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Abstract: Sensor networks have shown tremendous growth in many 
domains such as environmental monitoring. The data captured from the 
physical world through these sensor devices, however, tend to be 
incomplete, noisy, and unreliable. Traditional data cleaning techniques 
cannot be applied to such data as they do not take into account the 
strong spatial and temporal correlations typically present in sensor data.  
Popular data modeling methods like Kalman filters and regression have 
shown good results in capturing spatio-temporal correlations. We 
implemented these methods in an extensible toolkit with graphical 
visualization, and explored their effectiveness in cleaning sensor data. 
We obtained good data cleaning results in our experiments using 
Kalman filters.  Regression with a high-order polynomial also showed 
promising results, but worked poorly for data with high variability.  

 
 
 
1. Introduction 
 
Sensor networks are deployed in various domains to acquire information about different physical 
phenomena in real-time. The data acquired is typically not usable directly as it suffers from three problems, 
namely noise, missing data and incompleteness. There are several factors contributing to these problems. 
Noise usually occurs because of inaccuracy in hardware sensing and transmission. Unfavorable 
environmental conditions and limited battery power further exacerbates this problem. Missing values 
usually occur due to packet loss and node failure. Since sensors sample continuous physical phenomena at 
discrete time intervals, the data acquired is incomplete. Hence, incompleteness is an inherent problem with 
data acquisition in sensor networks, while missing values are accidental in nature. All these problems 
seriously impact the quality of data obtained from such networks. 
 
Although advancements have been made in the manufacturing of sensors such as miniaturization, power 
efficiency, computing power, memory, etc., the problems of precision and accuracy still persist [5]. The 
aim of the industry is to manufacture tiny, cheap sensors that can be deployed everywhere and disposed 
when depleted. Consequently, noise, imprecision and inaccuracies are inevitable in these cheap sensors. It 
is extremely important that data from these sensors be reliable since actions are usually taken based on their 
readings. Dirty data can lead to detrimental effects since it may be used in critical decisions or in the 
activation of actuators. 
 
Statistical and probabilistic modeling techniques have been used [4, 15] to solve the issues we discussed 
earlier. Modeling usually involves two phases: training and testing. In training, the parameters of the 
characteristic function representing the data are learned. Sometimes held-out data is used for validation to 
further improve the accuracy of the training process by preventing over-fitting. In the next phase, 
predictions are made about the testing data. Training is frequently done offline while testing can be done 
either offline or online.  
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The accuracy of statistical modeling is problem and data specific. Sensor data is temporal and spatial in 
nature. In general, a reading is usually of the format <sensor-id, location, time, value>. If the sensors are 
static, then the location field is usually omitted. Individual observations are assumed to be independent. 
 
In our experiments we will examine the efficacy of the following methods: 

1. Kalman filter [12, 16]: The Kalman filter is an efficient recursive filter which estimates the state 
of a dynamic system from a series of incomplete and noisy measurements. An example of an 
application would be to provide accurate continuously-updated information about the position and 
velocity of an object given only a sequence of observations about its position, each of which 
includes some error. It is used in a wide range of engineering applications from radar and control 
systems to computer vision.  

2. Regression [2, 13]: This usually involves fitting the best curve for a given set of points. In our 
case, since the data is time-varying and spatial, we use regression to find the best curve 
approximating the readings. This curve can be used not only to find missing or unknown data but 
also to reduce noise. 

 
The focus of prior work in data cleaning has been primarily in the context of information integration and 
data-warehousing [1, 6, 9, 14]. However, the nature of sensor network data is inherently different, and 
previous approaches cannot always be applied directly in this domain. For instance, issues such as 
approximate duplicate elimination and schema matching are of great importance and well studied in that 
domain but are not relevant in sensor data. Little work has been done on data cleaning in the context of 
sensor network data. In this paper, we present a comparative study of two methods to improve the quality 
and reliability of data from sensor networks. We hope to obtain insights into which methods work better for 
certain datasets. We will build a toolkit implementing the statistical methods described above, which will 
allow researchers to apply and compare different data cleaning techniques on their sensor data. 
 
Cleaning and query processing can be performed either at the individual sensors or at the base station.  If 
cleaning is performed at the sensors, there would be significant communication cost in sending the 
parameters of the model to the individual sensors.  Furthermore, there is a storage cost associated with 
storing the parameters.  In addition to communication and storage costs, performing the actual cleaning at 
the sensors would incur a processing cost on the resource-constrained sensors.  These problems do not arise 
if cleaning is done at the base station, given the typical processing power and storage capacity of base 
stations.  Moreover, there would be huge savings by not having to communicate the model parameters to 
each individual sensor.  Given that the lifetime of the sensors is heavily dependent on the amount of 
communication that they do, communication savings is very important.  Having the data and the model at 
the base station is advantageous when it comes to query processing, as answers to user queries can be easily 
computed.   
 
Performing the cleaning at the sensor level and query processing at the base station has no clear 
advantages.  This is because communicating a single noisy reading to the base station and performing the 
cleaning work there incurs less communication cost than communicating all the model parameters over to 
the sensor itself.  The latter, as we have mentioned earlier, imposes unnecessary processing and storage 
overhead on the sensors. 
 
We begin by providing some background on the modeling techniques we use in the toolkit in Section 2.  
We then present a high-level design of our toolkit and the query processing module in Section 3.  In 
Section 4, we describe specific details of our initial toolkit implementation, followed by an experimental 
study of the Intel Lab dataset using the two modeling techniques provided by our toolkit in Section 5.  In 
Section 6, we discuss previous work related to data cleaning, and we conclude in Section 7. 
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2. Background 
 
2.1. Kalman filter  
 
The Kalman filter is an efficient recursive filter which estimates the state of a dynamic system from a series 
of incomplete and noisy measurements.  It is based on linear algebra and the hidden Markov model [12, 
16].  The underlying dynamical system is modeled as a Markov chain built on linear operators perturbed by 
Gaussian noise.  The state of the system is represented as a vector of real numbers.  At each discrete time 
increment, a linear operator is applied to the current state to generate a new state, with some noise mixed 
in, and optionally, some information from the controls on the system if they are known.  Then, another 
linear operator mixed with more noise generates the visible outputs from the hidden state. 
 
In order to use the Kalman filter to estimate the internal state of a process given only a sequence of noisy 
observations, the process has to be modeled in accordance with the framework of the Kalman filter as 
shown in the Figure 1.  This means specifying the matrices Fk, Hk, Qk, Rk, and Bk for each time-step k as 
described below. 
 

 
Figure 1: Model underlying the Kalman filter. Circles are vectors, squares are matrices, 
and stars represent Gaussian noise with the associated covariance matrix at the lower 
right. 

 
The Kalman filter model assumes the true state at time k, xk is evolved from the state at (k-1) according to 

 
kkkkkk wuBxFx ++= −1  

 
where 

• Fk is the state transition model which is applied to the previous state xk-1;  
• Bk is the control-input model which is applied to the control vector uk;  
• wk is the process noise which is assumed to be drawn from a zero mean multivariate normal 

distribution with covariance Qk 
 

),0(~ kk QNw  
 
At time k an observation (or measurement) zk of the true state xk is made according to 

 
kkkk vxHz +=  

 
where Hk is the observation model which maps the true state space into the observed space and vk is the 
observation noise which is assumed to be zero mean Gaussian white noise with covariance Rk. 
 

),0(~ kk RNv  
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The initial state x0 and the noise vectors at each step {w1, …, wk, v1, ..., vk} are all assumed to be mutually 
independent. 
 
Since the Kalman filter is a recursive estimator, only the estimated state from the previous time step and the 
current measurement are needed to compute the estimate for the current state.  The filter has two distinct 
phases: predict and update [12, 16]. The predict phase uses the estimate from the previous time step to 
produce an estimate of the current state.  In the update phase, measurement information from the current 
time step is used to refine this prediction to arrive at a new, hopefully more accurate estimate. 
 
 
2.2. Spatio-Temporal Regression 
 
Regression is the process of fitting a curve to best define a set of real values. For the simplest case, a linear 
regression model can be used to approximate the points generated from a linear random distribution. The 
equation of the model is given by: 

NWXY +=  
 
where N is Gaussian noise with zero mean (unbiased noise). 
 

 
Figure 2: Linear regression 

 
For more complex distributions, the regression model would be a polynomial in X. The best regression 
equation is usually found by iteratively adding more terms into the equation until there is negligible 
improvement in the estimate. This process is done offline before the training step using some test data. In 
the equation above we assumed the noise to follow a Gaussian distribution which might not be necessarily 
true in general.   
 
In our case, we are dealing with data which has two components, namely time and space. One way of 
capturing the time dependency in this data is by fitting a time polynomial, such as f(t) = w0 + w1t + w2t

2. 
Here 1, t, t2 are the basis functions, while w0, w1 and w2 are the corresponding weights to be estimated. In 
general, regression attempts to fit a set of basis functions {h1, h2, …, hk} to the measurements using weights 
{w1, w2, …, wk} such that: 
 

)(...)()()( 2211 thwthwthwtf kk+++=  
 
When there are multiple measurements for different times, we need to define a basis matrix H with one 
column for each basis function and one row for each measurement. Similarly a measurement vector f is 
defined with one row for each measurement. Hence, the linear system of equations is as follows: 
 

Hwf =  
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Note that f is a 1×m  vector while H is a km×  matrix. Formally, there are m time slots and k basis 

vectors. We can find the optimal value of w by minimizing the error given by fHw− . The solution for 

this optimization is found by setting the gradient of the quadratic objective function to zero:  
 

fHHHw TT 1)( −=  
 
The above regression model can be represented as a linear system Aw = b, where A = HTH and b = HTf. 
This equation can be solved using methods available for linear systems, like Gaussian elimination [7]. 
 
The regression model thus far assumes the complete data corpus to be available before training. This is 
sometimes not true for sensor data, in which data arrives in a streaming fashion. In such a scenario, we may 
want to fit a regression model using a sliding window. Formally, we fit the basis functions with respect to 
the measurements performed in the last T minutes. Here if we increase the sliding window, the model 
would have more historical data to be trained upon and thus produce better estimates. But this will also 
make the process computationally expensive. Usually an optimal value for the sliding window is defined 
keeping in mind the above trade-off. In this scenario given the matrix A and the vector b for measurements 
at times t1, …, tm-1, these matrices can be updated using the measurement at time tm [8]. With the updated 
values, the linear system Aw = b can be solved again to obtain the new weight vector. 
 
Sensors located close to each other typically show correlation in the values observed [8]. Thus, rather than 
building a regression model for each sensor in isolation, we can model them together to capture the spatial 
correlation as well. To do this, f and H have to be functions of both time and space (i.e. f(x,y,t) and 
H(x,y,t)). The same regression model presented earlier can be used to solve for the optimal weight vector in 
this new framework. However, defining a good basis function H in this case is tricky. [8] uses space kernels 
to define the basis functions. But, in their approach, the kernels were found in an ad hoc manner and may 
not work well in other situations. We will explore basis functions and find the ones which work better in 
different settings. 
 
 

3. Design Overview 
 
The toolkit provides a platform for utilizing models to assist in data cleaning.  More specifically, the toolkit 
is designed to clean raw sensor data by exploiting the spatio-temporal aspects of sensor data. 
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Figure 3: Toolkit architecture 

 
As shown in Figure 3, the toolkit consists of three main components: input processor, learning module, and 
query processor.  Raw sensor data is fed through an input processor which performs some initial 
preprocessing of the dataset before it is passed to the learning module.  The learning module contains 
learning libraries that are implemented as pluggable components.  This allows for new libraries to be added 
and increases the extensibility of our architecture.  We have two learning libraries in our current 
implementation—Kalman filter and regression.  The output of the learning module is a model that is saved 
to disk.  The model is stored on disk so that the model need not be relearned for each user query.  
Moreover, when queries are presented to the query processor, the model can be easily retrieved and used to 
answer the user's queries.  It also allows for comparisons between different models to be made. 
 
In short, the data extracted by the input processor is modeled using a user-specified library with a given 
time quantization. Once the model has been trained, the user can pose queries for dataset cleaning, 
interpolation, and extrapolation to the system. 
 
 
3.1. Learning Module 
 
As mentioned above, the learning module contains learning libraries that are implemented as pluggable 
components. New libraries can be easily incorporated into our toolkit architecture.  This can be done by 
modifying the input and output modules for the new library.  The new library needs to accept the data 
structure provided by the input processor.  As for the output, the new library needs to produce the true and 
estimated values in the format required by the query processing module. 
 
 
3.2. Query Processing Module 
 
Dataset Cleaning:  The user can request for a dataset to be cleaned using a model that is trained on the 
data from the same environment. For example, a model trained on temperature data for a given time period 
(e.g. Nov-Dec) can be used to clean data for another time period (e.g. Jan). This will avoid repeating the 
computationally expensive training process. The toolkit prototype currently cleans the dataset that was used 
for training only. 
 
The user can query the system to read a model from a file and then use it to clean the dataset. The output of 
such a query will be a dataset in which outliers have been removed and noisy readings are corrected. The 
output can either be saved into a file or visualized using a two dimensional plot (readings vs. time) for 
every sensor. For visualization, the user needs to specify the time interval and the sensors for which data is 
to be visualized. The user can also examine the data at various time steps. 
 
Interpolation:  Users can also query for missed readings of a particular sensor for a specified time interval. 
The user can interpolate the reading for a given sensor using a trained model for a specified time range.  
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The user can visualize the result on a graph to get a better understanding of how the sensor is behaving over 
time. 
 
Extrapolation:  Similarly, users can ask the model to predict the values of a particular sensor for a future 
time interval. In principle, this will work in a manner similar to interpolation but with a time interval in the 
future. The prototype toolkit does not support this functionality currently, but it can be easily extended.  
 
 

4. Implementation 
 
We have built an initial prototype of the toolkit implementing the architecture described above in Java.  
The toolkit uses Kalman filter and regression libraries to model sensor data.  The Kalman filter library is 
modified from a learning tool by Welch et al. [17]. Their Kalman filter learning tool was originally 
designed to model the water level in a tank. We extended their implementation to model sensor data. The 
Drej [3] regression library was used in the toolkit. Drej is an open-source java library for linear and non-
linear least-squares regression and classification.  The user interface of the toolkit consists of the following 
four windows—main window, edit window, plot window, and a step window—which were adapted from 
the implementation in [17]. 
 
 
4.1. Main Window 
 
The main window (Figure 4) serves to provide the user with choices that control the general execution of 
the toolkit.   In this window, the user can specify the file name of the raw dataset, the total number of 
columns in the dataset, the number of features of the physical attributes in the dataset, the index of the 
column containing the feature to be modeled, and the threshold value for that feature.  Setting a threshold 
for the feature being modeled helps in the removal of outliers in the preprocessing phase.  In addition, the 
user is required to specify the desired time quantization for analyzing the data.  The current implementation 
supports time quantization in hours and minutes.   The user can choose to input model parameters, plot, and 
step through the training process by making the corresponding selections in the main window.  The “Edit” 
button invokes the edit window, the “Plot” invokes the plot window, and “Step” invokes the stepper utility.  
 

 
Figure 4: Main window 
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4.2. Edit Window 
 
The Edit Window (Figure 5) allows the user to select the desired model, and to input the corresponding 
training parameters.  For Kalman Filter, the training parameters are the initial values for the state estimate, 
x0, and the error covariance, P0.   The values for x0 and P0 can be set to any arbitrary value if the user does 
not have any prior knowledge about the dataset.  However, if the user knows that the physical attributed 
that is being modeled has value around 20, then setting x0 to 20 would help speed up the training process.  
The default values for x0 and P0 are 0.001 and 0.1, respectively. 
 
For Regression, the training parameters are the kernel function, and the values for lambda and gamma.  The 
kernel functions that are currently supported are linear, quadratic, cubic, multi-quadric, inverse multi-
quadric and Gaussian.  Lambda is basically a parameter that helps to control the fit, while gamma is used to 
initialize the multi-quadric, inverse multi-quadric and Gaussian kernels. The range for lambda is between 
0.001 and 1.0.  The default values for lambda and gamma are 0.5 and 1.0 respectively.  The kernels 
supported by the toolkit are defined as follows: 
 

a. Linear Kernel:  K(x1, x2) = x1 · x2 
 
b. Quadratic (d=2) and Cubic (d=3):  K(x1,x2) = (x1 · x2 + 1)d  

 

c. Multi-quadric: 
2

2
1 2( , ) 1 2K x x x x γ� �= − +� �

� �
−  

 

d. Inverse multi-quadric: 
2

2
1 2( , ) 1 1 2K x x x x γ� �= +� �

� �
−  

 

e. Gaussian:  
2

1 2
2( , ) exp 1 2K x x x xγ� �= � �

� �
− −  

 
 

 
Figure 5: Edit window 
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4.3. Plot Window 
 
Once the model is trained, the user can visualize the results of the training process given a specific sensor 
id.  The plot window (Figure 6) displays three plots to the user.  The first plot shows the actual and 
estimated values for each time step, while the second plot tracks the change in the error covariance over 
time.   The third plot shows the residual, that is the difference between the actual and the estimated value, 
over the training duration.  This plot is useful when comparing the efficacy of the different models. 
 

 
Figure 6: Plot Window 

 
4.4. Step Window   
 
The step window (Figure 7), which was adapted from the Kalman Filter Learning Tool by Welch et al [17], 
allows the user to step through the actual Kalman filter training process for each time step.  The step utility 
is designed to allow users to study exactly how the Kalman Filter training works.  The step function shows, 
for a selected time step, the values that determine the true state, the predicted state, the corrected state, the 
actual measurement, the predicted measurement, the Kalman gain, the predicted covariance, and the 
corrected covariance.  These values are displayed for two adjacent time steps so that the user can see how 
these quantities change over time.  
 

 
Figure 7: Step window 
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5. Experimental Results 
 
In this section, we report the results of an empirical study of the Intel lab dataset using our toolkit. We 
present a comparative study of the Kalman filter and the regression models for each of the physical 
attributes (temperature, humidity, light and voltage) in the dataset.     
 
Only three regression kernels were used in our experiments: linear, quadratic, and multi-quadric.  For each 
of these experiments, we set the lambda and gamma parameters to 0.5 and 1.0, respectively.  These values 
were selected based on their effectiveness.  For Kalman filters, we ran the experiments with time quantized 
in both hours and minutes, while regression was done with time quantized in hours only.  This is due to the 
high space complexity and memory requirements needed for matrix manipulations in regression. 
 
Intel Dataset: For our study, we used the publicly available Intel Lab dataset [10] which contains data 
collected from 54 sensors deployed in the Intel Berkeley Research lab.  Mica2Dot sensors with weather 
boards collected time-stamped topology information, along with humidity, temperature, light and voltage 
values once every 31 seconds.  The data was collected using the TinyDB in-network query processing 
system.  The dataset consists of approximately 2.3 million readings collected from these sensors.  The 
format of the dataset is as follows: date, time, epoch, mote ID, temperature, humidity, light, and voltage.   
 
The sensor ids range from 1-54.  Figure 8 shows the placement of the sensors in the lab.  Data from some 
sensor motes may be missing or truncated. Temperature is measured in degrees Celsius. Humidity is 
temperature corrected relative humidity, ranging from 0-100%. Light is in Lux (a value of 1 Lux 
corresponds to moonlight, 400 Lux to a bright office, and 100,000 Lux to full sunlight.) Voltage is 
expressed in volts, ranging from 2-3.  The batteries that were used were lithium ion cells, which maintain a 
fairly constant voltage over their lifetime.  Note that variations in voltage are highly correlated with 
temperature. 
 

 
Figure 8: Sensor arrangement in the Intel Berkeley Research Lab 

 
 
5.1. Temperature 
 
The original temperature data in the lab dataset ranged up to 120 degrees Celsius, while the actual 
temperature was around 20-40 degrees Celsius.  To eliminate the outliers, we set a threshold of 40 degrees 
Celsius which led to removal of 415,509 readings, which is approximately 18% of the total temperature 
data.  Since the temperature in the lab was typically around 20 degrees Celsius, we set the Kalman filter 
parameter, x0, to 20 degrees Celsius. 
 
Regression Model:  Figure 10 shows that regression using a multi-quadric kernel function performed very 
well for predicting temperature using time, sensor ID, humidity, light and voltage as features.  By using 
time and sensor ID in the input data, the model was able to capture temporal as well as spatial correlations. 
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For this kernel function, the average residual for one of the sensors is 0.12 ± 0.01 degrees Celsius, as shown 
in Table 1. 
 
Using a simpler regression model like the linear kernel, an average residual of 2.08 ± 0.61 degrees Celsius 
(see table 1) was obtained, which is significantly higher than that obtained by the multi-quadric kernel.  By 
comparing the truth vs. estimate plots for linear and multi-quadric kernels in Figures 11 and 10, we infer 
that temperature modeling requires a more complex kernel. 
 
 

Regression (Hours) 
Features Statistics 

Kalman 
Filter 

(Hours) 

Kalman 
Filter 

(Minutes) Linear Quadratic Multi-quadric 

Avg 2.32 0.59 2.08 0.90 0.12 Temperature Stdev 0.69 0.02 0.61 0.23 0.01 
Avg 2.94 2.32 2.64 0.96 0.34 Humidity Stdev 0.12 0.07 0.86 0.17 0.08 
Avg 131.75 21.84 154.02 205.94 71.54 Light Stdev 43.59 0.62 86.09 13.93 11.24 
Avg 0.23 0.03 0.06 0.07 0.006 Voltage Stdev 0.03 0.001 0.04 0.01 0.001 

Table 1: Average residual and standard deviation when modeling temperature, humidity, light and voltage 
using Kalman filters and regression with various kernels.  For Kalman filters, time was quantized in hours 
and minutes, while regression was done with time quantized in hours only. 
 
 
Kalman Filter Model: When time quantization was in hours, the Kalman filter was trained for only 24 
epochs which is insufficient to complete the training process (Figure 9), and therefore shows a relatively 
large average residual of 2.32 ± 0.69 degrees Celsius. We note that this average residual is higher than the 
result from the simple linear regression model.  This shows that when the number of training samples is 
limited, regression outperforms Kalman filters.   
 
When time was quantized in minutes instead, the number of training epochs increased 60 folds and the 
learning process for the Kalman filter improved significantly, as shown in Figure 12. The average residual 
was more encouraging at 0.59 ± 0.02 degrees Celsius. 
 

 
Figure 9: Temperature truth and estimate plot using Kalman filter in hour 
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Figure 10: Temperature using regression with multi-quadric kernel 

 
Figure 11: Temperature using regression with linear kernel 

 
Figure 12: Temperature truth and estimate plot using Kalman filter in minutes 
 
 
5.2. Humidity 
 
Since humidity readings are known to lie within the 0-100% range, the experiments were run with the value 
of the feature threshold set to 100.  This eliminated 3,901 outliers.  Given that the indoor humidity in the 
lab was around 30%, the initial value of the Kalman filter parameter x0 was set to 30.   
 
Regression Model:  Similar to temperature, when predictions were made on humidity, regression using a 
multi-quadric kernel function was found to perform the best (Figure 13). The average residual was 0.34 ± 
0.08 %, as shown in Table 1. 
 
Regression with linear kernel, on the other hand, was not able to capture the humidity variable well (Figure 
14). The average residual in this case was 2.64 ± 0.86 % (see Table 1).  Like temperature, humidity 
requires a more complex kernel function for modeling. 
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Kalman Filter Model:  Kalman filter was found to perform well for humidity too.  Figure 16 shows 
Kalman filter trained over sensor data with time quantized in hours. The average residual for this model 
was 2.94 ± 0.12 %.  Figure 15 shows the true and estimated humidity values for the Kalman filter trained 
with minute quantization. The average residual in this case was 2.32 ± 0.07 %. 
 

 
Figure 13: Humidity truth and estimate plot using regression with multi-quadric kernel 

 
Figure 14: Humidity truth and estimate plot using regression with linear kernel 

 
Figure 15: Humidity truth and estimate plot using Kalman filter in minutes 
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Figure 16: Humidity truth and estimate plot using Kalman filter in hours 
 
 

5.3. Light 
 
In view of the fact that light readings can range up to 100,000 Lux for sensors exposed to full sunlight, we 
set the feature threshold for the initial preprocessing phase to 100,000 Lux.  This upper bound did not 
eliminate any light readings from the dataset.  Since indoor lighting is subject to human intervention and 
could range from anywhere between 0-100,000 Lux, the Kalman filter parameter x0 was arbitrarily set to 
an initial value of 0.001.   
 
Regression Model:  Unlike temperature and humidity, regression performs poorly on the light data. 
Among the kernels, the multi-quadric kernel performed the best with an average residual of 71.54 ± 11.24 
Lux (Table 1).  See Figures 17 and 18 for the true vs. estimate plots from the multi-quadric and linear fits.  
With the large amount of variability in light, none of the regression kernels were able to fit the data 
properly. 
 
Kalman Filter Model:  Figure 20 shows that Kalman filter modeled with hour quantization performed 
better than linear and multi-quadric regression, with an average residual of only 131.75 ± 43.59 Lux.  From 
Figure 19, we see that the Kalman filter model with minute quantization is able to learn the behavior of 
light very well.  The average residual is 21.84 ± 0.62 Lux.  In view of the possibility of light readings 
ranging from 1-100,000 Lux, this average residual value is quite impressive. 
 

 
Figure 17: Light truth and estimate plot using regression with multi-quadric kernel 
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Figure 18: Light truth and estimate plot using regression with linear kernel 

 
Figure 19: Light truth and estimate plot using Kalman filter in minutes 

 
Figure 20: Light truth and estimate plot using Kalman filter in hours 
 
 
5.4. Voltage 
 
All voltage readings from the dataset were used in the experiments, as no outliers were discarded in the 
preprocessing phase.  Since voltage is known to have values between 2-3 volts in this dataset, the Kalman 
filter parameter x0 was set to an initial value of 2 volts. 
 
Regression Model:  In contrast to light, all the regression kernels were found to fit the voltage data very 
closely.  This is most likely due to the fact that the voltage values consistently ranged from 2-3 volts.   
From Table 1, the average residual for the multi-quadric kernel is 0.006 ± 0.001 volts, while the average 
residual for the linear kernel is 0.06 ± 0.04 volts.  Figures 21 and 22 show the corresponding truth vs. 
estimate plots for both of these kernels.  
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Kalman Filter Model:  The Kalman filter model learned the voltage data very quickly (within the first 
hour), as shown in the Figures 24 and 23.  The average residual over the training process is only 0.23 ± 
0.03 volts for hour quantization, and 0.03 ± 0.001 volts for minute quantization. 

 
Figure 21: Voltage truth and estimate plot using regression with multi-quadric kernel 

 
Figure 22: Voltage truth and estimate plot using regression with linear kernel 

 
Figure 23: Voltage truth and estimate plot using Kalman filter in minutes 

 
Figure 24: Voltage truth and estimate plot using Kalman filter in hours 
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In summary, Kalman filter performs better with time quantized in minutes instead of hours. This can be 
attributed to the fact that in the former case the Kalman filter is trained with more epochs, and hence is able 
to construct a more accurate model. This is especially true when the variability of the original feature (e.g., 
light) is high. In our experiments, we found that the difference in average residual when modeling light 
using minute and hour quantization was very large (Table 1). 
 
In the case of regression, multi-quadric kernel was found to perform better than linear and quadratic kernels 
for all features. The better performance was most likely due to the higher complexity of the multi-quadric 
function which allows for greater modeling capacity.  Higher complexity, however, can increase the 
chances of the model to overfit. The quadratic kernel performed better than the linear kernel for 
temperature and humidity, while the inverse was true for light and voltage. 
 
Although regression with multi-quadric kernel was found to perform very well, even better than Kalman 
filter in all cases except light, we suspect that it may not generalize well to other datasets due to excessive 
modeling. It would be interesting to investigate the tradeoff between generalization and over-fitting for this 
kernel in the future. Kalman filter, on the other hand, uses fewer variables for modeling, and may 
generalize better to other datasets.  When the variability in the data is large as in the case with light, the 
Kalman filter is still the best data cleaning method. 
 
 

6. Related Work 
 
Traditional data cleaning systems tend to address problems such as schema transformations, string analysis, 
and duplicate elimination. Schema transformations usually involve writing ad hoc and laborious scripts for 
preparing the data format for various analysis and visualization tools. Potter’s wheel [14] is an interactive 
tool for defining schema operations for data cleaning and removing content and structure discrepancies in 
data. AJAX [6] provides an extensible, declarative language similar to SQL for specifying data cleaning 
operations in data warehouses. The data quality problems addressed in AJAX are the absence of universal 
keys across different databases, the existence of keyboard errors in the data, and the presence of 
inconsistencies in data coming from multiple sources. Both Potter’s wheel and AJAX address issues that 
are intrinsically different from the data quality problems in sensor data. Some commercial data cleaning 
tools [1, 9] are also available, but cannot be applied to sensor data, as they also do not take into account the 
spatio-temporal aspects of the data. 
 
Elnahrawy et al. [5] presents a framework for cleaning and querying noisy sensor data. They used a 
Bayesian approach for reducing uncertainty associated with the data in an online fashion. Their approach 
assumes an independent Gaussian distribution for each sensor at every time step. Parameters for the 
distributions are estimated using only data of a particular sensor at the current time step. This assumption 
leads to a loss of correlation not only along time but also across sensors. Additionally, they assume that all 
the tuples exist and all the attributes are complete. Hence, their method is unable to handle missing and 
incomplete sensor data and can perform interpolation only within the time window on which the model was 
trained. Nevertheless, their model is simple and easily deployable because of the naïve Bayesian 
assumptions used in their approach. 
 
A recent work that attempts to address cleaning and error correction for sensor data is the ESP (Extensible 
receptor Stream Processing) platform, which is part of the HiFi project.  ESP is a pipelined data processing 
framework for online cleaning of sensor data streams.  It is developed with the intention to clean receptor 
data streams at the edge of the HiFi network.  The ESP platform consists of a pipeline of processing stages 
designed to operate on data as it is streamed through the system.  The stages segment the data cleaning 
process into separate tasks, each responsible for a different logical aspect of the data.  The stages include 
tuple-level corrections, correction for missed readings, removal of outliers, removal of duplicate readings, 
and utilization of readings from across different types of receptors to increase the confidence in the data. 
The authors mentioned that the architecture proposed for ESP provides a platform for utilizing statistical 
models to assist in data cleaning. Nevertheless, the stages in ESP are currently programmed independently 
as declarative queries, without employing any such models. 
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7. Conclusions 
 
In this paper, we discussed the high-level design of a toolkit for cleaning noisy and incomplete sensor data.  
The toolkit supports data cleaning, interpolation, and extrapolation functionalities.  In addition, it provides 
data analysis tools like visualization and a step utility to examine the actual training process.  We present an 
initial prototype of the toolkit that supports two modeling techniques: Kalman filter and regression.  Using 
this prototype, an experimental study was conducted to explore the effectiveness of the two techniques for 
temperature, humidity, light, and voltage data.  Our experiments show promising results for the Kalman 
filter for all the physical attributes modeled.  The regression model using a high-ordered polynomial also 
modeled most of the attributes well, but performed poorly relative to Kalman filters when there is large 
variability in the data, as in the case of light.   
 
 

References 
 

1. Ascential. http://www.ascential.com/ 
2. Breiman, L., Friedman, J., Olshen, R., and Stone, C., Classification and Regression Trees. 

Wadsworth International Group, 1984. 
3. Dennis, G., Drej - a Java regression library. http://www.gregdennis.com/drej.html 
4. Duda, R., Hart, P., Stock, D., Pattern Classification. 2nd Ed. John Wiley and Sons, Inc. 2001. 
5. Elnahwary, E., Nath, B., Cleaning and Querying Noisy Sensors. In WSNA’03: Proceedings of the 

2nd ACM International Conference on Wireless Sensor Networks and Applications. 2003. 
6. Galhardas, H., et al., Declarative data cleaning: Language, model, and algorithms. In VLDB, pp. 

371-380, 2001. 
7. Golub, G., Van Loan, C., Matrix Computations. Johns Hopkins, 1989 
8. Guestrin, C., et al., Distributed Regression: An efficient framework for modeling sensor network 

data. In ISPN’04, April 26-27, 2004.  
9. Informatica. http://www.informatica.com/ 
10. Intel Lab Data. http://berkeley.intel-research.net/labdata/ 
11. Jefferey, S., Alanso, G., Franklin, M., Hong, W., Widom, J., A Pipeline Framework for Online 

Cleaning of Sensor Data Streams. Technical Report No. UCB/CSD-5-1413, Computer Science 
Division, University of California at Berkeley, Sept. 2005.  

12. Kalman filter. Answers.com. http://www.answers.com/topic/kalman-filter. Wikipedia, 2005. 
13. Mitchell, T., Machine Learning. McGraw Hill, 1997. 
14. Raman, V. and Hellerstein, J.M. Potter's Wheel: An Interactive Data Cleaning System.  In The 

VLDB Journal, pp. 381-390, 2001. 
15. Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach. Prentice Hall, 1994. 
16. Welch, G., Bishop, G., An Introduction to the Kalman Filter. Technical Report No. TR 95-041, 

Department of Computer Science, University of North Carolina, March 2003. 
17. Welch, G., Riley, C., Bodenheimer, T., Parker, E., Carpenter, J., Kalman Filter Learning Tool. 

http://www.cs.unc.edu/~welch/kalman/kftool/index.html 


