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1 FLAT ORIGAMI.

Origami has traditionally been appreciated as an art form and a recreation. Increasingly
over the course of the 20th century, however, attention has been drawn to the scientific and
mathematical properties of paperfolding, with the majority of this work occurring in the
past 20 years or so. Even today, many of the most basic and intuitive problems raised by
origami still lack definitive solutions.

Origami is unlike most forms of sculpture in that its medium—a sheet of paper, usually
square in shape—undergoes almost no physical change during the creation process. The
paper is never cut nor chemically manipulated; its size, shape, and flatness are never altered;
nothing is ever added or taken away. Only its position in space is affected. Origami has been
described as an “art of constraints.” The art lies in exploring and expanding the realm of
what can be achieved within the constraints naturally imposed by the paper. Designing an
origami model of a particular subject requires considerable ingenuity.

Many origami models are so cleverly designed that their final forms bear almost no resem-
blance to the sheets of paper from which they are made. However, there exists a substantial
class of origami forms which share one basic characteristic of the original paper: flatness.
Flat models like the crane (fig. 1) can be pressed between the pages of a book. A math-
ematical inquiry into paperfolding could logically start by examining the rules that govern
flat-folding. The added constraint of flatness actually simplifies our mathematical description
of folding by reducing the number of relevant spatial dimensions to two. In reality, of course,
flat models are truly 3-D. There is a narrow space separating overlapping layers, making it
possible to distinguish the order in which the layers are stacked. As we shall see later on, it
is nonetheless possible to describe a flat origami as a 2-D mathematical abstraction without
losing any information about the overlap order of its layers.
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2 CREASE PATTERNS.

Before we proceed to formulate a mathematical description of flat-folding, let us pause to
consider an example. When we open out a paper crane and look at the square from which
it was folded, we see a web of crease lines crisscrossing all over the paper (fig. 2). This
web is the model’s crease pattern. It bears little resemblance to a crane, and it seems
somehow surprising and mysterious that the two forms are connected somehow. Developing
a mathematical theory that relates the crease pattern to the folded form shall be our main
purpose in this study.

The marks on the paper fall into three distinct types. Some of the crease lines are left
over from developmental stages of the folding process and do not correspond to any folded
edges in the finished model; these lines we ignore, because we are only interested in creases
used in the folded form. The remaining lines are either mountain creases or valley creases.
A mountain crease is left by a fold that moved paper away from the folder; when I set an
open book face down on a table, the spine is a mountain crease. A valley crease is left by a
fold that moved paper towards the folder; when I am reading a book, the binding is a valley
crease.

Let us translate these observations into mathematical abstractions by giving a few defi-
nitions.

Definition 1. The sheet, S, shall be defined as a compact connected region of the plane,
bound by a smooth simple closed curve.

Note that a sheet must have finite area by this definition. Since most art supply stores do
not stock infinite-area origami paper, this convention seems realistic. However, the mathe-
matical theory of paperfolding can be logically extended to the infinite case. For a discussion
of infinite-area origami, see Justin.

Definition 1 does not allow the paper to have holes. In this study we shall assume, unless
stated otherwise, that every sheet has exactly one boundary, so it is simply connected.
This seemingly arbitrary assumption has the effect of further restricting what is possible to
fold, thus simplifying the math required for describing flat origami. Fortunately, most real
origami paper we use has no holes, so our assumption is a good approximation of reality. For
a treatment of the general case in which paper may have multiple boundaries, see Justin.

Definition 2. The crease pattern, G, shall be defined as a planar graph embedded on
S. The area of S is entirely partitioned by the vertices, edges, and faces of G. The entire
boundary of S is partitioned into edges and vertices. An edge lying in the interior of S is
called a crease, whereas an edge on the boundary of S is called a raw edge.

For our study let us always assume that G is a finite graph. Infinite crease patterns
are theoretically possible, but again this possibility complicates the math and is a poor
approximation of the reality of origami, so we ignore it here. To learn about folding infinite
crease patterns, please refer to Maekawa.

Definition 3. Given a vertex V in a crease pattern, we denote the set of edges having
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V as an endpoint by E(V ), and the set of faces having V on their boundaries by F (V ). In
general, when working with these sets we shall name the elements in clockwise sequential
order (fig. 3). (The designation F0 is assigned arbitrarily if V is an interior vertex.)

Definition 4. A c-net, C, is a sheet of paper S with a crease pattern G embedded on it.
The elements of C and S are the same—they are the points of the sheet S.

Definition 5. Recall that each crease corresponds to one of two types of crease lines,
mountain or valley. Define an MV-assignment to be a map from the set of creases in a crease
pattern to the set {M, V }. A crease pattern together with an MV-assignment shall be called
a signed crease pattern; a crease pattern without an MV-assignment is called unsigned.
Similarly, c-nets may also be signed or unsigned.

3 FLAT-FOLDABILITY.

Consider the signed crease pattern of the crane. Somehow, this arrangement of mountain
and valley folds work together to collapse the paper into a flat origami which happens to
resemble an avian life form. By contrast, consider the unsigned crease pattern in figs. 4 &
5. No matter how we try, these patterns cannot be folded flat—some layer of paper always
ends up blocking another. It doesn’t even matter what MV-assignment we use, the paper
still stubbornly refuses to fold flat. Apparently, the unsigned c-net of the crane has some
fundamental property that ensures the existence of an MV-assignment which enables the
paper to fold flat. We call this property flat-foldability of an unsigned c-net.

Suppose we are given a flat-foldable unsigned c-net such as that of the crane or some
other flat model. It it possible to predict what the final model will look like? To what
extent does the crease pattern determine where each part of the sheet goes? In our study
of paperfolding, we will formulate a mathematical model of paperfolding that enables us to
answer the above questions. The main goal of this study is to answer the following question.

Main Problem: Is a given unsigned c-net flat-foldable?

We want to give the “flat foldability” property a mathematical definition, stated in terms
of the known geometric properties of an unsigned c-net. This definition should model our
real experience of paperfolding as nearly as possible.

A flat origami model is really three-dimensional, so it makes sense initially to treat flat
origami as a special case of 3-D origami. In the next section, we develop a set of rules
for 3-D paperfolding, which will function as a starting point for developing a mathematical
simulation of 2-D paperfolding.
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4 FOUR AXIOMS FOR POLYHEDRAL FOLDING.

Our formal definition of 3-D folding must necessarily spring from empirical observations of
the folded paper. To begin, observe that folding moves every point of the sheet through
space to a final location in the folded model. It makes sense to imagine folding as a mapping
φ from the c-net C into 3-space. The image φ(C) represents the folded model.

Paperfolding is the art of moving paper without violating the constraints naturally im-
posed by the material. To complete the definition of φ, a list of these constraints is required.
The following list of four constraints is complete. Each one of them is easily formalized as a
mathematical axiom.

Notation. In general, if f is a function and Y is any subset of the domain of f , we shall
denote the restricted function by f |Y .

ONE. The crease pattern faces retain their shapes when the paper is folded. Paper is
a stiff and inelastic material, so each face remains flat and its area always stays the same.
Folding may translate or rotate a face through space, but folding never distorts the face’s
shape or changes its size. This suggests our first axiom.

Axiom 1. φ acts as an isometry on each face.

Definition 6. The face isometry iF : R3 → R3 is the isometry as which φ acts on the
face F . That is, φ|F = iF |F .

Note that axiom 1 assumes that the paper is not allowed to curl. To account for the models
in which the paper is curled, axiom 1 would have to be replaced with a weaker restriction
against altering the intrinsic geometry of each face. Models in which the paper curls are called
developable surfaces. Models in which the faces remain flat are called polyhedral origamis.
Flat origami is polyhedral, since all the paper winds up lying flat over a plane. The main
focus of this study is flat origami, so we shall assume that folding acts as an isometry on
each face.

TWO. The paper is folded at every crease. This constraint is not imposed by the material;
it simply describes what happens to the crease pattern when we fold it. The first constraint
disallows folding the paper where there is no crease; the second constraint requires folding
the paper where there is a crease. Now, when we make a fold, the paper on one side of
the crease moves in relation to the paper on the other side. In light of definition 6, we can
express this phenomenon as follows:

Axiom 2. If F1 is adjacent to F2, then iF1|C 6= iF2 |C.

THREE. In the folded model, the paper cannot self-intersect. After all, paper is solid
tangible matter. Even if the origami is “flat”, there is still a small space between overlapping
layers. If the folded paper were allowed to self-intersect, then a point of intersection would
be the image under φ of multiple points in the c-net. So, what this constraint is really saying
is:

Axiom 3. φ is one-to-one.
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Technically, axiom 3 prohibits any fold from being truly flat. The dihedral angle of any
fold cannot go to zero without violating the one-to-one axiom. When we discuss flat-folding,
the 3-D folding map φ will no longer work. We shall use a slightly modified version of φ,
called ω, for flat-folding. For the moment, however, we shall continue to discuss 3-D origami
that satisfies all these constraints.

FOUR. The paper never tears. Many old-fashioned origami models involve cutting, but
most modern folders believe that cutting disrupts the purity of the square sheet. Thus we
shall assume that folding leaves the shape of the paper unaltered. Note that constraint #1
automatically prohibits slicing apart the area of a face. Constraint #4 prohibits cutting along
creases as well. Folding cannot cause adjacent faces to become separated; if this happened,
the folding map would be discontinuous at all points on the crease where the cut was made.
In general, any discontinuity in folding corresponds with a cut or tear made in the paper.
Thus our last axiom is:

Axiom 4. φ is continuous.

Axioms 1 through 4 form a complete description of the constraints on polyhedral origami,
assuming the paper is simply connected as required by definition 1. However, if we had
defined the sheet of paper more generally so that it could have multiple boundary curves,
we would require one additional axiom to ensure that the image of those closed curves under
φ is unlinked. Figure 6 shows an impossible fold on a paper with two boundaries; the
boundaries are linked in the folded image, so the fold violates the fifth axiom. It can be
shown that this fifth requirement is independent of the first four axioms. See Justin for a
treatment of origami paper with holes. In this study we shall assume that the paper has no
holes and make do with only four axioms.

It is satisfying to note that axioms 3 and 4, together with the compactness of C, imply
that φ is a homeomorphism between the sheet of paper C and the folded origami model
φ(C). This is as it should be, for in real life origami paper rarely undergoes topological
changes during the folding process! A proof of this result is easy but outside the scope of
this report.

5 BREAKING THE PROBLEM DOWN.

The above four constraints seem to comprise a complete description of the physical limi-
tations of polyhedral paperfolding. Any mapping of a c-net into 3-space satisfying all four
axioms is a realistic mathematical simulation of folding. However, these axioms do not allow
for truly flat origami. If we tried to fold a crane according to these axioms, the folds would
all have small but nonzero dihedral angles, causing the model to puff up into the third di-
mension. Although this mathematical model is more physically accurate, it is not useful for
determing the flat-foldability of crease patterns. Therefore, our mathematical simulation of
flat-folding will use a different strategy.

Since the folded model will lie flat, the final position of each point on the paper can be
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completely described by two properties: first by where it lies over the 2-D plane; second by
the number of layers that lie directly underneath it. Therefore, we could define flat-folding
as a map ω from the c-net C to the space R2 × Z. The real number coordinates are the x
and y position of the point, and the positive integer refers to how many layers of paper lie
underneath this point.

In choosing to use ω instead of φ for flat-folding, we give up a certain amount of realism.
Whereas φ never causes the paper to self-intersect, ω forces entire regions of the paper to
occupy the same space in the plane when they are folded over one another. However, ω is
still one-to-one, because two points in the c-net that get mapped to the same point on the
plane cannot be in the same layer of paper. Unfortunately, ω is not continuous; the integers
are discrete, so if the folded form has more than one layer of paper, each layer is separated
from the others in the topology of R2×Z, so the image is not connected. Only in the trivial
case where C has no creases is ω continuous.

We can easily get around this problem by breaking ω down into its component parts. We
define a semifolding map µ : C → R2 that determines only the final position of the paper in
the plane, and a superposition ordering σ : C → Z that determines only the overlap order of
the layers. We then define the flat-folding map ω as the cartesian product of the semifolding
map and the superposition ordering.

6 FOLDING WITH SELF-INTERSECTION: SEMI-

FOLDING.

Before we can study the order in which the layers overlap, we must first determine which
parts of the paper wind up overlapping. Thus we must precisely specify µ before σ. Fig.
7 illustrates the effect of µ on a c-net. Suppose a paper crane was folded from paper that
can pass through itself. The final folded form can collapse into two dimensions by allowing
each stack of overlapping layers to occupy one common region in the plane. The resulting
bird-shaped silhouette is the semifolding image of the crane’s c-net. Thus µ is an immersion
of C into the plane.

Semifolding is not one-to-one—the paper self-intersects wherever there are overlaps—so
in defining µ we are free from the constraint of axiom 3. We insist that µ must abide by
axioms 1 and 2, so that faces cannot deform and every crease gets a fold. However, we shall
not guarantee that the semifolding map is continuous on all crease patterns. If it is possible
for a c-net C to collapse flat without cutting when folded with self-penetrable paper, then µ
should be continuous on C; but if this is not possible, µ is defined on C discontinuously. In
other words, when semifolding we can cut the paper if we absolutely have to.

Definition 7. A c-net C is said to be semifoldable if there exists a mapping µ : C →
R2 which satisfies axioms 1, 2, and 4. (Unfortunately this terminology could stand some
improvement. Note that a semifolding map is defined on C whether or not C is semifoldable—
the difference is in the continuity.)
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In general, we require µ to abide by axiom 1, so it acts on each face F by a face isometry
iF . However, the range of µ is restricted to the plane, so iF is a planar isometry. We assume
henceforward that face isometries are isometries of R2.

Let us now derive results concerning the semifoldability of crease patterns. Our first result
states that the creases in a foldable crease pattern are straight line segments. The theorem
assumes only axioms 1, 2, and 4, so the theorem and proof may be generalized to polyhedral
folding without self-intersection. However, for simplicity, the statement and proof presented
here applies specifically to semifolding, so the map is assumed to be 2-D.

First we need a brief lemma.

Lemma 1. Let f : C → R2 be a function satisfying axiom 1. Let E be the crease between
adjacent faces F1 and F2 in C. Then f is continuous on E if and only if,

f |E = iF1|E = iF2|E.

Proof. Suppose f is continuous on E. Let x be a point on E, and let {x1, x2, ...} be a
sequence of points in F1 that converges in C to x. Since the isometry iF1 is continuous, the
image of this sequence under f converges to the point iF1(x). Since f is continuous at x, we
have f(x) = iF1(x) for all x ∈ E. Thus, f |E = iF1|E. The same argument can be applied
for F2.

For the converse, suppose f(x) = iF1(x) = iF2(x) for all points x on E. Let Y be an open
neighborhood in f(C) of the point f(x). Let U = f−1(Y ) be the preimage of Y . By axiom
1, we have

U = (i−1
F1

(Y ) ∩ F1) ∪ (i−1
F2

(Y ) ∩ F2) ∪ (f−1(Y ) ∩ E)

Our hypothesis states that f agrees with the face isometries iF1 and iF2 on the edge E. This
implies that the three sets whose union is U fit together nicely on C. Since the face isometries
themselves are continuous, the preimage of Y is an open neighborhood of x. Therefore, f is
continuous. �

Theorem 2. Let E be the crease between adjacent faces F1 and F2 in a c-net C. If there
exists a semifolding map µ : C → R2 which is continuous on E, then E is a straight line
segment.

Proof. By the lemma, we have iF1|E = iF2|E. Compose both sides of this equation with
the isometry i−1

F1
to get

I|E = i−1
F1
• iF2|E

where I|E is the identity function on the edge E. That is, the composition i−1
F1
• iF2 holds

all points of edge E fixed. Clearly the composition i−1
F1
• iF2 is itself an isometry of R2 Now,

there are two types of planar isometries that hold more than one point fixed: one is the
identity map; the other is a reflection in a line containing all the fixed points. By axiom 2,
iF1 6= iF2 , so i−1

F1
• iF2 is not the identity on R2. Therefore, i−1

F1
• iF2 is a reflection in a line

containing the edge E. Hence, E is a straight line segment. �

As previously mentioned, theorem 2 can be generalized to the polyhedral folding map φ.
The proof of the 3-D case must take into account several different spatial isometries that
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hold multiple points fixed; in each of these cases the fixed points turn out to be colinear, so
the result holds. The details are left as an exercise to the reader.

The following corollary to theorem 2 is important enough to be called a theorem in its
own right. It states that semifolding flips over one face in every adjacent pair.

Theorem 3. Let F1 and F2 be adjacent faces in a c-net C, with the crease E separating
them. If µ is continuous at E, then µ acts as a reflection or a glide reflection on exactly one
of F1 and F2.

Proof. The proof of the preceding theorem showed that i−1
F1
• iF2 is a reflection. Since

their composition is orientation-reversing on the plane, exactly one of the face isometries iF1

and iF2 is orientation-reversing. The result follows immediately. �

One result of theorem 3 is the following necessity condition for semifoldability.

Theorem 4. If µ is continuous in the neighborhood of a given interior c-vertex V , then
V is of even degree. Therefore, if a c-net is semifoldable, then each of its interior c-vertices
is of even degree.

Proof. Let d be the degree of V . When d = 0, there are no creases at V , so V is really
a point in the interior of a c-face, where axiom 1 guarantees that µ is continuous. Thus we
may assume that d > 0. Furthermore, d cannot be 1 because then the single crease radiating
from V bounds the same face on both sides; this face’s self-adjacency violates axiom 2. Thus
we may assume that d > 1. To each face in F (V ) which µ does not reflect, assign the label
+1; to the remainder, assign the label −1. By theorem 3, adjacent faces cannot have the
same label. Consider all pairs of adjacent faces Fi, Fi+1 mod d which are labeled +1 and −1,
respectively. Clearly, every face at V is a member of exactly one such pair; thus, these pairs
partition F (V ). It follows that d equals 2 times the number of pairs, so d is even. �

The result does not hold if the crease pattern is not semifoldable. Interestingly, vertices
of any degree are possible in non-flat origami; see Hull/Belcastro for information.

An important corollary to theorem 4 concerns face colorings of c-nets. A planar graph is
called face k-colorable if it is possible to color each face with one of k different colors, such
that adjacent faces are never given the same color. A face 2-colorable graph, for example,
can be colored black and white like a chessboard.

Corollary 5. If a c-net is semifoldable, then its crease pattern is face 2-colorable.

Proof. (Adapted from Hull, T.) Let C be a semifoldable c-net. By the above theorem,
each interior c-vertex in C has even degree. Therefore, C is eulerian, hence 2-face colorable.
�

Consider the significance of this corollary. The proof of the theorem makes clear that
the color assigned to a face is dependent on whether or not µ reflects the face. The act
of semifolding flips over all the c-faces with one color, and merely rotates or translates the
others. This is consistent with our experience of paperfolding. In the paper crane, for
instance, we find that every other face in the crease pattern lies face up in the folded model.
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7 DEFINING µ.

We still have not formulated a precise definition of µ. We may assume µ holds the position
of at least one face constant, so let us arbitrarily pick one c-face in C, call it Ffix, and require
that µ|Ffix = I, the identity on Ffix. The rest of the paper folds over, under, and around Ffix.
The choice of which face to hold constant is made without loss of generality because for any
c-face F , the entire image µ(C) may be moved via an isometry i such that i • µ(F ) = F .
Now consider a c-face F which is separated from Ffix by several creases and faces. Since
the paper separating F from Ffix gets folded over and over along the creases existing in that
region, it seems intuitively reasonable to assume that the final position of F is the image of
F reflected through all of those creases.

Figs. 8 & 9 illustrate our motivation for making this assumption. Consider a rectangle
with two non-intersecting creases, E1 and E2, separating the paper into faces F1, F2, and
F3. If we fold the rectangle along these creases while holding F1 fixed, F3 is reflected first
over E2, and then over E1.

As a more complex example, suppose the crane is folded up around the triangle Ffix as
shown. Then final location of the triangle F is accurately predicted by our assumption.
Reflecting F over edges E1, E2, E3, E4 and E5, in that order, places F directly over Ffix, just
as it is positioned in the model. Note that other sequences of edge-reflections are possible. In
the next section we will show that all of these sequences compose to give the same isometry
if and only if the c-net is semifoldable.

The following two definitions formalize our assumption and precisely describe µ.

Definition 8. Let C be a c-net with straight-line creases. Let p be a vertex-avoiding
path in C. The isometry induced by p, denoted ip : R2 → R2, is defined as follows. Suppose p
crosses the creases E1, E2, . . . , En, not necessarily all distinct, in that order. Let REj

denote
the reflection of the plane across the line containing the crease Ej. Then ip is defined to be
the composition RE1 •RE2 • . . . •REn .

Definition 9. Let C be a c-net with straight-line creases. A semifolding map µ : C → R2

is defined as follows: Choose any c-face Ffix, which shall be held constant by µ. For each
c-face F , choose a vertex-avoiding path p in C from a point in the interior of F to a point
in the interior of Ffix; we call p the semifolding path of F for µ. The resulting semifolding
map is defined on each face F by µ(F ) = ip(F ). If X is a point on an edge or vertex, and
the limit of µ exists at X, then µ(X) is placed at that limit point.

Note that this definition technically depends on the choices of Ffix and the semifolding
paths. As already explained, the choice of Ffix is ultimately inconsequential. The choice of
semifolding paths, on the other hand, sometimes makes a significant difference, as we shall
see.
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8 THE ISOMETRIES CONDITION.

We now present the famous Kawasaki Theorem, also known as the isometies condition.
Throughout the formula and the proof we use the following notation: Given a vertex V , Ai

shall denote the angle of the corner of Fi ∈ F (V ) at V .

Theorem 6 (Kawasaki Theorem). Let C be a c-net with straight creases and even-
degree interior vertices. The following five statements are equivalent:

(1) C is semifoldable; that is, there exists a semifolding map µ which is continuous on C.

(2) The alternating sum of the angles surrounding any interior c-vertex is 0; that is

A0 − A1 + A2 − A3 + . . .− Ad−1 = 0.

Note that the last term in the alternating sum is always negative because d is even.

(3) The sum of every other angle about an interior vertex V is 180◦; that is

A0 + A2 + . . . + Ad−2 = A1 + A3 + . . . + Ad−1 = 180◦.

(4) Let q be any closed vertex-avoiding path that starts and ends at a point in the interior
of any c-face F . Then iq = I, the identity.

(5) The definition of µ does not depend on the choice for each semifolding path; that is,
for each c-face F , the isometry ip is the same no matter what semifolding path p is used.

Remark. It seems intuitively reasonable that if an origami folds flat, the final position
in the plane of a given face F is completely determined by the crease pattern and the choice
of the fixed face Ffix. Parts (1) and (5) of the isometries condition confirms this suspicion:
If µ is continuous on C for one choice of semifolding paths, it is continuous for every choice.
Technically, definition 9 does not depend on any particular choice of semifolding paths;
similarly, in statement (1) of the isometries condition there is only one unique possible
semifolding map µ, up to isometry.

Remark. Note that, if we allow the sheet to have holes, statements (2) and (3) need to
be modified slightly to account for would-be vertices lying in the sheet’s holes. See Justin.

Proof. We will show (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (1).

(1) ⇒ (2). Suppose C is semifoldable. If C has no interior vertices then (2) is trivially
true, so we may assume that C has at least one interior vertex, V . Let µ be a semifolding
map that acts as a non-reflection isometry on the face F0 ∈ F (V ). Repeated application of
theorem 3 then shows that µ reflects only the odd-numbered faces in F (V ).

We use the following notation: AEi,Ej
shall refer to the angle between Ei and Ej ∈ E(V );

similarly, Aµ(Ei),µ(Ej) is the angle between µ(Ei) and µ(Ej). We claim:

Aµ(E0),µ(Ek) =
k−1∑
i=0

(−1)iAi for 1 ≤ k ≤ d− 1.
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The proof of this claim is by induction on k. For the base case, set k = 1. Then Aµ(E0),µ(E1)

is just the angle at the corner of µ(F0). That angle was unchanged by µ which acted as
an isometry on F0, so Aµ(E0),µ(E1) = A0. For the inductive step, suppose the claim holds
for k = j. If j is even, then µ does not reflect Fj, so its angle Aj = Aµ(Ej),µ(Ej+1) sweeps
a counter-clockwise-pointing arc. In this case, the face µ(Fj) contributes additively to the
total angle Aµ(E0),µ(Ej+1); that is, Aµ(E0),µ(Ej+1) = Aµ(E0),µ(Ej) +Aj. If j is odd, then µ reflects
Fj, so its angle Aj sweeps a clockwise-pointing arc. In this case, the face µ(Fj) contributes
subtractively to the total angle, so Aµ(E0),µ(Ej+1) = Aµ(E0),µ(Ej) − Aj. These two cases show
that the claim holds for all k ≤ d− 1.

To complete the proof, consider the angle Aµ(E0),µ(Ed−1), which equals the alternating sum
of all the angles around V except for Ad−1. This last angle bridges the gap between Ed−1

and E0. When Ad−1 is contributed to the total angle, the result is Aµ(E0),µ(E0) = 0. Since the
degree of V is even, d− 1 is odd, so µ reflects Fd−1. Therefore, the face µ(Fd−1) contributes
subtractively to the total angle Aµ(E0),µ(E0). This gives us

d−1∑
i=0

(−1)iAi = Aµ(E0),µ(Ed−1) − Ad−1 = Aµ(E0),µ(E0) = 0.

(2) ⇒ (3). Suppose that the equation in statement (2) holds. For every odd i < d, add
2Ai to both sides of the equation. The result is:

A0 + A1 + A2 + A3 + . . . + Ad−1 = 2A1 + 2A3 + . . . + 2Ad−1.

The left side of this equation is 360◦. Dividing by two yields:

180◦ = A1 + A3 + . . . + Ad−1.

Finally, take the equation in (2) and add every odd-numbered angle once. This gives us:

A0 + A2 + . . . + Ad−2 = A1 + A3 + . . . + Ad−1.

(3) ⇒ (4). Suppose that (3) holds; that is, at each interior vertex the sum of every other
angle is 180◦.

Consider the closed path q in C. It is possible to create a simple closed path q′ by replacing
each self-crossing of q with two non-intersecting pieces in one of two ways and reversing the
direction on some sections of the path accordingly; see fig. 10 for an example. (To see
why this is always possible, consider q as a graph with fourth-degree nodes at each crossing.
Then q′ is an non-self-intersecting eulerian cycle.) Since q and q′ both cross the same creases
the same number of times, we have iq = iq′ . Thus it will suffice to prove that statement (4)
holds for any simple closed path q.

Let q be a simple closed path in C. Then q crosses the crease E an odd number of times
if and only if E has one of its vertices lying in the interior of q and the other lying outside
of q.
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Let v(q) be the number of c-vertices that lie in the interior of q. If v(q) = 0, then q crosses
every crease an even number of times. Now consider the expression iq = RE1 •RE2 • . . .•REn .
Each reflection REi

appears in this expression an even number of times. The reflections then
cancel one another out in pairs, giving iq = I, the identity. Thus statement (4) holds when
v(q) = 0.

Now consider the case v(q) = 1. Let V be the single c-vertex lying inside of q. Every
crease in E(V ) is crossed by q an odd number of times, since it has precisely one endpoint
inside q. Every crease not in E(V ) is crossed by q an even number of times. All pairs
of equal reflections in the expression of iq cancel out, leaving RE0 • RE1 • . . . • REd−1

, for
Ei ∈ E(V ). Thus iq is the product of reflections in the creases in E(V ). Now, the product of
the reflections in any pair of intersecting lines is a rotation about the point of intersection,
through twice the angle separating the two lines. Let OAi

represent a rotation of the plane
through angle Ai about the point V . Thus we write:

ip = RE0 •RE1 • . . . •REd−1

= (RE0 •RE1) • . . . • (REd−2
•REd−1

)
= O2A0 •O2A2 • . . . •O2Ad−2

= O2(A0+A2+...+Ad−2).

By statement (3), the sum in the last expression is 2(180◦) = 360◦. A rotation through
360◦is the identity, so ip = I whenever v(q) = 1.

To prove the general case, we require the following observation. Let p1 be any path in
C, let p2 be any path starting at the terminal point of p1, and let p1p2 = p2 • p1 be their
composition. Then by definition 8, we have ip1p2 = ip2 • ip1 .

We use induction on v(q) to prove the case v(q) > 1. Assume that the theorem is
true for any path that encircles k c-vertices. Let q be a simple closed path beginning and
ending at point Q, such that v(q) = k + 1. Without loss of generality, suppose q points
counter-clockwise. Let p be another simple closed path beginning and ending at Q, pointing
clockwise, lying entirely in the interior of q, and encircling exactly one c-vertex. Then we
have:

iq = iqpp−1 = ip−1 • iqp.

Now, since p−1 encircles just one c-vertex, ip−1 = I, as was just shown. Since

v(qp) = v(q)− v(p) = k − 1,

we have iqp = I by the induction hypothesis. Thus iq = I when v(q) = k + 1, and by
induction for any closed path q.

(4) ⇒ (5). Suppose statement (4) holds; that is, the product of reflections around a closed
curve is the identity. Let p and p′ be two semifolding paths for the face F . Both of these
paths begin somewhere in F and end somewhere in Ffix. Draw a path from the beginning
of p′ to the beginning of p, contained entirely inside F , and call it q. Draw a path from the
end of p to the end of p′, contained entirely inside Ffix, and call it q′ fig. 11. Since q and q′

do not cross any creases, we have iq = iq′ = I. Now, the combined path pq′p′−1q is closed,
so ipq′p′−1q = I.
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Recall that for any composition of paths p1p2, we have ip1p2 = ip2 • ip1 . Therefore we can
write:

ipq′p′−1q = iq • ip′−1 • iq′ • ip = I • ip′−1 • I • ip = ip′−1 • ip.

Thus ip′−1 • ip = I. Compose both sides with ip′ to get:

ip′ • ip′−1 • ip = ip′ .

Now, the left side reduces:

ip′ • ip′−1 • ip = ip′p′−1 • ip = ip.

Thus, ip = ip′ . Therefore, µ does not depend on the choice of semifolding paths.

(5) ⇒ (1). Suppose we have a c-net C and a semifolding map µ : C → R2. Suppose
further that, if µ′ is any other semifolding map having the same fixed face Ffix, then µ = µ′.
We want to show that µ is continuous. Axiom 1 guarantees that µ is continuous throughout
the interiors of the faces. If µ turns out to be continuous on every crease, then the limit of
µ exists at the vertices, so by definition 9 µ is continuous at the vertices. Therefore we need
only examine the creases. Let E be the crease between adjacent faces F1 and F2. Let p1 be
the semifolding path of F1 for µ. Let q be a path from a point in F2 to the starting point of
p1 in F1, and suppose that q crosses no creases but E, which it crosses once. So iq = RE.

Let µ′ be a semifolding map with the same fixed face as µ, and for which the semifolding
paths of F1 and F2 are p′1 = p1 and p′2 = qp1, respectively. Note that:

ip′2(E) = iqp1(E) = ip1 • iq(E) = ip′1 •RE(E) = ip′1(E).

The equation ip′1(E) = ip′2(E) shows that µ′(F1) and µ′(F2) have as a common edge µ′(E),
thus implying µ′ is continuous at E. By hypothesis, µ = µ′, so it follows that µ is also
continuous at E. The same argument can be repeated for every crease E, so µ is continuous
on all of C. �

9 SUPERPOSITION ORDERING.

The isometries condition is a perfect tool for determining a c-net’s semifoldability. All we
have to do is check that every interior vertex satisfies the 180◦ condition—that is, the sum
of every other angle around the vertex is 180◦.

Semifoldability is not sufficient for flat-foldability, however. The c-net of fig. 5 is reprinted
in fig. 12. This c-net has no interior vertices, so it satisfies the 180◦ condition trivially.
Thus it is semifoldable; the semifolded image is shown next to it in the diagram. However, as
previously noted, there is no way to physically fold this piece of paper flat along the creases
without cutting or self-intersection. A sufficiency condition for flat-foldability requires some
additional constraints beyond semifoldability. We now need to consider the superposition
ordering map σ.
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Unlike the semifolding map, which is completely determined by the c-net up to isometry,
there are often many superposition orderings that allow the paper to fold flat. Our goal is to
determine whether there exists any ordering that makes this possible. To do this, we must
first determine whether a given superposition ordering is possible.

Consider the x-ray view of the crane (fig. 13). Each of the lines on this crane corresponds
to some raw or folded edge, either visible on the top layer or hidden inside the model. The
lines are the images of the c-edges under semifolding. Together they form a planar graph
embedded on the crane silhouette. Each of the twelve faces of this graph represents a stack
of paper layers, each layer having the same shape.

Definition 10. An f-net is the image of a semifoldable c-net C under µ. Specifically, it
is the subset of R2 equal to µ(S) (where S is the sheet of paper), with the embedded graph
µ(G) (where G is the crease pattern). The edges of this graph are f-edges, that meet at
f-vertices and bound disjoint f-faces.

Imagine the crane was folded from a square of carbon-sensitive paper. Consider what
would happen if we firmly rubbed this crane along every f-edge and then unfolded it. The
carbon would leave a visible mark on every crease and raw edge, as well as any points inside
the c-faces where a crease or raw edge happened to overlap. The result is shown in fig. 14.
(The numbers will be explained momentarily.) This is the same as inverse-semifolding the
f-net, so that each point on the paper that was marked by the carbon leaf becomes part of
an edge or vertex.

Definition 11. An s-net is the inverse image of an f-net µ(C) under µ. It consists of the
sheet of paper, S, with an embedded graph µ−1 • µ(G). This graph is a refinement of the
crease pattern G; that is, G ⊂ µ−1 • µ(G). The faces, edges, and vertices of this graph are
called s-faces, s-edges, and s-vertices.

Consider the significance of the s-net to our superposition ordering σ. Each s-face gets
semifolded onto exactly one f-face, and every f-face is the image of at least one s-face. Thus
the map σ should treat each s-face as a single unified entity; that is, σ acts as a constant
function on each s-face. Now let F be an f-face, and let µ−1(F ) be the set of s-faces that
get stacked up onto F when the paper is folded. The map σ should somehow number these
s-faces to indicate the order in which they get stacked. If there are n s-faces in µ−1(F ), then
σ should number them from 0 to n − 1, inclusive. If the s-face X lies over the s-face Y in
the folded model, we want σ(X) to be greater than σ(Y ); if X lies underneath Y , we want
σ(X) < σ(Y ).

Definition 12. Let C be a semifoldable c-net. A superposition ordering σ : C → Z is
any map that acts as a constant on each s-face and has the following property: For every
f-face F , the n s-faces in the set µ−1(F ) are mapped to distinct integers between 0 and
n− 1, inclusive. (How σ affects the s-edges and s-vertices is inconsequential for determining
flat-foldability, so it needn’t be specified in this definition.)

The s-faces in any s-net can be partitioned into equivalence classes based on which f-face
they each get mapped to. In fig. 15, the s-faces of a crane are assigned letters based on this
partition. The lettered f-net beside it shows the correspondence. There are twelve s-faces
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labeled “G”, so σ maps them to the integers 0 through 11 based on their layering order in
the folded crane. This numbering is shown in fig. 14.

10 THE NON-CROSSING CONDITION.

As the preceding paragraph described, a superposition order of the s-faces of a given model
can be ascertained from the physical folded model itself. However, there exist superposition
orderings that do not correspond to any flat origami model because the ordering would
cause the paper to self-intersect along some s-edges. (In this case, saying the paper self-
intersects refers to the physical reality of folding, rather than the mathematical abstraction
we are building. In fact, any superposition ordering satisfying definition 12 will result in a
one-to-one flat-folding map ω, but only a a few of these orderings are truly realizable with
solid paper.) We need some additional axioms that specify when σ does not induce a self-
intersection of the paper. Together, these axioms form the non-crossing condition. If we
assume the paper is simply connected (so that the paper cannot be tied in knots) and the
crease pattern is semifoldable, then the non-crossing condition is necessary and sufficient for
flat-foldability.

Definition 13. If X and Y are adjacent s-faces separated by the s-edge E, and if E is
contained in a crease, we say that E is an s-crease and we write C(X, Y, E). If the s-faces
are adjacent but E is not part of a crease, then we write ∼ C(X, Y, E).

Note that ∼ C(X,Y, E) implies that µ(X) 6= µ(Y ). Conversely, C(X,Y, E) implies that
µ(X) = µ(Y ), which in turn implies that σ(X) 6= σ(Y ).

Axiom 6. If ∼ C(X, Y, E) and ∼ C(X ′, Y ′, E ′) with µ(E) = µ(E ′), we cannot have both
σ(X) > σ(X ′) and σ(Y ) > σ(Y ′). (This restriction prevents two c-faces from penetrating
through one another’s interiors. See fig. 16a.)

Axiom 7. If C(X, X ′, E) and ∼ C(X ′′, Y, E ′) with µ(E) = µ(E ′), we cannot have
σ(X) > σ(X ′′) > σ(X ′). (This restriction prevents a c-face from penetrating through a fold.
See fig. 16b.)

Axiom 8. If C(X, X ′, E) and C(Y, Y ′, E ′) with µ(E) = µ(E ′), we cannot have σ(X) >
σ(Y ) > σ(X ′) > σ(Y ′). (This restriction prevents two folds from penetrating through one
another. See fig. 16c.)

These three axioms exhaustively cover every possible circumstance in which the paper
might self-intersect, as the diagram clearly shows. The site of the intersection must be
along a pair of s-edges, of which neither, one, or both may be creases. If we choose the
superposition order so that all three axioms are satisfied, then the non-crossing condition
has been satisfied. With the following definition, we have finally solved our main problem.

Definition 14. A (simply connected) c-net is flat-foldable if and only if it is semifoldable
and there exists a superposition ordering satisfying the non-crossing condition. In this case,
the flat-folding map ω is the cartesian product of the semifolding and superposition ordering
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maps.

This “solution” to the problem of flat-foldability is less than satisfactory. We can confirm
semifoldability by simply checking that the 180◦ condition holds at every c-vertex. If a c-
net is semifoldable we can easily determine the unique semifolding map and use it to find
the s-net. However, even having come that far, it is extremely difficult to know whether
a valid superposition ordering exists. Trial and error seems to be the only effective way
to determine this; if every single possible superposition ordering violates the non-crossing
condition somewhere, then the c-net is not flat-foldable.

It is, in fact, computationally infeasible to use this method of trial and error. In 1996,
Marshall Bern and Barry Hayes published their proof that the general problem of flat-
foldability is NP-hard, meaning there exists no polynomial-time algorithm that determines
the flat-foldability of an unsigned c-net. The problem of determining a valid superposition
order for a c-net is also known to be NP-hard, even if the c-net is known beforehand to be
flat-foldable.

There are no known easy-to-spot conditions that are equivalent to the rather inconvenient
non-crossing condition. However, consideration of MV-assignments provides a good starting
point for finding a valid superposition ordering, as we shall see in the next section.

11 MV-ASSIGNMENTS.

Recall from our discussion of crease patterns that all creases fall into one of two categories,
mountain crease or valley crease. The difference is, when we make a mountain fold we swing
part of the paper behind, whereas when we make a valley fold the paper swings in front.
More precisely, let F1 and F2 be c-faces adjacent along a crease E, and let µ be a semifolding
map that reflects F2. Then E is a valley crease if F2 gets placed on top of F1, and it is a
mountain crease if F2 goes underneath. This suggests the next theorem.

Theorem 7. Let E1 be the s-crease separating adjacent s-faces X and X ′, and let E2 be
the s-crease separating adjacent s-faces Y and Y ′. Suppose E1 and E2 are both contained in
the crease E, X and Y are contained in the c-face F , and X ′ and Y ′ are contained in the
adjacent c-face F ′. If σ(X) > σ(X ′), then σ(Y ) > σ(Y ′).

Definition 15. Assume the same variable definitions as in the above theorem. Suppose
σ(X) > σ(X ′) and σ(Y ) > σ(Y ′). We say that E is a valley crease if µ acts on F as a
reflection, and E is a mountain crease if µ acts on F ′ as a reflection.

Given a semifoldable c-net with a semifolding map µ and a superposition ordering σ (not
necessarily in abidance with the non-crossing condition), we can can figure out which of
the creases are mountains and which are valleys. In other words, applying a superposition
ordering automatically “signs” the crease pattern.

We say that a signed c-net is signed-flat-foldable if it is possible to collapse the paper
into a flat origami by making mountain and valley folds as indicated. Obviously, signed-
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flat-foldability is stronger than unsigned-flat-foldablity. A signed c-net may be signed-flat-
foldable only if it is unsigned-flat-foldable. There exist a number of necessity conditions for
signed-flat-foldability in addition to unsigned-flat-foldability. We can test the validity of a
given superposition ordering of an unsigned c-net by checking the resultant MV-assignment
against these conditions.

Notation. In the following theorem, the length of a line segment is denoted by absolute
value bars.

Theorem 8. Suppose we have a signed-flat-foldable c-net containing faces F1, F2, and F3,
with F2 adjacent to the other two. Let E12 and E23 be the edges separating F2 from F1 and F3,
respectively. If there exists a line L intersecting E12 and E23 such that |L∩F2| < |RE12(L)∩F1|
and |L ∩ F2| < |RE23(L) ∩ F3|, then E12 and E23 must have opposite MV-assignments. See
fig. 17.

Corollary 9. Let F1, F2, and F3 be consecutive faces in F (V ) for some c-vertex V . If
A1 and A3 are both greater than A2, then E2 and E3 must have opposite MV-assignments.

Corollary 9 can be used to demonstrate that fig. 5 is not flat-foldable. The corollary’s
hypothesis applies at all three vertices, so no two of the creases can have the same MV-
assignment. This is impossible.

Theorem 10 (Maekawa Theorem). Let V be an interior vertex in a signed-flat-
foldable c-net. The number of mountain creases in E(V ) must differ from the number of
valley creases in E(V ) by ±2.

Again, none of these conditions are sufficient to prove the validity of a given superposition
ordering, but they do help us by weeding out a large number of candidates. The problem
of general flat-foldability is not completely solved, but the tools provided here are about as
close to a full solution as we can hope to come.

12 SUMMARY AND CONCLUSION.

Our main goal in this study was to find a mathematical link between a crease pattern its
corresponding origami model. We asked: Given an arbitrary unsigned crease pattern, is it
possible to fold the paper along the creases so that the resulting model is flat? For the
answer to be yes, the following conditions must all be met:

1. All crease lines must be straight line segments.
2. All interior vertices in the crease pattern must be of even degree.
3. At each interior vertex, the sum of every other angle must be 180◦.
4. There must exist a superposition ordering function that does not violate the non-crossing
condition.

When these conditions are all true, the crease pattern is flat-foldable by definition.
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