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Abstract

In this paper, we implement Latent Se-
mantic Analysis (LSA) and apply it to the
problem of Word Sense Disambiguation
(WSD). We use training and test data from
SENSEVAL-3 to create term-document
matrices, to which we apply LSA. We
combine this LSA-based classifier with a
pre-existing WSD classifier combination
system in an attempt to improve the accu-
racy of the system. Our LSA-based clas-
sifier is less effective than a comparable
TF-IDF based classifier, but still effective
enough to add information to the com-
biner.

1 Introduction

One of the fundamental tasks in natural language
processing is Word Sense Disambiguation. WSD
can be summarized as follows: given an ambigu-
ous word, such asbank, determine which sense of
the word (i.e. a financial institution, the side of a
river, etc.) is being used. The most direct way to
solve this problem is to use the surrounding context
of an ambiguous word in a probabilistic calculation.
For our disambiguation module, we extended a sys-
tem that combines three context-based classifiers: a
Naı̈ve Bayesian classifier, a Decision List classifier,
and a Nearest-Neighbor Cosine classifier that uses
a technique called TF-IDF to increase the effect of
meaningful words(Wicentowski et al., 2004).

For this paper, we are applying the technique of
Latent Semantic Analysis (Landauer et al., 1998) to

the problem of WSD. LSA is an approach that uses
a mathematical technique called Singular Value De-
composition (SVD) that can reduce any given ma-
trix into a set of three matrices. The rank of these
matrices can then be reduced in order to maximize
the amount of semantic meaning kept while decreas-
ing the number of term dimensions. This creates a
“meaning”-document matrix, which represents the
dimensions of the decomposed term-document ma-
trix that contain the most semantic value. The
columns of this matrix can then be used to compare
for similarity between documents. We implemented
an LSA-based classifier to combine with the three
classifiers already established in our system.

In Section 2, we discuss literature relevant to LSA
and WSD. In Section 3, we present in detail the tech-
niques we used to implement the LSA-based clas-
sifier and combine it with the other classifiers. In
Section 4 we present the results of the LSA-based
classifier. We discuss these results in Section 5.

2 Related Work

2.1 Latent Semantic Analysis

In (Landauer et al., 1998), Latent Semantic Anal-
ysis is used to reduce the dimensionality of term-
document information in a similar fashion to our
LSA-based classifier. However, (Landauer et al.,
1998) use the reduced-dimension matrices to recon-
struct the original term-document matrix, this time
in a best-fit form. This information is used to com-
pare similarities between documents and terms that
were not apparent in the sparser original matrix. The
goal of this operation is to determine relationships



between a set amount of document vectors; it would
not be useful for determining the sense of a test doc-
ument.

In our method, we insteadfold a new document
vector into thesemantic space, and then compare
this vector to the already decomposed test matrix.
The purpose behind both processes are similar, since
both attempt to reduce the dimensionality of the
data to increase the efficiency of the data, however
the implementations are different. Additionally, the
focus of (Landauer et al., 1998) is on comparing
the semantic space of LSA to human understand-
ing of semantics, while our goal is much less am-
bitious. Given the variation of our success rates
of LSA across different languages (and even differ-
ent words), our results do not add much weight to
the hypothesis that human semantic understanding
is anything like LSA.

2.2 Word Sense Disambiguation

In (Wicentowski et al., 2004), Word Sense Disam-
biguation is attempted using a system of three com-
bined classifiers, as previously enumerated. The
classifications returned are fed into a classifier com-
biner that chooses one sense for each ambiguous
word. The classifiers in our combination system
were implemented to mimic those described in (Wi-
centowski et al., 2004).

2.2.1 Näıve Bayes

The Naı̈ve Bayes classifier uses a basic probabil-
ity equation to calculate the similarity between an
instance, I, and a sense (from the training data),Sj:

Sim(I, Sj) = P (Sj) ∗ P (I|Sj)

The classifier chooses the sense with the highest
similarity score.

2.2.2 Cosine-based Clustering

The Cosine classifier creates a representative
word frequency vector for each sense in the train-
ing data. It then creates a word frequency vector for
each test word, and performs TF-IDF on all vectors.
TF-IDF is a statistical measure that attempts to re-
flect the significance of a word in each document of
a set, as follows:
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whereD is all documents, anddi ⊃ ti is the number
of documents in which termti appears. After apply-
ing TF-IDF to each vector, the classifier compares
the angle between the word and each training sense
(using cosine). The classifier chooses the training
sense that is the closest to the test vector.

2.2.3 Decision List

The Decision List classifier uses the training set to
determine the likelihood of correspondence between
context and senses. The classifier then sorts the con-
text words from most to least indicative and chooses
the indicated sense of the most indicative word that
appears in the context of a training word. If no pre-
viously seen words appear, the classifier chooses the
most frequent sense. This classifier is highly depen-
dendent on which features (part-of-speech, bigrams,
etc.) are considered.

2.2.4 Classifier Combination

The method of combination used in (Wicentowski
et al., 2004) is a simple voting system, where each
classifier makes its best guess and the majority wins.
We hope to implement a more complex combination
system that relies on confidences, but the actual im-
plementation of that system is not within the scope
of this project.

3 Methods

3.1 Training the Classifiers

The classifier presented here uses training data taken
from SENSEVAL-3 in Basque, Italian, Romanian,
and Spanish. There are difference between the sets;
for example, there are 46 ambiguous words in the
Spanish set and only 39 in the Basque set. However,
to prevent overfitting, we ignore the variations in the
exact details of each set of data, and assume that
each set has any number of ambiguous words, each
with any number of senses, each with any number of
training and test examples. The examples consist of
part-of-speech tagged, lemmatized words for a para-
graph or two surrounding the ambiguous word. We
convert this data into a standard term-document ma-
trix. Information from these vectors is used for clas-
sification by cosine similiarity, for Naı̈ve Bayes clas-
sification, for decision list classification, and is also
used to perform LSA.



3.2 Latent Semantic Analysis

In the process of Latent Semantic Analysis, Singu-
lar Value Decomposition is used to reduce a term-
document matrix of occurance frequency,W , into
three matrices: a left matrix,U , a diagonal matrix
of eignenvalues,S, and a right matrix,V T . 1 The
matrix W is constructed with terms as the row di-
mension, and documents as the column dimension,
representing the count of each term in each particu-
lar document. Once SVD is implemented, ann×m

W matrix will be broken down into ann×m U ma-
trix, anm×m S matrix, and anm×m V T matrix.

Once the decomposition process is completed,
the matrices are organized by magnitude of highest
eigenvalues. Then, we drop low magnitude dimen-
sions of the decomposed matrices. Choosing how
many dimensions to drop was an empirical decision
based off which dimension magnitude maximized
the success rate for a particular language. The re-
maining number of dimensions is ourP-value and
selection process for P is described in the results sec-
tion.

After the dimensions of the matrices have been
reduced, we are left with three matrices, each with
different semantic meaning. The right matrix,V T ,
can be viewed as a “meaning”-document matrix,
in which each document has numbers representing
counts for the amount of semantic meaning within.
This set of vectors can be used to disambiguate any
future test document.

3.3 Applying The LSA-based Classifier

To disambiguate, we fold the targeted document into
the correct semantic space so that a vector of the dis-
ambiguation target is transformed into a vector in the
semantic space. This process is done by multiply-
ing the test vector byU andS−1. Once this vector
is transformed, it is compared with the “meaning”-
document matrix using cosine similarity to deter-
mine the most similar document. By reducing the
number of term dimensions to a number of “mean-
ing” dimensions, we are attempting to remove the
noise from the term-document matrix such that the
important factors in disambiguation will stand out

1We utilized the SVDLIBC library. This package uses the
Single-Vector Lanczos method and quickly decomposed our
large matrices.

and improve our cosine similarity scores. For clar-
ity, a short example is provided.

3.3.1 LSA Example

Let

W =















1 0 1
2 0 0
0 2 1
1 1 1
0 0 1















The columns ofW each represent a document and
the rows each represent a term. The individual en-
tries represent the occurance count of each term in
each document.Then, through SVD, we obtain:

U =















.3849 .265 −.5127

.3849 .725 .375
.57735 −.628 .325
.57735 0.0 0.0
.19245 −.097 −.7















S =







3 0 0
0 2.175 0
0 0 1.126







V T =







.57735 .57735 .57735
.788675 −.57735 −.211325
.211325 .57735 −.788675







Now we reduce the dimension of the matrices to
P=2, and obtain

V T∗ =

(

.57735 .57735 .57735
.788075 −.57735 −.211325

)

.

We also obtainU∗ and S∗, not shown here for
brevity’s sake. TheV T∗ is the “meaning”-document
matrix against which we compare our test vectors,
where each column is a document with a particular
sense attached to it. The test vectors will be com-
pared after being folded into the semantic space by
multiplying byU∗ andS−1∗.

As for the actual data, we used data from
SENSEVAL-3 for both the training and test sets.
The training data contains documents that each cor-
respond to a certain semantic sense. This data is then
parsed to form a large term-document matrix which
is then decomposed into theU , S andV T matrices.
The test data is parsed into individual vectors for



each document, containing the counts for each term
in the document. Within this document, there exists
a single ambiguous test word to be disambiguated.

To compare the vectors, we use cosine similar-
ity scores between each vector to determine the
closeness of similarity. We started with a Nearest-
Neighbor Cosine comparison classifer, but given the
large number of documents to compare against, we
found it more effective to implement a K-Nearest-
Neighbor Cosine classifier to decide which sense
corresponded best to the test vector. K-Nearest-
Neighbor cosine comparison works similarily to
Nearest-Neighbor, but takes the top K cosine sim-
ilarity scores and sums them across each sense to
determine the best sense match for each test vector.
The number of neighbors, K, was determined em-
pirically via a series of tests attempting to maximize
the success rate of the LSA-based classifier.

This method of attempting to amplify the mean-
ingful values in a vector and then compare the co-
sine with training vectors is similar to the TF-IDF
Cosine classifier discussed in (Wicentowski et al.,
2004). Because of this, we hope that our LSA-based
classifier will do comparably well, and if LSA is a
good way of representing the semantic meaning of a
vector, our classifier should do well.

3.4 Combining the Classifiers

The ultimate goal of our disambiguation system is
to combine the classifications done by a number of
diverse classifiers into one guess. Because we do not
yet have a good combiner, we track the information
added by the LSA-based classifier by considering
an Oracle combiner. The idea behind an Oracle is
that it is the ideal combiner: if any classifier makes
the correct disambiguation, the Oracle selects that
classifier to “listen to” and therefore makes the cor-
rect disambiguation. Obviously, an Oracle combiner
is impossible to implement, but (assuming accurate
confidences), a significant improvement to the Or-
acle score should represent a significant amount of
new information that a good combiner can use.

4 Results

The results presented in Table 3 are the precision
results for the LSA-based classifer. Recall re-
sults are disregarded as meaningless, since for every

Language LSA LSA with TF-IDF
Italian 20.58% 20.91%
Romanian 58.37% 57.95%
Basque 58.04% 54.21%
Spanish 67.46% 67.10%

Table 1: The results of the LSA-based classifier,
both with and without using TF-IDF on the original
term-document matrix.

Language Original Oracle Oracle with LSA
Italian 64.53% 71.14%
Romanian 81.78% 83.68%
Basque 75.62% 79.21%
Spanish 89.13% 90.37%

Table 2: The improvement of the Oracle classifier
using LSA.

test vector, we require that the classifier guess the
best match possible. The LSA-based classifier was
run on four seperate languages: Italian, Romanian,
Basque and Spanish. For each language, the classi-
fier gave significantly different results. In Table 4,
the P-value of the classifier is varied to determine
how significantly the size of the semantic spaces af-
fects the precision. For each language, the value of
K (the number of nearest neighbors to look at) was
randomly chosen and held constant throughout the
variation of P.

In Table 4, precision values are additionally re-
ported, this time using a constant P-value for each
language while varying the K-value to determine the
effect of changes in the number of neighbors used in
the K-Nearest-Neighbor Cosine Similarity classifier.

Table 5 reports the overall best precision results
for the LSA-based classifier, and compares them to
the other classification systems run by our system.
TF-IDF Cosine is unmistakeably the best classifier,
winning in every language except Italian, where it
was a close second. In comparison, the LSA-based
classifer does not beat any system except for the
Naı̈ve Bayes, and only in Basque and Spanish. How-
ever, since the results are, at worst, comparable to
the Naı̈ve Bayes classifier, the LSA-based classifier
should be able to add information for classifier com-
bination.

By using TF-IDF on the original term-document



P Value Italian (K=60) Romanian (K=30) Basque (K=40) Spanish (K=40)
5 22.30% 58.26% 53.75% 67.46%
10 22.58% 57.92% 54.92% 66.84%
20 21.07% 57.81% 53.92% 66.77%
30 21.28% 58.63% 55.04% 66.34%
40 21.40% 56.93% 53.92% 66.72%
50 20.87% 57.75% 53.92% 67.27%
60 21.53% 56.62% 53.92% 66.36%

Table 3: The results of the LSA-based classifier, varying thedimensionality of the “semantic spaces” (P),
for multiple languages.

K Value Italian (P=5) Romanian (P=20) Basque (P=30) Spanish (P=5)
5 17.75% 53.32% 49.08% 64.61%
10 18.00% 55.63% 52.33% 65.53%
20 19.31% 57.30% 53.83% 66.79%
30 21.03% 57.64% 53.96% 67.25%
40 21.24% 57.61% 55.04% 67.46%
50 22.10% 57.72% 54.96% 67.41%
60 22.30% 58.03% 55.00% 67.22%

Table 4: The results of the LSA-based classifier, varying thesize of the K, the number of neighbors used in
the cosine similarity test.

Language Italian Romanian Basque Spanish
TF-IDF Cosine 46.00% 73.71% 67.58% 84.65%
LSA Cosine 20.58% 58.63% 55.04% 67.46%
Decision List 46.58% 68.60% 58.33% 80.79%
Naı̈ve Bayes 34.85% 62.92% 49.25% 64.62%

Table 5: Overall precision scores for each classifier by language, maximizing parameters for the LSA-based
classifier.



matrix, we attempted to add extra weight to the rare
and infrequent words within the matrix. However,
from the results in Table 1, it is clear that using
TF-IDF before the decomposition results in similar,
and generally slightly worse values. There was only
minimal improvement in Italian.

Fortunately, the LSA-based classifier does a good
job of improving the Oracle combiner’s precision.
Table 2 demonstrates the improvement that the LSA-
based classifier has on the Oracle combiner, showing
the precision results for Oracle before and after LSA
is implemented. In every language, the Oracle pre-
cision results have at least a 1% increase (Spanish)
or a rougly 7% increase (Italian).

5 Discussion

Despite high hopes for the applicability of LSA to
the task of sense disambiguation, the results of the
LSA-based classifier were mediocre at best. Almost
across the board, the classifier did at best slightly
better, and usually worse, than the Naı̈ve Bayes clas-
sifier, and consistently did significantly worse than
TF-IDF cosine comparison.

5.1 Dimensional Reduction

It is clear from our results that the dimension-
reduction aspect of the LSA-based classifier is less
effective than implied in (Landauer et al., 1998).
While it seems possible that LSA removes the noise
from the original term-document matrix, it also
seems to remove important disambiguation informa-
tion. The fact that LSA did as well or better in some
languages (Spanish and Italian) at low values of P
implies that a significant reduction in the number of
dimensions is necessary to obtain the best results.
This, incidentally, also implies that our LSA imple-
mentation does not lack the necessary number of di-
mensions to accurately represent the semantic space.

5.2 Maximizing Parameters

In each language, the precision results were better
with a different P-value, implying that there is no
best P-value across language. Even within each indi-
vidual language, the precision-maximizing P-values
for individual words vary wildly. It seems unlikely
that there is a universal P-value that is best for all
cases; observationally, there was no apparent rela-
tion between the number of senses of an ambiguous

word and the ideal P-value. The fact there there is no
universal P-value for a language does not mean that
LSA could not work, it simply mean that it would be
difficult to get fully maximized precision out of an
LSA-based classifier.

5.3 K-Nearest Neighbor counts

Unsurprisingly, the LSA-based classifier performed
better with a higher number of neighbors used in the
cosine similarity calculations. The fact that a value
of K = 60 was the maximum-precision value for
two languages means that a large window of cosine
values improves the decision process, with more in-
formation leading to higher accuracy. We found that
beyondK = 60, the improvement slowed to in-
significant amounts.

5.4 LSA vs. TF-IDF

As discussed previously, the LSA-based classifier is
very similar to the TF-IDF-based classifier. How-
ever, the different statistical reduction techniques are
not the only differences between the two classifiers.
The TF-IDF-based classifier compares each test vec-
tor to a single test vector created from the entire
training set of a sense, while the LSA-based clas-
sifier uses K-Nearest-Neighbors. We implemented
an LSA-based classifier in the style of the TF-IDF-
based classifier, but the relatively low number of
senses limited the dimensionality too sharply, as
the results were significantly worse than chance.
In future work, it would be of interest to apply a
K-Nearest-Neighbors algorithm to single-document
vectors on which we had performed TF-IDF.

5.5 LSA with TF-IDF

Since TF-IDF seems to be the most effective method
of amplifying the semantic sense of a document, we
decided to apply TF-IDF to the term-document ma-
trix before applying LSA and see what happened.
As shown in Table 1, this was not a particularly ef-
fective experiment; the results did not change signif-
icantly, but they did get slightly worse. This is not
a suprising result, as TF-IDF removes much of the
semantic content that LSA uses for dimensionality
reduction, but it is worth noting.



5.6 Classifier Combination

Although the hope was that an LSA-based classifier
would be an effective classifier on its own, we can
still use it as a piece of a larger classifier combina-
tion system. Although we do not currently have such
a system, we can get a sense of what the LSA-based
classifier adds to such a system by looking at Ta-
ble 2. Unfortunately, the only language in which the
LSA-based classifier adds significant information to
the Oracle combiner is Italian, the language in which
the LSA-based classifier is approximately 20% ac-
curate. This does not mean that the LSA-based clas-
sifier is completely useless, but it would require a
very effective classifier combination system to uti-
lize the knowledge gained from LSA.

6 Conclusion

Given the poor results from our LSA-based classi-
fier, supporting the (Landauer et al., 1998) hypoth-
esis of LSA as the form of human understanding is
difficult. Rather than remove noise, the dimension-
ality reduction loses important disambiguation in-
formation, and prevents successful disambiguation.
One potential reason is that LSA averages across
documents and terms, and so rare words that could
potentially aid in the disambiguation process get lost
in the averaging process. It appears that TF-IDF per-
forms so much better specifcally because it picks up
on the rare words that improve the disambiguation
process. In a practical sense, the conclusion from
our results is very straightfoward: the more unique
contextual information surrounding an ambiguous
word, the easier the task of disambiguating it.

7 Future Work

There is signficant work that can still be done with
the classifier system and the classifier combiner.
Most of it does not fall within the scope of adding
a LSA-based classifier to the system, but the meth-
ods used in building an LSA-based classifier could
be applied to other classifiers in interesting ways.

• One thing that could be done is to imple-
ment a TD-IDF Cosine classifier, using single-
document vectors and K-Nearest-Neighbor, as
discussed previously. This could potentially
improve the TF-IDF Cosine results, or, if it

significantly lowered the results, it might ex-
plain why our LSA-based classifier performs so
poorly in comparison with our TF-IDF-based
classifier.

• Another extension to this project could be to
experiment with less than 100% recall. Perhaps
by allowing a classifier to only classify ambigu-
ous words that received a score over a certain
threshold, we could improve the results of our
classifiers. A good combination system should
include something that accomplishes this goal.

• For the LSA-based classifier, we did not experi-
ment with using different features. We used the
standard set of features that was found to max-
imize the results of the other classifiers: pre-
vious and next part-of-speech, and surrounding
bigrams and trigrams. It is possible that remov-
ing these features and/or including others could
improve the results of our LSA-based classifier.
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