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A scientific growth area in recent years has been the

study of networks of interacting entities within a

population, including species in food webs, human or

other animals transmitting infection, proteins in cells,

cells in organisms (e.g. neuronal networks), the internet

and the World Wide Web. Here, I review some of the

differing network patterns that arise in theory and

in practice, with an emphasis on their dynamical

implications, particularly for resistance to deliberate or

accidental disturbance. I offer caveats and opinionated

comment about some excesses of enthusiasm and

suggest some areas where these network ideas might

find further application.
Biological networks and their properties

Back in the early 1970s, one of the few tentative
generalisations in ecology texts, based on arguments by
Elton [1], was that ‘complex ecosystems are more stable’,
in the sense that those with more species and/or a richer
network of interactions among them were better able to
withstand disturbance, either natural or human created.
My accidental introduction to ecological research began
with the observation that, as a mathematical generality,
this proposition was false [2]. However, real ecosystems
are the winnowed product of historical processes rather
than randomly constructed networks. But what network
structures do we observe in nature (possibly different
in different environments) and what do these imply for
food-web dynamics? This ‘network agenda’ arrived in
ecology relatively early compared with other areas in the
life sciences, and subsequent experiments, observations
and theoretical studies have taken us a good distance
down the road to answering these interesting questions.

More generally, empirical and theoretical work on the
structure and dynamical behaviour of networks is
burgeoning across the life sciences. Such work derives
from advances in instrumentation and in computer power.
Here, I sketch some mathematical facts about different
kinds of network, listing various areas of current research
(including some under the new heading of ‘Systems
Biology’), with an emphasis on commonalities and cross-
cutting themes. I then summarise some suggested
explanations for how these networks have evolved or
been constructed, and sound some cautionary notes
against excesses of enthusiasm. In particular, I focus on
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the interplay between contact networks and the trans-
mission dynamics of infectious diseases, partly because
there is a lot of data, theoretical understanding and
implications for policy. In conclusion, I offer some opinions
about ‘what is next’. This review is necessarily sketchy
and idiosyncratic, even in the areas that I have empha-
sised. Box 1 indicates some excellent and more detailed
reviews of particular aspects of networks in biology.
Kinds of network

The oldest and best-studied network model is the Erdos–
Renyi random graph [3], in which n nodes (or vertices) are
connected by links (or edges) placed randomly between
pairs of nodes. Less interesting is a uniform network, in
which each node is linked to exactly m others.

The basic statistic used to characterise the structure of
a large network is its ‘degree distribution’, P(i). Here, P(i)
is the probability that a randomly chosen node will ‘have
degree i’, that is be linked to i other nodes. For the Erdos–
Renyi network, the degree distribution is given exactly by
the binomial distribution or, in the limit of large n, by the
Poisson distribution: P(i)ZmieKm/i!, where m is the
average number of links.

Poisson and binomial distributions are strongly peaked
about the average, m, with the probability of finding larger
i values diminishing rapidly, as 1/i! That real-world
networks are more complicated was driven home in 1967
by Milgram [4], who asked 160 people in the western USA to
send a letter to someone (unknown to them) in Massachu-
setts by sending it to an acquaintance who might be able to
further its journey to the target; 42 letters arrived, after an
average of 5.5 hops; hence, ‘six degrees of separation’. This
motivated Watts and Strogatz’s interesting and influential
work [5] on ‘small world’ networks, which combine local
clusters with occasional ‘long hops’. I think this helped focus
attention on degree distributions with ‘fat tails’, which
decrease relatively slowly as i increases. One such canonical
distribution is the exponential: P(i)weKai.

More recently, guided by data and the models discussed
here, much attention has been given to so-called ‘scale-
free’ networks [6]. These obey the power-law degree
distribution P(i)wiKg, where g is a constant (usually
2!g%3). Such distributions have very fat tails, and also
the peculiar feature that there is no characteristic number
of links per node: hence ‘scale-free’ (SF).

Two other interesting statistical properties of large
networks are the network ‘diameter’ (d) and the
‘clustering coefficient’ (C) [3,7–9]. The former is calculated
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Box 1. More detailed reviews

Here, I highlight some excellent reviews that provide more details of

various aspects of the topics covered here in the main text.

The mathematics of networks or ‘graphs’ are reviewed extensively

and in detail by Bollobas [7] and Newman [3]. Bollobas focuses on

the mathematical technicalities, whereas Newman integrates the

mathematics with applications in a readable way. A briefer and

exceptionally lucid review along these latter lines is by Strogatz [8].

The thoughtful recent review of ‘network thinking in ecology and

evolution’ by Proulx et al. [9] in TREE is, in many ways,

complementary to the present one. In particular, Box 1 from the

article [9] provides a comprehensive and helpful glossary of

technical terms used in mathematical descriptions of networks. For

an account of ‘ecological networks’, see the recent collection of

papers compiled by Pascual and Dunne [67], especially the chapter

by Dunne [60]. Keller [20] gives a constructively critical appraisal of

work on the purported ubiquity of scale-free networks; I particularly

liked her more general scepticism of grand generalisations.
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by first finding the shortest path (smallest number of
links) between each pair of nodes; d is then the maximum
such shortest path (some biological authors take d to be
the overall average shortest path). For an Erdos–Renyi
random network with n nodes, d is proportional to log n.
Exponential networks have smaller diameters, and SF
ones are ultra-small [with diameters scaling as log (log n)
in the usual case where 2!g%3]. C is the average
probability that two neighbours of a given node are also
neighbours of each other; again, this quantity is well
named, giving an intuitive sense of how ‘clumpy’ the
network is. Many real-world networks have high C values
(R0.5). For the Erdos–Renyi network, CZm/n is, by
definition, the same for any node, regardless of
its neighbours.

The degree distribution gives important information,
but it does not define the structure of a network uniquely.
Figure 1 shows two networks with identical P(i), but with
significantly different d and C. More generally, Milo et al.
[10] have propounded a bottom-up approach that
concentrates on identifying small patterns (subnets with
three, four or even five connected nodes) that are over-
represented in the network. These are called ‘network
motifs’ and can be used to characterise distinct categories
of networks.
Observed networks

This is a rapid gallop across the landscape of examples,
with infectious disease deferred for closer attention later.
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(a) (b)

Figure 1. Two eight-node networks with the same degree distribution, but differing

in structure (and having different diameters, d, and clustering coefficients, C).

Specifically, the degree distribution {P(i)} for both (a)and (b) is P(4)Z0.125, P(3)Z
0.125, P(2)Z0.625 and P(1)Z0.125. But for (a), dZ5 and CZ0.43, whereas for (b),

dZ4 and CZ0.21.
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Barabasi and Albert [11], beginning with studies of
the links among web pages within their University of
Notre Dame, have shown that the degree distribution
of the world wide web (www) and of the internet seems to
be SF (reviewed further in [6]). Others (e.g. [12]) have
noted that, although the broad patterns of these IT
networks are SF, important details of subcomponents
can differ in ways that can have practical implications.
Patterns of scholarly publication and, more generally, the
‘mapping of knowledge domains’, generate networks
whose properties repay study. Their degree distributions
often have SF features (reviewed in [13]).

Introducing a Special Section in Science on ‘Networks
in biology’, Jasny and Ray [14] write that “Biologists are
striving to move beyond a ‘parts list’ to more fully
understand the ways in which network components
interact with one another to influence complex processes”.
An increasing number of papers deal with networks of
interacting proteins (linked nodes) that determine how
cells function. For example, Kollmann et al. [15] study the
signalling network of bacterial chemotaxis in Escherichia
coli and suggest that the observed network structure is
the smallest that is sufficiently robust to ensure accurate
chemotactic response for the relevant population in its
noisy environment. They go on to speculate on the
evolutionary implications and the fact that these ‘topolo-
gical design principles compensating for intercellular
variations seem to be highly conserved among bacterial
chemosensory systems’.

At a coarser level in biological systems, increasing
attention is being paid to how networks of cells work
together in organs, for example in neuronal networks (e.g.
[16]). Other active areas of experimental and theoretical
work on network structures and dynamics range from how
individuals interact in societal and behavioural networks
to word-adjacency networks from different languages: for
instance, social insects (e.g. [17]), human social systems
(e.g. [18]), and other examples listed in [10]. Again, small
world, and especially SF, distributions are ubiquitous.

Possible explanations and some caveats

Barabasi and Albert [11] give a plausible way in which a
SF network (such as the internet) could assemble itself. If
networks arise by the sequential addition of nodes, and if
each new node links preferentially to highly connected
nodes, then this results in a SF degree distribution. More
precisely (although a bit different from the Barabasi–
Albert models), suppose new links are added such that
each end attaches with probability p to a new node, and
with probability (1Kp) to an existing node; in the latter
case, the attachment is with relative probability i to a node
with i connections. The asymptotic result of this process is
a SF distribution, P(i)wiKg, with gZ(2Kp)/(1Kp). As p
ranges from 0 to 1, g goes from 2 to N. More restrictively, if
we assume that each link connects a new node to the
existing network, we have pZ0.5 and, thus, gZ3
(reviewed in [3,7]).

These ideas appeal to me as an explanation for why
broad-scale features of IT systems are SF. But for the life
sciences (proteins signalling in cells, neuronal networks,
behavioural dynamics of social insects, etc.), many,
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including myself, see some problems (e.g. [19,20]). Not the
least of these is that many of the observed degree
distributions for intracellular signalling, although
roughly linear on a log-log plot (i.e. a power law) over
much of their range, are in fact better fit with an
exponential or other degree distribution [20,21].

Another problem, only recently pointed out [22], is that
many of these networks are in fact samples (often rather
small samples of 10% to 20%) of the full network in
question. But samples from SF networks are not SF.
Conversely, if the observed sample is SF, then the full
network is not. Indeed, a random sample from a network
will not have the same degree distribution as the whole,
except when the ‘parent network’ is a binomial or negative
binomial network (of which Erdos–Renyi and exponential
are special cases) [22].

A different approach to ‘superfamiles of evolved and
designed networks’ was outlined earlier [10]. By using
small subnetworks, Milo et al. classify ‘network motifs’
and, on this basis, identify several ‘superfamilies’ of
networks. One distinct superfamily includes protein
signalling, developmental genetic networks and neuronal
wiring. Others include power grids, protein-structure
networks, social networks and linguistic patterns from
different languages (Indo-European to Japanese). This
work is, as yet, essentially phenomenological.

In seeking models for the self-assembly of networks,
essentially all earlier work focussed on growing networks
(with preferential attachment to highly connected nodes
being the key to generating fat-tailed, SF-like distri-
butions). Salathe et al. [23] propose a model that can
generate fat-tailed networks, even in the absence of
network growth, by not only adding, but also selectively
eliminating nodes (with probability inversely related to
the sum of their first- and second-order connectivity). Such
a generalised birth–death process is arguably closer to the
realities of evolutionary processes in biological systems.
Other approaches involve mechanisms for duplication or
‘rewiring’ [24], or various kinds of optimization [25].

Two final caveats: Cassman et al. [26] have recently
written about ‘the use of modelling and simulation,
combined with experiment, to explore network behaviour
in biological systems – in particular their dynamic nature’.
They worry about the innumeracy of many of their well-
intentioned colleagues, who have little intuitive grasp of
the connections between what goes into the computer and
what comes out. They fear that ‘During the past 30 years
biology has become a discipline for people who want to do
science without learning mathematics’. This is strong
stuff, but I think there is some legitimacy to these
worries [27].

The converse of this worry is the increasing number of
physicists involved in Systems Biology, many of whom
publish almost exclusively in theoretical physics journals.
Much of this work is excellent and solidly grounded on
collaborations with biological colleagues, but some seems
to be avoiding competent biological review, and quite a bit
thinks it sufficient to cite apparently relevant work in
theoretical biology without actually reading it. This
results in misunderstandings or repetition of earlier
work published in biological journals.
www.sciencedirect.com
Network structure and infectious disease dynamics

The transmission and control of infectious disease
provides good examples where data on, and theoretical
understanding of, network dynamics have been put to
practical use. Specific instances include HIV/AIDS [28,29],
the foot-and-mouth epidemic among livestock in the UK
[30], SARS [31] and current planning against a possible
avian flu pandemic [32–34].

The first question any ecologist asks of an invasive
species is: what is its basic reproductive number, R0, as
measured by the average number of offspring per capita
that survive to reproductive age? For a directly trans-
mitted infectious disease, be it HIV, SARS, or some newly
emerging menace, R0 is the average number of infections
produced by an infected individual in a susceptible
population (e.g. in the early stage of an epidemic) [28]. If
R0!1, a self-sustaining epidemic is not possible (at least
without further evolution). If R0O1, then although early
stochastic fluctuations might extinguish the invader, an
epidemic is possible. If R0 is large, an epidemic is certain.

Most early work in this area, before the advent of
big computers, treated populations as homogeneous
(everyone is average) and also ignored stochastic fluctu-
ations. However, studies of gonorrhoea [35] and of AIDS
in its early days [36] found it impossible to explain
epidemiological patterns without acknowledging that
networks of sexual partnerships [degree distributions of
numbers of links (partners) per node (individual)] showed
significant heterogeneity, with ‘superspreaders’ being
disproportionately influential. More recently, Lloyd-
Smith et al. [37,38] have demonstrated another source of
marked heterogeneity in contact networks, caused by
some individuals being more infectious than others.
Analysis of such nonuniform degree distributions for
contact networks shows that they can seriously affect
both how R0 is calculated and the importance of
stochastic effects.

In deliberately oversimplified terms, we might write
R0ZbDc, where b is the transmission probability (measur-
ing the infectiousness of an infected individual), D the
duration of infectiousness, and c the average rate at which
new contacts are made (e.g. new sexual partners
acquired). If we think more carefully about the epidemio-
logical significance of the contact network, however, we
see that its degree distribution enters in a nonlinear way:
those with more contacts are more likely to acquire
infection by virtue of their higher activity level, and are
also more likely to transmit infection. This shows up when
we turn the handle of the mathematical machinery,
finding that the epidemiologically appropriate ‘average
contact rate’, c, is not the mean of the degree distribution
of the network, but rather the mean-square divided by the
mean [i.e. cZhi2i/hii, where the sharp brackets indicate
averages over the degree distribution, P(i)] [28]. R0 can
thus be rewritten as Equation I:

R0 Z r0½1C ðCVÞ2� [Eqn I]

Here, CVZhi2i
1⁄2 /hii is the coefficient of variation of the

degree distribution of the network, and r0ZbDhii is the
incorrect estimate that we would make for R0 by treating
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Figure 2. Contact networks and epidemics. The fraction of a population, I, infected in

an epidemic is shown as a function of r0, which (as discussed more fully in the main

text) would be the basic reproductive number (R0) of the infection if the contact

network had a uniform degree distribution, but not otherwise, to the contrary of

some misunderstandings. The solid curve represents a homogeneous population

with a uniform degree distribution, and the dashed curve a scale-free distribution

with exponent 3 [i.e. P(i)wiK3]. Although an epidemic can propagate in a population

with a scale-free contact distribution if r0!1, the resulting curve is not strikingly

different from the conventional one for a homogeneous population; the fraction

infected becomes very, very small once r0 is substantially !1.
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the network as homogeneous (unless, of course, CVZ0,
when R0Zr0). This observation helps explain how large
differences in the incidence of HIV/AIDS in different
places can arise from differences (which are not easily
measured) in the tails of such contact distributions [28].

Earlier studies of the epidemiological consequences of
nonuniform degree distributions in contact networks have
also led to an important and rather general theorem (pp.
305–315 and 318 of [28], and [39]). For contact networks
with a uniform degree distribution (CVZ0), we can
estimate the proportion, p*, of individuals (‘nodes’) to
be vaccinated or otherwise treated to eradicate infection:
p*Z1K1/r0. But if in truth, the degree distribution of the
contact network is nonuniform, then if we treat nodes at
random we will find that for successful control we have to
treat more, possibly much more, than the proportion, p*,
that we estimated. However, if we take advantage of the
heterogeneity, and treat in a way that targets the more
highly connected nodes, then we can achieve our aim by
treating a smaller, possibly much smaller, proportion than
estimated by p*. The greater the heterogeneity (the larger
the CVof the degree distribution of the network), the more
pronounced these effects will be [28]. This general result,
first emphasised in the epidemiological literature in
the mid-1980s, has more recently been independently
discovered, with interesting and important implications,
by Albert et al. [40] and others, in the context of the
structure of IT networks in relation to targeted versus
random attacks.

Although there is considerable advantage in targeting
epidemiological control measures, it requires that highly
connected individuals be identified, which is easier said
than done. Cohen et al. [41] have, however, formulated a
seemingly paradoxical method for achieving this, without
directly identifying the hyperactive nodes. First, pick a
node at random; then select randomly among nodes
connected to it. On average, this automatically identifies
the more highly connected nodes (giving the same kind of
mean-square/mean effect seen in Equation I).

Epidemiological contact networks with fat-tailed
degree distributions also have implications for stochastic
effects in the initial stages of a potential epidemic. For a
given value of R0O1, a fat-tailed P(i) implies that
relatively few individuals are responsible for most of the
transmission or, conversely, that many individuals do not
transmit at all. In turn, such relatively small numbers
tend to generate relatively large stochastic fluctuations
in the initial stages of the epidemic. Consequently, an
emerging disease with such a contact network will be less
likely to generate an epidemic; however, if an epidemic is
sustained, that epidemic is more likely to be explosive.
Thus, it can be dangerous to underestimate a disease on
the basis of frequent ‘failed’ attempts. These and other
epidemiological implications of nonuniform contact
networks are currently receiving much attention, in the
light of worries about newly emerging or re-emerging
infections [30,31,42,43].

One alarming misunderstanding about the epidemiol-
ogy of HIV/AIDS that has emerged from some SF
enthusiasts should be put to rest. The worry goes as
follows. First, it has been argued that observed degree
www.sciencedirect.com
distributions for networks of sexual contacts are SF [44].
Second, using a simple susceptible–infectious–susceptible
(SIS) model, Pastor-Satorras and Vespignani (PSV) [45]
note that, for a SF distribution with g between 2 and 3,
there is no epidemiological threshold: no matter how small
the transmission parameter, b, an epidemic is possible.
The same also holds for the more realistic susceptible–
infectious–recovered (SIR) model [46,47]. Barabasi [6]
highlights this finding, concluding that HIV/AIDS might
present effectively insuperable problems. This conclusion
has been singled out for emphasis in reviews of his
book [18,48].

But there are several problems with all of this. First,
the evidence that sexual contact networks are SF is shaky
(e.g. [49]). Second, the reason for the seemingly surprising
‘no threshold with a SF distribution’ is clear from the
epidemiologically correct Equation I for R0 (PSV implicitly
assume R0Zr0 even for nonuniform distributions): if
P(i)wiKg with g between 2 and 3, then hi2iZN (in the
infinitely large population assumed by PSV), whence CV,
and consequently R0, are infinite, no matter how small r0

is [46]. Third, real populations are finite, whence R0 is
finite and a threshold is restored [47]. Fourth, and more
important, even if we have R0 infinite, the fraction of the
population to become infected is very small once r0 is small
[being of the order exp(K2/r0)] (Figure 2 [46,47]). Finally,
overriding all this, recall the theorem sketched earlier: for
a fat-tailed contact distribution, if we take advantage of
the heterogeneity then the epidemic is easier to eradicate
than for a uniform contact distribution. In short, these
rather overheated worries about HIV/AIDS are chimerical
(for further discussion, see [46,47]).

What next?

Here, I have only scratched the surface of a large and
growing area of activity. Many topics that fall under the
heading of networks and their dynamics have not even
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been mentioned. One major evolutionary problem, many
aspects of which are as puzzling today as they were to
Darwin, is the evolution of cooperation. How did our own
social systems originate and maintain themselves in the
teeth of the evolutionary advantage apparently gained
by ‘cheats’, who take the group benefit without paying
the accompanying individual cost? Studies of metaphors
for this problem, such as the Prisoner’s Dilemma (PD),
seem to me mostly to give useful answers only under
implausibly restrictive assumptions (reviewed in [50]).
A blend of network dynamics with PD metaphors might
provide more robust answers to this question [51,52].

I end as I began, with the network structure of species
interacting in food webs and ecosystems. As emphasised
over 30 years ago [2], real food webs are not randomly
assembled, and so the first question is: what patterns, if
any, are there in the degree distributions, diameters and
clustering coefficients of interacting species in ecosys-
tems? Two recent analyses [53,54] of 16 high-resolution
food webs from aquatic and terrestrial ecosystems (with
total nodes from 25 to 172) strongly suggest ‘two degrees of
separation’, in the sense that more than ‘95% of species
[are] typically within three links of each other’ [54]. These
degree distributions are not random Erdos–Renyi ones,
although whether they are exponential, scale-free, or
something else is the subject of debate [9,20]. One major
problem lies in the extent to which constituent species are
‘lumped’ into functional groups, in ways that can bias
analysis [55]. Interestingly, Stouffer et al. [56] have shown
that approximately exponential degree distributions
similar to those observed can be derived from at least
two apparently different models proposed earlier [57,58];
this finding is reminiscent of much earlier observations
that significantly different mechanisms could result in
identical distributions of the relative abundance
of species.

Another long-standing question is whether there are
significant differences between terrestrial versus aquatic
ecological networks. The above analyses [53,54] would
suggest not, and this view is supported by recent studies of
three different marine ecosystems, which ‘substantiate
previously reported results for estuarine, fresh-water and
terrestrial datasets, [suggesting] that food webs from
different types of ecosystems with variable diversity and
complexity share fundamental structural and ordering
characteristics’ [59].

Other studies ask how the network structure of a food
web influences what happens when species are added or
removed. Not surprisingly, most such studies (reviewed in
[9,60]) tend to show that removing the most highly
connected species causes more ‘knock-on’ extinctions
than does random removal. Berlow et al. [61], however,
have shown that removal of low-connectivity species can
have large effects, demonstrating that ‘keystone species’
are not necessarily highly connected ones.

Ultimately, the response to disturbance must depend
not only on network structure, but also on the strength of
interactions. McCann’s [62] excellent review of the
existing data and experiments argues that distributions
of interaction strengths are strongly biased toward weak
interactions. He also observes that weak average
www.sciencedirect.com
interaction strength tends to be correlated with high
variability in the strength. McCann makes it plain that,
although most species’ invasions have a weak impact on
ecosystems, removal of or invasion by a single species
(not necessarily a strongly interacting one) can have huge
effects on an ecosystem [63–65].
Conclusion

In short, ecologists have made much progress on under-
standing ‘stability and complexity’, partly by redefining
the questions being asked. There are some tentative
generalisations, such as those sketched above, along with
Tilman’s [66] ‘increases in diversity [number of species]
cause community stability to increase, but population
stability to decrease’. But I suspect finer-grained analyses
of food webs might find structural differences shaped by
different environmental settings, present indications
notwithstanding. It will certainly be interesting to read
TREE’s 40th Anniversary Issue.
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