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1 FLAT ORIGAMI.

Origami has traditionally been appreciated as an art form and a recreation. Increasingly
over the course of the 20th century, however, attention has been drawn to the scientific and
mathematical properties of paperfolding, with the majority of this work occurring in the
past 20 years or so. Even today, many of the most basic and intuitive problems raised by
origami still lack definitive solutions.

Origami is unlike most forms of sculpture in that its medium—a sheet of paper, usually
square in shape—undergoes almost no physical change during the creation process. The
paper is never cut nor chemically manipulated; its size, shape, and flatness are never altered;
nothing is ever added or taken away. Only its position in space is affected. Origami has been
described as an “art of constraints.” The art lies in exploring and expanding the realm of
what can be achieved within the constraints naturally imposed by the paper. Designing an
origami model of a particular subject requires considerable ingenuity.

Many origami models are so cleverly designed that their final forms bear almost no resem-
blance to the sheets of paper from which they are made. However, there exists a substantial
class of origami forms which share one basic characteristic of the original paper: flatness.
Flat models like the crane (fig. 1) can be pressed between the pages of a book. A math-
ematical inquiry into paperfolding could logically start by examining the rules that govern
flat-folding. The added constraint of flatness actually simplifies our mathematical description
of folding by reducing the number of relevant spatial dimensions to two. In reality, of course,
flat models are truly 3-D. There is a narrow space separating overlapping layers, making it
possible to distinguish the order in which the layers are stacked. As we shall see later on, it
is nonetheless possible to describe a flat origami as a 2-D mathematical abstraction without
losing any information about the overlap order of its layers.



2 CREASE PATTERNS.

Before we proceed to formulate a mathematical description of flat-folding, let us pause to
consider an example. When we open out a paper crane and look at the square from which
it was folded, we see a web of crease lines crisscrossing all over the paper (fig. 2). This
web is the model’s crease pattern. It bears little resemblance to a crane, and it seems
somehow surprising and mysterious that the two forms are connected somehow. Developing
a mathematical theory that relates the crease pattern to the folded form shall be our main
purpose in this study.

The marks on the paper fall into three distinct types. Some of the crease lines are left
over from developmental stages of the folding process and do not correspond to any folded
edges in the finished model; these lines we ignore, because we are only interested in creases
used in the folded form. The remaining lines are either mountain creases or valley creases.
A mountain crease is left by a fold that moved paper away from the folder; when I set an
open book face down on a table, the spine is a mountain crease. A valley crease is left by a
fold that moved paper towards the folder; when I am reading a book, the binding is a valley
crease.

Let us translate these observations into mathematical abstractions by giving a few defi-
nitions.

Definition 1. The sheet, S, shall be defined as a compact connected region of the plane,
bound by simple closed curves.

Note that a sheet must have finite area by this definition. Since most art supply stores do
not stock infinite-area origami paper, this convention seems realistic. However, the mathe-
matical theory of paperfolding can be logically extended to the infinite case. For a discussion
of infinite-area origami, see Justin.

Definition 1 allows the paper to have holes. However, in this study we shall assume, unless
stated otherwise, that every sheet has exactly one boundary, so it is simply connected. This
assumption has the effect of further restricting what is possible to fold, thus simplifying
the math required for describing flat origami. Fortunately, most real origami paper we use
has no holes, so our assumption is a good approximation of reality. For a treatment of the
general case in which paper may have multiple boundaries, see Justin.

Definition 2. The crease pattern, (G, shall be defined as a planar graph embedded on S.
The area of S is entirely partitioned into disjoint subsets, namely the vertices, edges, and
faces of GG. The entire boundary of S is partitioned into edges and vertices. An edge lying
in the interior of S is called a crease, whereas an edge on the boundary of S is called a raw
edge.

For our study let us always assume that G is a finite graph. Infinite crease patterns
are theoretically possible, but again this possibility complicates the math and is a poor
approximation of the reality of origami, so we ignore it here. To learn about folding infinite
crease patterns, please refer to Maekawa.



Definition 3. Given a vertex V in a crease pattern, we denote the set of edges having
V' as an endpoint by E(V), and the set of faces having V' on their boundaries by F(V'). In
general, when working with these sets we shall name the elements in clockwise sequential
order (fig. 3). (The designation Fj is assigned arbitrarily if V is an interior vertex.)

Definition 4. A c-net, C, is a sheet of paper S with a crease pattern G embedded on it.
The elements of C' and S are the same—they are the points of the sheet S.

Definition 5. Recall that each crease corresponds to one of two types of crease lines,
mountain or valley. Define an M V-assignment to be a map from the set of creases in a crease
pattern to the set {M,V'}. A crease pattern together with an MV-assignment shall be called
a signed crease pattern; a crease pattern without an MV-assignment is called unsigned.
Similarly, c-nets may also be signed or unsigned.

3 FLAT-FOLDABILITY.

Consider the signed c-net of the crane. Somehow, this arrangement of mountain and valley
folds work together to collapse the paper into a flat origami which happens to resemble an
avian life form. By contrast, consider the unsigned c-nets in figs. 4 & 5. No matter how
we try, these patterns cannot be folded flat—some layer of paper always ends up blocking
another. It doesn’t even matter what MV-assignment we use, the paper still stubbornly
refuses to fold flat. Apparently, the unsigned c-net of the crane has some fundamental
property that ensures the existence of an MV-assignment which enables the paper to fold
flat. We call this property flat-foldability of an unsigned c-net.

Suppose we are given a flat-foldable unsigned c-net such as that of the crane or some
other flat model. It it possible to predict what the final model will look like? To what
extent does the crease pattern determine where each part of the sheet goes? In our study
of paperfolding, we will formulate a mathematical description of paperfolding that enables
us to answer the above questions. The main goal of this study is to answer the following
yes/no question.

Main Problem: Is a given unsigned c-net flat-foldable?

A flat origami model is really three-dimensional, so it makes sense to treat flat origami as a
special case of 3-D origami. In the next section, we develop a set of rules for 3-D paperfolding,
which will function as a starting point for developing a mathematical simulation of 2-D
paperfolding.

4 FIVE AXIOMS FOR POLYHEDRAL FOLDING.

Our formal definition of 3-D folding must necessarily spring from empirical observations of
the folded paper. To begin, observe that folding moves every point of the sheet through



space to a final location in the folded model. It makes sense to imagine folding as a mapping
¢ from the c-net C' into 3-space. The image ¢(C') represents the folded model.

Paperfolding is the art of moving paper without violating the constraints naturally im-
posed by the material. To complete the definition of ¢, a list of these constraints is required.
The following list of five constraints seems complete. Each one of them is easily formalized
as a mathematical axiom.

ONE. The crease pattern faces retain their shapes when the paper is folded. Paper is
a stiff and inelastic material, so each face remains flat and its area always stays the same.
Folding may translate or rotate a face through space, but folding never distorts the face’s
shape or changes its size. This suggests our first axiom.

Axiom 1. ¢ acts as an isometry on each face.

Definition 6. The face isometry ip : R® — R3 is the isometry as which ¢ acts on the
face F.

Note that axiom 1 assumes that the paper is not allowed to curl. To account for the models
in which the paper is curled, axiom 1 would have to be replaced with a weaker restriction
against altering the intrinsic geometry of each face. Models in which the paper curls are called
developable surfaces. Models in which the faces remain flat are called polyhedral origamis.
Flat origami is polyhedral, since all the paper winds up lying flat over a plane. The main
focus of this study is flat origami, so we shall assume that folding acts as an isometry on
each face.

TWO. The paper is folded at every crease. This constraint is not imposed by the material;
it simply describes what happens to the crease pattern when we fold it. The first constraint
disallows folding the paper where there is no crease; the second constraint requires folding
the paper where there is a crease. Now, when we make a fold, the paper on one side of the
crease moves in relation to the paper on the other side. In light of axiom 1, we can express
this phenomenon as follows:

Axiom 2. If Fy is adjacent to Fy, then ip, # ip,.

THREE. In the folded model, the paper cannot self-intersect. After all, paper is solid
tangible matter. Even if the origami is “flat”, there is still a small space between overlapping
layers. If the folded paper were allowed to self-intersect, then a point of intersection would
be the image under ¢ of multiple points in the c-net. So, what this constraint is really saying
is:

Axiom 3. ¢ is one-to-one.

Technically, axiom 3 prohibits any fold from being truly flat. The dihedral angle of any
fold cannot go to zero without violating the one-to-one principle. When we discuss flat-
folding, the 3-D folding map ¢ will no longer work. We shall use a slightly modified version
of ¢, called w, for flat-folding. For the moment, however, we shall continue to discuss 3-D
origami that satisfies all these constraints.

FOUR. The paper never tears. Many old-fashioned origami models involve cutting, but
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most modern folders believe that cutting disrupts the purity of the square sheet. Thus we
shall assume that folding leaves the shape of the paper unaltered. Note that constraint #1
automatically prohibits slicing apart the area of a face. Constraint #4 disallows cutting along
creases as well. Folding cannot cause adjacent faces to become separated; if this happened,
the folding map would be discontinuous at all points on the crease where the cut was made.
In general, any discontinuity in folding corresponds with a cut or tear made in the paper.
Thus our next axiom is:

Axiom 4. ¢ is continuous.

FIVE. During the folding process, the paper cannot self-intersect. Basically, this con-
straint prohibits us from tying the paper in knots. It is much more subtle than the first four
constraints because it deals with developmental stages of folding, rather than the “before”
and “after” spaces only. Constraint #5 implies the following topological property of the
folded surface ¢(C):

Axiom 5. There exists an isotopy of R? that continuously deforms the c-net C' C R? C R?
into the surface ¢(C).

Fig. 6 shows an example of a fold that violates axiom 5. Note that the paper has multiple
boundaries curves, which are unlinked in the open paper but linked in the folded form. This
change of configuration cannot be executed in 3-space via an isotopy, so the fold is illegal.

5 SOME RESULTS FOR POLYHEDRAL ORIGAMI.

Lemma 1. Let f: C' — R? be a function satisfying axiom 1. Let E be the crease between
adjacent faces F; and F, in C. Let Y be a point on E. Then f is continuous at Y if and
only if f(X) =1ip(X) =ig(X) for all points X lying on E.

Theorem 2. Let f : C — R3 be a function satisfying axioms 1, 2, and 4. Then the
creases of C' are all straight line segments.

Proof. Let E be the crease between adjacent faces F; and F,. By the lemma, we
have ip, (X) = ip(X) for all points X € E. Apply the isometry i to both sides to get
X =ip ®ip(X) for all X. Now, there are three types of isometries that fix more than one
point: the identity, a rotation about the axis containing the fixed points, and a reflection
in the plane containing the fixed points. By axiom 2, iy, # ip,, so z;ll e ip, cannot be the
identity. If i;ll e i, is a rotation, then its axis of rotation contains F, so E is a straight line
segment. If 2;11 e i, is a reflection, then exactly one of @'}11 and ip, is a reflection, say, @';11.
Then f acts on F} as a reflection in a plane P. Since F} is a flat plane segment, this action is
equivalent to rotating F; about the line L where P intersects the plane containing F}. Thus

E' is contained entirely in the straight line L. [J

Theorem 3. Let f: C' — R3 be a function satisfying axioms 3 and 4. Let g : C' — f(C)
be defined by g(X) = f(X) for all X € C'. Then g~! is well-defined and continuous.

Proof. The mapping ¢ is just f with the range restricted to the image, so that it is



onto. It is also one-to-one by axiom 3, so the inverse mapping ¢! is well defined indeed.
Continuity follows from the fact that C' is compact and f(C') is Hausdorff. O

Corollary 4. Let f: C — R3 be a function satisfying axioms 3 and 4. Then C is related
to f(C) by a homeomorphism.

Proof. The function g from theorem 3 is the desired homeomorphism, being bijective
and continuous, and having a continuous inverse. [

Consider axiom 5, which dictates that origami never ties the paper in knots. Fortunately
for us, axiom 5 does not constrain the folding of simply connected paper. Our assumption
that the sheet has only one boundary curve happens to be a sufficiency condition for folding
in abidance with axiom 5.

Theorem 5. Let f : C — R3 be a map satisfying axioms 2, 3, and 4. If C is simply
connected, then f satisfies axiom 5.

Proof. Since C' is simply connected and bound by a simple closed curve, it is homeo-
morphic to a disk in R3. Therefore its folded image, f(C'), is homeomorphic to a disk in R3.
Since both C' and f(C') are topological disks embedded in R3, they are related by an isotopy.
OJ

The result of this theorem permits us to disregard axiom 5 entirely so long as we are
dealing exclusively with simply connected paper. For a general theory of paperfolding that
allows paper to have multiple boundary curves, see Justin.

6 BREAKING THE PROBLEM DOWN.

The above five constraints seem to comprise a complete description of the physical limitations
of polyhedral paperfolding. Any mapping of a c-net into 3-space satisfying all five axioms is
a realistic mathematical simulation of folding. However, these axioms do not allow for truly
flat origami. If we tried to fold a crane according to these axioms, the folds would all have
small but nonzero dihedral angles, causing the model to puff up into the third dimension.
Although this mathematical model is physically accurate, it is not useful for determing the
flat-foldability of crease patterns. Therefore, our mathematical simulation of flat-folding will
use a different strategy.

Since the folded model will lie flat, the final position of each point on the paper can be
completely described by two properties: first by where it lies over the 2-D plane; second by
the number of layers that lie directly underneath it. Therefore, we could define flat-folding
as a map w from the c-net C to the space R? x Z. The real number coordinates are the x
and y position of the point, and the positive integer refers to how many layers of paper lie
underneath this point.

In choosing to use w instead of ¢ for flat-folding, we give up a certain amount of realism.
Whereas ¢ never causes the paper to self-intersect, w forces entire regions of the paper to
occupy the same space in the plane when they are folded over one another. However, w is



still one-to-one, because two points in the c-net that get mapped to the same point on the
plane cannot be in the same layer of paper. Unfortunately, w is not continuous; the integers
are discrete, so if the folded form has more than one layer of paper, each layer is separated
from the others in the topology of R? x Z, so the image is not connected. Only in the trivial
case where C' has no creases is w continuous.

We can easily get around this problem by breaking w down into its component parts. We
define a semifolding map p : C' — R? that determines only the final position of the paper in
the plane, and a superposition ordering o : C' — 7Z that determines only the overlap order of
the layers. We then define the flat-folding map w as the cartesian product of the semifolding
map and the superposition ordering.

7 FOLDING WITH SELF-INTERSECTION: SEMI-
FOLDING.

Before we can study the order in which the layers overlap, we must first determine which
parts of the paper wind up overlapping. Thus we must precisely specify u before 0. Fig.
7 illustrates the effect of p on a c-net. Suppose a paper crane was folded from paper that
can pass through itself. The final folded form can collapse into two dimensions by allowing
each stack of overlapping layers to occupy one common region in the plane. The resulting
bird-shaped silhouette is the semifolding image of the crane’s c-net.

Semifolding is not one-to-one—the paper self-intersects wherever there are overlaps—so in
defining p we are free from the constraint of axioms 3 and 5. We insist that ;4 must abide by
axioms 1 and 2, so that faces cannot deform and every crease gets a fold. However, we shall
not guarantee that the semifolding map is continuous on all crease patterns. If it is possible
for a c-net C' to collapse flat without cutting when folded with self-penetrable paper, then p
should be continuous on C'; but if this is not possible, u is defined on C' discontinuously. In
other words, when semifolding we can cut the paper if we absolutely have to.

Definition 7. A c-net C' is said to be semifoldable if there exists a mapping u : C' —
R? which satisfies axioms 1, 2, and 4. (Unfortunately this terminology could stand some
improvement. Note that a semifolding map is defined on C' whether or not C' is semifoldable—
the difference is in the continuity.)

In general, we require p to abide by axiom 1, so it acts on each face F' by a face isometry
1. However, the range of u is restricted to the plane, so i is a planar isometry. We assume
henceforward that face isometries are isometries of R2.

Theorem 6. Let F} and F; be adjacent c-faces in a c-net C', with the crease E separating
them. If p is continuous at E, then p acts as a reflection on exactly one of Fy and F5.

Proof. By axiom 2, i, and ip, are distinct. By the lemma, ip (X) = ig,(X) for all
X € E. Apply i}f to both sides of the equation to get X = iy, ®ip,(X). Since ip, # ip,
we know z;ll ® i, is not the identity. The only non-identity planar isometry that fixes a



line segment is a reflection in the line containing the segment. Thus i;ll ® i, is a reflection,
implying that exactly one of i, and ip, is a reflection. [

One result of theorem 6 is the following necessity condition for semifoldability.

Theorem 7. If 1 is continuous in the neighborhood of a given interior c-vertex V', then
V is of even degree. Therefore, if a c-net is semifoldable, then each of its interior c-vertices
is of even degree.

Proof. Let d be the degree of V. When d = 0, there are no creases at V', so V is really a
point in the interior of a c-face, where axiom 1 guarantees that u is continuous. Thus we may
assume that d > 0. To each face in F(V') which p does not reflect, assign the label +1; to
the remainder, assign the label —1. By axiom 6, adjacent faces cannot have the same label.
Consider all pairs of adjacent faces F;, Fi i1 mod ¢ Which are labeled +1 and —1, respectively.
Clearly, every face at V is a member of exactly one such pair; thus, these pairs partition
F(V). It follows that d equals 2 times the number of pairs, so d is even. [J

The figure illustrates why the result does not hold if the crease pattern is not semifoldable.
Interestingly, vertices of any degree are possible in non-flat origami; see Hull/Belcastro for
information.

Corollary 8. If a c-net is semifoldable, then its crease pattern is face 2-colorable.

Proof. Let C be a semifoldable c-net. By the above theorem, each interior c-vertex in C'
has even degree. Therefore, C' is eulerian, hence 2-face colorable. [J

Consider the significance of this corollary. The proof of the theorem makes clear that
the color assigned to a face is dependent on whether or not u reflects the face. The act
of semifolding flips over all the c-faces with one color, and merely rotates or translates the
others. This is consistent with our experience of paperfolding. In the paper crane, for
instance, we find that every other face in the crease pattern lies face up in the folded model.

8 DEFINING pu.

We still have not formulated a precise definition of y. We may assume u holds the position
of at least one face constant, so let us arbitrarily pick one c-face in C, call it Fj, and require
that p(Fhx) = Fix. The rest of the paper folds over, under, and around Fgc. The choice
of which face to hold constant is made without loss of generality because for any c-face
F, the entire image ©(C') may be moved via an isometry i such that i @ u(F) = F. Now
consider a c-face F' which is separated from Fj, by several creases and faces. Since the paper
separating F' from Fj, gets folded over and over along the creases existing in that region, it
seems intuitively reasonable to assume that the final position of F' is the image of F' reflected
through all of those creases.

Figs. 8 & 9 illustrate our motivation for making this assumption. Consider a rectangle
with two non-intersecting creases, Fy and F,, separating the paper into faces Fi, Fy, and
F;. 1f we fold the rectangle along these creases while holding F} fixed, Fj is reflected first



over Fs, and then over Ej.

As a more complex example, suppose the crane is folded up around the triangle Fj, as
shown. Then final location of the triangle F' is accurately predicted by our assumption.
Reflecting F' over edges E1, Es, F3, E4 and FEs, in that order, places F' directly over Fgy, just
as it is positioned in the model. Note that other sequences of edge-reflections are possible. In
the next section we will show that all of these sequences compose to give the same isometry
if and only if the c-net is semifoldable.

The following two definitions formalize our assumption and precisely describe pu.

Definition 8. Let C be a c-net with straight-line creases. Let p be a path in C. The
isometry induced by p, denoted i, : R? — R? is defined as follows. Suppose p crosses
the creases Ey, Fy, ..., Ey,, not necessarily all distinct, in that order. Let Rp, denote the
reflection of the plane across the line containing the crease E;. Then 4, is defined to be the
composition Rp, e Rp, e ... Ry .

Definition 9. Let C be a c-net with straight-line creases. A semifolding map p : C — R?
is defined as follows: Choose any c-face Fjy, which shall be held constant by u. For each
c-face F', choose a vertex-avoiding path p in C' from a point in the interior of F' to a point
in the interior of Fjyy; we call p the semifolding path of F' for pu. The resulting semifolding
map is defined on each face F' by p(F) = i,(F). If X is a point on an edge or vertex, and
the limit of u exists at X, then u(X) is placed at that limit point.

Note that this definition technically depends on the choices of Fj, and the semifolding
paths. As already explained, the choice of Fj, is ultimately inconsequential. The choice of
semifolding paths, on the other hand, sometimes makes a significant difference, as we shall
see.

9 THE ISOMETRIES CONDITION.

We now present the famous Kawasaki Theorem, also known as the isometies condition.
Throughout the formula and the proof, given a vertex V', A; shall denote the angle of the
corner of F; € F(V) at V.

Theorem 9 (Kawasaki Theorem). Let C' be a c-net with straight creases and even-
degree interior vertices. The following five statements are equivalent:

(1) C is semifoldable; that is, there exists a semifolding map g which is continuous on C.
(2) The alternating sum of the angles surrounding any interior c-vertex is 0; that is
Ag— A1+ Ay — A3+ ... — A1 =0.
Note that the last term in the alternating sum is always negative because d is even.
(3) The sum of every other angle about an interior vertex V' is 180°; that is

Ao+ As+ ...+ Ay 0=A +As+ ...+ Ay = 180°.



(4) Let g be any closed vertex-avoiding path that starts and ends at a point in the interior
of any c-face F'. Then i, = I, the identity.

(5) The definition of x does not depend on the choice for each semifolding path; that is,
for each c-face F', the isometry 7, is the same no matter what semifolding path p is used.

Remark. It seems intuitively reasonable that if an origami folds flat, the final position
in the plane of a given face F'is completely determined by the crease pattern and the choice
of the fixed face Fg. Parts (1) and (5) of the isometries condition confirms this suspicion:
If 1 is continuous on C' for one choice of semifolding paths, it is continuous for every choice.
Technically, definition 9 does not depend on any particular choice of semifolding paths;
similarly, in statement (1) of the isometries condition there is only one unique possible
semifolding map u, up to isometry.

Remark. Note that, if we allow the sheet to have holes, statements (2) and (3) need to
be modified slightly to account for would-be vertices lying in the sheet’s holes. See Justin.

Proof. We will show (1) = (2) = (3) = (4) = (5) = (1).

(1) = (2). Suppose C' is semifoldable. If C' has no interior vertices then (2) is trivially
true, so we may assume that C' has at least one interior vertex, V. Let u be a semifolding
map that acts as a non-reflection isometry on the face Fy € F(V). Repeated application of
theorem T then shows that p reflects only the odd-numbered faces in F'(V).

We use the following notation: Ag, g, shall refer to the angle between E; and E; € £ (V);
similarly, A, (g,).u(z,) is the angle between p(£;) and p(E;). We claim:

o
—_

Auey ey = » (F1)'4; for 1 <k<d-1.

%

I
=)

The proof of this claim is by induction on k. For the base case, set k = 1. Then A,z u(5)
is just the angle at the corner of u(Fy). That angle was unchanged by p which acted as
an isometry on Fp, s0 Apu(Eo)mu(E) = Ao. For the inductive step, suppose the claim holds
for k = j. If j is even, then pu does not reflect Fj, so its angle A; = A, (g;) u(E,,,) Sweeps
a counter-clockwise-pointing arc. In this case, the face p(Fj) contributes additively to the
total angle A, gy u(E,,1); that is, A moy e, ) = AuEe)ue,) +A;. I j is odd, then p reflects
F;, so its angle A; sweeps a clockwise-pointing arc. In this case, the face p(F;) contributes
subtractively to the total angle, so A, (k) u(E; ) = AuEo)uE;) — A;. These two cases show
that the claim holds for all £ < d — 1.

To complete the proof, consider the angle A, (g, u(5, ), Which equals the alternating sum
of all the angles around V except for A; ;. This last angle bridges the gap between Fy;
and Ey. When A,;_; is contributed to the total angle, the result is A, g,) u(m) = 0. Since the
degree of V' is even, d — 1 is odd, so u reflects F;_;. Therefore, the face p(F,;_1) contributes
subtractively to the total angle A, (g, u(E,)- This gives us

U

-1

(—1)'As = Aoy u(Ea) — Aa1 = Augo) u(ey) = 0.

—
Il
o
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(2) = (3). Suppose that the equation in statement (2) holds. For every odd i < d, add
2A; to both sides of the equation. The result is:

A+ A+ Ay +As+ ... +Ag 1 =2A, +2A3+ ... +2A,4.
The left side of this equation is 360°. Dividing by two yields:
180° = A1+ Az + ...+ Ayg_q.
Finally, take the equation in (2) and add every odd-numbered angle once. This gives us:

Ao+ Ao+ ...+ Ago=A1+As+...+ Ay

(3) = (4). Suppose that (3) holds; that is, at each interior vertex the sum of every
other angle is 180°. Now, the composition of reflections of the plane is both associative and
commutative. So, if i, = Rp, @ Rp, ®...e Ry, , then 7, also equals any permutation of those
n reflections.

Consider the closed path ¢ in C'. It is possible to create a simple closed path ¢’ by replacing
each self-crossing of ¢ with two non-intersecting pieces in one of two ways and reversing the
direction on some sections of the path accordingly; see fig. 10 for an example. (To see
why this is always possible, consider ¢ as a graph with fourth-degree nodes at each crossing.
Then ¢’ is an non-self-intersecting eulerian cycle.) Since ¢ and ¢’ both cross the same creases
the same number of times, we have i, = i,. Thus it will suffice to prove that statement (4)
holds for any simple closed path q.

Let g be a simple closed path in C. Then ¢ crosses the crease FF an odd number of times
if and only if £ has one of its vertices lying in the interior of ¢ and the other lying outside
of q.

Let v(q) be the number of c-vertices that lie in the interior of ¢. If v(q) = 0, then ¢ crosses
every crease an even number of times. Now consider the expression i, = Rp, @ Rp,®... ¢ R, .
Each reflection Rp, appears in this expression an even number of times. We can permute
the order of the reflections so that equal terms appear side by side. The reflections then
cancel one another out in pairs, giving 7, = I, the identity. Thus statement (4) holds when

v(q) =0.

Now consider the case v(q) = 1. Let V be the single c-vertex lying inside of ¢q. Every
crease in E(V') is crossed by ¢ an odd number of times, since it has precisely one endpoint
inside ¢q. Every crease not in F (V) is crossed by ¢ an even number of times. When we
permute the reflections in the expression of ¢, so that equal terms appear side by side,
everything cancels out in pairs except for Rp, @ Rp, ®...® Rg, |, for E; € E(V). Thus i,
is the product of reflections in the creases in £(V'). Now, the product of the reflections in
any pair of intersecting lines is a rotation about the point of intersection, through twice the
angle separating the two lines. Let O4, represent a rotation of the plane through angle A;
about the point V. Thus we write:

tp = Rp, e R, e...¢ R, |

= (REO o RE1) e...0 (REd—Z ® REd—l)
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= OQAO L4 02A2 e . ..0 02Ad—2
= 02(AO+A2+--~+Ad72)'

By statement (3), the sum in the last expression is 2(180°) = 360°. A rotation through
360°is the identity, so i, = I whenever v(q) = 1.

To prove the general case, we require the following observation. Let p; be any path in
C, let py be any path starting at the terminal point of p;, and let p;ps = ps ® p; be their
composition. Then by definition 8, we have ip,,, = i,, ® ip, .

We use induction on v(q) to prove the case v(q) > 1. Assume that the theorem is
true for any path that encircles k c-vertices. Let ¢ be a simple closed path beginning and
ending at point @, such that v(q) = k + 1. Without loss of generality, suppose ¢ points
counter-clockwise. Let p be another simple closed path beginning and ending at (), pointing
clockwise, lying entirely in the interior of ¢, and encircling exactly one c-vertex. Then we
have:

iq == iqpp—l == ip—l [ ] iqp.
Now, since p~! encircles just one c-vertex, i,-1 = I, as was just shown. Since v(gp) =
v(q) — v(p) = k — 1, we have iy = I by the induction hypothesis. Thus i, = I when
v(q) = k + 1, and by induction for any closed path q.

(4) = (5). Suppose statement (4) holds; that is, the product of reflections around a closed
curve is the identity. Let p and p’ be two semifolding paths for the face F'. Both of these
paths begin somewhere in F' and end somewhere in Fg,. Draw a path from the beginning
of p’ to the beginning of p, contained entirely inside F', and call it ¢. Draw a path from the
end of p to the end of p/, contained entirely inside Fy,, and call it ¢’ fig. 11. Since ¢ and ¢’
do not cross any creases, we have i, = iy = I. Now, the combined path pg'p'~'q is closed,
SO ipq’p’_lq = 1.

Recall that for any composition of paths p;p,, we have i,,,, = ¢,, ®i,,. Therefore we can
write:
lpgp'—1qg = lg®@ipy-10iy @i, =@l , 10]ei, =71, 107,

Thus 7,1 e, = I. Compose both sides with 7,/ to get:

'lp/ ([ ] /I/plfl [ ] Zp = Zp/.

Now, the left side reduces:
ip/ [ ] ip/—l ® ip = Z.p/prl o ip = ip.
Thus, 4, = t,y. Therefore, i does not depend on the choice of semifolding paths.

(5) = (1). Suppose we have a c-net C' and a semifolding map p : C' — R%  Suppose
further that, if 4/ is any other semifolding map having the same fixed face Fjy, then u = p'.
We want to show that p is continuous. Axiom 1 guarantees that u is continuous throughout
the interiors of the faces. If u turns out to be continuous on every crease, then the limit of
1 exists at the vertices, so by definition 9 p is continuous at the vertices. Therefore we need
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only examine the creases. Let E be the crease between adjacent faces F; and F,. Let p; be
the semifolding path of Fj for . Let ¢ be a path from a point in F5 to the starting point of
p1 in Fy, and suppose that g crosses no creases but £, which it crosses once. So i, = Rp.

Let 1/ be a semifolding map with the same fixed face as u, and for which the semifolding
paths of F} and F, are pj = p; and p, = gp;, respectively. Note that:

ipé(E) = iqp1(E) =1lp, ® iq(E) =1y, ® Rp(E) = iy, (E).

The equation iy (E) = iy (E) shows that p'(Fy) and p/(Fy) have as a common edge p/(E),
thus implying g’ is continuous at E. By hypothesis, u = p/, so it follows that u is also
continuous at E. The same argument can be repeated for every crease F, so p is continuous
on all of C. O

10 SUPERPOSITION ORDERING.

The isometries condition is a perfect tool for determining a c-net’s semifoldability. All we
have to do is check that every interior vertex satisfies the 180° condition—that is, the sum
of every other angle around the vertex is 180°.

Semifoldability is not sufficient for flat-foldability, however. The c-net of fig. 5 is reprinted
in fig. 12. This c-net has no interior vertices, so it satisfies the 180° condition trivially.
Thus it is semifoldable; the semifolded image is shown next to it in the diagram. However, as
previously noted, there is no way to physically fold this piece of paper flat along the creases
without cutting or self-intersection. A sufficiency condition for flat-foldability requires some
additional constraints beyond semifoldability. We now need to consider the superposition
ordering map o.

Unlike the semifolding map, which is completely determined by the c-net up to isometry,
there are often many superposition orderings that allow the paper to fold flat. Our goal is to
determine whether there exists any ordering that makes this possible. To do this, we must
first determine whether a given superposition ordering is possible.

Consider the x-ray view of the crane (fig. 13). Each of the lines on this crane corresponds
to some raw or folded edge, either visible on the top layer or hidden inside the model. The
lines are the images of the c-edges under semifolding. Together they form a planar graph
embedded on the crane silhouette. Each of the twelve faces of this graph represents a stack
of paper layers, each layer having the same shape.

Definition 10. An f-net is the image of a semifoldable c-net C under p. Specifically, it
is the subset of R? equal to u(S) (where S is the sheet of paper), with the embedded graph
1(G) (where G is the crease pattern). The edges of this graph are f-edges, that meet at
f-vertices and bound disjoint f-faces.

Imagine the crane was folded from a square of carbon-sensitive paper. Consider what
would happen if we firmly rubbed this crane along every f-edge and then unfolded it. The
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carbon would leave a visible mark on every crease and raw edge, as well as any points inside
the c-faces where a crease or raw edge happened to overlap. The result is shown in fig. 14.
(The numbers will be explained momentarily.) This is the same as inverse-semifolding the
f-net, so that each point on the paper that was marked by the carbon leaf becomes part of
an edge or vertex.

Definition 11. An s-net is the inverse image of an f-net p(C') under p. It consists of the
sheet of paper, S, with an embedded graph p~' e u(G). This graph is a refinement of the
crease pattern G; that is, G C p~! e u(G). The faces, edges, and vertices of this graph are
called s-faces, s-edges, and s-vertices.

Consider the significance of the s-net to our superposition ordering . Each s-face gets
semifolded onto exactly one f-face, and every f-face is the image of at least one s-face. Thus
the map o should treat each s-face as a single unified entity; that is, ¢ acts as a constant
function on each s-face. Now let F' be an f-face, and let u=1(F) be the set of s-faces that
get stacked up onto F' when the paper is folded. The map ¢ should somehow number these
s-faces to indicate the order in which they get stacked. If there are n s-faces in u~1(F), then
o should number them from 0 to n — 1, inclusive. If the s-face X lies over the s-face Y in
the folded model, we want o(X) to be greater than o(Y); if X lies underneath Y, we want
o(X) <a(Y).

Definition 12. Let C be a semifoldable c-net. A superposition ordering o : C — 7 is
any map that acts as a constant on each s-face and has the following property: For every
f-face F, the n s-faces in the set u~'(F) are mapped to distinct integers between 0 and
n — 1, inclusive. (How o affects the s-edges and s-vertices is inconsequential for determining
flat-foldability, so it needn’t be specified in this definition.)

The s-faces in any s-net can be partitioned into equivalence classes based on which f-face
they each get mapped to. In fig. 15, the s-faces of a crane are assigned letters based on this
partition. The lettered f-net beside it shows the correspondence. There are twelve s-faces
labeled “G”, so 0 maps them to the integers 0 through 11 based on their layering order in
the folded crane. This numbering is shown in fig. 14.

11 THE NON-CROSSING CONDITION.

As the preceding paragraph described, a superposition order of the s-faces of a given model
can be ascertained from the physical folded model itself. However, there exist superposition
orderings that do not correspond to any flat origami model because the ordering would
cause the paper to self-intersect along some s-edges. (In this case, saying the paper self-
intersects refers to the physical reality of folding, rather than the mathematical abstraction
we are building. In fact, any superposition ordering satisfying definition 12 will result in a
one-to-one flat-folding map w, but only a a few of these orderings are truly realizable with
solid paper.) We need some additional axioms that specify when o does not induce a self-
intersection of the paper. Together, these axioms form the non-crossing condition. If we
assume the paper is simply connected (so that the paper cannot be tied in knots) and the
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crease pattern is semifoldable, then the non-crossing condition is necessary and sufficient for

flat-foldability.

Definition 13. If X and Y are adjacent s-faces separated by the s-edge F, and if F is
contained in a crease, we say that F is an s-crease and we write C'(X,Y, E). If the s-faces
are adjacent but F is not part of a crease, then we write ~ C(X,Y, E).

Note that ~ C(X,Y, E) implies that pu(X) # p(Y). Conversely, C(X,Y, E) implies that
w(X) = p(Y), which in turn implies that o(X) # o(Y).

Axiom 6. If ~ C(X,Y, F) and ~ C(X",Y', F') with u(F) = u(E"), we cannot have both
o(X) > o(X’) and o(Y) > o(Y’). (This restriction prevents two c-faces from penetrating
through one another’s interiors. See fig. 16a.)

Axiom 7. If C(X, X", E) and ~ C(X",Y,E’) with u(E) = p(E’), we cannot have
o0(X) > o(X") > o(X’). (This restriction prevents a c-face from penetrating through a fold.
See fig. 16b.)

Axiom 8. If C(X, X', E) and C(Y,Y’, E') with u(E) = p(E’), we cannot have o(X) >
o(Y) > o(X') > o(Y’). (This restriction prevents two folds from penetrating through one
another. See fig. 16c.)

We take it as given that these three axioms exhaustively cover every possible circumstance
in which the paper might self-intersect. If we choose the superposition order so that all three
axioms are satisfied, then the non-crossing condition has been satisfied. With the following
definition, we have finally solved our main problem.

Definition 14. A (simply connected) c-net is flat-foldable if and only if it is semifoldable
and there exists a superposition ordering satisfying the non-crossing condition. In this case,
the flat-folding map w is the cartesian product of the semifolding and superposition ordering
maps.

This “solution” to the problem of flat-foldability is less than satisfactory. We can confirm
semifoldability by simply checking that the 180° condition holds at every c-vertex. If a c-
net is semifoldable we can easily determine the unique semifolding map and use it to find
the s-net. However, even having come that far, it is extremely difficult to know whether
a valid superposition ordering exists. Trial and error seems to be the only effective way
to determine this; if every single possible superposition ordering violates the non-crossing
condition somewhere, then the c-net is not flat-foldable.

It is, in fact, computationally infeasible to use this method of trial and error. In 1996,
Marshall Bern and Barry Hayes published their proof that the general problem of flat-
foldability is NP-hard, meaning there exists no polynomial-time algorithm that determines
the flat-foldability of an unsigned c-net. The problem of determining a valid superposition
order for a c-net is also known to be NP-hard, even if the c-net is known beforehand to be
flat-foldable.

There are no known easy-to-spot conditions that are equivalent to the rather inconvenient
non-crossing condition. However, consideration of MV-assignments provides a good starting
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point for finding a valid superposition ordering, as we shall see in the next section.

12 MV-ASSIGNMENTS.

Recall from our discussion of crease patterns that all creases fall into one of two categories,
mountain crease or valley crease. The difference is, when we make a mountain fold we swing
part of the paper behind, whereas when we make a valley fold the paper swings in front.
More precisely, let F} and F;, be c-faces adjacent along a crease F/, and let u be a semifolding
map that reflects Fy. Then E is a valley crease if Fy gets placed on top of Fj, and it is a
mountain crease if F, goes underneath. This suggests the next theorem.

Theorem 10. Let F; be the s-crease separating adjacent s-faces X and X', and let Ej
be the s-crease separating adjacent s-faces Y and Y’. Suppose E; and Es are both contained
in the crease F/, X and Y are contained in the c-face F', and X’ and Y’ are contained in the
adjacent c-face F'. If 0(X) > o(X’), then o(Y) > o(Y”).

Definition 15. Assume the same variable definitions as in the above theorem. Suppose
o(X) > o(X’) and o(Y) > o(Y’). We say that E is a valley crease if u acts on F as a
reflection, and E is a mountain crease if p acts on I’ as a reflection.

Given a semifoldable c-net with a semifolding map p and a superposition ordering o (not
necessarily in abidance with the non-crossing condition), we can can figure out which of
the creases are mountains and which are valleys. In other words, applying a superposition
ordering automatically “signs” the crease pattern.

We say that a signed c-net is signed-flat-foldable if it is possible to collapse the paper
into a flat origami by making mountain and valley folds as indicated. Obviously, signed-
flat-foldability is stronger than unsigned-flat-foldablity. A signed c-net may be signed-flat-
foldable only if it is unsigned-flat-foldable. There exist a number of necessity conditions for
signed-flat-foldability in addition to unsigned-flat-foldability. We can test the validity of a
given superposition ordering of an unsigned c-net by checking the resultant MV-assignment
against these conditions.

Theorem 11. Suppose we have a signed-flat-foldable c-net containing faces Fi, Fs,
and Fj, with F, adjacent to the other two. Let Ejs and FEss be the edges separating F3
from F; and Fj3, respectively. If there exists a line L intersecting F1o and Fs3 such that
|LNFy| < |Rg,(L)NFi| and |LNFy| < |Rp,, (L) N F3|, then Ejy and Ey3 must have opposite
MV-assignments. See fig. 17.

Corollary 12. Let Fy, F», and F3 be consecutive faces in F(V') for some c-vertex V. If
A; and Aj are both greater than A,, then E5 and F3 must have opposite MV-assignments.

Corollary 12 can be used to demonstrate that fig. 5 is not flat-foldable. The corollary’s
hypothesis applies at all three vertices, so no two of the creases can have the same MV-
assignment. This is impossible.

Theorem 13 (Maekawa Theorem). Let V' be an interior vertex in a signed-flat-
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foldable c-net. The number of mountain creases in E(V') must differ from the number of
valley creases in E(V) by £2.

Again, none of these conditions are sufficient to prove the validity of a given superposition
ordering, but they do help us by weeding out a large number of candidates. The problem
of general flat-foldability is not completely solved, but the tools provided here are about as
close to a full solution as we can hope to come.

13 SUMMARY AND CONCLUSION.

Our main goal in this study was to find a mathematical link between a crease pattern its
corresponding origami model. We asked: Given an arbitrary unsigned crease pattern, is it
possible to fold the paper along the creases so that the resulting model is flat? For the
answer to be yes, the following conditions must all be met:

1. All crease lines must be straight line segments.
2. All interior vertices in the crease pattern must be of even degree.
3. At each interior vertex, the sum of every other angle must be 180°.
4. There must exist a superposition ordering function that does not violate the non-crossing
condition.

When these conditions are all true, the crease pattern is flat-foldable by definition.
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