
Fighting Institutional Memory Loss:
The Trackle Integrated Issue and

Solution Tracking System

Daniel S. Crosta, Matthew J. Singleton – Swarthmore College Computer Society
Benjamin A. Kuperman – Swarthmore College

ABSTRACT

For part-time sysadmins, a record of past actions is an invaluable tool that provides guidance
in repairing or extending system services. However, requiring sysadmins to keep a detailed log of
changes made to a live system can often seem like a low priority task when compared to
addressing long and growing to-do lists. This problem is worse if the system administrator is a
part-time volunteer and an overworked student. In this paper we present Trackle, an integrated
trouble ticket and solution tracking system which takes the legwork out of creating and
maintaining this sort of institutional memory. Furthermore, Trackle is designed to allow untrained
student sysadmins to bootstrap their knowledge by peeking over the shoulders of their more
experienced colleagues – even if those colleagues graduated years earlier. We accomplish this by
tracking the exact actions taken by sysadmins, showing what lines were changed and in which
configuration files. We allow experienced and inexperienced sysadmins alike to freely annotate
and cross-reference these shell session logs through an integrated Wiki web interface.

Introduction

The Swarthmore College Computer Society
(SCCS) is a group of student volunteers who provide
services to more than 2,000 current students, alumni,
faculty, and staff of Swarthmore College. We provide
UNIX shell accounts, email, group mailing lists, web
space for individuals and student groups, Wikis, data-
base access, and general computer expertise. We also
maintain a public lab of eight Debian GNU/Linux and
two Apple Mac OS X computers. The sysadmins meet
weekly for an hour to keep up to date on projects,
problems, and planned improvements, and communi-
cate via email between meetings.

Unlike many large UNIX administration setups,
the SCCS has no full-time trained staff. The student
sysadmins are hired once a year, usually in groups of
two or three, and most graduate after serving as a
sysadmin for two years. At any time we have about
eight sysadmins on staff. Since a part of SCCS’s mis-
sion is to provide an environment in which interested
students may learn the art of system administration,
we recruit students with technical backgrounds rang-
ing from ‘‘I can email and browse the web,’’ to ‘‘my
desktop PC is a Beowulf cluster.’’ This disparity in
background and the high turnover rate presents us
with the dual problems of how to preserve our collec-
tive knowledge and how to train future generations.

For many years, our primary means of training
sysadmins has been the SCCS staff email list and
archived diaries. The diaries are a cluttered repository;
we use the staff email list as often to tease one another
as to discuss pertinent policy, administrative issues, or

help requests from our users. Though sysadmins are
supposed to report changes to our servers and lab
machines to the list, we often have to rediscover par-
ticular configurations when problems arise. Further-
more, mbox mailboxes are a hard format to browse,
particularly for new, inexperienced sysadmins who are
eager to learn but more comfortable browsing the web
than navigating the sometimes murky waters of UNIX
shell prompts, commands, and filesystems.

In the last three years, SCCS staff have used a
private Wiki to document changes, configurations, and
internal policies as well as for collaborative planning.
We have found the unconstrained and highly inter-
linked environment very valuable to our operations,
but relatively little of the content on the Wiki is perti-
nent system configurations or records of changes
made. As with the email diaries, the extra time and
effort required to self-report changes made to our sys-
tems presents too high a hurdle for our volunteer
sysadmins, each of whom has a range of other aca-
demic and extra-curricular commitments.

For training, we needed a system that preserved
the ability to associate high level conceptual descrip-
tions of desired configurations or problems with the
particular shell actions or configuration file changes to
put those ideas into effect. Unlike the Wiki and email
list, we wanted a system that did not require sysad-
mins to take on the extra burden of having to write up
complicated records of their actions after long, some-
times frustrating problem-solving sessions. Further-
more, since our sysadmins are hired without any
requirement of previous experience, we wanted a tool
which could help new sysadmins learn the subtleties

20th Large Installation System Administration Conference (LISA ’06) 101

Fighting Institutional Memory Loss . . . Crosta, Singleton, & Kuperman

of UNIX administration and our particular setup with-
out requiring any former familiarity with UNIX.

To respond to these concerns, we created
Trackle, a web- and console-based integrated issue
and solution tracking system. Each problem reported
to the system, either by our users or by SCCS staff,
creates a ticket in the issue database. Open issues may
be viewed through the web where they can be freely
annotated, edited, and cross-referenced with the built-
in Wiki; or through a console interface, from which a
tracked shell session may be started. All actions taken
in the shell session, and all files changed, are recorded
in the Trackle database, and create an entry in the
ticket history log. These shell session logs are then
editable in Wiki fashion.

Existing and Related Work

We first attempted to discover if any existing
tools could be used to solve this problem. Since a
sysadmin’s job is primarily task-oriented, we began
our search with trouble ticket and issue tracking sys-
tems. Issue tracking systems seem to have lost appeal
in the literature since the late 1990s. Before that, there
were one or two issue tracking papers per year in
LISA, most of which explored different extensions to
the basic trouble ticket idea.

One early tool, Request 2 [8], was designed with
a pedagogy of training junior system administrators in
mind. With Request 2, senior sysadmins could divide
and delegate work to less experienced admins, and
oversee their work or offer advice.

PLOD, the Personal LOgging Device [6],
enables sysadmins to easily self-report by providing a
set of command-line Perl scripts which the sysadmin
may use to make notes to him or herself about work
just completed. PLOD simplifies the tasks of keeping
records consistently and making them centrally avail-
able. PLOD did not include, and was not integrated
with, any issue tracking system.

The LOS Task Request System [9], designed
several years ago by another SCCS sysadmin, allows
users to create ticket-like task requests through a web
interface. Each task request is associated with a task
description, which includes validation logic and the
commands required to execute the task. This alleviates
sysadmin workload by automating the tedious tasks of
collecting and verifying information for repetitive
changes to the system.

A related field of more current interest is config-
uration management and version control. Configura-
tion management systems attempt to centralize or
abstract configuration details for large numbers of
similar hosts. Tasks include initial setup, maintenance,
troubleshooting, and incorporating local changes back
into the global description. For a more careful consid-
eration of the history and future of configuration man-
agement, see [1, 3, 7].

The SCCS currently has no plans to use a config-
uration management system at our site. Our two pri-
mary servers do not share enough common configura-
tion to yield much advantage from such a system, while
our public lab machines, which are configured simi-
larly, are periodically reinstalled to a known consistent
state for security reasons. For these reasons, we do not
believe we would gain enough benefit from a configu-
ration management system to justify the setup effort.

Much of the time our sysadmins spend working
involves user-owned files, such as spam filter settings,
dotfiles, and web access configurations. Since these
files may be created and deleted by users at any time,
a configuration management system would not be a
good choice for monitoring changes to these files.

Moreover, though configuration management
may be considered an industry best practice, we
believe no automatic configuration system can ade-
quately replace a sysadmin’s ability to get dirty with
manual configuration and hand-tuning of UNIX ser-
vices and applications. We would rather our sysadmins
learn how to discover a problem at its source and
implement a solution appropriately than merely learn
how to control a single piece of software, no matter
how powerful it may be.

One of the chief goals of Trackle is to provide a
platform for training inexperienced sysadmins. We
believe that it is important to gain an understanding of
UNIX cause and effect by observing and learning
about configuration files, logs, commands, and scripts.
If new sysadmins only learn to rely on abstract config-
uration management systems, they might find them-
selves unprepared to deal with problems outside the
scope of those systems.

None of the systems we considered deploying
covered our needs for a system to track issues, actions,
and train new sysadmins. A ticket tracking system
would help organize and abstract the institutional
memory knowledgebase, but would still require self-
reporting. A configuration management system would
keep accurate records for the files that it tracked, but
would not provide a good platform for training incom-
ing sysadmins. Having searched and failed to find just
what we wanted gave us a chance to reevaluate our
problems, and we decided that only by implementing a
custom solution could we meet our requirements.

Design of Trackle

From the beginning, the design of Trackle has
been motivated by a philosophy of minimalism and
simplicity. We believe that the most useful system for
our needs is one that imposes as little as possible on
our sysadmins in terms of new workflows and inter-
faces to learn. We want Trackle to stay out of the way
of sysadmins, but at the same time to automate as
much of its own data collection and presentation tasks
as possible.

102 20th Large Installation System Administration Conference (LISA ’06)

Crosta, Singleton, & Kuperman Fighting Institutional Memory Loss . . .

It is always difficult to find the right balance of
the automatic and the manual, the consistent and the
customizable. Given the sort of information Trackle
manages, we believe the right place for the cut is at
data collection and initial presentation. Creating the
complex knowledge structures through annotation and
cross referencing is left to the sysadmins as a sec-
ondary task, since it is not one that a computer is
likely to do well.

Tr a c k l e is intended for smaller groups of sysad-
mins with a relatively low volume of requests. It is
designed to be used effectively by both expert and inex-
perienced sysadmins. Trackle’s information organiza-
tion methods are best suited to small groups who have
time to annotate and cross-reference collected data. The
goal of allowing this rehashing and reorganization of
information is to provide a platform for self-directed
training of inexperienced sysadmins on their own time.

Requirements

Tw o classes of users: Since the SCCS naturally
has two classes of users, sysadmins and SCCS end
users, Trackle was designed to accommodate both
types. Differentiating the web interface for the two
types of users allows us to improve both security and
convenience. Unauthenticated end users are denied sen-
sitive information, such as email addresses in tickets or
files in logged shell sessions, and are not shown poten-
tially confusing prompts when creating tickets. Sysad-
mins, on the other hand, need access to all the informa-
tion about tickets and shell logs, and should know
enough to understand the more detailed ticket attributes.

Low barriers to use: One problem with existing
ticket tracking systems is the often overwhelming
amount of information that is requested to submit a
ticket. With Trackle, we wanted to make filing a ticket
as easy as possible so that end users and sysadmins alike
can move quickly through the web forms. Our interfaces
are designed to be intuitive so that they can be used
without having to waste time reading documentation.

For end users, we wanted Trackle to be as easy
to use the first time as the tenth. End users do not have
to register accounts with Trackle to create or subscribe
to tickets. Instead we use an email confirmation sys-
tem to verify an end user’s identity.

High-level organizational tools: Trackle’s cen-
tral goal is to provide a framework for flexible repre-
sentation of the collected data. It is designed to facili-
tate Wiki-like annotation and cross-referencing rather
than imposing a fixed organizational structure. Objects
in Trackle support Wiki formatting, enabling them to
link to each other. With these tools, the recorded data
can be arranged, indexed, and presented in the ways
most useful to the sysadmins who need access to it.

Few dependencies: Trackle was designed to be
dependent on as few external software packages as
possible. It is specifically designed to work with the

packages and versions available in the Debian Sarge
GNU/Linux distribution (our deployment platform);
however, we wanted to make Trackle freely available
for any interested groups for use on many platforms.
To ensure easy portability, it is not closely tied to any
particular versions or packages.

Ticket System

As discussed earlier, we decided to use a ticket
tracking system as the basis for Trackle’s higher-level
categorization of captured data. We briefly considered
RT,1 but decided that it would be too confusing and
cluttered with information to be useful to inexperi-
enced sysadmins. Instead, we decided to use a relative
newcomer to the trouble ticket world, Trac,2 as our
foundation.

Trac is a BSD-licensed bug tracking system with
integrated version control and Wiki. Trac embodies a
minimalistic approach to ticketing which fit well with
our design goals: it presents a clean, interface intuitive
to both our end users and sysadmins, and has rela-
tively few features and ticket attributes specific to bug
tracking. Many of the features we wanted (easy anno-
tation of tickets and shell histories, high-level organi-
zation and cross-referencing through the integrated
Wiki, file change visualization) were already imple-
mented, and adding our own functionality was very
easy due to the well-organized Trac API.

However, Trac required more than cosmetic
changes to fit our needs. Despite its flexible permis-
sion system, Trac does not natively support multiple
classes of users, nor does it have ticket locking. Addi-
tionally, we had to modify the ticket status logic to
accommodate unconfirmed tickets.

Tracking File Changes

Tracking file changes was the biggest challenge
encountered when designing Trackle. Because we do
not use any configuration management or version con-
trol, we needed to ensure we could get a before and
after view of each file modified during a sysadmin’s
shell session. We considered several alternative strate-
gies before eventually settling on a custom interposi-
tion library. The possibilities may be roughly split into
kernel-space solutions (LVM snapshots, UnionFS,
FUSE, C2 audit logs) and user-space solutions (plug-
ins/history interpretation and library interposition).

LVM snapshots: The Linux Logical Volume
Manager3 (LVM) provides a way to create a time-
frozen snapshot of a volume. In Trackle, we could use
a LVM Snapshot to capture the pre-shell tracking ses-
sion state of the system and then compare the two
filesystems at the end of the session. LVM works
below the filesystem and captures changes by tracking
changed disk blocks rather than changed files. To use
LVM with Trackle we would have to relate changed

1http://www.bestpractical.com/rt/
2http://trac.edgewall.com/
3http://sourceware.org/lvm2/

20th Large Installation System Administration Conference (LISA ’06) 103

Fighting Institutional Memory Loss . . . Crosta, Singleton, & Kuperman

disk blocks to changed files, or compute a recursive
diff between the two hierarchies; the former would be
prohibitively hard and would be tied to particular
filesystem implementations, and the latter would be
prohibitively slow. It is also unclear how to differenti-
ate what files were changed by the user during the
shell session and which files were merely changed by
other users or processes during that time. Additionally,
it would impose LVM as a runtime dependency for
Trackle and limit Trackle to use on Linux.

UnionFS: UnionFS4 is a meta-filesystem that
stacks one or more existing, mounted filesystems into
one hierarchy. It supports copy-on-write so that a read-
only filesystem can be made to appear as a read-write
filesystem. This functionality is used by many Live
Linux Distributions, like SLAX5 and KNOPPIX.6

When operating on a file in a UnionFS stack, the top-
most instance of the named file is used. This means
that in order to keep a initial copy of the file for
Trackle’s use, the underlying filesystem would have to
be mounted read-only. Since it would be impractical to
remount the entire filesystem hierarchy read-only,
Trackle would have to create a read-only bind mount
of the root hierarchy, to use as the bottom of the
UnionFS stack. On top of that would be placed a read-
write filesystem mounted elsewhere to capture the
revised versions of files. Because this third filesystem
is hierarchically removed from the active root filesys-
tem, any changes made during the shell tracking ses-
sion would not be reflected to the root filesystem
unless manually copied (for instance, by a special
Trackle command) or when synchronized at the end of
the session. Additionally, UnionFS requires the inser-
tion of a new kernel module, which some sysadmins
may be hesitant to allow. At this time, UnionFS is
only available for Linux.

FUSE: The Filesystem in Userspace7 (FUSE)
technique works similarly to the interposition library
approach we finally adopted. By use of a special ker-
nel module, some or all filesystem-related library calls
can be delegated to a user space daemon. Trackle
could use FUSE to make note of which files the user is
accessing and copy the files’ initial state before return-
ing from the user’s library call. This provides about
the same level of flexibility as using an interposition
library. Using FUSE requires loading a kernel module
and mounting and unmounting filesystems. In order to
use FUSE with Trackle, we would have to create addi-
tional setuid-root binaries to handle these tasks. FUSE
is currently only available for Linux and FreeBSD.

C2-like audit logs: Many operating systems
include auditing facilities to track file accesses as one
of the requirements for a trusted computer system [10,
2]. There are projects to bring this type of auditing to

4http://www.unionfs.org/
5http://slax.linux-live.org/
6http://knoppix.org/
7http://fuse.sourceforge.net/

GNU/Linux such as SNARE for Linux.8 and SELinux9

These systems require kernel modifications, and are
typically enabled for the entire system instead of just a
process and its subprocesses. Consequently, it is diffi-
cult to dynamically enable auditing, which results in
the generation of overwhelming amounts data. Addi-
tionally, these audit logs only notify us that a file has
been modified after the fact, limiting our ability to
determine what changes were made.

Plugins and shell history interpretation: In theory
it is possible to capture the majority of file changes
made by a sysadmin by writing plugins for the editors
Vim and Emacs to record files opened or saved, and
by looking at the command history of the shell to infer
which files might have been modified. This approach
can never be more than approximate as there are many
other ways to change a file other than by these two
editors. Even writing plugins for these editors will not
capture changes made to underlying files by wrapper
programs like vipw that act on temporary files. Addi-
tionally, editor plugins do not capture file changes
made by users at the command line either by shell re-
direction (‘‘echo stuff >> outfile’’) or file-related com-
mands (mv, cp, rm, chmod, etc.).

While parsing a shell history file might be able to
discover these kinds of changes, it would have to hap-
pen after the commands changing the files had run.
This would prevent us from tracking file changes, and
the list of command patterns to check would be quite
large. Wrapping all file change tools and implement-
ing a custom shell would impose a large (if not insur-
mountable) maintenance task.

Library interposition: Most binary executables
on UNIX are dynamically linked and access files
through standard C library functions (open, unlink,
chmod, etc.) The dynamic linker/loader checks the
environment variable LD_PRELOAD for a list of shared
libraries to be loaded and searched before all others.
These libraries are called interposed libraries because
any function that is defined in one of these libraries
intercepts the call to standard libraries.

We use a custom interposition library to intercept
file-related library calls so that we can track changes to
files during a shell session. When we intercept the call,
we are able to gather information about the current
state of the file before passing the request on to the real
library call. We are also able to observe the resulting
changes and collect additional information as needed.

We decided to use an interposition library for a
number of reasons. It can be written so that it only
captures the events we are concerned with, including
privileged operations (using sudo, su, etc.). It is a
userspace solution, so it is not dependent on any par-
ticular kernel and is portable to most other UNIX plat-
forms. Finally and perhaps most importantly, the
majority of the functionality was already present in a

8http://www.intersectalliance.com/projects/snare/
9http://www.nsa.gov/selinux/

104 20th Large Installation System Administration Conference (LISA ’06)

Crosta, Singleton, & Kuperman Fighting Institutional Memory Loss . . .

component of Audlib [4, 5] designed to track user and
sysadmin actions for detecting abuse of authority.

Figure 2: The ticket creation form for anonymous users is streamlined so that a user can file a ticket quickly. The
set of fields displayed and the explanation shown next to each is configurable.

Trackle Architecture

Trackle consists of four functional components,
each of which communicates with a central database:

1. The web interface, which allows full access to
the ticket database, Wiki pages, and shell ses-
sion logs. It is the primary interface to all
Trackle data.

2. The console tools, which allow sysadmins to
access the ticket database, and begin shell
tracking sessions to capture changes made to
resolve a problem.

3. The interposition library, which is responsible
for tracking changes to files during a tracked
shell session.

4. The email notification system, which keeps end
users and sysadmins informed of ticket status
changes, and the email confirmation system
which enables unauthenticated end users to
interact with aspects of the web interface.

The web interface, console tools, and email sys-
tem are all written in Python and communicate
directly with the central PostgreSQL10 database. The

10http://www.postgresql.org/

shell tracking session is written in C, and communi-
cates through the console tools (see Figure 1).

Figure 1: Trackle consists of four components which
store their data in a central PostgreSQL database.

Web Interface

The Trackle web interface provides full access to
tickets, shell logs, and an integrated Wiki. The web
interface has been designed with simplicity and inte-
gration in mind. Like most of Trackle, the web inter-
face is written mostly in Python. Trackle uses Clearsil-
ver11 for its HTML templates. The web interface rec-
ognizes two classes of users, anonymous end users
and authenticated sysadmins. Because they are not
required to log in, end users are required to complete
email confirmation when creating tickets. Sysadmins

11http://www.clearsilver.net/

20th Large Installation System Administration Conference (LISA ’06) 105

Fighting Institutional Memory Loss . . . Crosta, Singleton, & Kuperman

will be able to authenticate with the system, which
will allow them to perform privileged tasks.

Figure 3: The shell session log displays all the data that was recorded during the shell session. At the top, the shell
history, start and end times, and environment variables are displayed. Below, the contents of files that were
changed are shown with deletions highlighted in red and additions in green.

Tickets: Trackle’s integrated issue tracking sys-
tem is more than just a to-do list. It provides the initial
framework for organizing automatically collected
data, linking an abstract description of a problem and
the concrete steps required to solve it. All users may
create tickets. End users are presented with a stream-
lined form (Figure 2) requesting:

• contact email address

• brief problem description

• problem type

• problem severity

In addition to these fields, authenticated sysad-
mins are prompted for more information which would
not be relevant to end users:

• priority

• sysadmin assignment

• keywords

• subscription list

Ticket browsing is also available to anonymous
and authenticated users. Again, the two user groups
have very different views. Anonymous users are pre-
sented with a minimal amount of information about

the ticket, for convenience, security, and privacy. They
can also subscribe to existing tickets. Authenticated
users have access to the entire ticket history, have the
ability to change the ticket fields, and can close,
reopen, and assign tickets.

Wiki pages: Trac’s integrated Wiki required very
little modification for Trackle. A Wiki enables users to
add, remove, and modify content easily and quickly
directly through their web browser using a simple for-
matting language. Wiki pages are visible to both
authenticated and anonymous users, but are only mod-
ifiable by authenticated users and can be made private.
Most long text fields in Trackle support Wiki format-
ting to allow even more possibilities for cross-refer-
encing and annotation.

Shell session logs: All the information recorded
in a shell tracking session is presented in the web
interface in a shell session log (Figure 3). They are
accessible to authenticated sysadmins through an
index where they are sorted by ticket, with the most
recently added shell log appearing first. The logs are
also linked individually from the associated ticket. In
keeping with the ideal of providing the most function-
ality while imposing the least structure, Trackle shell

106 20th Large Installation System Administration Conference (LISA ’06)

Crosta, Singleton, & Kuperman Fighting Institutional Memory Loss . . .

logs are editable and support Wiki formatting. The
Wiki-like nature of the shell logs allows for easy
annotation and cross-referencing.

Figure 4: Trackle-cli’s ticket overview list, sorted by change date. The ‘‘Help Bar’’ at the top lists currently active
keybindings. Trackle-cli is designed to work in an 80 × 24 character window.

After the Wiki portion of the log (which contains
shell history, environment variables, and any other
pertinent shell data), the modified files are displayed
as colored diffs. All of the modified files are stored in
the database, but not all are displayed by default. The
shell log edit page provides a list of all files from
which individual files can be selected for display.

Console Tools

The Trackle console tools consist of several
scripts supporting the main interface, trackle-cli. Like
most of the rest of Trackle, the console tools are writ-
ten in Python for easy extensibility and maintenance.

Trackle-cli: The primary interface to the ticket
database from the console is trackle-cli, a screen-ori-
ented program for the curses environment. It is written
using DTK,12 a Pythonic wrapper for the curses
Python module. Following our goal of minimalistic
interfaces, trackle-cli is designed to give enough infor-
mation that sysadmins can quickly find a ticket and
begin working on it, but not so much that they are
bogged down by text-filled screens of details. The two
primary screens of trackle-cli are the ticket overview
and ticket detail screens.

The ticket overview screen (Figure 4) lists the
open tickets, showing for each the values of a config-
urable set of ticket fields. The default set shows the
ticket’s numeric ID, summary, owner, and time of last
change. Sysadmins navigate this list using the key-
board and may either select an existing ticket or create
a new ticket.

12https://firefly.student.swarthmore.edu/trac/wiki/DTK

The ticket detail screen (Figure 5) shows the
most pertinent details of an individual ticket, with
short ticket fields displayed above the fold and the
longer ticket description shown below in unformatted
Wiki text. Some ticket information, notably the ticket
change log, is not available through the console inter-
face due to space constraints.

Trackle-cli supports editing of all visible informa-
tion in the ticket detail screen. After selecting a field,
the focus is moved to either a text editing field or an
enumerated selection field which displays appropriate
available values. Enumerated fields can have possible
values added to them through the web interface or
trackle-admin program. Ticket editing in trackle-cli is
designed to allow a sysadmin to correct minor errors
found in a ticket – full-featured editing is available in
the web interface.

Sysadmins can edit the ticket description using
the editor set in the VISUAL or EDITOR environment
variable. When the editor terminates, the description
display area is updated with the new value. If the
sysadmin wishes to save the changes back to the
Trackle database, trackle-cli prompts for a ticket
changelog message using the same method.

From the ticket detail screen, the sysadmin can
start a tracked shell session. Trackle-cli is suspended
and replaced by a shell with a modified environment.
Upon completion of the shell session, the sysadmin is
shown a list of all the files that were modified during
the session (see Figure 6). The sysadmin then selects
files to display in the web shell session log. This selec-
tion may be changed later through the web interface.
After selecting the files and saving the session log, the
sysadmin is returned to the ticket detail screen.

20th Large Installation System Administration Conference (LISA ’06) 107

Fighting Institutional Memory Loss . . . Crosta, Singleton, & Kuperman

Trackle-shell-prompt: Our experience at the
SCCS with the beta release of Trackle showed that

Figure 5: Trackle-cli displays the most pertinent ticket details, and allows simple editing to correct any mistakes.
From this screen the sysadmin may begin recording shell actions to be associated with this ticket.

Figure 6: Trackle-cli allows the sysadmin to decide which files will be displayed in the web version of the shell ses-
sion log.

even experienced sysadmins occasionally forgot
whether they were in an ordinary shell or in a tracked
shell spawned by trackle-cli. To address this, we created
trackle-shell-prompt, a helper script which detects
whether the user is running inside a tracked shell ses-
sion by checking for certain environment variables. If
so, it prepends the prompt with ‘‘Trackle’’ in green
boldface. Trackle-shell-prompt also sets its exit code to 0
when in a shell tracking session, or 1 when not, so that
it can be used in shell scripts.

Trackle-admin: This tool is used to configure the
run-time settings of Trackle stored in the central data-
base. Trackle-admin is used to add, update, or remove
accounts (only sysadmins need an account for Trackle
– end users may use the web interface without authen-
tication), and the following enumerated ticket attribute
fields: component (a brief description of the area of
the system affected by a problem), milestone, priority,
user severity, and ticket type. Wiki pages can be
imported from or exported to plain text files. Like
trackle-shell-prompt, the exit code returned by trackle-
admin is set to 0 on success, or another value on error.

108 20th Large Installation System Administration Conference (LISA ’06)

Crosta, Singleton, & Kuperman Fighting Institutional Memory Loss . . .

Shell Session Tracking

The ability to track shell sessions sets Trackle
apart from previous solutions. The tracking system
removes the burden of self-reporting from the sysad-
min. Relying on the sysadmin to report exactly what
changes were made can be problematic. After a long
session, even the most conscientious sysadmin may be
unable to remember exactly what they did, let alone
record it accurately. A seemingly inconsequential
change made early on may be overlooked after tack-
ling a more frustrating issue.

Recording incorrect or incomplete information
defeats the purpose of tracking changes because it
reduces the accuracy of the report and degrades the
utility of the system as a training tool. The goal of
Trackle is to automate as much record collection as
possible in order to avoid human error.

To provide an accurate summary of a shell ses-
sion, Trackle collects information about the session:

• start and end time

• environment variables

• shell history

• copies of all created, removed, or modified files

Most of these items are easy to collect using
built-in Python commands. The history of shell com-
mands can be obtained from the bash shell.13 This
information is stored in a state directory created for
each tracked shell session.

Recording file changes is the tricky part. For this
we use library interposition. Our interposition library,
libtrackle, is based on the work done by Kuperman and
Paksoy for Audlib. We can intercept library calls by
writing our own version of the call in question with
the same signature. Effectively, we wrap the library
call with additional functionality to support Trackle. In
this function we record any information we need and
then pass the call on. This whole process is transparent
to the running program, and as long as the parameters
and return values are passed through to the real ver-
sion without modification, interposition does not
change the program’s behavior.

In order to catch file modifications we need to
intercept file-related calls (fopen, chmod, etc.) before
they get to the kernel so that we can make an initial
copy of the file in question. Once we have a copy, we
allow all further calls on that file to pass through to the
kernel without logging. Just before the program termi-
nates, we make another copy of the file to compare
against the original version.

In addition to intercepting calls, interposition
allows us to define functions that are called when the
library is first loaded and when the process terminates.
We use the initialization routine to cache local state
variables originally set in the environment by the

13Trackle currently only supports the bash shell. Support
for tcsh is planned for a future release.

console tools. In the finalization function we iterate
over all files that have been accessed during the exe-
cution of the program and make a final copy of all
files which have been modified.

A file might be modified several times during the
course of a tracked shell session. We record the initial
copy only once but overwrite the final copy each time
a program terminates. Therefore, the difference infor-
mation generated consists of changes made over the
entire session.

Some programs written with security in mind
attempt to disable library interposition (for good rea-
sons), and sysadmins are encouraged to use these sorts
of tools (e.g., sudo) when changing system configura-
tion. In order to collect these changes, we need to pre-
vent these programs from disabling libtrackle. For
example, the environment created for executing vim by
‘‘sudo vim /etc/filename.cfg’’ lacks the LD_PRELOAD
environment variable, effectively disabling libtrackle.
We could not find a way to override this behavior in
sudo without modifying its source code. We circum-
vented this issue by overriding the exec library calls
with our own versions that reset the LD_PRELOAD
variable to the proper value before executing the pro-
gram.14 This solution ensures that libtrackle is loaded
for all dynamically linked programs.

Email Notification and Confirmation

Email plays two roles in Trackle, providing noti-
fication to sysadmins and end users, and email confir-
mation to prevent abuse of the web interface by unau-
thenticated users.

Whenever a sysadmin changes a ticket’s status, like
closing an open ticket or assigning a new ticket, a con-
figurable list of staff email addresses (in SCCS’s case,
our staff email list address) is sent a notification indicat-
ing the status change and any comments or changed
fields changed at the same time. Subscribed users
receive an abbreviated version of this email containing
just the status change information and the comment.

Trackle also provides the trackle-notify
script which sends periodic updates to the staff email
addresses. The email contains a list of all open tickets,
details for each open ticket, and a list of ticket status
changes since the previous periodic update was sent.
Trackle-notify is designed to be run through cron or
another task scheduler, therefore it produces no output
under normal circumstances.

The email confirmation system allows end users
to confirm their identity without requiring them to get,
remember, and use a separate set of user names and
passwords. When an end user creates a ticket or sub-
scribes to an existing ticket, Trackle sends an email to

14For setuid programs, ld.so only honors values of
LD_PRELOAD that are in the default library search path and
are also setuid. A user would have needed administrative ac-
cess to put such a library in place, so this is not a major vul-
nerability.

20th Large Installation System Administration Conference (LISA ’06) 109

Fighting Institutional Memory Loss . . . Crosta, Singleton, & Kuperman

the address the end user entered. Users click the link
in the email to make the action take effect.

Sample Workflows

Tr a c k l e is designed with human interaction in
mind, and as such any description of its components
does not fully capture the feel of the application. In this
section we describe two sample workflows to demon-
strate the expected usage of Trackle: 1) the lifecycle of
a typical ticket created by an end user, and 2) a sysad-
min annotating existing resources for future reference.

Ticket Lifecycle

Suppose SCCS user Alice is unable to access the
administration page for her group’s email list. She
points her browser at Trackle’s ticket creation page,
http://bugs.sccs.swarthmore.edu/ , and begins to fill
out the form. She is prompted for her email address, a
brief summary, a ticket type (software bug, software
request, security issue, etc.), a user severity (that is,
how severe the issue is to Alice) and a longer descrip-
tion of the problem. Alice notices the link to a refer-
ence on Wiki formatting, and helpfully formats her
description into several sections including error output
she received, a link to the page with the problem, etc.

When Alice clicks the submit button, she is taken
to a screen informing her that she will receive an
email containing instructions and a link to confirm her
ticket, and that her email address has been automati-
cally subscribed to the ticket for status updates. With-
out clicking this link, her ticket will not show up in
ticket reports, and the sysadmins will not be notified.
Once she clicks the link, Trackle marks the ticket as
confirmed and emails the sysadmins to notify them of
the newly created ticket.

Now suppose SCCS user Bob is also unable to
access the administration page for his group’s email
list. Because he read the page on ticket etiquette, he
knows to first use Trackle’s built-in search feature to
see if any open tickets are already filed for this prob-
lem. He notices the ticket Alice just created, and con-
firms that it is for the same issue he is facing, so he
does not need to file his own ticket. But Bob is impa-
tient and has important work to do on his list, and
wants to know as soon as the problem is resolved. For-
tunately, Trackle allows Bob to subscribe to the ticket
Alice created, again using email confirmation to verify
his identity.

Now suppose SCCS sysadmin Melvin checks
either his email or the Trackle website and notices the
newly created ticket. Being our resident expert on
Mailman list administration, Melvin SSH’es to our pri-
mary web and email server, runs trackle-cli, and begins
working on the ticket. Behind the scenes, trackle-cli has
locked his ticket so that no other sysadmin can begin
working on the same issue. His shell history as well as
any files he changes are now being recorded, so as he
investigates and solves the problem, all his actions are

logged. When he types ‘exit’ to leave the shell tracking
session and returns to trackle-cli, he is shown a list of
all the files whose contents or permissions he changed,
and he can select which will be included in the log by
default. When he saves the shell session log to the
database, the ticket is automatically unlocked.

Since, by virtue of his Mailman wizardry, Melvin
resolved the problem for Alice and Bob, he opens up
the ticket’s page in Trackle’s web interface, makes
some remarks to be appended to the ticket’s history,
and marks the ticket closed. Trackle then emails all the
subscribed users to notify them that the issue has been
resolved. This notification includes the remarks
Melvin appended to the ticket’s history.

Annotation and Cross-Referencing

Suppose SCCS sysadmin Wendy, our resident
Wiki enthusiast, decides it is time for her to learn more
about Mailman. She begins by searching through the
existing Wiki pages, tickets and shell session logs to
find anything that might be related to Mailman lists.
She creates a new Wiki page, which she protects from
anonymous access since it may contain sensitive infor-
mation that should not be leaked to the public, and
begins adding links.

In Trackle, all Wiki pages, tickets, shell session
logs, and milestones are linkable objects, and all have
built-in Wiki support so that any of them can link to
any of the others. Wendy takes advantage of this by
not only including forward links from the new Wiki
page to the related tickets and shell session logs, but
by editing those objects to include return links to the
new page she is creating.

By default, the shell session logs that are cap-
tured by Trackle are pretty bare and contain just col-
lected information. Since Wendy is in no hurry, she is
at ease to spend some time investigating the effects of
the commands recorded in the shell history of the ses-
sion log created by Melvin above. She can integrate
this information, along with links to other Trackle
objects, online documentation, or any website, by edit-
ing the Wiki page at work behind each shell session
log. She can remove commands from the history that
are not pertinent so that the shell session log contains
just the relevant information for future reference. She
can also change the set of files which are displayed in
the shell session log, overriding the defaults Melvin
selected at the end of his shell tracking session.

Future Plans

As with any large software project, the initial
public release of Trackle is far from complete. As fre-
quently happens with new software, some of the most
interesting features were not suggested until the SCCS
started using Trackle, and others were inspired as a
byproduct of the development process. Many of these
new feature ideas that came to us mid-project made it
in to the initial public release, but some did not. The

110 20th Large Installation System Administration Conference (LISA ’06)

Crosta, Singleton, & Kuperman Fighting Institutional Memory Loss . . .

following are planned features for Trackle that have
not yet been implemented.

Ti c k e t extensions: Early feedback from SCCS
sysadmins has shown that some extensions to the
ticket system may be useful, particularly the ability to
express relationships among active tickets. A depen-
dency relationship (the completion of ticket B can only
happen after ticket A is closed) could hide or depriori-
tize tickets depending on others, or emhpasize tickets
which are depended on. A parent-child relationship
would be used to group several related tickets (e.g.,
configuration upgrades) under one parent (e.g., Linux
distribution upgrades). Ticket due dates would enable
Tr a c k l e to automatically escalate a ticket’s importance
over time. Finally, private tickets (not visible to unau-
thenticated end users) would be used to track sensitive
information such as hiring or policy debates.

Multiple machine support: All of the compo-
nents of Trackle interact with one central PostgreSQL
database. Currently, the Trackle console tools do not
keep track of host-specific info, so only one machine
can be tracked per instance of Trackle. Because Post-
greSQL communicates over TCP, it should not be dif-
ficult to add network functionality to the console tools.
It would then be possible to install the console tools on
any number of properly configured servers and clients,
and have them all report back to one central database.

There are, however, some situations where a per-
machine instances of Trackle might be useful. Trying
to track many disparate issues occurring on unrelated
machines would become cumbersome and is unneces-
sary. An alternative that might provide the best of both
worlds would be a hierarchical approach. Rather than
storing all the data on one central server, leave the data
distributed, but allow communication between the
individual instances of Trackle. For example, deploy
one network-wide overview server, one site-wide
overview server per site, and install Trackle individu-
ally on the machines at each site. This could help miti-
gate some of the scaling issues that would come with
very large databases.

File revision control: We briefly mentioned con-
figuration management tools, some of which include
revision control functionality. Trackle is based on the
open source program Trac, which includes tight inte-
gration with the Subversion revision control system,
and could provide revision control for all files touched
during shell session tracking. A straightforward
approach of storing one revision per session would not
work, as the files in question may also change
between tracked shell sessions. A better approach is to
create a revision at each of the before and after states
for each file in the repository.

Further high-level abstractions: One recent inno-
vation of Web 2.0 technologies is the establishment of
new interface and organization paradigms that more
closely model how people think about information. In
particular, the tagging concept, where arbitrary words

or phrases are associated with each idea or object in a
system, supported by an interface which makes sugges-
tions about tags to apply, would further increase the
utility and scalability of Trackle. Some tags for shell
session logs could be automatically generated, for
instance, a tag for each file and each directory involved
in a particular shell tracking session. Tags could also be
assigned for software packages involved in a shell
tracking session, by integrating with package manage-
ment tools (dpkg, rpm, etc.).

Conclusions

Our experience with the SCCS staff email list
and Wiki has shown that relying on self-reporting
leads to missing, incomplete, or inaccurate reports of
changes made to our systems. The poor quality of
these reports makes it hard to find the source of a par-
ticular change. Further, an inaccurate report might
cause a sysadmin trying to duplicate past steps to
cause new errors instead of repairing existing ones.
Additionally, the presence of inaccuracies degrades
confidence in all reports. Trackle alleviates these prob-
lems by keeping consistent and accurate records so
that sysadmins can focus on solving problems rather
than the tedious task of keeping logs.

Trackle’s integrated Wiki has allowed us to begin
collecting related topics into a sysadmin training man-
ual and how-to guide. This evolving guide allows new
sysadmins to ask more sophisticated questions of their
experienced colleagues. Trackle allows sysadmins to
learn on their own time and at their own pace so that
no one gets bored or left behind.

Often, volunteer sysadmins learn the intricacies
of a system only when it breaks. Trackle allows us to
learn by reflection rather than by struggling to fix a
critical error. This leads to more efficient use of office
time for those not present when problems occur. We
also learn from authentic situations rather than toy
problems or contrived examples.

Because our shell tracking tools operate transpar-
ently, Trackle can be used to complement existing
change/configuration management systems. Though
many configuration management systems have already
solved the problem of discovering file changes,
Trackle goes further to associate file changes with a
particular issue. Additionally, Trackle detects changes
to any files, not just those that are already being moni-
tored by a configuration management system.

Availability

Trackle is open source software, licensed under
the BSD license. You may download stable Trackle
releases and documentation from http://www.sccs.
swarthmore.edu/org/trackle/ .

Acknowledgements

We would like to thank Benjamin A. Kuperman and
Mustafa Paksoy for their work on Audlib [5], on which

20th Large Installation System Administration Conference (LISA ’06) 111

Fighting Institutional Memory Loss . . . Cro s t a , Singleton, & Kuperman

libtrackle is based. We would also like to thank Edgewall
Software and the numerous contributors to Trac, without
which Trackle would not have been possible.

Author Biographies

Daniel S. Crosta graduated from Swarthmore Col-
lege in June, 2006, with a B.A. in Computer Science.
During his tenure at Swarthmore, he served three years
as Systems Administrator for the Swarthmore College
Computer Society, most recently as Lead Systems
Administrator. He has also participated in research in
Computer Graphics at Princeton University, and in
Computer Vision at Swarthmore College. Since July,
2006, he has been working as a Software Developer at
Wi r e l e s s Generation in New York City. Contact him
electronically at dcrosta@sccs.swarthmore.edu .

Matthew J. Singleton is a currently a senior at
Swarthmore College in Swarthmore, PA, where he is a
double-major in Computer Science and Linguistics. He
is also the Lead Systems Administrator for the Swarth-
more College Compter Society. He has participated in
Computational Linguistics research in the Department
of Computer Science at Swarthmore College. Reach
him electronically at msingle1@sccs.swarthmore.edu .

Benjamin A. Kuperman received the M.S. and
Ph.D. degrees from the Department of Computer Sci-
ences at Purdue University in 1999 and 2004. He is an
assistant professor at Oberlin College in Ohio and pre-
viously taught at Swarthmore College in Pennsylva-
nia. While at Purdue, he was a researcher in the Center
for Education and Research in Information Assurance
and Security (CERIAS) for five years and was affili-
ated with COAST before that. His main areas of
research are on host-based computer security monitor-
ing systems and OS level audit systems. Reach him
electronically at Benjamin.Kuperman@oberlin.edu .

Bibliography

[1] Anderson, Paul and Edmund Smith, ‘‘Configura-
tion Tools: Working Together,’’ Proceedings of
LISA 2005: 19th Systems Administration Confer-
ence, pp. 31-37, December, 2005.

[2] Common Criteria for Information Technology
Security Evaluation, http://www.commoncriteria.
org/ .

[3] Evard, Rémy, ‘‘An Analysis of UNIX System
Configuration,’’ Proceedings of LISA 1997: 11th
Systems Administration Conference, pp.
179-193, October, 1997.

[4] Kuperman, Benjamin A., A Categorization of
Computer Security Monitoring Systems and the
Impact on the Design of Audit Sources, Ph.D.
thesis, Purdue University, West Lafayette, IN,
August, CERIAS TR 2004-26, 2004.

[5] Paksoy, Mustafa and Benjamin A. Kuperman,
‘‘ A u d l i b : Generating computer security audit logs
with interposing libraries,’’ Presented at 2005

Swarthmore College Sigma Xi poster session,
September, 2005.

[6] Pomeranz., Hal ‘‘PLOD: Keep Track of What
You’re Doing,’’ Proceedings of LISA 1993: 5th
Systems Administration Conference, November
1993.

[7] Roth, Mark D., ‘‘Preventing Wheel Reinvention:
The psgconf System Configuration Framework,’’
Proceedings of LISA 2003: 17th Systems Admin-
istration Conference, pp. 205-211, October,
2003.

[8] Sharp, James M., ‘‘Request: A Tool for Training
New Sys Admins and Managing Old Ones,’’
Proceedings of LISA 1992: 4th Systems Adminis-
tration Conference, October, 1992.

[9] Stepleton, Thomas, ‘‘Work-Augmented Laziness
with the LOS Task Request System,’’ Proceed-
ings of LISA 2002: 16th Systems Administration
Conference, November, 2002.

[10] US Department of Defense, Trusted Computer
Systems Evaluation Criteria (also known as the
‘Orange Book’) Technical Report DoD
5200.28-STD, DoD Computer Security Center,
Fort Meade, MD, December, 1985.

112 20th Large Installation System Administration Conference (LISA ’06)

