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1 The Gompertz equation

The Gompertz equations is the original equation used to model aging. It is represented by
the simple form

dN

dt
= −γ(t)N(t)

dγ

dt
= aγ

Now, the equation γ is a standard exponential growth, giving

γ = γ0e
at. (1)

Plugging this into the equation for N gives

dN

N
= −γ0e

atdt (2)

solving for N gives
N = N0e

−γ0
a (eat−1). (3)

Surprisingly, such a simple equation does a good job of modeling death rates in adults
while still having a simple closed form.

2 A Discreet Model

In our discreet model, we set up distinct cohorts that age, die, and give birth. They are
represented by the following equations:

P0(t + 1) = α1P1(t) + α2P2(t) + · · · + αnPn(t)
P1(t + 1) = (1 − µ0)P0(t)

...
Pn(t + 1) = (1 − µn−1)Pn−1
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These equations can be rewritten into the matrix form:

P(t + 1) = MP(t) (4)

where P is a vector representing the number in each group and M is a matrix of
conversion coefficients. Within M, the top row is the birth rate α for each class, and just
below the diagonal is the survival rate 1 − µ for each group.

Now, we know that the population matrix is non negative. Additionally, this matrix
is primitive, meaning that the matrix becomes positive when exponentiated. Thus, the
Perron-Frobenius theorem says that if A is non-negative and primitive, there is some dom-
inant eigenvalue, greater than 0, that is also greater than any other eigenvalue. Thus, the
population will approach some steady state distribution with a well defined growth ratio -
the dominant eigenvalue.

3 A Continuous Model

Here, we use differential equations to represent transitions from one discreet group to
another. In our simple model, we assume each group decays exponentially.

dS0

dt
= −S0

dS1

dt
= S0 − S1

...
dSj

dt
= Sj − Sj−1

...

Now,

d

dt
(S) =

d

dt
(−S + (S0 − S1) + (S1 − S2) + · · ·

= 0

so long as we ignore any effect from having a last grouping. Thus, in this model, with no
birth or death, we simply have an aging of the population.

4 A Continuous Model with Birth

Here, we model tracking the number of stem cells in a population. Every cell has some
chance of self-replicating (p) and some chance of producing a differentiated cell (f). The
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age representees the total number of times a cell has divided. We have the differential
equations:

dS0

dt
= −(p + f)S0

...
dSj

dt
= (2p + f)Sj−1 − (p + f)Sj

...

Now,

dS

dt
=

d

dt

∑
j

Sj

= −(p + f)S0 + (2p + f)S0 − (p + f)S1 + · · ·
= ps

if one assumes that there is no final group. Thus, the total number of cells grows exponen-
tially.

Now, the cells have a telomere length L̄ that shortens by an average of 100 base pairs
as the cell divides. We can write

L̄(t) =
1

S(t)

∑
(L0 − 100j)Sj(t)

= L0 − 100
L(t)
S(t)

where L0 represents the initial average telomere length and L(t) =
∑

jSj(t).
Now,

d(jSj)
dt

= (2p + f)(jSj−1) − (p + f)(jSj)

dL

dt
= (2p + f)

∑
[(j − 1)Sj−1 + Sj−1] − (p + f)

∑
jSj

= (2P + f)L + (2p + f)s − (p + f)L
= pL + (2p + f)S

where we have once again assumed no affect from a final group. We can not calculate a
change in the average telomere length:

dL̄

dt
= −100

dL(t)
S(t)

dt
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= −100(S(t)
dL

dt
− L(t)

dS

dt

=
−100
S2

[S(pl + (2p + f)S) − PSL]

= −100(2p + f).

Now, we can determine p from the growth rate of the cells. We can find the change in the
rate of telomere by looking at cells. Therefore, we can find f, the rate of differentiation.

5 Conclusion

Despite the simplicity of these aging models, a lot of useful predictions about cell behavior
can be made. These models, then, provide a useful starting place for modeling aging,
with added complexity added where needed for a given application. Moreover, this process
shows the importance of starting from the basics and adding on features. This allows for
a simplicity in interpreting the model but also ensures that the behavior at every stage is
reasonable.
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