nonsingular
curve. Find its genus.

4. Consider k sets of variables z{°,...,z{ and a system of °%_, n; simultaneous
equations

f.-(z:s,‘), ... ,xf.ll); .. ;xg‘), ... ,xf,"k)) =0,
that are linear in each set of variables :c((,"),...,m,(f‘.) . Prove that the number of

solutions in P™ x ... x P** of the system equals the multinomial coefficient
("itotnk) = (£ ni)!/ [Tns!. Here the number of solutions is taken as usual in
the sense of the corresponding intersection number.

5. Let X C P® be a nonsingular surface of degree 4 and C C X a nonsingular
curve. Prove that if C* < 0 then C* = -2.

8. Prove that the selfintersection number of a nonsingular curve on a nonsingular
surface in P? of even degree is always even.

7. Let X be a nonsingular curve and D the diagonal of X x X (that is, the set of
points of the form (z,z)). Prove that D* = — deg Kx. [Hint: Use the fact that D
and X are isomorphic.] '
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8. Generalise the result of Ex. 7 to the case that D C Cy x C; is the graph of a
map ¢: Ci — C; of degree d.

9. If D C C} x C; is a divisor, prove the inequality
D*<2Cixe2)D-(C2x a1)D

for ¢ € C1 and ¢z € Ca. [Hint: Cook up « and § such that D' = D — &(C) x ¢2) —
B(Cz x 1) satisfies (C1 x ¢2)D' = (Cz2 x ¢1)D’ = 0, then apply the Hodge index
theorem to D' ]

10. In the notation of Ex. 8-9, suppose that C1 = C; = C is a curve of genus g.
Let ¢: C — C be a map of degree d with graph I', C C x C, and write ACC x C
for the diagonal. Prove that

FA—d- 1[ < 2gvd.

[Hint: Set D = mA +nl, and view D* —2(C x ) D (C x ¢)D as a quadratic form

. in m and n; then write out the condition for this to be negative definite.] Here I', A
is the number of fixed points of ¢. This inequality, applied to the case that ¢ is the
Frobenius map, generalises the inequality Chap. II1, 3.4, Example 2, (3) to curves
of arbitrary genus.

3. Birational Maps of Surfaces

This section treats an application of intersection numbers to the proof of
some basic properties of birational maps of algebraic surfaces. We start by
deriving the elementary properties of blowups of algebraic surfaces.

3.1. Blowups of Surfaces

Let X be an algebraic surface, £ € X a nonsingular point, z,y local parame-
ters at £ and o: Y — X the blowup centred at £. By Chap. II, 4.3, Theorem 1
there exists a neighbourhood U of £ in X such that V = ¢~}(U) is the sub-
variety of U x P! defined by toy = tiz, where (fo : t;) are coordinates on P:.
In the open set where ¢y # 0 the blowup is given by the simple equations

z=u and y=uv, where v = t, /to. (1)

Set L = a~1(£). A local system of parameters at any point 7 € L is given by
u and v — v(n). The local equation of L is obviously u = 0.

Let C be an irreducible curve on X passing through £. By analogy with
Chap. II, 4.3, Theorem 1, the inverse image ¢~ !(C) consists of two compo-
nents: the exceptional curve L and a curve C’ that can be defined as the
closure in Y of 0 }(C \ €). The curve C’ is called the birational'® transform

15The terms strict transform and proper transform are also widely used in the
literature.
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of C. We denote it by C' = ¢/(C). Now consider C as an irreducible divisor
on X. Then
a*(C) = o'(C) + kL, (2)

where ¢/(C) appears with coefficient 1, because o is an isomorphism of Y\ L
and X \ £. We now determine the coefficient k in (2). Suppose for this that
C has £ as an r-fold point. This means that the local equation f of C in a
neighbourhood of { satisfies f € mg \ m?'l. Then ¢*(C) has local equation
o*(f) in a neighbourhood of any point 1 € L. Set

f=o¢(z,y)+¢  withp aform of degree r and Y € mg*'.  (3)

Substituting the formulas (1) for o in (3), we see that (o*(f))(u,v) =
(u, uv) + o* (). Since ¥ € mg*™, it follows that we can write 9 = F(z,y)
with F' a form of degree r + 1 in z,y with coefficients in O¢. Therefore
o* () =(¢”(F))(u, uv), and finally

(0" () (w0) =7 ((1,0) + 4(o* (F))(L,0)); @)

since ¢(1,v) is not divisible by u it follows that k = r in (2). We state the
result we have proved.

Theorem 1. If C is a prime divisor on X passing through the centre £ of a
blowup o then the inverse image o*(C) of C is given by 0*(C) = o/(C) + kL,
where ¢’(C) C Y is a prime divisor, L = ¢~ }(£) and k is the multiplicity of
Catf 0O

3.2. Some Intersection Numbers

We start from general properties of a birational regular map f: Y — X
between nonsingular projective surfaces.

Theorem 2. (i) If D; and Dy are divisors on X then
f*(D1)f*(Dz) = D1 Dy : (1)

(i) If D is a divisor onY all of whose components are exceptional curves
of f and D is any divisor on X then

f(D)D =0. 2

Proof. We write S C X for the finite set of points at which the inverse map
f7! is not regular, and set T = f~1(S) for the set-theoretic inverse image.
Then f defines an isomorphism

Y\T S X\S. ()
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If Supp D; N S = Supp D2 NS = @ and D, and D; are in general position
then (1) is obvious from (3). Otherwise we use Chap. III, 1.3, Theorem 1 on
moving the support of a divisor away from points. Suppose that D} ~ D; -
and D} ~ D, are divisors with Supp Dj NS =SuppD; NS = 0 and D] and
D), in general position. Then Dy D, = Dy Dj, by 1.4, Lemma 2, and by what
we said above D{ D} = f*(D})f*(D5). Since f*(D}) ~ f*(D;), the required
equality (1) holds.

Equality (2) is likewise obvious if Supp DNS = . The general case reduces
to this by an entirely similar argument. The theorem is proved.

We now give a corollary that relates directly to blowups. We use the
notation of 3.1.

Corollary 1.
L?=-1. (4)

Proof. Consider the curve C C X with local equation y. By Theorem 1
o*(C) = ¢’(C) + L, and moreover, it is clear from 3.1, (1) that the local
equation of ¢/(C) is v. Since u is the local equation for L, it follows that
o'(C)L = 1 and (4) follows from (2):

0=0*(C)L=(0'(C) + L)L =1+L>
The corollary is proved.
Corollary 2. If C C X is a curve with multiplicity k at £ then ¢'(C)L = k.
This follows at once from (2) and (4) and from 3.1, (2).

Corollary 3.
a'(C1)a'(Ca) = C1C3 - krka,

where ky, kp are the multiplicities of Cy, C at .
Proof.

C1C: = a*(C1)0”(C2) = ('(C1) + kaL)a™ (Ca)
= ¢'(C1)0*(Ca) = o'(C1)(0"(Ca) + k2 L)
= o'(C1)0’(Ca) + k1ka;

here the 3rd equality comes from (2) and the final one from Corollary 2. This
gives (5). The corollary is proved. ~
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3.3. Resolution of Indeterminacy

We can now prove an important property of rational maps from algebraic
surfaces.

Theorem 3. Let X be a nonsingular projective surface and p: X — P™ o
rational map. Then there exists a chain of blowups X,;, — --- = X3 = X
such that the composite rational map ¢ = poogr0---00y,: Xy — P* is
regular; in other words, there is a commutative diagram

Xm
om |

o2l
. X\

X —m— p"
@
_in which the vertical column is a chain of blowups, and the diagonal arrow ¢
is a regular map.

Remark. The assumption that X is projective is used in the proof of Theo-
rem 3 in order to be able to use intersection numbers D; D,. However, the
result itself holds for noncomplete surfaces or for complete nonprojective sur-
faces, and can be proved without difficulty by reducing to the statement of
Theorem 3. '

Proof. By Chap. 11, 3.1, Theorem 3, we know that ¢ only fails to be regular
at a finite number of points; Chap. III, 1.4, Theorem 2 gives a more precise
description of this set, which we now recall. Suppose that ¢ = (fo:--+: fa),
and set

D= hcd(div( fo), ..., div( f,.)) and D; = div(f;) - D.

Then the set of points of irregularity of ¢ is exactly ., Supp D;.
We introduce an invariant d(y) of a rational map ¢ as follows. All the
divisors D; are obviously linearly equivalent. Hence we can set

d(y) = D2,

Let us prove that d(¢) > 0. For this, let A = ()g,...,An) € k™*!, and
define Dy = div (X[, Aifi) — D; obviously Dj is an effective divisor linearly
equivalent to the D;. It is enough to prove that there exists A such that Dy
and Dy have no common components, since then d(ip) = DgDy > 0.
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By construction no curve is a common component of all the D;. Hence
for every irreducible component C C Dy there exists some D; such that
ve(D;) = 0. If g; are local equations for the D; in a neighbourhood of some
point ¢ € C then

vo(Dy) >0 < ZA,’ (g.-‘c) =0.

Therefore the set of A such that vo(Dy) > 0 is a strict vector subspace of
k™*1. A vector space (over an infinite field) is not the union of finitely many
strict vector subspaces, and hence there exists A such that vg(D)) = 0 for
every component C C Dy. Then Dy and D) have no common components
for this A.

If zo € \Supp D; then 2y € Supp D, for every A. Hence d(yp) > 0 if
Supp D; # 0, that s, if © is not regular. If this happens, write 0: X' — X for
the blowup centred at a point zo € [|Supp D;, and set ¢’ = poo: X' — P
We prove that d(¢') < d(ip). Theorem 3 of course follows from this.

We define the multiplicity of any divisor D = Y ;C; at a point £ to be
k = Y Lik;, where k; are the multiplicities of the C; at §. Obviously if D > 0
then k > 0, with ¥ = 0 if and only if { ¢ Supp D. In the same way, we
define the birational transform of D by ¢’(D) = Y lio’(C;); then Theorem 1
remains true for any divisor D, that is, 0*D = ¢/(D) + kL.

We now write v; for the multiplicity of D; at zo and set ¥ = miny;. The
map ¢’ is given by the functions f] = o*(f;), and

div(f]) = o*(div(f;)) = o'(Ds) + (i —v)L + vL + o*(D),

where the divisors D} = o’(D;) + (4 — V)L for i = 0,...,n have no common
components. Choose some i such that v; = v. Then by definition

d(y') = (DY) = (o' (D)™,
Now applying Theorem 2 to the equality o*(D;) = o/(D;) + vL gives
(¢'(Dy)? = (0*(Ds) - vL)® = (0*(Dy))* - v = D? - 02,

and hence d(’) = d(p) — v2. This proves Theorem 3.

The simplest example of Theorem 3 is the map (occurring in the definition
of the projective line) f: A2 — P! given by f(z,y) = (z : y), which is not
regular at £ = (0,0). Substituting 3.1, (1) we see that at points of ¢=*(¢)
with tg # 0 we have f(z,y) = (1 : v), and hence f o ¢ is regular.
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3.4. Factorisation as a Chain of Blowups

We now have all we need for the proof of the main result on birational maps
of surfaces.

Theorem 4. Let ¢p: X — Y be a birational map of nonsingular projective
. surfaces. Then there exist a surface Z, surfaces X; and Y; with Xy = X,
Yo=Y, Xy =Y, = Z, and maps

gi: Xi = Xy fori=1,...,k and 1;:Y; =Y, forj=1,...,1

such that each o, and 7; is a blowup, and pogy0---00x =T10---01. In
other words, there is a commutative diagram

Z
. / \ .
4 Ay
X 1 Y1
"y <
X Y
¥

in which the diagonal arrows o; and 7; are blowups.

Theorem 4 is an obvious corollary of Theorem 3 together with the next
result.

Theorem 5. Let p: X — Y be a regular map between nonsingular projective
surfaces which is birational. Then there exists a chain of surfaces and blowups
0i:Yi =Y. fori= 1L,...,k such that Yo =Y, Y = X and

QY=010+-00%.

We precede the proof of Theorem 5 with some general remarks on bira-
tional maps of surfaces.

First of all, for any rational map ¢: X — Y from a nonsingular surface
X to a projective variety Y, it makes sense to talk of the image ¢(C) of a
curve C C X. Indeed, ¢ is regular at all points of C except possibly a finite
set S. Thus by ¢(C) we understand the closure in Y of ¢(C \ S).

Moreover, Chap II, 4.4, Theorem 2 on the existence of exceptional sub-
varieties remains valid in this setup.

Lemma. Let ¢: X — Y be a birational map of nonsingular projective sur-
faces, and suppose that ¢~} is not regular at some point y € Y. Then there
erists a curve C C X such that ¢(C) = y.
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Proof. Consider open sets U C¢ X and V C Y such that p: U — V is
an isomorphism, and let Z be the closure in X x Y of the graph of the
isomorphism ¢: U — V. The projections to X and Y define regular birational
maps p: Z — X and q: Z — Y. Obviously ¢! = pog~!, so that, because
we are assuming that ¢! is irregular at y; the same is true of ¢~*.

We can now apply Chap II, 4.4, Theorem 2 on the existence of exceptional
subvarieties to the regular map q: Z — Y. This theorem shows that there
exists a curve D C Z such that g¢(D) = y. We set p(D) = C and verify
that C satisfies the conclusion of the lemma. We really only need prove that
dim C = 1, that is, dim C = dim D. Now otherwise, p(D) would be a point
z € X, so that p(D) = = and ¢(D) = y would imply D C (z,y) € X xY,
which contradicts that D is a curve. The lemma is proved.

We now proceed to the proof of Theorem 5. Suppose that ¢ is not an
isomorphism, that is, ¢! is not regular at some point y € Y. Consider the
blowup o: Y’ — Y with centre in y and define ¢’: X — Y/ by ¢’ = poo™!
so that the diagram below is commutative:

X '
el ¢ (1)
Y o Y'.

]

Auxiliary notation introduced in the course of the proof is summarised in the
following diagram:
X DZ>3«z
el LN
Y sy «— LCY'.
a

The theorem will be proved if we prove that ¢ is a regular map. Indeed,
from the commutative diagram (1) it then follows that ¢’ maps the subvariety
¢ Hy) to e~ (y) = L = PL. Since ¢’ maps X onto the whole of Y, it follows
that it maps ¢~ !(y) onto the whole of L. Thus not every component of
©~'(y) maps to a point. Therefore, for any y’ € L the number of components
of (¢")~1(y’) is less than the number of components of ¢~1(y). Hence after a
finite number of blowups we arrange that X does not contain any exceptional
subvarieties, that is, our regular map becomes an isomorphism.

It remains to prove that ¢’ is regular. Suppose otherwise. Then by the
lemma, ¢ = (¢')~! maps some curve on Y’ to a point = € X. It follows from
the commutative diagram (1) that this curve can only be L, hence ¢(L) = z.
Now according to Chap. II, 3.1, Theorem 3, there exists a finite subset E C L
such that 1 is regular at all point y € L\ E. Since o(y') = y, it follows from
the commutativity of (1) that ¢(z) = y.

We now prove that

dzp: GX,: — GY,y (2)
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is an isomorphism. For this, it is enough to prove that it is onto. Suppose
that dz¢(Ox,z) C I C Oy, for some line | in the plane Sy, Then from the
commutativity of the diagram (1) it follows that also

dyo(Byy) Cl 3)

for every point y' € L\ E. However, this contradicts the most elementary
property of blowups. Indeed, suppose that C is a nonsingular curve on Y
with y € C and ¢,y # |, for example, the curve given by au + fv = 0 where
u and v are local parameters at y. Then by 3.1, (2) we have a(¢’'(C)) = C,
where o’(C) intersects L in one point y’ which has coordinates (=8 : a) on
L, and ¢'(C) is nonsingular with ¢: ¢/(C) — C an isomorphism. We can
choose a and 8 so that y' ¢ E and then already dy,0(65/(c)4) € L.

The fact that (2) is an isomorphism contradicts the assumption that ¢!
is irregular at y. Indeed, using Chap II, 4.4, Theorem 2 on the existence
of exceptional subvarieties, we find a curve Z ¢ X with Z 3 z such that
¢(Z) = y. Then Oz, C Bx,; (recall that the tangent space is defined even
if z is a singular point of Z). Since ¢(Z) = y, we have d;¢(6z:) = 0, and
hence (2) has a kernel. This contradiction proves Theorem 5.

3.5. Remarks and Examples

Consider a regular birational map f: X — Y between nonsingular projective
surfaces. Suppose that f~! fails to be regular at only one point 1 € Y, and
that the curve C = f~!(n) is irreducible. By Theorem 5, f is a composite
f = o1 0 +- 00, of blowups, and since every blowup gives rise to its own
exceptional curve, C is irreducible only if k = 1, that is, f is itself a blowup.
Then C is the curve L, concerning which we proved in 3.1~2 that

L=P' and L?=-1 1)

Such a curve is called'® a —1-curve.

The converse statement is also true: if a nonsingular projective surface X
contains a —1-curve C, then there exists a regular birational map f: X - Y
such that Y is nonsingular, f(C) =n €Y, and f coincides with the blowup
of n € Y. Thus the conditions (1) are necessary and sufficient for the curve C
to be contracted to a point in the sense just described. This result was proved
by Castelnuovo, and is known as Castelnuovo’s contractibility criterion. We
will not give the proof, which can be found, for example, in Shafarevich [67),
Chap. II or Hartshorne [35), Chap. V, §5.

Ezample The standard quadratic transformation. We conclude this section
with a construction in a simple example of a factorisation of a birational

16__1-curves are called ezceptional curves of the first kind in the older literature.
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map into blowups, as in the conclusion of Theorem 4. This example is the
birational map f from P? to itself given by

f(@o:z:22) = (yo:v1:12),
where yo = 71T2, y1 = ToZ2, Y2 = ToZ1;

(2)

it is called the standard quadratic transformation. _

We consider f as a birational map between two copies P? and P2 of the
projective plane, the first with homogeneous coordinates (zo : z; : x2), and
the second (yo : y1 : ¥2). Obviously f fails to be regular at the 3 points

EO = (1,07 0): El = (01 110): £2 = (070’1)'

According to Theorem 3, we must start by performing the blowups oy, oy,
o2 in the three points &, €1, £3. We arrive at a surface X with a regular
map ¢ = 02001000: X — P2. We now prove that already the map ¢ =
fop: X — P? is regular. Indeed, ¥ is regular at a point z if p(2) # &;. At
points { € o7 '(€o) the map f oo, is already regular. To verify this, it is
enough to set T = x1/To, ¥y = T2/To and substitute 3.1, (1) in (2). We see
that '

fLz,y)=(Ty:z:y) = (wv:uww:u)=(uww:v:1). (3)

Since o3 and o, both induce isomorphisms in a neighbourhood of ¢, also ¥
is regular at points z for which p(2) = &. The same holds for &; and &,

By Theorem 4, ¢ is a composite of blowups ¢ = 11 0--- o 7. We now
determine which curves C C X can map to points under 1. Obviously any
such curve is either one of the M} = ¢;"1(¢;) for4 = 0, 1 or 2, or the birational
transform in X of a curve L C P2 mapped to a point by f. It is easy to see
that f defines an isomorphism of P2\ (LoU L1 UL3) and P2\ (MoU MU M3)
where L, is the line z; = 0 in P? and M; the line y; = 0 in P2. Hence the only
curves ¥ can contract to a point are M}, M{, M3, Ly, L}, L3, where the L]
are the birational transform in X of the lines L;. But we see from (3) that
My}, given by the local equation u = 0, maps onto the whole curve M, given
by yo = 0. In the same way, M/ maps onto M; for i = 1,2. Thus the only
curves 9 can contract are the L. Moreover, ¥~ ! is not regular at the points
m=(1:0:0),7 =(0:1:0), 7 =(0:0:1), since otherwise f~! would be
regular at one of them, and f~! is given by the same formulas as f, as one
sees from (2). Thus on the one hand, a factorisation ¢ = rpo---o7; of ¢ can
have at most 3 blowups as factors, and on the other hand, it must include
the blowups at ng, m: and n2. We deduce that

f=1-201'101'00061001_10051.
It is easy to visualise the conﬁguratiori of the curves M}, M{, M}, Lg, L},
5 on the surface X; see Figure 18, where the arrows indicate which curves
contract to which points.
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Figure 18. The Standard Quadratic Transformation

Of course, the standard quadratic transformation depends on the choice
of the coordinate system in P2, or, what is the same thing, the choice of
£, €1,&2. Composing different standard quadratic transformations gives dif-
ferent birational maps of the plane to itself. M. Noether proved the theorem
that any birational maps of the plane to itself can be written as a composite
of quadratic transformations and projective linear transformations. We will
not give the proof of this theorem, which is very delicate; it can be found
in Shafarevich [67], Chap. V. A description of the relations between these
generators has been obtained comparatively recently: see Gizatullin [29] and

- Iskovskikh [40).

Exercises to §3

1. For every integer k (positive, negative or 0), construct a nonsingular projective
surface X and a curve C on it with C? = k. [Hint: Construct X by blowing up a
number of points on P2

2. Let X be a nonsingular projective surface, and C,,C; two curves on X . Suppose
that £ € C1NC; is a nonsingular point of C) and Cs. Let o: Y — X be the blowup
of z and Cf, C4 the birational transforms of C1, Cz. Prove that C; and Cj3 intersect
at a point y € o~ '(z) if and only if Ci and C; are tangent at x. Moreover, then
o~ (z)NC{NC5 = y is a single point, and the order of tangency of C; and C3 and
y is 1 less than that of C) and C: at z.

3. Suppose that f: P? — P! is given by
f(xo:z1:32) = (P(xo,xx,x'z) : Q(xo,xhx'z))y

where P and Q are forms of degree n. How many blowups does one have to perform
to get a surface ¢: X — P? such that fog: X — P! is regular?
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4. Let X C P® be a nonsingular surface of degree 2 and f: X — P? the birational
map consisting of projection from a point z € X. Factor f as a composite of
blowups.

5. Let f: P> — [P? be the birational map given in inhomogeneous coordinates by
z' =z, y =y+ % Factor f as a composite of blowups.

6. Let L C P? be a line, and z, y two points of L. Write X — P? for the composite
of the blowups at  and y, and L' for the birational transform of L. Prove that
(L')? = ~1. According to Castelnuovo’s contractibility theorem stated in 3.5, there
is a regular map f: X — Y that is birational and contracts L to a point. Construct
f in the given special case. [Hint: Try to find it among the preceding exercises.|

7. Let f: X — Y be a birational regular map of nonsingular n-dimensional projec-
tive varieties. Prove that f*(Dy)--- f*(Dn) = Dy :--Dy, for Dy,...,Dy € DivY,

8. Let 0:' X — Y be a blowup with centre in a point y € Y and I' = 0™ '(y). For
D, € Div(Y), and D, ..., Dn_1 € Div(X), prove that 6" (Dy}D;--- Dn_1I" = 0.

9. In the notation of Ex. 7-8, calculate I'" for any n > 1.

10. Prove that if a curve of degree n passes through k of the points &g, &1, £2 (for
k = 0, 1 or 2) defining the standard quadratic transformation f (see 3.5, Example),
and is not singular there, then its image under f has degree 2n ~ k.

11. Let ¢ be the transformation of inversion with respect to a circle with centre O
and radius 1, that is, ¢(P) = Q, where P, Q and O are collinear and |OP|-|0Q| = 1.
Taking coordinates with O as the origin, write out the formulas for ¢ in coordinates
z,y and u = z + iy, v = z — iy. Prove that after composing with the reflection
(u,v) — (u,—v), ¥ becomes the standard quadratic transformations defined by O
and the two circular points at infinity. Deduce from this that under inversion circles
through O transform to lines, and other circles to circles.

4. Singularities
4.1. Singular Points of a Curve

Theorem 1. Let C be an irreducible curve on a nonsingular surface X,
then there erists a surface Y and a regular map f: Y — X, such that f
is a composite of blowups Y — X; — ... > X,, — X and the birational
transform C' of C on Y is nonsingular.

Proof. We can consider separately each singularity of C. Indeed, if we can
construct a map f: Y — X for one point x € C, with f a composite of
blowups above = and the birational transform C’ of C on Y nonsingular at
all point of f~1(z), then we can subsequently apply the same argument to
the remaining singular points of C’; the number of these equals the number
of singularities of C outside z.
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Thus let £ € C be a singular point. We blow up z; if some points of the
inverse image of x are singular points of the birational transform of C, we
blow these up too, and so on. We have to prove that this process stops after
finitely many steps.

Write pz(C) for the multiplicity of a singular point z € C;leto: X' — X
be the blowup, C’ the birational transform of C, and L = ¢~}(z). By 3.2,
Corollary 2, pz(C) = C'L. On the other hand, C'L = 3}, ,1y_,(C'L)y,
where the sum takes place over all points ' € C’ with o(z’) = z. Since
(C'L)yr 2 pzr(C'), we get

#z(C)Z Z I‘z’(C’)'

o{z’ )=z

Therefore, if there is more than one point z/, each of them must have multi-
plicity p./(C’) < uz(C), so our process must stop after finitely many steps.
It remains to consider the case when C’ has only one singular point z’ with
a(z') = z, and the same continues to hold after each blowup.

Write @, for the local ring of z € C, and O, for its integral closure in
the field k(C). Then O; is a finite module over Og; this follows because by
Chap. II, 5.2, Theorem 4, z has an affine neighbourhood U for which the
normalisation k[U}¥ of the coordinate ring k[U] is a finite module over k[U].
Suppose that k[U}* = aik[U])+ - -+amk[U]. Then O, = 010z +- -+ @ Ox;
in fact if f € Oy then f* +a;f* ' +.-- + 4, = 0 with a; € O, that is,
a; = b;/c with b;, ¢ € k[U] and ¢(x) 3 0. Then cf is integral over k[U], hence
ef =airi+ -+ QmTy with r; € kU] and f = ayrifec+ -+ + amrm /e

Since a; is in the field of fractions of O, (or even in that of the smaller ring
k[U]), there exists a nonzero element d € O, such that da; € O, for each i,
and hence dO, C O,. It follows from this that @, /@, is a finite dimensional
vector space. In fact its dimension is at most the dimension of the vector space
O, /dO,, which is generated by the m subspaces o;(O,/dO:); but O, /dO,
is finite dimensional, since C is a curve, and so for any function d # 0 there
exists k such that mt C dO;.

Obviously O, C O, after one blowup. Moreover, we now prove that
O, C O,. Indeed, let ': C¥ — C' be the normalisation and (+')~(z') =
{yi}. Then v = g ov': C¥ — C coincides with the normalisation of C and
v(z) = {y:}. Obviously O C (O, so that we will be home if we check
that Oy, = O.. Again, obviously O, C (\O,,. Since v is a finite map,
we can assume that C and CV are affine. If u € (| O,, then all the poles of
u on CY are distinct from the y;, and it follows that there exists a function
v € k[C] such that v(z) # 0 and uv € k[C¥] (for this, it is sufficient that v*(v)
has zeros of sufficiently high degree at each pole of u). Then uv is integral
over k[C], and it follows easily that u is integral over O, that is, u € O,.

Hence £(0;/0;) < £(0;/0;). If £0/Oy) = 0 then O, = O, so
that O, is integrally closed, and then z' is nonsingular and our process has
stopped. It now only remains to prove that £(0./0,) < l(b‘,, /O¢z), since
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then our process must stop after at most £(0,/0O,) steps. But £(0;/0x) =
£(0,/0.) implies that O, = O,. Let u,v be local parameters at T € X, so
that the local parameters at ' € X' are u and t = v/u. Since ¢ restricted to C
is an element of O, from O, = O, it follows that t € O, and m; = (u,v) =
(u,ut) = (u). It follows from this that mz/m2 = (u)/(u?) & O, /(u) = k,
that is, £ € C was already nonsingular. The theorem is proved.

Theorem 1 enables us to define an important characteristic of a singular
point of a curve on a nonsingular surface, its tree of infinitely near points. This
is the diagram consisting of the singular point, the singular points arising out
of it after one blowup, the singular points arising out of these after blowing
them up again, and so on. All these points are said to be infinitely near to
the original point of the curve. We write the multiplicity of each point. Once
we get to a point of multiplicity 1, we don’t carry out any further blowups
there. Some examples are illustrated in Figure 19.

v 1 1 1 1
2 2 2
y2= x4 X} 2_ .5

Figure 19. Resolutions of Some Curve Singularities

The genus of the normalisation of a singular curve lying on a nonsingular
projective surface is expressed in terms of these invariants: for this, by 2.3, (1),
we have to determine how the expression C{C + K) changes on replacing C by
o’(C) and Kx by Kx, where ¢: X’ — X is the blowup of a point z € C of
multiplicity k. According to 3.1, Theorem 1, ¢’(C) = ¢*(C) —kL. To compute
K-, consider a differential form w € £2%(X) such that z ¢ Supp(divw); this
exists by Chap. III, 1.3, Theorem 1 (on moving the support of a divisor away
from a point). Then since o: X'\ L — X \ z is an isomorphism, obviously
div(c*w) = o*(divw) over X'\ L. If z,y are local parameters at z then
w = fdz Ady, where f € O, and f(z) #0. If £ = u, y = uv are as in 3.1,
(1) then ¢*(w) = o*(f)vdu A dv on X, and since 0*(f) 0 on L, we get
div(o*(w)) = o*(divw) + L, that is, Kx = 0" (Kx) + L. Substituting in 2.3,
(1) gives

d'(C)(d'(C) + Kx) = (¢™(C) — kL) (" (C) + 0*(Kx) — (k —1)L)
=C(C + Kx) — k(k - 1).

Now using 4.1, Theorem 1, we get

C(C+Ky)=C(C+Kx)- Y ki(ki—1),
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for the nonsingular curve C c Y, where k; are the multiplicities of all the
infinitely near points. It follows from 2.3, (1) that

4(C) =éC(C+Kx)+1—ZE(L‘2——Q. )

In particular if X = P? and C is a curve of degree n then

g= (n—1)2(n—-2)_zk,-(k,-2—1)

A corollary of (1) that is often used is that since g(C) > 0,

C(C+Kx) 2 -2, (2)

and equality holds if and only if C is nonsingular (that is, all k; = 1), and
9(C) = g(C) =0, so that C = P*.

4.2. Surface Singularities

The theorem on resolution of singularities has been proved for algebraic sur-
faces over a field of arbitrary characteristic; we can suppose that X is normal,
so has only finitely many singular points. Resolution of singularities asserts
that there exists a nonsingular projective surface Y birational to X. Using
the theorem on the resolution of indeterminacies (3.3, Theorem 3), we can
assume given a birational regular map f: ¥ — X. It is often convenient to
consider the situation locally, dropping the assumption that X and Y are
projective, thus replacing them by open subsets U € X and f~1(U) C Y.
Then the map f: Y — X will be proper (see the remark after Chap. I, 5.2,
Theorem 3). It can be shown that Chap. II, 4.4, Theorem 2 remains true
in this case, and f contracts a bunch of projective curves Ci,...,C, C Y
to each singular point £ € X. Moreover, using Castelnuovo’s contractibility
criterion discussed in 3.5, one can prove that Y can be chosen so that there
are no —1-curves among the C;. In this case Y is a minimal resolution of
singularities of X. We will not prove all these assertions, and will not make
use of them: they only serve as motivation for the questions that we now
discuss.

If £ € X is a surface singularity, the bunch of curves Cj,...,C, CY on
the nonsingular surface Y that are contracted by f: Y — X is an important
geometric characteristic of the singularity, and it is interesting to see what
can be said in general about such a bunch of curves.

Theorem 2. Let f: Y — X be a regular map of algebraic surfaces, with
Y nonsingular and Cy,...,C, C Y projective curves that are contracted to
z € X, suppose that f: Y\ (01 u-- -UC,) 2 X\ z is an isomorphism. Then
the matriz of intersection numbers {CiCj} is negative definite.
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Proof. Consider a curve E on Y distinct from all the C; but intersecting
each of them (for example, a hyperplane section of Y); set f(E)=H C X
and choose a function v € O, vanishing along H. Set ¢ = f*(u). Then
divg = 3 m;C; + F, where all the m; > 0 and FC; >0 fori =1,...,r.
Since div g is a principal divisor, if we set D = }_ m;C; then the restriction of
D to each of the Cj satisfies Dle ~ —F|Cj; hence DCj < O0forj=1,...,r.
The theorem now follows from the following result of linear algebra, the proof
of which can be found in the Appendix, §1, Proposition 2.

Proposition. Let M be a Z-module with a scalar product ab € Z defined for
a,b€ M, and ey,...,e, a set of generators of M with e;e; > 0 for i # j;
suppose that there eTists an element d = Y m.e; with m; > 0 such that
de, < 0 fori=1,...,r. Then every nonzero m € M satisfies m® < 0 and
e1,-..,e, is a free basis of M. O

The theorem is proved.

It is interesting to note the analogy between Theorem 2 and the Hodge
index theorem in Chap. IV, 2.4,

If z € X is a surface singularity, the bunch of curves C},. .., C, contracted
to z under the minimal resolution can be drawn as a graph: each curve C;
is represented by a node, and intersecting curves C; and C; are joined by an
edge, marked by the intersection number C;C; if C;C; # 1, and left unmarked
if CiC; = 1 (that is, when C; and Cj intersect transversally at one point};
the node corresponding to C, is marked with C2.

Interesting examples of singularities are provided by the quotients A%/G
of the plane by a finite group G of linear transformations. Recall that these
are normal varieties (Chap. I, 2.3, Example 11 and 5.3, Example 1), and
points which are images of z € A? for which g(z) # z for all ¢ # G are
nonsingular (Chap. II, 2.1, Example).

Suppose for example that G = (g) is a cyclic group of order n generated
by ¢{z,y) = (ex,€%), where ¢ is a primitive nth root of 1 and g is coprime
to n. It can be shown that after excluding certain uninteresting cases, every
action of a cyclic group reduces to this form. In this case G acts freely on
A2\ (0,0), and hence A%/G has a single singularity, the image of (0,0) € AZ.
This is called a singularity of type (n, q).

For example, if ¢ = —1, the ring of invariants k[z,y|® is generated by
u =z, v =y" and w = zy, with the single relation

uv = w". 1)

This is the equation of the surface A%/G.

For g = 1 the generators of k[z,y]" are u; = z'y"~* for i = 0,...,n. The
relations holding between these are the same as those between the coordinates
of the Veronese curve in Chap. I, 5.4. Thus in this case A2/G is the cone over
the Veronese curve.
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It is not hard to verify that the resolution graph corresponding to an
arbitrary singularity of type (n,¢) has the form of a chain

—€y —€2 —€n-1 —€n
e .- o .

The curves C; and C;,, intersect transversally, and C;? = —e;, where the
e; > 2, and are defined by an expansion which is very close to a continued
fraction expansion of n/q:

=e1—

<13

1

€3 — ...

ez —
See for example de la Harpe and Siegfried [22] for the proof.

4.3. Du Val Singularities

An extremely important class of singularities is defined by the following con-
dition.

Definition. A point £ € X of a normal surface is called a Du Val singularity
if'” there exists a minimal resolution f: Y — X contracting curves Cy,...,Cr
to x, such that Ky C; = 0 for all 1, where Ky is the canonical class of Y.

The meaning of the Du Val singularities, as formulated by Du Val himself,
is that they “do not affect the canonical class”. For example, it is easy to see
that for a surface X C P? of degree n with only Du Val singularities, the
invariant A2 = dim £2?[Y] of its minimal resolution Y is the same as that of
a nonsingular surface of degree n. This is a sharp contrast between surfaces
and curves, for which, according to 4.1, (1), any singularity decreases the
genus of the normalisation of the curve.

The types of resolution graphs corresponding to Du Val singularities
z € X can be completely determined. Indeed, if C; is one of the irreducible
projective curves contracted to x by f: Y — X then Ky C; =0, and accord-
ing to the inequality 4.1, (2),

C2> -2

Because C;?> < 0, and C;2 # —1 by minimality of the resolution, it follows
that C;2 = —~2 and C; & P'. From the fact that (C; + C;)® < 0 for i # j
it now follows that C;C; < 1, that is, C; and Cj either do not intersect, or
intersect transversally in one point.

YThere are many alternative names in the literature: Kleinian singularities, rational
double points, simple singularities, etc.
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The purely algebraic question of classifying Z-modules Ze; + --- + Ze,
having a negative definite scalar product satisfying e;e; > 0 and €? = —2 for
i,7 =1,...,7 occurs in a number of problems. It first appeared in connection
with the classification of simple Lie algebras in the theory of root systems
(see Bourbaki [17]'). The answer is as follows: the basis ey, ...,e, breaks up
into disjoint “connected components” with e;e; = 0 for e; and e; belong-
ing to different components, and the module decomposes as a direct sum of
submodules corresponding to the different components. Thus the problem re-
duces to describing the “connected” modules, which can have only the graphs
of Figure 20 (each vertex is marked with —2):

A (n is the number of vertexes) D

Figure 20. The Dynkin Diagrams A.,., Dn, Es, Er and Eg

It can be shown that the set of curves that appear on resolving a sin-
gularity is always connected. For k = C we will prove this in Chapter VII,
2.5, Theorem 2. Thus the Du Val singularities correspond only to graphs of
type An, Dy, Eg, E7 atd Eg. It can be proved that a Du Val singularity is
determined up to formal analytic equivalence by its graph. They can be given
by equations

Ap: 22442421 =0 forn>1,
Dn: 22 +y%2+2"1=0 forn>4,
Es: z2+y3+24=0,
Er: ?2+yd 4y =0,
Es: z2+yd+28=0.

One of the realisations of these singularities is as follows:

Theorem 3. Suppose that chark = 0 and that G i3 a finite group of linear
. transformations of the plane A2, withdet g = 1 for all g € G. Then the image
of the origin 0 € A? is a Du Val singularity yo € A%/G.

The proof uses the following construction, which we discuss in complete
generality in Chapter V, 4.1. Let X, Y and S be three varieties,and f: X — §
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and h: Y — S regular maps. The fibre product of X and Y over S is the
closed subset in X x Y consisting of pairs (x,y) for which f(x) = h(y); it
is denoted by X xgY. The maps f: X — S and h: Y — S define a map
X xsY — S, and the projections X xY — X and X xY — Y define
projections X xgY — X and X xgY =Y.

Let h: X — A?/G = S be the minimal resolution of the singularity
o € A%/G. Consider the fibre product Z = A? xg X and its normalisation
Z¥. (Here we are using the existence of the normalisation, proved in Chap. II,
5.2, Theorem 4 and 5.3, Theorem 6 only for affine varieties and curves; in
Chap. VI, 1.1, the normalisation will be constructed in sufficient generality
for our present purposes.) We have the diagram of maps

v 4 X

rl lh
Az? Az/G.

Consider the differential form w = dz A dy on A%, From the condition
det g = 1 for all g € G it follows that g*(w) = w. Write w in the form hdsAdt
with s, t € k(A2/G) and h € k(A?). Then from the fact that ¢g*(w) = w it
follows that g*(h) = h; writing h in the form P/Q with P, Q € k[A?] we see

e h=(P I} ¢@) / (Ils@),

and it follows that h € k(A?/G). Thus w = f*(wp) with wp € 2%(A%/G).
Write w; = h*(wg) and & = ¢*(w1) = p*(w). From the fact that & = p*(w) it
follows that @ is regular on the set of nonsingular points of the surface ZV.
On the other hand, for any maps f: X — S and h: Y — § it is easy to check
that if f is finite then so is X xgY — X. Thus Z — X is finite, and hence
also Z¥ — X. We use the following fact: '

Lemma. If p: U — V is a finite map of nonsingular surfaces and w1 a
rational differential 2-form on V such that ¢*(w;) is regular, then w is also
regular.

Proof of Theorem 8. We leave the proof of the lemma until after that of
Theorem 3. It follows from the lemma that w; is regular outside the image
of the finite set of singular points of Z¥, and hence is regular on the whole
of X. Let us determine the divisor div{w;) on X. At any point o € A? with
a # (0,0) we can find local parameters of the form f*(u), f*(v) (see Chap. II,
2.1, Example), and it follows that wp is regular and nonzero at all points
y # yo € A%/G, and these points are nonsingular. In exactly the same way,
h is an isomorphism on X \ f~!(yo), and w; is nonzero on X \ f~*(y). Thus
D = div(w;) = ¥ rC; with r; > 0; obviously D ~ Kx. From the inequality
4.1, (2), and the minimality of the resolution, we get DC; = KxC; > 0. But
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then D? = 3" 7, DC; > 0, which by 4.1, Theorem 1 is only possible if DC; = 0
for all <. Thus KxC; = 0, that is, yp is a Du Val singularity. The theorem is
proved.

Proof of the lemma. It is enough to prove that if vo(div(w;)) < O for any
irreducible curve C C V then also ve/(* div(w,)) < 0 for any component C’
of the inverse image of C. This can be checked on any open subset V/ C V
meeting C.

What makes the problem nontrivial is that ¢ (dw(wl)) # div(p*(w1))
in general. However, if the differential do: By« = Oy w(a) Of ¥ at a point
a € U is an isomorphism on the tangent spaces then the inverse images

©*(v1), ¢*(v2) of local parameters vy, vz at p(a) are local parameters at a.
Thus if w; = fduy A dvy then ©*(w)) = p*(f)dy* (1) A dp*(v2), and in an
neighbourhood of a this has divisor div(p*(f)) = ¢*(div(f)) = " (div(w1)).
Thus we need only consider curves C' C U such that dyy is degenerate
at every point a € C’. Set »(C’) = C. Since the map : C' — C is an
isomorphism of the tangent spaces over an open set, we can assume that at
o the local parameter along C' is p*(v1), where vy, v, are local parameters
at (a), where v2 = 0 is a local equation of C and v; restricts to a local
parameter along C. Set w = v; and let (w, ) be local parameters at «, with
t a local equation of C'. Suppose *(v2) = t°h where vc/(h) = 0, and set
wy, = fdv; Adve. Then

0 (w1) = ¢* (f)dw A d(¢* (1)) = ©" (f) (ete“hdw Adt + tdw A dh),

and it follows that ve (p*(div(w1))) = ver (p*(div(f))) + e — 1. But if C
is in the divisor of poles of w; then ve(f) = —! with I > 0, and then
ver (¢"(div(wy))) = —le+e—1, which is also < 0. In other words, an effective
term gets added on to the divisor ¢*(div(w;)), but not enough to compensate
for the pole that arises. The lemma is proved.

The groups G appearing in Theorem 3 are well known. Write SL(2, k)
for the group of linear transformations with determinant 1, and consider the
homomorphism 7: SL(2,k) — PSL(2,k) to the group of projective trans-
formations of P!; the kernel of 7 is £1. Then the finite subgroups G C SL(2, k)
are the following: either the cyclic group of order n consisting of transform-
ations (z,y) — (ex,e™'y) for €® = 1, or the binary dihedral group of order
4n, generated by (z,y) — (ez,e7!y) for €2 = 1, and (x,y) — (-9, z), or the
binary tetrahedral, binary octahedral or binary icosahedral groups, that is,
the inverse image under © of the subgroups of PSL(2, k) isomorphism to the
tetrahedral, octahedral or icosahedral groups. These groups have order n, 4n,
24, 48 and 120 respectively (see for example Springer [72]). It is not hard to
find the corresponding Du Val singularities, which turn out to be A,_; for
the cyclic group of order n, Dy 42 for the binary dihedral group of order 4n,
and Eg, E7 and Ejy for the binary tetrahedral, binary octahedral or binary
icosahedral groups (see de ia Harpe and Siegfried [22]).
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4.4, Degenerationiof Curves

Let X be a nonsingular projective irreducible surface and f: X — S a regular
map to a curve S; fix some point sy € S, and assume that for every s € S with
s # sp, the fibre f~1(s) is a nonsingular irreducible curve. We can consider
{f~*(8) | s € S\ s0} 8s a family of nonsingular curves, and f~!(sq) es a
degeneration of this. By the Castelnuovo contractibility criterion mentioned
in 3.5, any —1-curve among the components of f~(sg) can be contracted
to a point without affecting the nonsingularity of X. Hence we assume in
what follows that there are no such components. Moreover, it can be proved
that f~1(so) is connected, that is, cannot be written as a union of two closed
disjoint curves. In the case k = C this will be proved in Chap. VII, 2.4,
Theorem 2.

Theorem 4. Under the above assumptions, consider the divisor so on S
consisting of one point, and suppose that its inverse image f*(so) decomposes
as f*(so) = X riCi, where the C; are irreducible components and r; > 0.
Then any divisor D = 3 l;C; satisfies D?* < 0, with D? = 0 if and only if D
is proportional to 3 r;C;. :

Proof. Obviously ¥ 7,C; = f*(se) ~ f*(4), where 4 is a divisor on C not
containing so. Hence the restriction to any component C; of these divisors
satisfies f‘(so)lci ~ f‘(A)ICi = 0. It follows from this that f*(s0)C; = 0,

that is (3 r:C;)B = 0 for every B = Y I;,C;. In particular (f‘(so))2 = 0.
Theorem 4 now follows from the following result of linear algebra proved in
Appendix, §1, Proposition 3:

Proposition. Let M be a free Z-module with a scalar product ab € Z for a,
b € M. Suppose that M has a basis ey, ..., e, salisfying e;e; > 0 for each
i # j, and that the {e;} cannot be split up into two components with e;e; = 0
for e, e; in different components; assume that there erists an element d =
S lie; with I; > 0 such that de; = 0 for i = 1,...,r. Then everym € M
satisfies m? < 0, with equality only if m is proportional to d. 0O

Theorem 4 is proved.

It is interesting to note that Theorem 4 occupies an intermediate position
between the Hodge index theorem of 2.4, and 4.2, Theorem 2: the curves
considered in Theorem 4 are contained in a fibre of amap f: X - C toa
curve C, those of Theorem 2 in a fibre of a map f: X — Y to a surface Y,
and those of the Hodge index theorem in a fibre of amap f: X — 2z to a
point z.

We now study the simplest examples of the situation described in Theo-
rem 4. If the genus of the curves f*(s) for s # 8¢ is 0, that is, if f*(s) = P!
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then under the above assumption one can show that there is no degeneration,
that is, the curve f~!(so) is also nonsingular and isomorphic to P!. See, for
example, Shafarevich [67], Chap. V or Griffiths and Harris [31]}, IV 5.

Next in order of difficulty is the case when the curves f~1(s) for s # s¢
have genus 1, that is, they are isomorphic to nonsingular plane cubic curves.
Consider the pencil X of elliptic curves of Chap. 11, 6.4, Exampie 2 given by
the equation

€360 = & +a(t)61€2 + b(t)&3

in P2x A!. In the affine part A%xA® this equation is y*> = x3+a(t)z+b(t). The
fibre of f: X — Al over a point ¢ € A! will be nonsingular when A(c) # 0,
where A = 4a3 + 27b%. We suppose that A does not vanish identically on
Al, but that A(0) = 0, and study the fibre f~1(0). In order to work with
a projective surface we consider the closure of X in P2 x P! O P? x Al.
The surface we obtain is in general singular: points of a fibre f~!(c) will be
nonsingular if A(c) # 0, but when A(c) = 0 this will only happen if c is a
simple root of A (see Chap. II, 6.4, Example 2). We consider the minimal
resolution p: Y — X, which maps to P! by g = foyp:Y — P!; here at a
point such that A(c) # 0, the fibre of g is the same as that of the original
pencil f.

On Y, consider the differential 2-form w = y~'dx A dt. One sees easily
that above points ¢ € A! where A(c) # 0, this form is regular and nowhere
vanishing; this comes from the fact that the 1-form y~'dr is regular and
nowhere vanishing on the curve f~1(c). It follows from this that the canonical
class Ky contains a divisor consisting only of components of fibres. Suppose
that g*(0) = 3" r;C;, where the C; are components of the fibre g7*(0) and
r; > 0. We write Ky in the form Ky = Y n;C; + D, where D consists of
components of fibres other than g=1(0). Since g*(0) ~ ¢*(c) for ¢ # 0, we can
add in a muitiple of g*(0) — g*(c) to arrange that all n; > 0. Since all fibres
g"(c) are linearly equivalent, ¢*(¢)Ky = 0. We consider two cases.

Case A. g~!(0) is an irreducible curve C. Since in this case C* = 0 and
KyC =0, from 4.1, (1) and the fact that g(C) > 0 we get that

that is, § equals 0 or 1. If § = 0 then C is a nonsingular curve. If § = 1 then
C has just one singularity of multiplicity 2 which is resolved by one blowup.
It follows that the singular point is formally analytically equivalent to the
singularity y? = x2 or y? = 23 (see Chap. II, §3, Ex. 12). These are exactly
the types of singularities that can appear on irreducible plane cubics.

Case B. g~1(0) is reducible. Then Theorem 4 implies that any component C;
of the fibre satisfies C;? < 0. We write Ky in the form Ky =} n;C;+D with
all the n; > 0 and Supp D disjoint from g~1(0). Then if (3" n;C;)? < 0 we
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would have Ky C; < 0 for at least one component C;. But then, by the same
argument as in 4.5, the inequality 4.1, (1) implies that C;2 = —1, g(C;) =0
and k; = 0, so that C; is a —1-curve, and we are assuming that there are
no such components in fibres. Hence (3 n;C;)? = 0, and so it follows from
Theorem 4 that Y n;C; is proportional to the fibre f*(0), and so Ky C; = 0.
Now 4.1, (1) gives that C;2 = -2, ¢(C;) = 0, k; = 0, in other words, all the
components of fibres are isomorphic to P! and have C;2 = ~2.

If the fibre has just two components C; and C; and g*(0) = n,C) + n2C;
then (C1 + C3)% < 0 gives C1C2 < 2, and (n;C) 4 n2C2)? = 0 implies
that n,% + ng? = n;nyCyCy, which is only possible if C;C; = 2. The two
components can intersect transversally in 2 points or have a point of tangency.

If the fibre has more than two components, then (C; + C;)? < 0 implies
that C;C; = 0 or 1. Thus the curves C; and C; are either disjoint, or they
meet transversally. We draw the system of curves Cy, ..., C, as a graph with
the same conventions as for the resolution of isolated singularities.

We have seen that these define a basis of the Z-module ®ZC; satisfying
the assumptions of Theorem 4, and the additions condition C? = —2. All such
Z-modules have been found in connection with root systems (see Bourbaki
{17]); their graphs are as follows:

< T

{the number of veniexesis n+ 1)

E, E,

Figure 21. The Extended Dynkin Diagrams .Z,., 13,., I:js, E7 and Ea

The relation with the theory of Du Val singularities is as follows. Suppose
that the elliptic pencil is given by the equation

y? =z +a(t)x + b(t), (1)

where a(t) and b(t) are polynomials. We will assume that a and b are not
simultaneously divisible by a 4th and 6th power of any polynomial ¢(t), since
in that case one could get rid of the factors by means of the birational trans-
formation y = y1¢®, = x,¢%. Then the surface given by (1) has a Du Val
singularity on every fibre f ~1(c) with A(c) = 0, and the fibre of the nonsingu-
lar surface consists of the curves appearing in the minimal resolution of this
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singularity, together with the birational transform of the fibre. A singularity
of type A, gives a fibre of type A,, D, 2 fibre of type D,, and Eg, E;, Eg a
fibre of type Eg, E7, Es.

Exercises to §4

1. Find the graph of infinitely near points for the curve singularity y% = z™.

2. Generalise the notion of class (see Chap. lI1, §6, Ex. 15) to singular plane curves.
Prove that the class of a plane projective curve of degree n with d ordinary double
points is n(n - 1) — d.

3. What are the singularities of a curve lying on a nonsingular surface that can be
resolved by a single blowup? Give a characterisation of these in terms of the local
equation of the curve, or more precisely, in terms of all its terms of degree r and
r + 1, where r is the multiplicity of the singularity.

4. Prove that an irreducible plane curve C of degree n satisfies 3 ri(r; ~ 1) <
(n— 1)(n ~ 2), where r; are the multiplicities of the singular points. What happens
in case of equality?

5. Find the resolution graph corresponding to the Du Val singularities A%/G of
type (n,—1); for this, embed A?/G in affine 3-space A®, and use a sequence of
blowups of (0,0,0) and in the singularities of the variety arising after the blowup.

Do the same for the quotient singularity A%/G where G C SL(2, C) is the binary
dihedral group of order 4n, generated by

a= (8 691> and B = (_01 é),
where £ = exp(2mi/2n).

6. Suppose that X is a nonsingular projective surface such that, for some n > 0,
the rational map p corresponding to the class nKx is regular and a birational
embedding with normal image. Prove that ¢{X) has only Du Val singularities.

7. Find all the types of degenerate fibres of a pencil of elliptic curves in Weierstrass
normal form for which A = 4a3+27b% has a double root at the point of degeneration.

8. Resolve the singularity of the surface y° = z° + at?z + %, where a, 8 € k and
4a® + 276% # 0. For this, blow up the ambient space at (0,0,0), then again at the
new singular points, and so on. Verify that the singularity is a Du Val singularity
of type Dy, and that the singular fibre of the pencil of elliptic curves arising after
resolving is of type Dj.



Algebraic Appendix

1. Linear and Bilinear Algebra

Recall that a scalar product on an Abelian group M with values in an Abelian
group B is a function (a,b) for a, b € M with values in B satisfying the
conditions

(b» a’) = (a,b), (1)

(a1 + az,b) = (a1,b) + (a2, d). (2)

Proposition 1. Let M be an arbitrary Abelian group and B an Abelian
group in which division by 2 is possible and unique. A function f(a) on M

with values in B can be expressed as f(a) = (a,a) for some scalar product
(a,b) if and only if

fla+8)+ f(a—b) =2(f(a) + £(2)). 3)

Proof. If f(e) = (a,a) then (3) follows at once from (1) and (2). Assume (3),
and set

(a,8) = 3(Fla-+ 1)~ f(a) ~ £(8))- ()
Then (1) is obvious and (2) is equivalent to
(a+b,¢) — (a,¢) — (b,c) = 0. 5)
We write 1(a,b,¢) for the left-hand side of (5). It follows from (4) that
20(0,b,¢) = f(a+b+6)— fla+b) — fla+c) = Fb-+ )+ £(@)+ F(5) + F(O)

so that y(a, b,c) is a symmetric expression in a, b and c. Applying (3) with
¢ = b = 0 implies that f(0) = 0, and with ¢ = 0 that f(-b) = f(b).
Now from (3) and (4) we deduce that (a, —b) = —(a, b}, and so in view of (1),
(—a,b) = —(a, b). Putting this all together gives ¥(a, b, —c) = —9(a,b,¢c), and
the same equality for a and b by symmetry. But (5) also gives ¢(—a, —b,c) =
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—y(a, b, c), whereas we have just proved that ¥(—a, —b,¢) = ¥(a, b, c). Hence
¥(a, b, ¢) = 0. The proposition is proved.

Proposition 2. Let M be a Z-module having a scalar product (a,b) € Z for
a, b € M, and suppose that eq,...,e, is a set of generators of M satisfying
(eire;) > 0 for i # j. Assume that there exists an element d = Y |_, mie;
withm; > 0 and (d,e;) <0 fori=1,...,r. Then (m,m) < 0 for all nonzero
m € M, and ey, ..., e, are linearly independent in M.

Proof. Write A for the symmetric 7 x r matrix with entries a;; = (e;,¢;),
and define a scalar product ¢ on R™ by p(z,y) = ¥ aijz:y;. It is enough to
prove that ¢(z, ) < 0 for all nonzero x € R”; because then the map Z™ — M
taking the basis element f; = (0,...,1,...,0) to e; is an isometry, hence an
isomorphism, and so ey, ..., e, are linearly independent in M.

The function ¢(z,x)/|z|? on R™ \ 0 achieves it supremum A because the
unit sphere S™=! is compact; moreover, it is easy to see that

{so(u, u)} _ ¢(z,3)

A= 30U el 2?

0#u€ER™

holds if and only if z is a nonzero eigenvector of A belonging to the maximum
eigenvalue A, so that Az = Az. Now because a;; > 0 for i # j, we can
assume that the coordinates z; of z = (x,,...,Z,) are all > 0; for p(z,z) =
S aimiT; < 3 aizillzil = ¢(y, y), where y = (|z4],..., |z-|).

Since « is an eigenvector of A, we have

A Z ;m; = Zaij:c,-mj = Z go(ei, ej):t:,-mj (*)
i i i

for any m = (my,...,m,) € R". We apply this to m = (m,,...,m,) € Z,
where d = 3~ m;e; is the element given in the assumption. Then the right-
hand side of () equals Y zi¢(e;,d), which is negative since x; > 0 and
¢(ei,d) < 0. Finally, 3=, x;m; > 0 on the left-hand side of (+), and therefore
A < 0; thus the matrix A has maximum eigenvalue A < 0, and it follows that
it is negative definite.

Proposition 3. Let M be a Z-module having a scalar product (a,b) € Z for
a, b € M, and suppose that ey, ... e, is a set of generators of M satisfying
(e e5) > 0 for i # j. Assume that there exists an elementd = 3", _, lLie; with
l; >0 and (d,e;) =0 fori=1,...,r. Then (m,m) <0 for allm € M. If
in addition the elements ey, ..., e, cannot be partitioned into two components
in such a way that (e;,e;) = 0 for e; and e; in different components then
(m, m) =0 only for m proportional to d.

Proof. The proof is almost the same as for Proposition 2. Arguing as there,
we find that the matrix A has maximum eigenvalue A = 0, which proves that
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w(z,z) < 0 for all £ € R"; and moreover, ¢(z,z) = 0 for z € R” only if
Az = 0. Suppose that there exist two linearly independent vectors z{!) and
z(? € R" with p(z®,z()) = 0, hence Az() = 0. Then there is a nonzero
linear combination z of z(1) and z(?) which has some zero coefficients.

As in the proof of Proposition 2, passing to the vector y = (|21}, ..., |zr|),
we can again assume that all the coefficients of z are > 0, some = 0; and
z still satisfies Ax = 0, that is, p(z, f;) = 0 for i = 1,...,r, where f; =
(0,...,1,...,0) € R" is the standard basis. Suppose that z = Y_;_, z.f; with
z; > 0 and s < r. Then for j > s we have 0 = (z, f;) = S.i_, ziw(fi, Fi),
and since @(fi, f;) = 0 for all i and j and z; > 0 for 1 < s it follows that
(eirej) = @(fi, fj) =0 for i < s and j > s. This partitions the set of vectors
{e1,..-,er} into two components {ey,...,e,} and {es41,...,€r} consisting
of pairwise orthogonal vectors. The proposition is proved.

2. Polynomials

Proposition 1. Let a, € Q be ¢ sequence of numbers, and suppose that there
ezists a polynomial g(T") € Q[T] such that any1—an = g(n) for all sufficiently
large n. Then there ezists a polynomial f(T) € Q[T such that a,= f(n) for
all sufficiently large n.

Proof. For any g(T) € Q[T), there exists a polynomial A(T) € Q[T] such

that A(T + 1) — A(T) = g(T). This assertion can be proved by induction

on n = degg; for if g has leading term equal to aT™ then setting ho(T") =

a/(n+1)T™*1, we find that ho(T +1)—ho(T") — g(T) has degree < n, and then

we can use induction. Note that h is determined up to an additive constant.
For any choice of the polynomial h we get ‘

Qny1 — @n = h(n + 1) — h(n), thatis, h(n+1)—ans1 =h(n)—an
for all sufficiently large n, that is, h(n) — a, = ¢. The polynomial f = h — ¢
satisfies the requirements of the proposition. The proposition is proved.

3. Quasilinear Maps

Let L be a vector space over a field K and : L — L a map. We say that
@ is quasilinear if p(z + y) = p(z) + p(y) for z, y € L, and there exists an
automorphism g of K such that

plaz) = gla)p(z) foralla€ K and z € L;

then we say that g is the automorphism of K associated with .

Proposition 1. Let L be a finite dimensional vector space over a field K,
and G a finite group of quasilinear maps of L. Assume that every element
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e # ¢ € G has associated automorphism g # idx. Then L has a basis
consisting of elements invariant under G.

Remark. Obviously, in this basis, each map in G has the identity matrix; this
does not mean, of course, that it is the identity map: it acts on coordinates
by the corresponding automorphism of K.

We start with a well-known lemma.
Lemma. Any set {g1,...,9n} of distinct field homomorphism g;: K — K

is linearly independent over K; that is, there does not exist any nontrivial
relation of the form

n
S Ag)=0 forollgeK (1)
i=1
with \; € K.
In other words, there exist oy,..., 0, € K such that
det|gi(a;)] # 0. (2)

Proof of the lemma. Among all relations of the form (1), choose one with
the minimal number of nonzero coefficients \;. There are obviously at least
two such nonzero coefficients, say A; # 0 and A\x # 0 with j # k. Since by
assumption g; # gi there exists & € K such that g;(a) # gk(c). Substituting
af for £ in (1) gives

n
> Aigil@)gi(€) =0 forall (€ K. (3)
i=1
Subtracting g;(c) times (1) from (3) gives a relation

n

3 Mlgi(a) - gj(a))es(e) =0, (4)

i=1
in which g;(£) has coefficient 0, but the coefficient gi(€) is

Me(gr(e) = gj(@)) # 0.

This contradicts the minimality of the choice of relation (1). The lemma is
proved.

Proof of Proposition. By assumption the different maps in G have differ-
ent associated homomorphisms. Thus we can index the elements of G by
their associated homomorphisms. Write A, € G for the map with associated
homomorphism g.
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Let LC be the set of vectors z € L invariant under all A; € G; let us prove
that LC generates L. For this, set §(z) = 3 Ag(z); obwously S(z) € LC for
any z € L. We prove that already the vectors S(z) with z € L generate L
over K.

For this, note that the space spanned by the S(z) contains the elements

=Y g(a)Ay(z) for all a € K. By the lemma, we can choose elements
al, ., ap for which det lgi(a;)| # 0. We see that the Ag4(x) can be expressed
as linear combinations of the S(c;z). In particular for g = e we get an
expression for z itself, which was what we wanted.

Now it is enough to choose vectors y;,...,¥ € LS that generate L, and a
maximal linearly independent subset among these. This will be the required
basis. The proposition is proved.

4. Invariants

Proposition 1. Let A be a finitely generated algebra over k and G a finite
group of automorphisms of A. Assume that the order n of G is not divisible
by char k. Write AC for the subalgebra of elements a € A such that g(a) = a
for all g € G. Then AC is finitely generated as an algebra over k.

Proof. We write S for the averaging operator

Sa) == 3" ola).

9€G

For any a € A, the coefficients of the polynomial

P(T) = [[(T-9(a)) =T" + 01T + - 40y,
9€G

belong to AS. The coefficients o; are the elementary symmetric functions
in g(a), that can be expressed in terms of the Newton sums S(a') for i =
1,...,n. Let uy,...,um be a set of generators of A. Write B for the subalgebra
of AC generated by the elements S(u]) fori = 1,...,mand j = 1,...,7n.
Then Py, (u;) =0, and hence the u? can be expressed as linear combinations
of 1, uy,... ,u:"'l with coefficients in B. Therefore it follows by induction
that any monomial u}' .- u%™ can be expressed as a linear combination of
monomials of the same kind with a;,...,am < n. Thus any element a € A
has an analogous expression

a= z Pay..anlil - U with ¢q,. 4, € B.

ai<n

In particular, let a € AG. Applying the operator S to this, we get

a=S(a)= Z:‘A"txn---tz...‘s'(""lxl ceugt).
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It follows that AC is generated by elements S(u2!---u3m) with a; < n and
S(ul). The proposition is proved.

5. Fields

Proposition 1. Let k be an algebraically closed field and k C K a finitely
generated ertension. Then there exist elements z,...,2441 € K with K =
k(z1,...,2441), and such that z,, ..., zq are algebraically independent over k
and z4,1 is separable over k(z1,...,z2q).

Proof. Suppose that K is generated over k by a finite number of elements
t1,..-,tn, and let d be the maximal number of algebraically independent
elements among the ¢;. Suppose that t,,...,t; are algebraically indepen-
dent. Then any element y € K is algebraically dependent on ty,...,t4, and
moreover, there exists a relation f(t1,...,tq,y) =0 with f(T},..., Ty, Tup1)
irreducible over k.

Let f(T1,...,T441) be such a polynomial for t1,...,¢4;1. We assert that
the partial derivative fr, (T1,...,T441) #0 for at least one i = 1,...,d + 1.
Indeed, if not, then each T; only occurs in f in powers that are multiples of the

characteristic p of k; that is, f is of the form f = Y a;, 4, T7" -+ TIY.

Set Qiyigy = bf;...i.“,, and g = Zbil---id+1T;1 T d‘(-‘:ll; then we get f = gF,
which contradicts the irreducibility of f.

If f7. #0, the d elements ¢;,...,¢,_1,ti41, ..., t441 are algebraically inde-
pendent over k. Indeed, ¢; is algebraic over k(ty,...,t;—1,tis1,...,tq41) be-
cause f,}‘, # 0, so that T; occurs in f. Thus if £1,...,¢i-1,8i41,...,tds1 Were
algebraically dependent, the transcendence degree of k(ty, .. ., t441) would be
less than d, which contradicts the algebraic independence of ¢,,...,tq.

Thus we can always renumber the ¢, so that ¢;,...,tq4 are algebraically
independent over k, and f'}d .+ # 0. This shows that t4,, is separable over
k(t1,...,td). Since tq4o is algebraic over k(t,,...,tq), by the primitive ele-
ment theorem (see van der Waerden, [73], §46), we can find an element y
such that k(ty,...,t442) = k(t1,...,t4,y). Repeating the process of adjoin-
ing elements t4y1,...,t,, we express K as k(z1,...,2441), where z;,...,24
are algebraically independent over k and

f(z1yee vy 2a,2441) = 0,

with f an irreducible polynomial over k with f}d“ # 0. Proposition 1 is
proved.

Proposition 2. Let k be an algebraically closed field of characteristic p, and
K a finitely generated field extension of k, having transcendence degree 1 over
k. Let K®) be the subfield consisting of pth powers of, with o € K. Then
[K : K®) =p. IfL C K is a subfield such that K is an inseparable extension
of L then L c K,
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Proof. Recall that a — oP defines a field homomorphism K — K, whose
image is the subfield K(®). Let t € K be transcendental over k. The first
assertion follows from the diagram

K(P) c K

u Uu
k(t)® C k(t).

Indeed, this implies that
(K - k(t)P)] = [K : k(8)][k(t) : k(t)P] = [K : KP)[KP : k(t)®)].

Since o + of defines an isomorphic inclusion, it follows that [K : k(t)] =
[K® : k(t))], and therefore [K : KP)] = [k(t) : k(t)?)]. Finally, it is obvious
that k(t)(P = k(t*), and hence

(k(t) : k(t)P]=p and [K:K®P]=p.

To prove the second assertion, write L’ for the set of all elements of K
that are separable over L. It is very easy to prove that this is a subfield. We
can obviously replace L by L’, and thus assume that any element of K that
is separable over L belongs to L. Let « € K and suppose that its minimal
polynomial is of the form P(T) = aoT?" " +a, TP~V 4 ...y a,_,T?" +a,
where Q(T) = aoT" + 1T~V + ... +a,_1T +a, is a separable polynomial,
that is Q'(T) # 0. Then B = aP " satisfies Q(8) = 0, that is, 3 is separable
over L, and therefore belongs to L.

It follows that K can be obtained from L by successively adjoining pth
roots; that is, there is a chain L = K} Cc --- C K,, = K, with K; =
K;_1(¥/a;), for some a; € K;_;. Set K' = K;,_; and @ = @m-—1, So that
K = K'({/a). We prove that K’ = K®, and it is at this point that we use
that K has transcendence degree 1 over k.

Any element 3 € K has an expression 8 = ag+a1 {/a+-- - +oy_1(Fa)P~!
with a; € K’, and hence fP = af +afa+--- +a’”,_la”'l, that is K ¢ K.
But [K : K] = p, and we proved that [K : K] = p in the first part of the
proof. Therefore K’ = K®) and L ¢ K}, Proposition 2 is proved.

6. Commutative Rings

Proposition 1 (The Hilbert Nullstellensatz). Let k be an algebraically closed
field and Fi, ..., Fr, € k[Th,...,To). If the ideal (F1,..., Fn) # (1) then the
system of equations F| = --- = Fy, = 0 has a solution in k.

Lemma. If a system of equations Fi = -+ = F, =0 with F; € k[T,...,T,]
has a solution in some finitely generated extension field K of k, then it has
a solution in k.
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Proof. By §5, Proposition 1, K is of the form k(zy,...,%,,0) where zi, ..., z,
are algebraically independent over k, and 6 is a root of a polynomial

P(X,U) = po(X)U? + -+ - + pa(X) € K(X)[U],

with P(X,U) irreducible over k(X) = k(z1,...,Z,); here we write X =
(z1,...,2r). Suppose that Fj(£1,...,&n) = 0 with & € K. Write the &; in the
form ¢; = Ci(X, 6), with Ci(X, U) € k(X)[U]. The relation Fj(£y,...,4a) =0
gives the identity

F;(Ci(X,U),...,Ca(X,U)) = P(X,U)Q;(X,U) (1)
in X = (z1,--.,%-) and U, where Q;(X,U) € k(X){U]. Choose values
z; = a; € k fori = 1,...,n such that (ay,...,an) is not a zero of the

denominators of any coefficient of P, @;, Cy,...,Cn € k(X){U], nor a zero of
the leading coefficient of P. Now choose U = T € k to be one of the roots of
Play,...,aq,7) =0, and set Cj{o,...,an,7) = Aj for j =1,...,m. Then
it follows from (1) that Fj{A1,..., ) =0, that is, (A1,..., As) is a solution
of the system F} = --. = F,, = 0. The lemma is proved.

Proof of Proposition 1. If the ideal (Fy,...,F,,) # (1) then it is contained
in some maximal ideal M C k[T3,...,T,), and K = k[Th,...,Tu]/M is a
field. Write ¢&; for the image of 7; in K. Obviously K = k(¢i,...,6s) and
(€1,--,&n) is a solution in K of the system F} = --- = F;p = 0. We get a
solution in k by applying the lemma. This proves Proposition 1.

Corollary. If G, F1,...,Fm € k[T1,...,T,) and G is 0 at all solutions of
the system Fy1 = -+ = F, = 0, then GN e (Fy,...,Fy) for some N > 0.

Proof. It is enough to consider the case G # 0. We introduce a new variable
U, and consider the polynomials

R,...,Fnand UG -1€k{T,...,T,,,U}.

By assumption these have no common solutions in k, and therefore by Propo-
sition 1 there exist polynomials Pi,..., Py, @ € k[T1,...,T,, U] such that

PiFi+- +PuF + QUG -1)=1.
This identity is preserved if we set U = 1/G. Clearing denominators we get
GN =0 mod (R,...,Fp).
The corollary is proved.

Proposition 2. Let A be a commutative ring with a 1. An elementa € A is

nilpotent (that is, a™ = 0 for some n > 0) if and only if a belongs to every
prime ideal of A.
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Proof. A nilpotent element is obviously contained in every prime ideal. Con-
versely, suppose that a is not nilpotent. We construct a prime ideal not con-
taining a. Consider the ideals I C A not containing any power of a. By
assumption, I = (0) has this property. Let a be a maximal element of this
set of ideals, which exists by Zorn’s lemma. We prove that a is a prime ideal;
then since a € @, this will prove the proposition.

For this, set B = A/a and write b for the image of a; we prove that B is
an integral domain. By assumption, any nonzero ideal b C B contains some
power of b, but b itself is not nilpotent. Suppose by, by € B with b,,b2 # 0.
Then by assumption, b™ € (b,) and b™* € (bp) for some n;, ny > 0. Hence
b™1*72 ¢ (b1by), and therefore b1by # 0. Proposition 2 is proved.

Proposition 3 (Nakayama's Lemma). Let M be a finite module over a ring
A and a C A an ideal. Suppose that for any elementa € 1 +a, aM =0
implies M = 0. Then aM = M implies that M = 0.

Proof. Suppose that M = (uy,...,n). The assumption-aM = M implies
that there are equalities

n
i = Za‘j“j with a;; € a.
=1

Thus 3°7_,(ai; — &i5)p; = 0 fori = 1,...,n, and by Cramér’s rule dy; = 0
for i = 1,...,n, where d = det({a;; — 6;;); therefore dM = 0. Since d € 1 + a,.
it follows by assumption that M = 0. The proposition is proved.

Corollary 1. If A C B are rings with B a finite A-module and a C A an
ideal, then a # A implies aB # B.

Proof. Since B contains the unit element of A, aB = 0 only if a = 0, and if
a # (1) then 0 ¢ 1 + a. This verifies the assumptions of Proposition 3, and
so aB # B. The corollary is proved,

Corollary 2. If a C A is an tideal such that every element of 1 + a is
invertible, M a finite A-module and M’ C M any submodule, then M'+aM =
M implies that M' = M.

Proof. Apply Proposition 3 to the module M/M’. The corolléry is proved.

Remark. 1t is easy to see that the assumption on the ideal a in Corollary 2
holds if A/a is a local ring.

Corollary 3. Under the assumptions of Corollary 2, elements yy,...,pn €
M generate M if and only if their images generate M/aM.
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Proof. Apply Corollary 2 to the submodule M’ = (1, ..., pn). The corollary
is proved.

Proposition 4. Let A be a Noetherian ring, and a C A an ideal such that
every element of 1 + a is invertible in A. Then [,,o(b + a) = b for any
ideal b C A.

(1) The case b = 0. Apply Proposition 3 to M =) a"™.

(2) The general case. Set B = A/b and let @ = (a + b)/b be the image of
a in B. Then (8)" = (a + b)"/b = (a™ + b)/b is the image of a™ in B. By
the case (1), (,50(@)" = 0, and hence ,,,4(b + a®) = b. The proposition
is proved.

Proposition 5. Suppose that a is an ideal of a Noetherian ring A such that
every element of 1+ a is invertible in A. Then the property that a sequence of
elements f1,..., fm € a is a regular sequence (see Chap. IV, 1.2) is preserved
under permutations of the f;.

Proof. 1t is enough to prove that permuting two adjacent elements f;, fi;1 of
a regular sequence again gives a regular sequence. Set (fi,..., fi—1) = b and
A/b = B, and write a, b for the images in B of f;, fi;1. Everything reduces
to the proof of Proposition 5 for a regular sequence a, b of B. We need to
prove (1) that b is not a zerodivisor in B, and (2) that a is not a zerodivisor
modulo b. \

(1) Suppose that £b = 0. We prove then that

z€(a*) forall k. (1)

Since A is Noetherian, it follows by Proposition 4 that £ = 0. We verify (1)
by induction. If z = z;a* then z1a*b = 0. Since a, b is a regular sequence,
a is a non-zerodivisor, and hence z;b = 0. Again because g, b is a regular
sequence, it follows that z; € (a), hence z € (a*+1).

(2) Suppose that za = yb. Because a, b is a regular sequence, it follows
that y = az with 2z € A, and hence z = zb. The proposition is proved.

7. Unique Factorisation

Proposition 1. Suppose that a Noetherian local ring A is contained in a
local Ting A which is a UFD. Suppose that the marimal ideals m C A and
m C A satisfy the following conditions:

(a) mA =m;

(b) (m";f) NA=m" forn>0;

(c) for any a € A and any integer n > O there erists a, € A such that
a—an € mrA.

Then A is also a UFD.
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Proof (taken from Mumford [58], §1C). The usual method of proving unique
factorisation into prime factors deduces it from the statement that if a divides
be, and a and b have no common factors then a divides c. We need to establish
this result in A, knowing that it holds in A. For this it is enough to prove
the following two assertions:
(1) fora, b€ A,
albin A = a|bin A4;

(2) if @ and b have no commons factors in A, then they have no common
factors in A.
Both these assertions are based on the following lemma.

Lemma. (a.Z) N A= a for any ideal a C A.

Proof. It is enough to prove that (a/’i\)ﬂA C a. Suppose that a = (ay,...,an),
and let z € (a;f) N A. Then z = Y a;0; with o; € A By assumption (c),
there exist elements aE") € A such that o5 = aEn) + 65") with §En) € m".
Then z = Y aVa; + Y 6™a; = a + € with @ € a and £ € @". Hence
E=z-a€ Anm" =m". Thereforex€a+m™ foralln >0andsoz € a
by §6, Proposition 4. The lemma is proved.

Proof of (1). If a divides b in Athenbe AN (a)Z, which by the lemma is
equal to (a). This just means a divides b in A.

Proof of (2). If a and b have a common factor in A then they can be written
a = ya, b = v3 where o, § € A are proper divisors of a and b with no
common factors. Then af — ba = 0. By assumption (c), there exist z,,
¥n € A and u,, v, € m" such that @ = 2, 4+ un, 8 = yn + vn. Hence
ayn — by € (a,b)M" = (g,b)m"™A. By the lemma, ay, — bz, € (a,b)m", that
is, ayn — bzn = atn + bsy with s,, t, € m™. Hence a{yn — tn) = b(Zn + sn)
and so a(yn —tn) = B(zn + 85). From the assumption that o and 3 have
no common factors in A it follows that Zn + Sn is divisible by «, that is,
Tp + $p = ). Since (J@* = 0, for sufficiently large n we have o, 8 ¢ m"~!.

Then also z,, + s, ¢ mn™ ! and hence A ¢ m, that is, A is invertible in A

Hence A(zn+5,) = (a )A and T+ 8n, divides @, and so divides a in A. By (1)
it also divides a in A, that is, a = (o +5,)h. But a(y, —tn) = b(z, +5,), and
hence b = (yn — tn)h. Since a and b have no common factors in A it follows
that h is invertible in A, that is, (a) = (zn + sa) = (@), and this contradicts
the assumption that « is a proper divisor of a in A.

The proposition is proved.
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8. Integral Elements

Proposition 1. Let B = k|Ty,...,T,] be the polynomial ring and L =
k(T1,...,Ty) its field of fractions, and suppose that L C K is a finite field
extension. Write A for the integral closure of B in L. Then A is a finite
B-module.

Proof. The proof in the case that the extension L C K is separable, which
is very simple, is given in Atiyah and Macdonald [7], Proposition 5.17. We
do not reproduce it here, but show how to reduce everything to the case of a
separable extension.

Suppose that K = L(a,...,0,). If o is not separable over L then its

minimal polynomial is of the form a’l""‘ + a;a’l"(""l) + ¢+ @y =0, where
{ 3 3
a; € k(Ty,...,T+) and of is separable over L. Write B’ = k[Tlll" ,... THP Iy
r 1/p! 1/pt ' 1/pt 1/p ’
L'=kTy/",...,T+'") and K’ = K(T}'?,...,T;'?), and let A’ be the

integral closure of B’ in K’. Now set a; = bfl, with b; € L'. Then K' =
L'(ay,...,a,) and o' + blaim_l) + -+ +bp = 0, so that a, is separable
over L’. On the other hand A C A’, and if the proposition is proved for A’
then A’ is a finite B’-module. But B’ is jtself a finite B-module: it has a basis
consisting of monomials 7;"/? - T¥/? with 0 < éy,...,4, < p'. Therefore
A’ is a finite B-module, and hence so is its submodule A.

We see that the proof of the proposition reduces to the case that
oy is separable. By the primitive element theorem, then L(ay,...,q,) =
L{aj, a3, ...,a,). Applying the same argument s times we reduce the proof
to the case of a separable extension. The proposition is proved.

9. Length of a Module

Definition. A module M over a ring A has finite length if there exists a
chain of A-submodules

M=M03M1:)"':)Mn=0 VVithMi#MH,l, (1)

such that each quotient M;/M,,, is a simple A-module, that is, does not
contain any proper submodule. By the Jordan-Hélder theorem, all such chains
have the same length n; this common length n is called the length of M, and
denoted by £(M), or £4(M) to stress the role of the ring A.

Obviously, the quotient modules M;/M,,, in (1) are isomorphic to A/m
where m are maximal ideals of A. If M has finite length then the same holds
for all its submodules and quotient modules. If a module M has a chain (1)
such that each quotient M;/M;,, has finite length then M has finite length,

and
YM) =Y UMi/Miy1).
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Proposition 1. Let O be a Noetherian local ring, with mazimal ideal m, and
suppose that ¢ C O is an ideal such that a O m* for some k > 0; then the
module O/a has finite length.

Proof. It is enough to prove that O/m* is a module of finite length. By
considering the chain of submodules M; = mi/m* for i = 0,...,k, we see
that it is enough to check that each module m*/m*1 has finite length. But in
the O-module structure of m*/m*+?, multiplication by m kills every element.
Therefore O/m = k acts on m!/m*+1, so that it is a vector space over the
field k, and its length equals the dimension of this vector space over k. Since
O is a Noetherian ring, m*/m*+! has a finite number of generators, that is,
it is a finite dimensional vector space. This proves the proposition.

If M is an A-module and p a prime ideal of A then we write M, for the
localisation of M at p, that is the module M ®a Ap, where A, is the local
ring of p.

Example. If M = A/p then My =0if q 2 p. if ¢ D p then My = (A/p)g
where 4 = q/p is the image of q in A/p.

Lemma. A finite module M over a Noetherian ring A has a chain (1) of
submodules such that M, /M;., = A/p;, where p; C A is a prime ideal.

Proof. For an element m € M with m # 0, write Annm for the ideal of
elements of a such that am = 0. Because A is Noetherian, a chain of ideals of
the form Ann(m;) C Ann(ms) C --- must terminate. Hence we can choose
m € M with the following property: Annm C Ann{m'} with m’ # 0 implies
that Annm = Ann(m'). We prove that Annm is then a prime ideal. Let
ab € Anonm with b € Annm. Then Annm C Ann(bm) and bm # 0, but then
by assumption Annm = Ann(bm). But ¢ € Ann(bm), hence a € Annm.

Set p = Annm. Then the submodule Am C M is isomorphic to A/p. In
M' = M/Am we can again find a submodule isomorphic to A/p’ where p’
is a prime ideal of A. In this way we construct a chain M) ¢ M® ¢ ...
such that MG~1)/M® = A/p.. By the assumption that M is Noetherian,
this chain terminates. The lemma is proved.

Definition. A local ring A with maximal ideal m is 1-dimensional if there
exists a prime ideal p G m, and every such prime ideal p is minimal, that is,
does not contain any strictly smaller prime ideal.

Proposition 2. Let O be a 1-dimensional local ring having a finite number
of minimal prime ideals p1,...,pn, and a € A a non-zerodivisor of A not
contained in any of the p;. Then

£0/(a)) = Y Lo,,(05,) x Lo(O/(p: + a0)). (2)

i=1
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Proof (taken from Fulton [27], A.1-3). At the same time as (2) we prove a
generalisation to an arbitrary finite ©-module M- For this, we set e(M,a) =
4(M/aM) — £4(Annp(a)), where Annps(a) denotes the A-module {m €
M | am = 0}. The generalisation of (2) is the following:

e(M,a) =) Lo, (M;,) x Lo(O/(p: + a0)). 3

=1
The advantage of the invariant e(M, a) is that it is additive: if a € O and
0— M — M — M" —0is an exact sequence, then
e(M,a) = e(M',a) + e(M", a),

and the left-hand side is finite if both terms on the right-hand side are. This
follows at once from the following exact sequence

0 — Annp(a) — Anny(a) — Annpye(a)
— M'jaM' — M/aM — M" JaM" — 0,

which is trivial to verify. By induction we get that for any chain (1),

e(M, a) = ZC(M,‘/M,‘.H, a).

It follows from these considerations and from thé lemma that we need
only prove (3) for modules M isomorphic to O/p, where p is a prime ideal
of O. If p = m is the maximal ideal then M = k (as an O-module), so
that e(M,a) = 0 and M,, = 0. If p is a minimal prime ideal p = p; then
My, # 0 for j # i, and M, is the field of fraction of the quotient ring, so
that £o, (Mp,) = 1. Hence in either case (3) is obvious.

Fina.lly to deduce (2) from (3), we must set M = O. Indeed, under the
assumptions of the proposition,

e(0,a) = £(O/(a)) and e(Ofpi,0) = lo (O/(pi +00)),
so that (3) implies (2). The proposition is proved.
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Euler’s theorem 17

exact differential 201
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exceptional subvariety 119, 120
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136, 137,
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- of maps 191
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— of vector spaces 54

Fermat’s last theorem 4

fibration X — § 270,53,54

fibre f~1(y) 76

fibre bundle 68,73
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field extension 280

field of formal Laurent series k((T'))
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field of rational functions see function
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field theory &8

finite 61

- map 63,170, 262

- morphism 123

- type 37

finite dimensionality of £(D) 161,
178,93

finite field Fp,r 4, 27

finite length 286

finiteness conditions 37

finiteness of integral closure 286

finiteness of normalisation 130 138,
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finiteness theorem 207,93

first order deformation 100,111

first order infinitesimal neighbourhood
37

fixed point of a map 27
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- family 106

- module 106

- morphism 106

flex see inflexion

form 17

formal

- analytic automorphism 118
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170
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free action 100

free and discrete action

free sheaf 58

Frobenius map 27, 148, 184, 251

Frobenius relations 166, 214, 242

Fubini-Study metric 192,193

function field M(X) 173

function field k(X) 8, 12, 35, 51, 45,
49, 241,249

functlonal view of a ring 8
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fundamental group =, (X)

fundamental polygon 224

101, 108,
104

156

205, 227

Gauss’' lemma 2, 75
Gaussian integers Z[i] 6
general linear group 189
general position 229, 229, 249
generalised Hopf surface 188
generic point 11
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genus formula for singular curve 269

genus of curve g(X) 210, 212, 215,
241,67,68,137,138, 153, 240, 243

geodesic coordinates 191

germ of functions 24

global differential p-form 94

global holomorphic function 174, 209

global regular function is constant 59

glueing conditions 20, 31

glueing schemes 31

graded ideal 41,39

graded module 102

graph of a resolution 265

graph of map I'y 33,57

Grassmannian Grass(r,n) 42, 49, 68,
78, 82, 90, 113, 55, 96, 99, 100

Grauert criterion for projectivity 81

ground field & 22

group law on cubic 178,234

group of divisors DivX 152

group scheme 43

hard Lefschetz theorem 203
Harnack’s theorem 146, 149
Hasse-Weil estimates 184
Hermitian form 190
Hermitian metric 191
Hessian 15,18, 72, 174
highest common divisor
hed{D1,...,Dn} 160
Hilbert 149
— basis theorem 25

-~ Nullstellensatz 25, 281
- polynomial 101,105, 107
- scheme 109

Hironaka's counterexample 75, 185

Hodge index theorem 245, 251, 265,
204

Hodge theory 200

holomorphic

- function 168,173

- map 155,168

holomorphically complete 231

holomorphicaily convex 231

homogeneous

- coordinates 16, 41

- ideal 41

ideal ax 34,39,102

- pieces of a graded module 102

polynomial 17

- prime spectrum Proj I’ 39

variety 190

Index 297

homology Hn(M,Z) 120

homology groups with coefficients in
Z/2Z 147

homomorphism of sheaves 58

homomorphism of vector bundles 59

Hopf manifold 158, 169

Hurwitz ramification formula 220,
132,138, 145

hyperbolic type 207

hyperelliptic curve y? = f(z)

hyperplane class 200

hyperplane divisor £ 234

hyperplane line bundle O(1) 66

hyperplane section divisor 157,76

hypersurface 24, 26, 39, 41, 69, 70,
163, 210

11,214

ideal of a closed set Ax 25, 41
image 387,51

image of sheaf homomorphism 83
implicit function theorem 13, 105
indeterminate equations 4
infinitely near point 262
infinitesimal neighbourhood 37
infinitesimals 111

inflexion 15, 72, 179, 184,243

- multiplicity 174
Inoue-Hirzebruch surfaces 188
inseparable map 144, 148, 206
integers of a number field 9
integral 61

integral as elementary functions 6
integrally closed ring 125
intersection

— form on a surface 245
multiplicity 14, 85

~ along C 229, 230

- multiplicity Dy --- D, 224

- number 172, 224, 238,75
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— numbers on a surface 239
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- with the diagonal 30

invariant differential form 207, 159
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isomorphic embedding 33
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- versus birational equivalence 39,
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Jacobi vii

Jacobian J(X) 194,242

Jacobian conjecture 32
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Jordan-Hélder theorem 229
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k-scheme 29

K3 surface 219

Kabhler differentials 24 199,88
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differentials 205
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Kahler metric 192

kernel of sheaf homomorphism 83

Klein vii

Kleinian singularities 266

knot 143
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Kronecker pairing 122

Krull dimension 100, 14

Kummer surface 189

lattice 2 c C*

leading form 95

length of a module ¢(M) 229, 286

line bundle 64

- of adivisor Lp 64,178

linear branch of curve at a point 133

linear equivalence ~ 155, 192, 209,
228, 282, 254, 64,75, 244, 247

linear projection 64, 65

linear system 161, 162, 254, 244

lines on cubic surface 79, 244, 246

link 143

local

~ analytic coordinates 154
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— equations of a subvariety 107

- homomorphism 27
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224

157,163

model 167

— morphism of ringed spaces 27,40

— parameter on curve 14

— property 49,83

- uniformisation of Riemann surfaces
132 .

local parameters 98, 111, 225,71

local ring 289

-4, 8

-0, 83

- along subvariety Ox,y 229

- at subvariety Ox,y 84

- of point of scheme Ox, 29

localisation As 883, 287,7, 86

locally free sheaf 58,64

locally principal divisor
64,84

locally trivial fibration 54, 68

locus of indeterminacy 109, 115,51

Liiroth problem 218, 220,151, 246

Liiroth’s theorem 9, 183

155, 157, 225,

manifold 106

maximal idealm 5

maximal ideal of.a point m; 87

maximal spectrum m-SpecA 5

maximum modulus principle 125

meromorphic

— fraction 170

- function 173

- function field M(X)

minimal model 122

- of algebraic surface 129
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minimal resolution 264

minus one curve 258

minus one curve (—1-curve) 253, 258

model 121

modular group 216
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- of finite length 229
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225,240

— of elliptic curves 188,216

- problems 96

- space 225

Moishezon manifold 187
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monoidal transformation
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173,175

199, 88

see blowup
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Mordell-Weil theorem 186

morphism

~ of families of vector spaces 54

~ of ringed spaces 26

~ of schemes 29

~ of varieties 47

moving a divisor 158

moving lemma 232, 249

multiplicative group G,

multiplicative set 7

multiplicity 13, 255

- of a singular point 95

- of a tangent line 95

~ of intersection 85, see intersection
multiplicity

- of singular point - (C) 226, 262

— of tangency 222

- of zero 14

multiprojective space P* x P™ 55, 57,
70, 287, 250

189, 48

Nakai-Moishezon criterion for
projectivity 81

Nakayama's lemma 99, 283

negative definite lattice 276

negative semidefinite lattice 276

negativity of contracted locus 264

neighbourhood 23

Néron-Severi group NS X

Newton polygon 135

nilpotent 282, 4,8, 36,111

nilradical 8,36

nodal cubic curve 4, 21

node 4,18, 113, 134, 235, 271

Noether normalisation 65, 130, 123

M. Noether’s theorem 260

Noetherian ring 84, 84

Noetherian scheme 37

non-Hausdorff space 11

nonaffine variety 52

nonalgebraic complex manifold 161,
185

nonprojective variety 75, 185

nonsingular 12, 15, 93, 94, 128, 141,
168

- in codimension 1

- model 110, 188

- point of a curve 40

- points are dense 12

- subvariety 111,71

variety as manifold 106,119

194, 238

127, 128, 152

Index 209

nonsingularity and regular local rings
100,9

normal
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- bundle Nx;y 62,66

— complex space 169

- integral domain 125
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— subgroup 190

— variety 128

normalisation 268, 52

-vr: XY X 129, 131,169

~of XinK 138,52

- of acurve 131, 231, 262

Nullstellensatz 25

number of points of variety over F,-
27

number of roots 2, 223

number theory see applications to
number theory

numerical criterion of flatness 105,
107
numerical equivalence = 238, 75, 186

obstructed deformation 111
1-dimensional local ring 230, 287
open set 23, 45

opposite orientation 142

orbit space see quotient space X/G
order of tangency 225

ordinary double point 113, 138
ordinary singularity 134
orientable triangulation
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- class was or [M] 121
- of a triangulation 142
orthogonal group 189
ovals of a real curve 149

142

parabolic type 207,211
parallel transport 197
parametrisation 4, 9
parametrising a conic 6
Pascal’s theorem 20

pencil

- of conics 73, 164, 246

- of elliptic curves 147

- of quadrics 146

periods 216

Picard group Pic X 155, 157
Picard variety 192, 194, 247
Picard’s theorem 211
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theorem 162

Poincaré duality 122

Poincaré series 218, 248
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polynomial function 24
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prime spectrum Spec A 6

primitive element theorem 40

principal divisor 153, 157

principal ideal 126

principal open set D(f) 50,11,18,39

product

- in a category X xsY 41

- of irreducibles 85

- of schemesover S X xsY 41

~ of varieties 52

- of varieties X x Y 24, 25,54, 248

projection 5, 88, 88, 52, 54, 137

projection formula 200

projective

- algebraic plane curve 17

~ closure 69 :

- completion 45

- embedding 136, 219, 209, 219, 220

- embedding of curve 111

- limit }E\Ea 19

- plane 16

- scheme is proper 35

~ scheme over A 34

- schemes and homogeneous ideals 34

~ space P* 41,90

- space as scheme PY 32

- variety 48, 106, 191

- versus abstract varieties 80

projectivisation P(E) 73

Pl.bundle 69

P™.bundle 69, 73, 82

proper 231

proper map 59, 117

proper transform see birational
transform

pseudovariety 68

Puiseux expansion 134, 143

pullback

- of differential forms ¢*(w) 205

~ of divisor f*(D) 156
— of divisor f*D 168
- of functions f* 29, 98,26

— of subscheme 35
- of vector bundle 55

quadratic transformation 259

quadric 38, {1

quadric cone 9}

quadric surface 56, 72, 82, 114

quasilinear map 186, 277

quasiprojective variety 22, 46

quotient

— bundle 61

- group G/N 190

manifold X/G 192

- ringed space X/G 39

sheaf G/H 84

- space X/G $§1,157,205,227

- variety X/G 31, 44, 61, 100, 265,
105

radical of an ideal 50

ramification 269

— degree 133

- locus 144

- multiplicity 220

- point 144,133

ramified 144

rank of a vector bundle rank E 55

rank of an A-module 90

rational

- differential r-form 203

- function &, 18, 25

- function on affine and quasiprojective
variety 50

- map 10, 18, 37, 109, 30,47

-map f: X - P™ 51, 159

- versus regular 19, 36, 87, 109, 180,
198, 202, 203, 268

rational curve 4, 5, 9, 171, 174

rational divisor over ko 186

rational double points 266

rational function field see function
field k(X)



rational normal curve 53
rational ruled surface 69
rational surface 246
rational variety 38, 213
rationality criterion 220
real algebraic curve 145
real solutions 238

real topology 106
reduced complex space
reduced subscheme 50
reduced subscheme X,q 36
reducible 34

reducible complex space 168
reducible topological space 12
regular 36, 87, 46, 51, 109

— differential r-form 200

— differential form 202

- differential form ¢ € 2'[X)]
- function 24, 46, 83,17

- map 19,27, 47, 52,68

- rational function at a point 8
vector field 94

regular differential form 223

167

195

regular local ring 100,9
regular point 9
regular sequence 227, 28/

regularity of rational differential r-form
208

regularity of rational map 87, 51

relatively minimal model 122

representable functor 98

residue field at z, k(z) 8,28

resolution of indeterminacy 115, 254,
75

resolution of singularities 110, 133,
261, 264

restriction .7-'| v 17

restriction maps p§; 16
restriction of divisor py (D)
restriction of family EIU 54

resultant 2, 57, 81

Riemann existence theorem 169, 207,
240

Riemann hypothesis 186, 251, 250

Riemann mapping theorem 161, 207

Riemann surface 239

Riemann-Roch

- inequality 215, 244

inequality for curves 123

- space L(D) 161,173, 176, 186,94

- theorem 223,240

- theorem for curves 215

157,66

Index 301

ring of cycle classes 249

ring of fractions As 839,7,86

ring of integers of a number field 6,9
ring of invariants A 30

ringed space X,0 25, 82

root systems 267

ruled surface 122

ruledness criterion 220

Sard's theorem see Bertini's theorem
scalar product 182, 275

scheme 31,4, 16, 28, 251

- of associative algebras 101

~ of finite type 38

- over A 29
- overk 29
- over § 41

- over a field 29

— with nilpotents 111

scheme-theoretic inverse image 35, 42

S-scheme 41

Schwarz' lemma 175, 208

scroll 69

secant variety 137

section of vector bundle

Segre embedding 55, 56

selfintersection number C?

separable extension 40, 220

separable map 144

separable transcendence basis 40,
203, 206, 280

separated scheme 44

separated versus Hausdorff 118

sheaf 20

- of 1-forms 2! 82

-~ of O-modules 82

- of analytic functions Q., 154

~ of differential 1-forms 2}, 89

- of differential p-forms 25,60

- of functions 17

— of ideals Zy 25, 85, 89

- of modules 57,82

sheaf conditions 20

sheaf homomorphism 58

sheaf theory 16,22

sheafication 23, 24,83

sheaves and vector bundles 57

o-process  see blowup

simple see nonsingular

simple (regular) point 9

simple singularities 266

r-simplex 140

simply connected 226 .

195,57

233



302 Index

singular

- point 12,1 5

~ quadric 92, 94

singular point with distinct tangent
lines 134

singularities of a map 139

singularity 12, 261

skewsymmetric bilinear form of
Hermitian form 190

smooth see nonsingular, 94

smooth function 119

space of p-forms 2°[X] 94

specialisation 11

spectral topology  see Zariski topology

spectrum SpecA 6

stalk of (pre-)sheaf 7, 23,24

standard quadratic transformation
54, 259

Stein space 231

stereographic projection 6, 38, 54, 114

strict transform see birational
transform

structure sheaf Ox

subbundle 60

subdivision of a triangulation 142

subordinate triangulation 142

subring of invariants 4 279

subscheme 33

subsheaf 83

subspace 168

subvariety 46, 56, 50

support of divisor Supp D 151, 157,
171

support of sheaf Supp F 85

surface as curve over function field 4

surface fibration 4

surface of general type 219

system of local parameters
153

12, 93,168

16, 17,19,21, 25

111,119,

tangent 86

- bundle & 92,60
-coneT; 95
- fibre space
~- line 15

- line to a linear branch
- lines 95, 235

- sheaf 6x 89

- space &89,9,36

~ space Ox,z 85, 86,88
~ space to a functor 100, 110

- vector 36

tautological line bundle O(1) 55,66

92, 204

134

Taylor series 101 -

tensor product 106

~ of sheaves F @¢g F' 58

theta function 212,241
topological classification 131
topology of curves 131

wrsion point of an elliptic curve 184
torsion sheaf 91,95

torus knot of type (p,q) 143
transcendence degree 8, 280
transition matrix 54, 56, 64
transversal 98, 172

tree of infinitely near points 262
triangulable space 141
triangulation 140

trivial family 54

Tsen's theorem 7%

r-tuple point 1%

type of form 156,194

UFD 1, 75, 108-109, 284
- is integrally closed 126
uniformisation 215, 248
unique factorisation 284
unique factorisation domain
unirational 246
unirational variej:_y 218
universal cover X 205
universal family 98
universal property of normalisation
181
universal scheme 96, 97
unramified cover 144, 145, 157, 205

see UFD

variety

- as scheme 29

- of associative algebras 43, 91, 30,
101

- of quadrics 92

vector bundle 54,178

vector bundles and sheaves 57

vector field 195,94

Veronese curve 5%

Veronese embedding v,,
163, 250, 226

Veronese variety 52

vertex of a simplex 140

vertex of a triangulation 140

volume form 191,197

52, 60, 65,

Weierstrass normal form 12, 73, 1 75,
180



Weierstrass preparation theorem 108,

170
Weil conjectures 186
Wirtinger’s theorem 197

Zariski Riemann surface

122

Index 303

Zariski topology 23, 45,10,17,117
zero of function 153
zero section 57

zeta function Zx(t) 27, 29, 186,250



