Unit V: Forces: Multi-body Systems Lesson Plan

Observations

- Car is accelerating
 - o How do you know?
 - What does this mean about the forces? Unbalanced or $\Delta v \neq 0$, $\Sigma F \neq 0$
 - What factors affect acceleration? Mass
- Block is accelerating
 - \circ What does this mean about the forces? Unbalanced or $\Delta v \neq 0$, $\Sigma F \neq 0$
 - o How is it accelerating relative to the car?
 - o How do you know? Tension in string
- Draw System Schema (SS) and two Force Diagrams (FD)
 - o Draw system schema objects in "same" position as real system
- If only talk about CAR \rightarrow GO TO SS and FD with CAR THEN block
 - o Is anything else moving? The block → create FD
- Define axes? Direction of motion?
 - When on an inclined plane what direction did we call the direction of motion?
 Refer back to Unit IV
 - What is the direction of motion in both cases (generally)? Down the ramp
 - o What does pulley do? Change direction, not apply another force
 - o ERASE pulley from SS
 - o Draw SS without pulley, straighten out string
- Define System
 - o When we define our system, how do we define it?
 - o What do we look for?
 - o What things are "moving?"
- \blacksquare Redefine system \rightarrow car, string AND block
- Draw new FD
- Refer back to forces; is anything unbalanced?
 - What do we notice about the forces?
 - o Is anything unbalanced? What direction?
 - o How could we measure this unbalanced force?

Measurements

- \blacksquare Acceleration: motion sensor \rightarrow velocity versus time graph, get slope
- Force of gravity on Block: Fg=m (9.8N/kg)
- Mass of system: keep it constant, just move it around

Objective

- How does $\Sigma F \neq 0$ affect acceleration?
- What are the two variables we're studying? What do we want to keep constant
 - Force and acceleration
 - Mass of system stays constant
 - o Can change force on block by moving mass around

Data Collection

- Data table
- \blacksquare Graph of Σ F versus acceleration even though we're taking data in the opposite order
- Graphing this way makes the slope come out to system mass (N/m/s^2) instead of inverse
- Get graph and best fit line and equation for data

Post-Lab

- Get graphs and best-fit equations, whiteboard
- What can you tell me about the slope?
 - o Mass of the entire system
 - o Units of N/m/s^2
- Does this number look familiar? What units do we usually use? Are these units related?
- Do unit analysis showing how $N/m/s^2 = kg$
- Definition of unit Newton (N) = $kg (m/s^2)$
- Can we write the general best-fit equation for this graph?
 - \circ $\Sigma F = ma$
 - o Summation of forces is equal to the mass of the system times the acceleration
 - o Define as Newton's Second Law