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Summary 

1. We examined the species richness of theoretical communities in relation to inter- 
action strength between species. 
2. To do so, we used randomly constructed interaction matrices for competitive systems. 
To determine co-existence, we tested for local stability and equilibrium feasibility of 
these theoretical assemblages. 
3. As expected, we found that a low mean species interaction strength could allow for 
many species to co-exist. However, variance in the interaction strengths may alter 
previous results; two systems with the same mean interaction strength show markedly 
different diversity depending critically on the magnitude of the variance. If species 
are similar enough then many can co-exist, even if they compete strongly. 
4. In addition we found that the species richness of a competitive community can 
greatly depend on the correlation between interaction strengths, an issue that so far 
has gone unreported. This correlation, a result of trade-offs between species' charac- 
teristics, may profoundly increase the potential for stable co-existence of a highly 
species-rich community. 
5. Competition may not be an anathema to diversity. Statistical properties of species' 
interactions may be critical factors that contribute to the explanation of species diver- 
sity in natural communities. 

Key-words: biodiversity, co-variation, herarches, interaction matrices, interaction strength, 
stability probability, variance. 
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nities. He used an elementary result from theoretical 
Introduction physics to show that the stability of ecosystems tends to 
The relationships between species interaction strength, decrease with the number of species, thus refuting that 
species diversity and ecosystem stability are of great 'complexity begets stability'. This result, however, 
importance to conservation biology in the face of the apparently contrasts with the high species richness 
increased anthropogenic pressure on natural ecosys- found in nature. 
tems through species extinctions and additions (McCann The question of how diversity and stability are 
2000). Early, mainly verbal, theories on the diversity- related in natural systems remains unanswered, mainly 
stability relationship supported the view that complex because empirical studies are still uncommon. Recent 
and more diverse communities are more stable than empirical studies (Paine 1992; Fagan & Hurd 1994; 
simple and less diverse ones (MacArthur 1955; Elton Raffaelli & Hall 1992; Berlow 1999) have shown that 
1958). These ideas were later challenged by May (1972, weak interactions are prevalent in natural commu- 
1974), who used random Jacobian matrices to invest- nities. Hardly any of these studies measure interaction 
igate the question of stability of ecological commu- strength (sensu May 1974), which results in a quite dif- 

ficult interpretation of the empirical data. Theoretical 
investigations have pointed to mechanisms that can 

Correspondence: Giorgos D. Kokkris, Department of Math- explain the stabilization effect of weak interactions on 
O 2002 British ematics, University of the Aegean, GR83200 Karlovassi, Samos, community dynamics (Ives & Jansen 1998; McCann, 
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McCann et al. (1998), working with simple food web 
models, found that weak interactions tend to stabilize a 
community by suppressing the destabilizing effect of 
strong interactions. This takes place through the limita- 
tion of energy flow in a possibly strong predator-prey 
interaction. To our knowledge nobody has ever 
demonstrated experimentally community stabilization 
via any of the mechanisms proposed by McCann et al. 
(1998). 

In an intelligent and industrious attempt to examine 
the relationship between diversity and stability in nat- 
ural and agricultural soils, de Ruiter, Neutel & Moore 
(1995) found that the strengths of the interactions 
among species were patterned in a way that promoted 
stability. Roxburgh & Wilson (2000) arrived at similar 
conclusions studying competition in a lawn commu- 
nity. Both of these studies examined interaction 
strength, sensu May (1974), the elements of the 
Jacobian matrix. 

Studying a single trophic level and attempting to 
explain the high diversity of natural communities, the 
importance of competition strength on species diver- 
sity may broadly be categorized as follows (modified 
from Tokeshi 1999). 
1. Competition does not occur at all, and thus it is 
unimportant. 
2. Competition occurs, but is intrinsically not suffi- 
ciently strong to influence the state of co-existence, or 
previously strong competition has left communities 
characterized by niche partitioning and therefore weak 
interspecific interactions: 'the ghost of competition 
past'. 
3. Competition occurs and can potentially influence 
the state of co-existence. However, there may be factors 
or patterns of interaction strength that prevent it from 
exerting a significant influence upon co-existence. That 
is, competition may be intense at the level of two indi- 
viduals but may be unimportant on net population 
growth (sensu Welden & Slauson 1986). 

In this work we set out to re-examine and assess the 
effect of interaction strength and species richness on 
the stability probability of randomly constructed inter- 
action matrices for competitive systems. 

We did this by creating random interaction matrices 
(sometimes referred to as community matrices) for 
communities and studied the feasibility of a positive 
and stable equilibrium. This methodology is similar to 
the one used by May (1972, 1974) to show that the 
stability of an ecological community depends on the 
variance of the interaction strength. There are, however, 
some subtle but important differences between May's 
approach and ours. We constructed interaction matrices, 
used these to assess equilibrium feasibility and hence 
realize species richness, and then proceeded to exam- 
ine the Jacobian matrix for stability. May (1972, 
1974) studied random Jacobian matrices (confusingly, 
these are also referred to as community matrices; Case 
2000) from which the stability of the equilibrium could 
be inferred. 

The use of a Jacobian matrix assumes that a positive 
equilibrium exists. Therefore May's model provides an 
important result about the stability of ecological inter- 
actions, but gives no information about the relation 
between interaction strength and feasibility of the 
equilibrium. This limits the use of the model to study 
species richness. The use of random Jacobian matrices 
is convenient from a mathematical point of view, as 
results are available that link the distribution of the 
matrix entries to the probability of the equilibrium 
being stable. It can be justified by assuming there exists 
some model that could be parameterized to give the 
right Jacobian matrix. However, the disadvantage of 
this approach is that without knowing the appropriate 
model, it not possible to compare the model to ecolo- 
gical data. 

Another limitation of May's work is the assumption 
that the elements of the Jacobian have zero mean. This 
condition might be appropriate for food web models, 
but not for competitive systems, for instance. It has 
been shown that relaxation of this assumption may 
have important consequences for the stability of eco- 
systems (Hogg, Huberman & McGlade 1989; Haydon 
1994). 

We constructed communities by creating random 
interaction matrices instead of Jacobian matrices. In 
ecology information is often presented in the form of 
interaction coefficients and these coefficients can be 
measured (Bender, Case & Gilpin 1984). The advant- 
age of this approach is that our results can be related 
much more directly to measurable quantities. We also 
relaxed the assumption for the mean of the interactions 
to be zero. We asked whether ecologically plausible 
structures of the interaction matrix have significant 
effects on the stability probability of the resulting com- 
petitive system. 

Model presentation 

Species' interactions are governed by the following 
generalized Lotka-Volterra competition equations: 

eqn 1 

where rn is the species number, N, is the density of spe- 
cies i scaled by its carrying capacity, and a, represents 
the effect of interspecific (if i +j )  or intraspecific (if i =j )  
competition. This scaling does not imply that dia- 
gonal elements of the Jacobian matrix all take value one. 
In fact, generally they do not. The term a,,may be read 
as the effect of an individual of species j on the per cap- 
ita growth rate of species i.The intrinsic rates of natural 
increase of all species are assumed to be equal, and 
accordingly do not appear in equation 1, to facilitate 
the interpretation of results. The elements a,,form the 
m by m interaction matrix A. In what follows we test the 
consequences of different ecological assumptions by 
assigning the value of the elements of A randomly, 
using several different distribution functions. 362-371 
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In our model the existence of a feasible equilibrium 
is not guaranteed. One of the questions we try to 
answer is how likely it is that an equilibrium is feasible, 
i.e. that all species' equilibrium densities are positive. 
The second question we address is the stability of the 
equilibrium. Stability of an equilibrium can be determined 
by studying the linearization of equation 1 around the 
equilibrium. The linearized model is of the form: 

eqn 2 

(boldface type to signtfy matrices and vectors). The matrix 
J is known as the Jacobian matrix and its elements are: 

J ,  = nh,, eqn 3 

where n: is the equilibrium value of species i. An equi- 
librium is stable if the real part of the dominant eigen- 
value, and hence of all the eigenvalues of the Jacobian 
matrix J, is negative. It is important to note that in 
order to find the Jacobian matrix the equilibrium values 
need to be known. Therefore there is an important 
difference between our approach, in which we construct 
an interaction matrix, and approaches in which the Jaco- 
bian is constructed; the latter approach implicitly assumes 
the existence of a feasible equilibrium. The drawback of 
our approach is the need to assume a specific model, with 
consequently some loss of generality. We are not aware of 
analytical methods in which the distribution of the ele- 
ments of the Jacobian matrix can be derived by analytic 
means from the distribution of elements of the interaction 
matrix, and therefore used a Monte Carlo approach to 
answer questions of feasibility and stability. 

A sufficient, but not necessary, condition for stability 
is diagonal dominance of the interaction matrix (and 
the Jacobian) (Hofbauer & Sigmund 1988; Logofet 
1993). An interaction matrix has a dominant diagonal 
if the equilibrium is feasible and intraspecific competi- 
tion exceeds the total interspecific competitive impact 
from all other species: 

la,,> Cla,I for all eqn 4I 


Communities are stable when intraspecific competition 
exceeds the total interspecific competitive impact from 
all other species. 

General results 

To guide the intuition, we first consider the limiting 
case in which the interspecific interaction coefficients 
are positive but in which there is no variation in the off- 
diagonal elements, i.e. all a,= a> 0 for i +j and 
a,,= 1. In this case all species are identical and their 
equilibrium density B, is given by: 

eqn 5 

The total biomass B, equals: 

eqn 6 

If a> 1 (i.e. if interspecific competition is greater than 
intraspecific competition) the total biomass decreases 
with the number of species, whereas it increases if 
a< 1 (i.e. if intraspecific competition is greater than 
interspecific competition). However, if there is no 
variation in the interaction coefficients there is no 
upper bound to the number of species that can co-exist 
provided that a< 1. The dominant eigenvalue of the 
Jacobian matrix, whose sign determines the stability 
of the interaction, is: 

eqn 7 

Note that stability declines with m. 
Next, we consider the case in which the interaction 

coefficients have a positive mean and in which there is 
variation in the interaction coefficients. Simulations 
show that the larger the number of species, the smaller 
the probability of finding a feasible and stable equilib- 
rium. In Fig. 1 we have chosen the off-diagonal elements 
from uniform distributions with different intervals: I = 
(0, 0.1), I1 = (0, 0.25), I11 = (0, 0.5), IV = (0, 1.0) and 
V = (0, 1.5), with respective means 0.05, 0.125, 0.25, 
0.5 and 0.75. (For the uniform distribution over the 

a + b  (b - a)'
interval(a, b), Mean = -and Variance = -.)

2 12 
The model was simulated for 3, 5, 7, 10, 13, 16,20, 25, 
30, 40, 60, 80, 100 and 150 species present. Each sim- 
ulation was repeated 10 000 times. The stability prob- 
ability for each value of species richness was calculated 
as the frequency of locally stable and feasible systems. 
Results show that systems may be of four types: (a) 
stable and feasible; (b) neither stable nor feasible; (c) 
feasible but not stable; and (d) stable but not feasible. 
Increasing species richness generally results in a 
decreasing probability of finding systems of type (a), as 
shown in Fig. 1. For very few species all systems are 
almost always stable; very large systems are almost 
always unstable. In between there is a range in which 
the probability of finding a stable system decreases 
rapidly with the number of species. By increasing the 
interval from which the interaction coefficients are 
drawn, this range tends to become less wide and its 
midpoint tends to shift to smaller values. 

As mean interaction strength increases, systems are 
encountered that belong to two 'irregular' types (c and 
d, results not shown). These irregular systems can 
make up to 25% of all simulations in some cases. This is 
a fact that it is not usually taken into consideration in 
community assembly simulations or in the evaluation 
of local stability in randomly constructed food webs 
(Drake 1990). 

Examining data from empirical studies (Paine 1992; 
de Ruiter et al. 1995; Roxburgh & Wilson 2000) one 
observes high variation in the values of interaction 
strengths both within a community and among different 362-371 
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Random 

Species richness 

Fig. 1. Probability of a feasible and stable equilibrium for different mean interaction strengths and species richnesses for random 
community matrices. Intervals for the off-diagonal matrices of the sin~ulations are (0,1.5) ( 0 , l )  (0,0.5) (0,0.2) (0,O.l). Respective 
means are presented in the graph. 

communities. This variation may often have the form similar way but in which the entries were drawn from 
of competitive hierarchy. This calls for a closer study of normal distributions and from distributions in which 
the effect this may have on stability on model communities. the entries were either zero or drawn from a uniform 
In the next section we will study the effects of variance interval. In all cases these simulations yielded very 
on the stability of theoretical assembled communities. similar results. The mean and variance of the distribu- 

tion provided accurate predictions for the number of 
species that can co-exist. This suggests that our results 

Mean vs. variance of interaction strength 
represent a general phenomenon. 

In the previous section our choice of distributions 
results in the variance and mean of the interaction coef- 

Competitive hierarchy: increasing the variance 
ficients being coupled so that they increase or decrease 
together. In this section we consider distributions for Hitherto we examined stability probability assuming 
which mean and variance can be independently that the interaction matrix was 'stochastically symmet- 
changed in order to illustrate the combined effects of ric' in the sense that the entries a,were drawn from the 
the mean and variance of the entries in the interaction same distribution as the a,,.This might not be valid 
matrix on the stability probability of Lotka-Volterra when competition between different species is asym- 
competitive systems. The off-diagonal matrix entries metrical, i.e. when in pairwise competition one species 
were drawn from uniform distributions on the interval suffers heavily from the presence of the other, but not 
[a, b ] .  By choosing the parameters a and b appro- the other way around. At its extreme, such an asym- 
priately, the mean and variance can be chosen. For a metric competition leads to a perfect competitive hier- 
given mean and variance, we calculated the number of archy in which competitors of higher ranks affect 
species as the number of species for which half of species of lower ranks, but the reciprocal effect is zero. 
the matrices yielded stable and feasible equilibria. Entire interaction or Jacobian matrices are rarely pub- 
Results are presented in Fig. 2 as contour plots of lished in the literature but there are exceptions. For 
identical species richness. instance, Gilpin, Carpenter & Pomerantz (1986) deter- 

It is apparent that the variance plays a critical role in mined such a matrix for an experimental fly com- 
stable co-existence. Figure 2 shows that species rich- munity, and Goldsmith (1978), Wilson & Keddy (1986) 
ness decreases as both the variance and the mean of and Roxburgh & Wilson (2000) for plant communities. 
interaction strength increases. As a consequence, to It appears that many communities have such com- 
promote species richness, it is not sufficient to decrease petitive hierarchies. From a theoretical point of view, 
the mean interaction strength if this goes together with Hastings (1980) and Tilman (1994) considered a site- 
an increase in the variance. Figure 2 suggests that this occupancy model in which a superior competitor 
trade-off is approximately linear. would always and immediately take over a site from an 

To generalize these results we performed simulations inferior competitor upon arrival at that site, but in 
in which the interaction matrices were constructed in a which a superior competitor is a worse colonizer and 
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Fig. 2. Contour plots that depict communities of same species richness as a function of the mean and the variance of interaction 
strength that result in stable and feasible configurations with probability 112. The most species-rich communities can be found in 
the lower left corner near the axis origin, where in half the simulation over 20 species co-existed stably. In the upper right corner 
in half of the simulations less than two species could stably co-exist. The irregularity in the right lower of the graph is a result of 
the stochastic nature of the simulations. 

Hierarchy 

Species richness 

Fig. 3. Probability of a feasible and stable equilibrium for different mean interaction strengths and species richnesses for 
hierarchically organized (triangular) interaction matrices. Intervals for the off-diagonal matrices of the simulations are (0,1.5) (0, 
1) (0,0.5) (0,0,2) (0,O.l). Respective means are presented in the graph. 

therefore occupies fewer new sites. This approach can same intervals as before for off-diagonal elements, but 
easily be transformed into a Lotka-Volterra com- note that the means are lower (0.025,0.05, 0.125,0.25, 
petition system similar to the one used above. The inter- 0.375, respectively) and the variances are higher. For 

O 2002 British 
action matrix in this case is a lower triangular matrix; its the calculation of the variance, see the Appendix. The 

Ecological Society, 
JournalofAnimal upper triangle consists of zeros. We constructed ran- same method was followed for the evaluation of 

Ecology, 71, dom matrices, as specified in the previous section, but stability probability and the results are presented in 
362-371 kept the values in the upper triangle zero. We chose the Fig. 3. 

http:(0.025,0.05
http:0.125,0.25
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Mean 0.25 

Species richness 

Fig. 4. Probability of a feasible and stable equilibrium for randomly and hierarchically organized interaction matrices with the 
same mean interaction strength (0.25) and different variance: I, random assembly, interval (0.5), variance 1/48; 11, hierarchical 

7 7 

45 45assembly (triangular matrix), interval (0, l), variance 5/48; 111, random assembly, interval (0.25 - , 0 . 2 5  + _),variance 5/48; 
L L 

IV, same data as in I1 but now the coefficients are randomly placed on the off-diagonal entries. 

Despite the fact that the means are lower, the stabil- probability of the equilibrium being stable was higher 
ity probability in the competitive hierarchy is lower, not than in the hierarchical matrices. This is an important 
higher as would be expected if the only factor that influ- observation as it shows that the mean and the variance 
enced stability probability was mean interaction strength. of the interaction coefficients are not the only factors 
This result is illustrated with an example in Fig. 4. For that control species richness: ecological constraints 
the same mean of value 0.25, we compare the stability on the interactions can lead to departures from the 
probability of three sets of randomly and one set of results found for random matrices. Such constraints 
hierarchically organized matrices. The probability of manifest themselves in the correlation structure of the 
encountering a feasible and stable configuration is interaction coefficients. 
lower in the hierarchically organized communities. It is interesting to note that these findings contrast 
Clearly, the factor that creates this difference is again with those of Roxburgh & Wilson (2000). They found 
the variance of the entries in the interaction matrix. that hierarchy might increase the stability probability 
The values of the variance in this particular example of competitive communities. The fact that the com- 
are: for simulation I, 1/48 in the random matrices, and munity under study was assumed to be at equilibrium, or 
for simulation 11, 5/48 in the hierarchically organized the possible lack of feasibility of that equilibrium, may 
matrices. contribute to that discrepancy. 

The increased variance of hierarchical matrices is 
one factor that will contribute to the fact that the spe- 

Hierarchy with trade-off: correlation structure in 
cies richness is reduced, but this is not necessarily the 

the community matrix 
only factor. We therefore constructed (simulation 111) 
randomly assembled matrices according to the proced- To illustrate the point that ecological constraints can 
ure described in the previous paragraph with a mean lead to departures from the results found for random 
0.25 and variance of 5/48. As shown in Fig. 4, hierar- matrices we will consider a community defined by the 
chically constructed matrices were even less species rich model: 
than the randomly constructed matrices with com- 
parable mean and variance. To find out if the reduced spe- 
cies richness was caused by the specific way in which 
these matrices were constructed, i.e. with the elements where the interaction coefficient h, = 0 if j > i and 
of the upper triangle all equal to 0, we randomized the h,, = 1 if j < i. The parameters K, represent the carrying 
positions of the matrix entries (following Roxburgh capacities. Note that this model differs from the ones 
& Wilson 2000). To do so we used the entries of the previously described in this paper in that the carrying 
hierarchical matrices used for Fig. 4 but destroyed capacities are not scaled to unity. Instead, we assume 
the hierarchy by randomizing the positions of the that the carrying capacities are chosen from a uniform 
non-diagonal elements (simulation IV). The resulting distribution on [O, b] and ordered such that they 
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decrease with competitive rank, i.e. K, > K,-,. This 
assumes that the better a competitor a species is, the 
lower its carrying capacity. (This assumption may not 
be generally true: in a non-spatial context, highly com- 
petitive plants are usually large-bodied, namely they 
have high carrying capacity K.) This model represents 
a strict competitive hierarchy with a trade-off between 
competitive rank and carrying capacity. This is also the 
case in the Hastings (1980) and Tilman (1994) model 
where the carrying capacity is determined by the ratio 
mortality over colonization. The equilibrium densities 
are given by K, for i = 1 and by K, -K,_, for i > 1. Obvi- 
ously, all equilibrium densities are positive since 
K, > K,-,. In this model, there is no limit to the number 
of stably co-existing species. 

To enable comparison of the model with the models 
used in the rest of this paper, we rescale all population 
densities by their carrying capacities, N, = M,IK,, and 

define a, = h,,%. As a result of this scaling, all diagonal 
K, 

elements of the community matrix take the value one, 
the upper triangle consists of zeros and it can be shown 
that the elements of the lower triangle are uniformly 
distributed on the unit interval (see the Appendix). 
The diagonal elements and the distribution of the off- 
diagonal elements are the same as in the model 
described in the previous paragraph. 

The previous section shows that a competitive hier- 
archy peu se tends to decrease diversity because of 
increased variance of community matrix entries. In the 
model proposed by Hastings (1980) and Tilman 
(1994), however, there is an additional element that 
contributes to increasing the potential for stable 
co-existence, that is the competition-colonization 
trade-off. More generally, trade-offs between different 
competitive abilities generate co-variation between 
community matrix entries that can greatly favour 
co-existence. 

To illustrate this, consider the following interaction 
matrix: 

The matrix elements in the lower triangle are between 0 
and 1, and this matrix describes a system with positive 
and stable equilibrium. This matrix was constructed as 
set out above and it can be made arbitrarily large and 
always have a positive and stable equilibrium, this in 
contrast with the results in the previous paragraph. The 
reason for this difference is that this matrix has an 
internal structure which ensures that a feasible and 
stable equilibrium always exists. The matrix elements 
were drawn at random but were correlated. This struc- 
ture is reflected by the fact that the values of the matrix 
elements decrease within a column. A proof that this 
structure renders the equilibrium feasible and stable is 

given in the Appendix. The reason that strictly hierar- 
chical systems can support arbitrarily large numbers of 
species is that the strongest competitors do not perceive 
the presence of the weaker competitors at all. If these 
systems are constrained such that weaker competitors 
have a higher carrying capacity, weaker competitors 
can survive through the extra resources that are thus 
granted and that are not used by the stronger compet- 
itors (Jansen & Mulder 1999). 

Although the mean and variance of the matrix ele- 
ments are identical to those in the model in the previous 
section, this model differs in that there is no limit to the 
number of co-existing species. The main reason for this 
is that the community matrix was constructed by 
choosing rn parameters from a distribution, and not 
m(m- 1)12, as was done in the previous section. There- 
fore the elements of the community matrix are cor- 
related, generating a structure in the matrix (here, its 
elements decrease gradually along each column in the 
lower triangle). 

Correlations between interaction strengths have so 
far not been studied in ecological communities. This 
example demonstrates that such correlations whose 
biological basis resides on the presence of trade-offs, 
can be a major factor determining the species richness 
of ecological communities. 

Discussion 

Our results can be summarized as follows: the number 
of co-existing species statistically depends on the mean 
and the variance of the interaction strength. An increase 
in mean or variance decreases the expected number of 
species, and the effects of mean and variance can be 
traded-off approximately linearly. These results cor- 
roborate the findings of May (1972, 1974). Although 
the results are similar we arrived at this conclusion by 
considering per capita interaction strengths, not ele- 
ments of the Jacobian matrix. Our findings generalize 
May's findings to two ecologically relevant parameters, 
the mean and the variance of the per capita interaction 
strength. In addition we found that these results can be 
modified by the structure of the ecological community. 
Competitive hierarchies, for instance, tend to be less 
species rich than randomly assembled communities 
with the same mean and variances in the interaction 
strength. Correlation between interaction strengths 
can modify species richness further. 

Our results show that weak mean interaction 
strength in random community matrices allows the co- 
existence of many species. This result is equivalent to 
the assumption that intraspecific competition is much 
greater than interspecific. In one of the few published 
matrices in the literature, Rees, Grubb & Kelly (1996) 
published the matrix of a four-species annual plant 
guild. They demonstrated that interspecific interac- 
tions were extremely weak (mean = 0.062, variance = 
0.01), relative to intraspecific ones. It is interesting to 
note that this represents an almost perfect transitive 362-371 
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competitive hierarchy sensu Keddy (1989), as is the case 
with the second of our models presented in this paper 
(see Competitive hierarchy: increasing the variance). 

We also found that other important critical factors 
that determine the stability probability are the vari- 
ation (expressed as variance or standard deviation in our 
approach) and co-variation of the off-diagonal entries 
in the interaction matrix. If species are more similar 
(the off-diagonal community matrix entries are chosen 
from a smaller interval), then many more species can 
co-exist. If there are trade-offs between different com- 
petitive abilities that generate correlations between 
matrix entries, unlimited co-existence is even pos- 
sible. The competition-colonization trade-off model 
(Hastings 1980; Tilman 1994) can be viewed as a special 
case of our simple model, with a trade-off between 
competitive rank and carrying capacity, the difference 
being that there are additional constraints on parameter 
values (carrying capacities, and hence matrix entries) 
in the competition-colonization trade-off model that 
limit co-existence compared with our model. 

A number of theories that consider biodiversity have 
been formulated, based on the idea that competition is 
neutral or near enough neutral (Bell 2000; Hubbell 
2001). In our simulations this scenario corresponds to 
a mean of 1 and a variance of 0 (neutral competition). 
Our results indeed show that an infinite number of 
species can stably co-exist under such conditions. 
However, if the assumption of zero variance is relaxed 
to a low variance, the probability of finding a stable and 
feasible system with a large number of species drops 
rapidly to zero, indicating that much of the reported 
behaviour is not robust and will change qualitatively if 
the assumptions are changed slightly. Our results also 
demonstrate that large numbers of species do not only 
occur for these rather specific conditions and that sub- 
stantial but finite numbers of species can co-exist under 
conditions for which neutrality does not hold, thus 
limiting the generality of these theories. Alternative 
theories for biodiversity are based on competitive 
hierarchies (Tilman 1994; Jansen & Mulder 1999). 

Recently, it has also been shown that when assem- 
bling theoretical competition communities from a 
regional species pool, the resulting systems tend to 
have a significantly lower mean interaction strength 
than would be expected by chance (Kokkoris, Troumbis 
& Lawton 1999). But our results also show that eco- 
logically plausible community matrices with similar 
weak mean interaction strengths do not necessarily 
allow co-existence of the same number of species. 
Recently, there have been a number of attempts to gen- 
erate species-rich communities through evolutionary 
models (Geritz et al. 1998; Jansen & Mulder 1999; 
Kisdi 1999). It would be interesting to assess how far 
the results from assembly models and evolutionary 
models overlap and when they lead to different results. 

The Lotka-Volterra model captures the barest 
essentials of a multispecies system. As such, it is natural 
that the modification of various factors may poten- 

tially change the outcomes. However, criticisms of the 
model with reference to its 'unrealistic' nature miss an 
important point. This model, as with other heuristic 
models in community ecology, was not designed to 
incorporate all possible factors (e.g. autecology of the 
species) but to show the consequences of having a 
minimum set of key features in a system of interacting 
populations. The model is the simplest possible general 
representation of interacting species. If the patterns 
created by the model are comparable with those 
observed in nature, the features involved might be suf- 
ficient to explain the observed patterns, and therefore 
provide testable hypotheses (Tokeshi 1999). Tradi- 
tional approaches to the issue of competitive co-existence 
point out that species that compete strongly cannot 
co-exist. But competition may not be anathema to 
co-existence. Here we find that many moderately 
strong competitors can co-exist if they are similar 
enough. The idea is not entirely new to the literature. 
Leibold (1998) suggested that co-existing species are 
more similar than expected by chance. That similarity 
involved traits that affected the relative response of the 
organisms to their environment. 

In an effort to resolve the discrepancy between 
modelling results and empirical observations, novel 
interpretations and results have been added to May's 
(1972,1974) and Gardner &Ashby's (1970) theoretical 
investigations (McMurtrie 1975; Haydon 1994; Solow, 
Costello & Beet 1999; Haydon 2000). Conditions have 
been sought to allow for more species to co-exist. 
Almost all results so far are based on Jacobian matrices 
probably partly because of mathematical tractability. 
This work is another attempt in that direction by using 
interaction matrices that from an ecological point of 
view carry far more information. One question that 
needs further investigation is whether these results can 
be generalized from single trophic-level competitive 
systems to entire food webs and ecosystems. 

What we suggest here is not that natural commu- 
nities necessarily follow our simple model and always 
have a lower mean or variance or a particular structure 
of interaction strengths to allow for the great biodiver- 
sity that we observe. Neither do we advocate an eco- 
system management approach based on average 
properties of theoretical dynamic models, which might 
be misleading (Haydon 2000). But we maintain that the 
statistical properties of species' interactions have been 
insufficiently studied and may be critical factors that 
contribute to explain the diversity of species in natural 
communities. 
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Appendix 

1. Calculation of the mean and variance of a distribu- 
tion that takes value 0 with probability 112 and is uni- 
formly distributed on the interval (a, b) otherwise: 

1
Mean = - . (b + a)

4 

Variance = 02=E(x2)- (E (X) )~  

2. Let ,Y and y be stochastic variables with uniform 
probability distributions on the interval (0, b) and 
z = y l x  where x 2 y. Because x and y take values 
between 0 and b, and x 2 y, z takes values between 1 
and 0. The probability density function of z is on the 

h( ;+A)\  

unit interval is: p(z) = lim,,, I I $dydx = l  a n d r  

is therefore uniformly distributed'on the unit interval. 
3. Lemma 1: A model given by equation 1 in which 

the matrix elements in the upper triangle are zero, i.e. 
a, = 0 if i < j, a,,= 1 and r, = 1, the eigenvalues of the 
Jacobian matrix are equal to the equilibrium densities 
times -1. 

Proof:First consider a subsystem consisting of only the 
first species. This system is described by a single differ- 
ential equation that only depends on density of species 

1. Obviously the equilibrium density is x ,  = 1 and the 
eigenvalue of this subsystem i s l .  Next consider a sub- 
system consisting of species 1 to i. This system is 
described by i differential equations that only depend 
on densities of species 1 to i. The first i 1 differential 
equations describe a similar subsystem consisting of i- 
1 species. The eigenvalues of the subsystem consisting 
of i species therefore are the i 1 eigenvalues of the sub- 
system consisting of i 1 species plus one other eigen- 
value. The sum of the eigenvalues equals the trace of 
the Jacobian matrix, the extra eigenvalue can be found 
by subtracting the trace of Jacobian belonging to the i 
- 1 system from the trace of Jacobian belonging to the 
ith subsystem. The value of the extra eigenvalue is 
therefore the one diagonal element of the ith subsystem 
that is not in the i l th  subsystem, which is x , .  There- 
fore, if lemma 1 holds for a subsystem of i species, it 
therefore holds for a system of i + 1. By induction the 
proof holds for the complete system. 

Corollary 1: For a hierarchical system all feasible 
equilibria are stable. 

Lemma 2: A model given by equation 1 in which the 
matrix elements in the upper triangle are zero and in 
which the elements in a column decrease from the diag- 
onal down, i.e. a, = 0 if i < j, a,,= 1 and a,,,> a, if 
i > j and r, = 1, has an equilibrium in which all densities 
are positive. 

Proof: Obviously species 1 has a positive equilibrium 
and the equilibrium value is x ,  = 1. Next observe 
that if species i has a positive equilibrium it follows 

1 = z x , a ,  >zx , a ,+ , , .Hence  x,+, = 1 - z x , a , + , ,  > 0 .  
,=I  ,=I  ,=I  

We can thus conclude that  if the species i has a 
positive equilibrium, so has species i + 1. The proof 
that all equilibrium densities are positive follows by 
induction. 

Corollary 2. Systems of this form always have a 
feasible and stable equilibrium. 
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