Blue-Screening Graphics - Rendered Samples

Michael Stone - Alexandr Pshenichkin

The Mathematics of Anti-Aliasing

Plot3D $\left(\frac{1}{4}\pi s^2 \operatorname{Erfc}\left[\frac{r}{s}\right]\right)$ $\frac{1}{4} \pi s^2 \operatorname{Erfc} \left[\frac{r}{s} \right]$ Normal[$\pi/4*s^2*Series[Erfc[r/s], \{r, 1, 3\},$ {s, 1.5, 3}]], {r, 0.05, 10}, {s, .5, 3}]

Fractals

The Julia Set

The Mandelbrot Set

Scanline-Fill Rendering

Rendering an compact, non-convex polygon.

Surfaces of Revolution

A-Buffering

Thus turbine was generated by creating a scene-graph representation which was then translated into a textual format.

Depth interpolation across

a non-planar transparent

polygon.

The same turbine under deformation.

A transparent

planar polygon.

Outline Rendering

Circles

Ellipses

Colored Lines

Arbitrarily Oriented Ellipse with increased line width.

Transparent Lines

Buggy Lines! (Caused by incorrect implementation of pixel channels.)

2-D Modeling with Filled Polygons

A fill-colored faux-3D TIE Fighter, generated from the same point list as the previous (faux-wireframe) version. Note the anti-aliasing, which is accomplished by running our outline renderer over the polygon edges.

3-D Depth-Buffered Hierarchical Modeling

Triangularization of a Sphere

The low-polygon-count version of a sphere, created using the tesselation program.

A wireframe version of the Imperial Shuttle. Note the triangulized cylinders generated by our tesselation program (see also: surfaces of revolution, above).

2-D Modeling with Outline Rendering

TIE Fighter - Initial Prototype