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Abstract

Nolfi et al [12] present a hierarchical method for ex-
tracting regularities from a robot’s environment us-
ing a cascade of prediction networks. However, their
system does not integrate motor control, trains and
tests on a rigid prespecified circuit, and requires fine-
tuning the architecture based on the number of seg-
mentations desired. In this paper we present an alter-
native architecture, based on that of Blank et al [1]
which addresses these limitations. The system uses
a Simple Recurrent Network to learn a primitive be-
havior for motor control, while a Self-Organizing Map
classifies the hidden state of the network into abstract
segments. These segments correspond strongly with
useful features in the environment. We verify the vi-
ability of the system in a simulated world similar to
Nolfi et al’s.

1 Introduction

One of the most important building blocks for a de-
velopmental cognitive mechanism is the ability to ex-
tract from sensory input meaningful regularities, such
as similarity or continuity over several time steps, and
to cluster these regularities into discrete abstract seg-
ments. It is the abstraction inherent in the process
of segmentation which allows the developing agent to
bootstrap from low-level reactive behavior to higher-
level intelligence by segmenting large amounts of in-
formation into segments tractable for further process-
ing. This segmentation can be spatial, temporal, or

a more abstract classification encompassing some no-
tion of the agent’s ‘state’.

1.1 Place Recognition

In order for a robot—particularly a mobile robot—to
act intelligently in an environment, it must under-
stand the “spatial semantics” [7] of its environment:
that is, it must recognize and distinguish between
different parts of its environment, and it must under-
stand how those different parts relate to one another.
That interaction with and understanding of the spa-
tial environment is foundational to many kinds of in-
telligence is fairly obvious, and has been argued at
length by others [7, 8, 2, 3].

Place recognition—the ability to identify a sensor
(sonar, laser range-finder, or camera) image as rep-
resenting a certain spatial location—is one compo-
nent skill for spatial understanding. It is made diffi-
cult by the problem of perceptual aliasing: the same
place can look different under different conditions or
from a different pose, and by image variability: dif-
ferent places can look the same, especially with low-
resolution sensors such as sonar. The former com-
plication necessitates a method of clustering images
which are not similar together by some higher level
measure of relation, while the latter requires differ-
entiating between sensor images that look the same
through the use of memory.

Place recognition can be understood as a specific
instance of segmentation: the task is to recognize the
similarity of sensor images (and the other informa-



tion needed to address perceptual aliasing) and to
segment or cluster them into different spatial loca-
tions.

1.2 Goals

Our big-picture goal in the research described here is
to develop a neural robot control architecture with
the following qualities:

e It learns with minimal supervision.

o It extracts useful regularities from the environ-
ment and classifies similar inputs into meaning-
ful abstractions. What is most important is that
these abstractions make sense to the robot. It is
useful for pragmatic reasons if humans can also
make sense of the abstractions, but it is impor-
tant to avoid anthropomorphic bias (see [1]).

e It covers the full range of the sense-process-act
loop; that is, its input is raw sensor information,
it processes that information in some way, and
its output is raw motor control commands.

e It is hierarchically scalable, meaning that the
same basic architecture can be used to construct
representations or control behavior at different
levels of temporal complexity by cascading the
output of one layer or ‘instance’ of the basic ar-
chitecture into the input to another.

e It can be extended to implement goal-directed
behavior.

e It can be successfully applied to the task of place
recognition.

1.3 Overview

In this paper, we address the limitations of Nolfi and
Tani’s segmentation network [12] for abstracting reg-
ularities in an environment by presenting a network
architecture that is capable of controlling the robot
in addition to abstracting higher order concepts from
time-series sensory information. The network archi-
tecture we present consists of a Simple Recurrent

Network connected to a Self-Organizing Map. In-
stead of training the network controller on a fixed
wall-following behavior, the system we propose is
trained on a continuous world exploratory behavior.
The system is tested on environments with varying
degrees of complexity.

Section 2 discusses Nolfi and Tani’s experiment,
Blank et al’s developmental architecture, and other
related work. Section 3 details the design of our sys-
tem, and the experiments carried out to evaluate the
system are presented in section 4. Section 5 synthe-
sizes and discusses the results. In section 6 we dis-
cuss several directions we hope to explore in future
research, and we draw our conclusions in section 7.

2 Related Work

2.1 Nolfi and Tani (1999) [12]

The experiments described in this paper were initially
inspired by [12]. Nolfi and Tani proposed a hierarchi-
cal prediction-segmentation architecture for extract-
ing regularities in the environment, and applied their
model to the case of a robot navigating in a struc-
tured environment. [12] used a three-node recurrent
‘segmentation layer’ to classify the hidden layer state
of a Simple Recurrent Network (SRN)[4]. The SRN’s
task was to predict the robot’s sensor readings at the
next time step, while the segmentation layer cate-
gorized the SRN’s hidden state. The output of the
segmentation layer was then input to a second SRN.

Nolfi and Tani trained and tested their architecture
on a Khepera robot in a very simple two-room envi-
ronment, using a hand-coded controller to drive the
robot in a circuit along the walls of the environment
as it collected and processed sensory data. They re-
port that after training the network had learned to
predict the next sensor values to within a reason-
able margin of error, and furthermore that the output
of the segmentation layer indicated that the network
had learned the meaningful distinctions of ‘wall’, ‘cor-
ner’, and ‘corridor’.

While Nolfi and Tani’s results demonstrated neu-
ral networks’ ability to extract temporal and spatial
regularities from the environment, there are serious



limitations to their approach which must be overcome
in order to scale it to more complicated robotics ap-
plications. The first is that their architecture never
controls the robot: they explicitly “assume that the
behavior of the robot is predetermined and fixed” [12]
(p. 7). If the extracted regularities are going to be
used to any useful end, the architecture must have a
means of controlling the robot’s behavior.

Secondly, the environment in which they train and
evaluate their network is very structured, and the
robot’s navigation through it during training is even
more structured. Constraining the learning task
to one so structured seems to be in opposition to
the motivation of constructing controllers capable of
learning and representing regularities in the environ-
ment. Considering the rigid circuit on which Nolfi
and Tani’s architecture is trained and tested, and
the length of training, it is likely that the network
is effectively memorizing the pattern of input, rather
than developing any richer sense of the topography
of the environment.

Finally, the size of the segmentation layer—and
thus the number of segments identified—is prespec-
ified and carefully tuned by a human. For network
learning to be domain-general, such tuning and pre-
specification must be eliminated.

The work described in this paper is a first attempt
to address these three limitations.

2.2 Blank,
(2002) [1]

Kumar, and Meeden

We developed our network architecture indepen-
dently, but soon realized it was nearly identical to
the mechanisms proposed in [1]. Blank et al suggest a
hierarchical architecture of alternating layers of pre-
diction and abstraction as a general mechanism for
developmental robot learning. They cite abstraction
and prediction as two fundamental cognitive abilities,
and implement these using Self-Organizing Maps [5]
and Simple Recurrent Networks [4], respectively.
The work described below adopts a minor variant

on Blank et al’s proposal and applies it to a task
similar to that of [12].

2.3 Other work

Critical of Nolfi and Tani’s rather supervised experi-
ment [12], Linaker and Niklasson [9] used a Resource
Allocating Vector Quantizer (RAVQ) that extracted
higher order concepts from a robot’s sensory infor-
mation as it explored an environment. The design
of RAVQ was inspired by adaptive resonance theory
(ART) networks that classified information into cat-
egories, and had the capability of creating new cate-
gories whenever the input information did not closely
match existing categories. In the context of localiza-
tion, RAVQ is a “constructive” world segmenter that
dynamically allocates new symbols depending on the
complexity of the environment [9]. Tested on a two-
room world modeled after that of Nolfi and Tani [12],
their RAVQ system segmented the world into three
categories corresponding to the symbols ‘wall’; ‘cor-
ner’, and ‘corridor’.

3 Network Architecture &

Training

The controller used in all experiments consisted of
a Simple Recurrent Network connected to a Self-
Organizing Map. The SRN was trained on a hand-
coded reactive primitive. A schematic of the system
architecture is shown in figure 1, and each component
is described in detail in the following sections.

3.1

A Simple Recurrent Network[4] predicted the sensor
values at the next time step. The network had 18
input nodes, corresponding to 16 sonar sensors and
two nodes for the current motor control values (trans-
lation and rotation). The input layer was fully con-
nected to a hidden layer of 9 nodes. At each step the
hidden node activations were copied to the context
layer, which was also fully connected to the hidden
layer. The output layer was a prediction of the sen-
sor values and motor control values at the next time
step, and thus was identical in size to the input layer.

Similarly to Nolfi et al and Blank et al, a Simple
Recurrent Network was chosen because of SRNs’ abil-

Simple Recurrent Network
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Figure 1: System architecture

ity to make context-sensitive predictions. The con-
text layer allows the previous state of the network to
be (recursively) input to the hidden layer, which can
then synthesize that input into a kind of 'memory’
and make different predictions on the same sensory
input based on differing context (that is, previous
states). This feature addresses the issue of perceptual
aliasing mentioned in section 1, as well as potentially
enabling the network to learn multi-step behaviors.

3.2 Self-Organizing Map

The activations of the 9 units of the SRN’s hidden
layer were used as input to a 3 x 4 Self-Organizing
Map [5], whose target vectors were naturally also

nine-dimensional. In the experiments described here
the SOM ‘output’ was simply which node an input
mapped to (described by coordinates), because the
SOM was a terminal layer in these experiments; how-
ever it would be easy to choose a slightly more com-
plicated output description in order to use the SOM
output as input to another SRN, as suggested in [1].

Asin [1], a Self-Organizing Map (SOM) was chosen
as the abstraction mechanism primarily for SOMs’
ability to automatically find abstractions without su-
pervision, and because they classify data topologi-
cally, allowing relations between data to be easily in-
ferred and easily visualized.



3.3 Primitive Motor Control

The SRN was trained to mimic a primitive motor
control behavior, which drove the robot around based
on sensor readings. The primitive was a hand-coded,
prespecified reactive controller that made decisions
based only on the current sensor data. In a develop-
mental sense, one may think of the primitive as innate
reflexes, which serve as a foundation for a bootstrap-
ping process to develop more complicated behavior.

We used two primitive behaviors for the experi-
ments described below. Both were very simple re-
active controllers. The first avoided obstacles and
otherwise followed a straight path. The second was
designed to seek open space.

3.4 Learning

We have dubbed the training of the network a “two
and a half phase” training:

In the first phase the SRN was trained to mimic
the primitive behavior and predict the next sensor
readings. Backpropagation of error was used on all
connection weights. When error (averaged over 100
times steps) dropped below a threshold, the SRN
took over control from the primitive behavior and
controlled the robot from its two motor control out-
put nodes.

Once the SRN took control of the robot, the “half”
phase of learning began. In this phase the SRN’s
hidden layer activations were collected and stored.
When enough sets of activations had been collected,
they were used as initialization data for the SOM.

Once the SOM was initialized, the second full
phase of learning was the SOM learning to classify
the hidden layer activations of the SRN. The SOM
was trained for a prespecified number of steps, after
which learning was considered to be complete, and
data collection for the experiment was begun.

3.5 Learning Parameters

Epsilon, the learning rate of the SRN, was set to
0.5. The momentum parameter, which indicates the
propensity of the network to move in the direction
of the path that it has been following in the search

space was set to 0.1. The network’s tolerance level
was set to 0.2. The error threshold, which was the
level below which sum squared error (averaged over
100 time steps) had to fall in order to move on to the
next phase of training was set to 0.1.

As for the SOM, the initial radius of the training
neighborhood was set to 2, while alpha, the learn-
ing rate parameter, was initialized to 0.02. Both pa-
rameters were set to decrease using an inverse-time
function. The Gaussian neighborhood function was
used.

4 Experiments

The network architecture described in section 3 was
designed for and tested on an ActivMedia Pioneer
2DX mobile robot, which was the reason behind the
choice of 16 sonar sensor inputs. All experiments
described here were performed in simulation, using
Player/Stage [13].

4.1 Environments

Experiments were performed in several different sim-
ulated environments, described below.

4.1.1 Basic Environment

The basic environment was modeled after the two-
room world used by Nolfi and Tani [12], and con-
sisted of two rooms of different sizes, connected by a
short corridor about 1.25m wide, as shown in Figure
2. The room sizes were approximately 5m x 5m and
2.5m x 2.5m respectively. Two colored boxes were
placed in the middle of the larger room.

4.1.2 Modified Basic Environment

We also modified the basic environment to have a
slightly wider corridor between the two rooms. In this
environment (shown in figure 3), the corridor was ap-
proximately 2m, and both rooms approximately 0.5m
longer (in the y direction).
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Figure 2: Basic world with the robot at an initial
position (1,1) and an angle of 45° with the horizontal.

4.1.3 Complex Environment

A third test environment was a section of the floor
plan of a hospital. This environment, pictured in fig-
ure 4 was much larger (about 11m x 14m, total) and
much more complex, with multiple rooms, corridors,
and doorways.

4.2 Obstacle-Avoiding Primitive

As mentioned above, two different primitive behav-
iors were used. In the first set of experiments, the
primitive behavior avoided obstacles and otherwise
went straight. The network with this primitive was
trained and tested in several different trials, detailed
below.

4.2.1 Basic Environment

Two trials were run in the basic environment
described above: one with a robot started at the
bottom left corner of the larger room, at position (1,
1) and an angle of 45° with the horizontal, and the
other, at the bottom left corner of the smaller room,
at position (6, 1) and an angle of 90° relative to the
horizontal.

Training Initiated in Big Room
When started in the big room, the SRN learned to
mimic the primitive behavior to within the threshold

Figure 3: Modified basic world with the robot at an
initial position (1,1) and an angle of 45° with the
horizontal.

of error in approximately 14000 time steps. The
error plot is shown in figure 5.

After training, the SRN took control of the robot.
It successfully avoided obstacles, but since the prim-
itive had “fallen” in to a circuit around the larger
room, the SRN followed this circuit as well, without
ever entering the smaller room. The trajectory of
the robot during the 8000 steps of testing is shown in
figure 6.

Through this unforeseen consequence of the prop-
erty of the primitive behavior, we actually wound up
mimicking Nolfi et al’s experiment more closely than
intended. Fortunately, this did not prevent us from
getting encouraging results in the SOM segmentation
portion of the experiment .! Figure 7 shows a plot
of the SOM’s segmentations against the world coor-
dinates at which they occurred. Clearly? the SOM
has segmented the circuit the robot followed during
testing into coherent segments. The segments are
strongly correlated with features of the world and of
the robot’s actions at that point. For example, the
dark purple portions of the plot in 7 correspond to
all of the positions at which the hidden state of the

Tn fact, it may have helped: it is likely that a robot travel-
ing in a less regular path would have a harder time segmenting
what it saw.

2or, at least, it would be clear in color...
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Figure 4: Complex world.

SRN mapped to node (2,0) of the SOM. These lo-
cations occur along “straightaways” on the robot’s
path. Similarly, the light purple sections correspond
to the positions at which the hidden state mapped
to SOM node (0,3), and these positions all occur in
the corners of the circuit (which also correspond to
corners of the room). These two segmentations are
also plotted individually in 7.

It should also be noted that the SOM segmented
two states that only occur in the lower right corner
of the circuit, which is different from the rest of the
corners of the circuit because it is near the “doorway”
to the small room. A plot of the locations of these
two states (Y and Z in figure 7) appears in figure 8.

Figure 13 shows the U-matrix visualization of the
SOM. The U-matrix was described in the SOM_PAK
documentation as a visualization of “the distances
between reference vectors of neighboring map units

Error
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Figure 5: SRN sum squared error while learning the
primitive behavior when started in the larger room.

using gray levels” [6]. That is, the darker the gray
areas between neighboring nodes, the greater the
difference between them. Note, for example, that
the distance between C and B is relatively small.
Looking back to C (dark purple) and B (dark green)
in the segmentation plot (figure 7, top), it is clear
that these two states are not very different: both are
fairly straight and not near any corners. Contrast
this with F and G, which are very different according
to the U-matrix visualization. While states F and G
occur very close to each other spatially, there is an
important difference: in F the robot is still moving
fairly straight, while in G the robot is nearing the
corner and starting to turn.

Training Initiated in Small Room

When robot training was initiated in the smaller
room, the SRN learned to mimic the primitive
behavior to within the threshold of error in approxi-
mately 9000 time steps. The error plot is shown in
figure 10.

The results from this trial were very similar to
the trial in which robot training was initiated in the
larger room. Like the previous trial, the SRN ended
up directing the robot in a circuit around the larger
room, never entering the smaller room. Figure 11
shows the trajectory of the SRN-controlled robot dur-
ing 8000 steps of testing.
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Figure 6: Trajectory of the robot controlled by the
trained SRN for 8000 time steps for the trial in which
robot training was initiated in the larger room.

The SOM’s segmentations against the world coor-
dinates at which they occurred are presented in fig-
ure 12. Similar to the previous trial, we observe an
obvious correlation between the robot’s behavior and
the environment’s features. For instance, the teal
blue portions of the trajectory correspond to all po-
sitions at which the hidden state of the SRN mapped
to node (2,3) of the SOM. This segment correspond
to the part of the robot trajectory immediately after
turning three similar corners in the larger room. The
lower right corner of the larger room, which is sig-
nificantly different from the other three corners, was
segmented very differently.

Figure 13 shows the U-matrix visualization of the
trained SOM. That the sequence of states as the
robot traverses the circuit is regular, coherent, and
cyclical is reflected in the topological relations of the
segments, as shown by the U-matrix. The time-series
of SRN hidden states as the robot moves from cor-
ner to corner follows a cyclic path around the U-
matrix diagram. For example, the cycle ABCDE-
FGH around the U-matrix corresponds to the portion
of the trajectory that begins with teal blue (segment
A) at position (1000, 750) and ends in dark purple
(segment H) at approximately (1000, 4000). The cy-
cle repeats each time the robot turns a corner.
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Figure 8: Identification of differentiation: two seg-
ments which occur only in the corner near a feature
(the doorway connecting the two rooms) differentiat-
ing the environment.

4.2.2 Modified Environment

After discovering that the network did not learn to
explore the small room at all in the above trials, we
tried widening the doorway between the two rooms.
The network still learned enough to finish training,
but regardless of which starting position was used,
the SRN controller was prone to crashing the robot
into walls.

4.2.3 Complex World

When tested in the complex world, the robot never
left the room in which it started, instead developing
a circuit similar to those in the basic environment.
It completed training and testing successfully, but
because it never left the first room, effectively it was
not a more complex environment.

4.3 Open Space-Seeking Primitive

The shortcoming of our first primitive prompted us
to develop a second primitive behavior which sought
open space. This primitive was more exploratory,
thus exposing the robot to more of the world. Unfor-
tunately, this controller proved to be much more dif-
ficult for the SRN to learn to mimic. With an error



A

Figure 9: U-matrix visualization of the trained SOM
for the trial in which robot training was initiated in
the larger room.

threshold (the threshold of acceptable average sum
squared error to move into the next phase of learning)
of 0.1, the network could not converge within 90000
time steps. When the error threshold was raised to
0.25 the network could pass to the next phase of
learning, but the SRN controller simply drove in a
circle and did not mimic the primitive controller.

4.4 Basic World with Color Blob Vi-
sion

In this variant of the experiment, the simulated
Pioneer robot was equipped with a blobfinder device
that detects color blobs. Only the information from
the largest blob was used. The number of input
nodes to the SRN was increased to 24, and the
hidden nodes, 12. Of the 6 extra input nodes that
encoded information returned by the blobfinder, two
were binary nodes while the remaining four were
real-valued. The binary nodes indicated whether
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Figure 10: SRN sum squared error while learning the
primitive behavior when started in the smaller room.

either of the two colors were present. Two of the
real-valued nodes provided information on the size of
each of the color blobs, while the other two indicated
the x position of each blobs’ centroid. With this
slightly modified experimental setup, we repeated
the experiment by positioning the robot in the two
different rooms.

Training Initiated in Big Room
In this trial, the network error did not fall below the
prespecified error threshold of 0.1. When the error
threshold was raised to 0.25, the network managed
to complete the learning phase, but nevertheless was
unable to mimic the primitive behavior properly.
From figure 14, we see that network error did not
converge even after approximately 30000 time steps.
Figure 15 shows the trajectory of the SRN-
controlled robot over 8000 time steps. The
trajectory followed by the robot is not as regular as
that of the robot in the basic environment. We also
observed that the robot had a tendency to crash
into the lower left corner when the trained SRN was
in control of the motors. Segmentation of the world
was found to be rather poor.

Training Initiated in Small Room
The results from this trial were very similar to the
trial in which robot training was initiated in the
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Figure 11: Trajectory of the robot controlled by the
trained SRN for 8000 time steps for the trial in which
robot training was initiated in the small room.

larger room. Like in the previous trial, the error
threshold had to be raised from 0.1 to 0.25 in order
for learning to pass to the next phase. Figure 14
shows that the network error over 30000 time steps.
The trained SRN mimicked the primitive controller
only at three corners. From figure 17, we see that
the SRN was prone to directing the robot into the
wall at the lower right corner of the environment. As
in the trial where training was initiated in the larger
room, world segmentation was found to be poor.

5 Discussion

The success of the first experiments described above
indicates that our network architecture has the capa-
bility to learn the primitive behavior and successfully
take over control of the robot. This ability is a crucial
criteria for development, and it is encouraging that
learned control could be combined with the segmen-
tation task.

However, the primitive behavior learned was too
simplistic to result in interesting behavior or effec-
tive exploration of the environment, and the SRN was
unable to learn the more complex primitive behav-
ior. This is a severe shortcoming which underscores
the importance of the primitive behavior, and which

10

Figure 13: U-matrix visualization of the trained SOM
for the trial in which robot training was initiated in
the small room.

must be addressed in order for the proposed approach
to artificial cognitive development to be successful. It
is possible that the features of a primitive behavior
that make it learnable or unlearnable by an SRN can
be discovered and articulated, and this would be a
great contribution to developmental robotics. The
innate instinctual reflexes from which a robot learns
are also a prime candidate for evolution, as it has
been shown that evolution is good for finding good
starting conditions for learning successful solutions
[11].

Color blob information did not help the robot
to segment the world better, as intended. Instead,
the extra information that the color blobs provided
seemed to have made it more difficult for the SRN to
learn the primitive behavior. We believe that this is
a consequence of the fact that the information pro-
vided by the color blobs were not used by the primi-
tive controller in determining the appropriate motor
values given current sensory information.

The first experiments also prove that a Self-
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Figure 14: SRN sum squared error while learning the
primitive behavior when started in the big room with
color blob vision.

Organizing Map can be used to coherently segment
the robot’s state into meaningful segments. The seg-
ments classify the state of the robot according to a
notion of state encompassing both perception and ac-
tion. The segments also indicate the capability of the
network to identify unique places in the environment
by segments which occur only in that place.

The architecture described above does not address
the issue of perceptual aliasing: the four similar walls
and three similar corners were mapped to the same
segments as each other, showing that the network did
not learn to classify the similar corners differently
based on memory. However, it should be noted that
in [12] this level of segmentation was not achieved un-
til a second prediction-segmentation layer was added.
We are optimistic that our mechanism could achieve
equal if not better performance with a second level
of hierarchy. Because the primitive forced the train-
ing into a circuit, it could not be tested whether
our mechanism resolves image variability. We sus-
pect that such classification actually requires a fairly
advanced understanding of the “spatial semantics” of
an environment, and that it will be difficult to achieve
in a small number of levels of hierarchy.

Using a SOM for segmentation in fact had the
same complication that [12] briefly mentioned con-
cerning their architecture: the SOM uses almost all
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Figure 15: Trajectory of the robot controlled by the
trained SRN for 8000 time steps for the trial in which
the robot utilized color blob vision and training was
initiated in the larger room.

of its available nodes to signify a coherent segment,
with the result that segments we humans understand
as coherent (“corner”) get broken into multiple seg-
ments by the SOM. Here we must be careful not to
unduly criticize the segmentation merely because we
do not understand it— doing so would be a prime
example of the anthropomorphic bias which [1] cau-
tions us to avoid. However, there is some danger
that insufficient abstraction is taking place, because
in this case the SOM is given the option of more
possible segments than is really needed. A better
solution would be some mechanism which automati-
cally determines the correct number of segmentations
for ‘optimal’ classification. Such solutions are noto-
riously difficult to come by, but [9] is a promising
method.

Another potential shortcoming of the architecture
advanced here—at least for the purpose of place
recognition—is that the network’s state is an insep-
arable combination of perceived state of the world,
memory of context, and planned action, and thus a
place cannot be recognized independent of the action
the robot is taking at that place. It is not entirely
clear how those would be separated, but it is clear
that significant alterations in the network architec-
ture would be necessary.

11
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Figure 16: SRN sum squared error while learning the
primitive behavior when started in the small room
with color blob vision.

6 Future Work

The successes and challenges described in this pa-
per suggest numerous directions for future research,
many of which we hope to pursue.

The topological coherence of the SOM’s segmen-
tations, as illustrated by the U-matrix diagram in
figure 13, bodes well for the possibility of integrat-
ing a mechanism for goal-directed behavior into the
network architecture. The basic idea is to coax the
state of the network—and thus the robot—from the
current state (marked S in figure 18) to the goal state
(marked G in figure 18) by replacing its hidden acti-
vation with the target vectors of the segments along
the path from start to goal, as illustrated in figure
18. We hope to pursue this idea in the near future.

Difficulty learning the primitive behavior was a se-
rious limitation in the later experiments described in
this paper. In addition to finding effective primitive
behaviors which are easy to learn, either by trial and
error or through a more formal process such as evo-
lution, there are at least two other things we hope to
try to improve the performance of the SRN. The first
is to abstract the sensory input using a SOM before
inputting it to the SRN. This is the approach Blank
et al take in [1], and it may simplify the learning
task. The second possibility is to try Nolfi’s idea of
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Figure 17: Trajectory of the robot controlled by the
trained SRN for 8000 time steps for the trial in which
the robot utilized color blob vision and training was
initiated in the smaller room.

emergent modularity [10] in order to learn modular
primitive behaviors.

For truly complex behavior, low-resolution range
sensors will not be sufficient. Eventually we must
successfully integrate vision into our system. This
will require both image processing techniques exter-
nal to the network, and potentially also changes to
the network architecture itself in order to accommo-
date visual information.

[12] also tested the robot on its ability to recog-
nize change in the environment, as indicated by an
increase in prediction error. We have not tried this,
but if it were clear how such a detection could be
integrated back into the system in order to effect be-
havior, we would certainly follow that line of inquiry.

While simulation is convenient and useful for proof-
of-concept experiments like the ones described in this
paper, there is no substitute for testing on a real
robot in the real world. We have access to a Pio-
neer 2DX, and hope to develop real-world tasks to
evaluate the mechanisms described here.

While our architecture was designed with the ex-
plicit intent of hierarchical cascading as a means of
development, the scalability of this approach is still
largely speculative. As the mechanisms for abstrac-
tion and learning are perfected, it will become im-
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portant to test the scalability of the architecture to
more complex tasks and richer perception.

7 Conclusion

In this paper we have presented an attempt to address
limitations in Nolfi et al’s architecture for extract-
ing regularities from the environment and in their
methods for training and testing that architecture.
We present an architecture, based on the abstrac-
tion and prediction hierarchy for development pre-
sented in [1], which integrates motor control into
the learning system and partially addresses the limi-
tations of a pre-specified number of segmentations,
and performs over a continuous range of motion,
rather than a single predetermined track. We verified
this architecture in experiments performed in simu-
lation in which a Simple Recurrent Network learned
to mimic an innate primitive motor controller, and
a Self-Organizing Map segmented the SRN’s hidden
states into coherent segments corresponding to the
robot’s spacial location and behavior. Analysis of
the topological structure of the SOM further suggests
mechanisms for incorporating goal-directed behavior
into the system. Finally, development of higher-level
segmentations and behaviors could be achieved by
cascading alternate layers of abstraction and predic-
tion.
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Figure 7: ToP: SOM segmentation of the SRN’s hidden state plotted at the location at which each segmen-
tation occurs. The segmentations are strongly coherent and strongly correlated with the robot’s location
and behavior. The grid in the figure corresponds to the grid in the picture of the environment in figure 2.
LEFT: The locations of those states that mapped to node (2,0) in the SOM. RIGHT: The locations of those
states that mapped to node (0,3) in the SOM. These plots correspond to the trial in which robot training
was initiated in the larger room. 14
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Figure 12: ToP: SOM segmentation of the SRN’s hidden state plotted at the location at which each
segmentation occurs. LEFT: The locations of those states that mapped to node (2,3) in the SOM. This
segment occurs in three similar corners in the environment. RIGHT: The locations of those states that
mapped to nodes (0,0), (1,1), (1,2) in the SOM. These three segments occur only in the corner near the
doorway connecting the two rooms. All of these plots correspond to the trial in which robot training was
initiated in the smaller room. 15
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