
Nutrient-Flow Model for 3/4 Metabolic Scaling
Eric Duchon
Physics 120

February 25, 2008

The West, Brown and Enquist (WBE) 1997 paper provided a new approach
to understanding allometric metabolic scaling, B ∝ Ma, commonly supposed in
ecology. Through a series of assumptions, they provided a theoretical basis for the
exponent value a = 3/4. Criticized on both empirical and mathematical fronts,
their paper formed the basis for a potentially more useful model created by Eti-
enne, Apol and Olff (EAO) in 2006. The beginning of the WBE model will be
discussed, up to an irrecoverable step, at which point the discussion will move on
to the EAO model.

The notation here is that used in the EAO paper, as follows:
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of  WBE. See Table 1 for conversion of  our notation to
that of  West, Br own & Enquist (1997). Further more,
we generaliz e the model in three ways. First, we formu-
late the model in such a way that the derivation of
the allometric exponent of  

 

x

 

 = 

 

3

 

/

 

4

 

 does not require the
branching network distributing resources to the cells
to be self-similar. Second, where the proportionality
constant 

 

Y

 

0

 

 is usually ignored, we present a formula
for this constant. T hird, our formulation can be used
as a basis for models that make different assumptions
from those of  W B E ,  mak ing the theory amenable
to rigorous testing. We discuss how the disagreement
between WBE and K&K can be understood in the
light of  the reconstructed, generaliz ed model.
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Assumption 1: The transport system of oxygen has 
a fr actal-lik e branching topology as shown in Fig. 1

 

West 

 

et al.

 

 (1997) make a somewhat stronger assump-
tion than assumption 1, by requiring the network to be
a self-similar fractal, but self-similarity is not necessary,
as will become clear below. For illustrative purposes we
take the blood transport system as an example, but the
topology also applies to other hierarchical transport
systems found in organisms. T he �rst level in the branch-
ing system (aorta) has value 

 

k

 

 = 1 and the last level
(capillaries) has value 

 

k

 

 = 

 

C

 

. Each level consists of  

 

N

 

k

 

identical pipes (vessels) of  radius 

 

r

 

k

 

, length 

 

l

 

k

 

, cross-sectional
area 

 

A

 

k

 

 

 

=

 

  and volume 

 

V

 

k

 

 

 

=

 

 . E ach vessel at level

 

k

 

 splits at a node into 

 

ν

 

k

 

 vessels at level 

 

k

 

 + 1. H ence, 

 

N

 

k

 

is a product of  all 

 

ν

 

i

 

 at levels up to (but not including)
level 

 

k

 

, that is 

 

N

 

k

 

 =  and generally 

 

N

 

1

 

 =  1. C on-
versely,  the number of  branches originating from
each vessel at level 

 

k

 

 is the quotient of  the number of
vessels at levels 

 

k

 

 + 1 and 

 

k

 

:

(eqn 1)

For the vessel radius 

 

r

 

k

 

 and the vessel length 

 

l

 

k

 

 we can
de�ne the quantities 

 

ρ

 

k

 

 and 

 

λ

 

k

 

 analogously:

(eqn 2)

(eqn 3)

We use Gr eek symbols to indicate that these quantities
are quotients. These quantities are convenient because
they allow us to express the radius, length and number
of  vessels at level 

 

k

 

 in terms of  the radius, length and
number of  vessels at the last level,  the capillary level
(which has a special sta tus in the model):

(eqn 4)

(eqn 5)

T able 1. Conversion of  notation used in this article to those in West et al.  (1997). Symbols that are not listed either have the same
meaning in both papers, or a ppear only in this article
 

Quantity This pa per West et al.  (1997)

Le vel number k + 1 k
R ange of level numbers k = 1 … C k = 0 … N
Le vel number of  last level (capillaries) C N
Quotient of  number of  vessels at levels k + 1 and k νk+1 nk

Quotient of  vessel radius at levels k + 1 and k ρk+1 βk

Quotient of  vessel length at levels k + 1 and k λk+1 γk

Metabolic scaling par ameter x a
Blood �o w at level k + 1 Qk+1 Qk
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Fig. 1. Topology of  the transport network. In this example
the total number of  levels is C  = 4, going from 1 (aorta) to 4
(capillaries). The number of  branches originating from each
vessel at level k is νk.
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Figure 1: Table 1 from Etienne et. al.

The WBE Model
We are considering ”circulation system” – that is, a system whereby the nutrients
necessary for metabolism are transported to the cells. This system has a discrete
number, C, of vessel sizes ranging from the largest (the ”aorta”) to the smallest
(”capillaries”). At a node, the k-level vessel branches into vk of the k + 1 vessels.
Each of these vessels has a characteristic length, radius, pressure drop, velocity
and rate of flow. The amount of fluid is conserved, so

Q̇0 = Nk+1Q̇k+1 = Nk+1πr
2
k+1ūk+1 = Ncπr

2
c ūc. (1)

Assumption: The smallest units have invariant size. Thus, the properties of vessels
listed above, at the capillary size, are independent of animal size.

This fluid flow, Q̇, is linked directly to the rate nutrients are delivered to cells,
so Q̇ ∝ B ∝Ma. Then, by equation 1, Nc ∝Ma.
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Putting aside the question of why these networks are self-similar and fractal,
if we assume they are, then the following occurs. At each node, a vessel branches
into n smaller vessels, whose radii decrease in a constant proportion ρ = rk+1

rk

(which maintains area) and whose lengths decrease at a constant rate λ = lk+1

lk

(which reflects the space-filling property). Now Nc = nN and we can rewrite the
allometric equation Nc = (M/M0)a as

N =
a · ln(M/M0)

ln(n)
(2)

Now, the total amount of blood must fill all these blood vessels, resulting in the
geometric sum

Vb =
C∑
k=0

Nk+1Vk+1 =
C∑
k=0

πr2
k+1lk+1n

k ≈ Vc(λρ
2)−C

1− nλρ2
. (3)

If one accepts this fractal nature and further assumes that the volume of the blood
(and volume of the capillaries) scales directly with mass, or equivalently, (λρ2)−C ∝
M (contradicting(?) assumption of Nc ∝ (M/M0)a leading to equation 2, from
Kozlowski and Konarzewski), then by rearranging equation 2 the scaling exponent
becomes

a = − ln n

ln(λρ2)
. (4)

If we assume the system is space filling, that is, 4/3π(lk/2)3Nk ≈ 4/3(lk+1/2)3Nk+1,
then λ = n−1/3. Similarly, the assumption that the cross-sectional area is preserved
at each junction, πr2

kNk ≈ πr2
k+1Nk+1, implies ρ = n−1/2. With equation 4, we

find a = 3/4.
To achieve this result, WBE invoke an energy-minimization principle along

with a pipe-branching model. These assumptions are fraught with errors, not the
least that their choices of ρk, λk and nk do not necessarily lead to the Lagrange
multiplier absolute minimum (Dodds, Rothman and Weitz). Additionally, many
of the assumptions, such as the branching structure, are not necessarily biological.
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WBE Revised: The Etienne, Apol and Olff Model.
The goal is to create a more flexible and general theory which proscribes a

formula for the constant B0 in the allometric equation B = B0M
a.

Assumption 1. Substitute the fact that vascular systems are fractal-like for the
strict self-similarity property in WBE. This makes the quantities vk, ρk and λk
functions of k. We also define total cross-sectional area and volume ratios as

αk =vkρ
2
k (5)

φk =vkλ
3
k (6)

and other useful quantities

rk = rc
ΠC−1

i=k ρi
S1 =

C∑
k=1

1

ΠC−1
i=k viρ

2
iλi

lk = lc
ΠC−1

i=k λi
S2 =

C∑
k=1

1

ΠC−1
i=k αi(φi)

1/3

Nk = Nc

ΠC−1
i=k vi

S3 =
C∑
k=1

1

N
1/3
k

.

The total volume of transport fluid (blood) at level k is

Vb,k = Nkπr
2
klk =

πNcr
2
c lc

ΠC−1
i=k viρ

2
iλi

. (7)

So the total blood volume is the sum over k

Vb = πNcr
2
c lcS1 = π(Nc)

4/3r2
c lcS2. (8)

Thus we can solve for the number of capillaries

NC =

(
Vb

πr2
c lcS2

)3/4

(9)

Assumption 2. The proportion of blood flow to metabolic rate is independent
of body size. In other words, B = f0N1Q1, where f0 is the change in O2 levels by
metabolic action. The value of f0 is assumed/shown to be independent of M .

Assumption 3. Water is incompressible. This physical fact is equivalent to NkQk =
Nk+1Qk+1 and rules out such systems as lungs. Thus we find

B = f0NcQc = f0NcAcuc (10)
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and so with equation 9 we relate the metabolic rate to the total blood volume.
Three additional assumptions are needed to achieve the 3/4 scaling.

B = f0Acuc

(
Vb

πr2
c lcS2

)3/4

= f0πr
2
cuc

 Vb

πr2
c lc
∑C

k=1
1

(Nk)1/3ΠC
i=kαi(φi)1/3

3/4

(11)

Assumption 4. Blood volume is proportional to body size. The allometric equation
Vb = Vb0M

b with b = 1 has been demonstrated empirically.

Assumption 5. The capillaries are size independent. Then the quantities rc, lc and uc
do not depend on M .

Assumption 6. The quantity S2 does not depend on M . This was justified by
West with the following assumtions:

1. The network is area preserving or αk = 1 ∀k.
2. The network is space filling or φk = 1 ∀k.
3. S3 does not depend on body mass.

Under all these assumptions, the metabolic rate is

B = B0M
3/4b with (12)

B0 = f0πr
2
cuc

 Vb0

πr2
c lc
∑C

k=1
1

N
1/3
k ΠC−1

i=k αi(φi)1/3

3/4

. (13)

We see all the values in equation 13 must not vary (too much) with M . If
plotted, S3 clearly converges to an asymptotic value quickly, within about 10
levels.

On the other hand, if any of these values did vary, we could accommodate
those fluctuations into our model by including some extra scaling into equation
12. The space filling requirement is the most controversial and mysterious and
least well grounded in a biological principle. On the other hand, even if φk does
vary some with k or with M , since the coefficient formula uses its 3rd root, its
influence should be minimal.
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