
 1

SensoClean: Handling Noisy and Incomplete Data in
Sensor Networks using Modeling

Yee Lin Tan Vivek Sehgal Hamid Haidarian Shahri

University of Maryland
{yeelin, viveks, hamid}@cs.umd.edu

Abstract: Sensor networks have shown tremendous growth in many
domains such as environmental monitoring. The data captured from the
physical world through these sensor devices, however, tend to be
incomplete, noisy, and unreliable. Traditional data cleaning techniques
cannot be applied to such data as they do not take into account the
strong spatial and temporal correlations typically present in sensor data.
Popular data modeling methods like Kalman filters and regression have
shown good results in capturing spatio-temporal correlations. We
implemented these methods in an extensible toolkit with graphical
visualization, and explored their effectiveness in cleaning sensor data.
We obtained good data cleaning results in our experiments using
Kalman filters. Regression with a high-order polynomial also showed
promising results, but worked poorly for data with high variability.

1. Introduction

Sensor networks are deployed in various domains to acquire information about different physical
phenomena in real-time. The data acquired is typically not usable directly as it suffers from three problems,
namely noise, missing data and incompleteness. There are several factors contributing to these problems.
Noise usually occurs because of inaccuracy in hardware sensing and transmission. Unfavorable
environmental conditions and limited battery power further exacerbates this problem. Missing values
usually occur due to packet loss and node failure. Since sensors sample continuous physical phenomena at
discrete time intervals, the data acquired is incomplete. Hence, incompleteness is an inherent problem with
data acquisition in sensor networks, while missing values are accidental in nature. All these problems
seriously impact the quality of data obtained from such networks.

Although advancements have been made in the manufacturing of sensors such as miniaturization, power
efficiency, computing power, memory, etc., the problems of precision and accuracy still persist [5]. The
aim of the industry is to manufacture tiny, cheap sensors that can be deployed everywhere and disposed
when depleted. Consequently, noise, imprecision and inaccuracies are inevitable in these cheap sensors. It
is extremely important that data from these sensors be reliable since actions are usually taken based on their
readings. Dirty data can lead to detrimental effects since it may be used in critical decisions or in the
activation of actuators.

Statistical and probabilistic modeling techniques have been used [4, 15] to solve the issues we discussed
earlier. Modeling usually involves two phases: training and testing. In training, the parameters of the
characteristic function representing the data are learned. Sometimes held-out data is used for validation to
further improve the accuracy of the training process by preventing over-fitting. In the next phase,
predictions are made about the testing data. Training is frequently done offline while testing can be done
either offline or online.

 2

The accuracy of statistical modeling is problem and data specific. Sensor data is temporal and spatial in
nature. In general, a reading is usually of the format <sensor-id, location, time, value>. If the sensors are
static, then the location field is usually omitted. Individual observations are assumed to be independent.

In our experiments we will examine the efficacy of the following methods:

1. Kalman filter [12, 16]: The Kalman filter is an efficient recursive filter which estimates the state
of a dynamic system from a series of incomplete and noisy measurements. An example of an
application would be to provide accurate continuously-updated information about the position and
velocity of an object given only a sequence of observations about its position, each of which
includes some error. It is used in a wide range of engineering applications from radar and control
systems to computer vision.

2. Regression [2, 13]: This usually involves fitting the best curve for a given set of points. In our
case, since the data is time-varying and spatial, we use regression to find the best curve
approximating the readings. This curve can be used not only to find missing or unknown data but
also to reduce noise.

The focus of prior work in data cleaning has been primarily in the context of information integration and
data-warehousing [1, 6, 9, 14]. However, the nature of sensor network data is inherently different, and
previous approaches cannot always be applied directly in this domain. For instance, issues such as
approximate duplicate elimination and schema matching are of great importance and well studied in that
domain but are not relevant in sensor data. Little work has been done on data cleaning in the context of
sensor network data. In this paper, we present a comparative study of two methods to improve the quality
and reliability of data from sensor networks. We hope to obtain insights into which methods work better for
certain datasets. We will build a toolkit implementing the statistical methods described above, which will
allow researchers to apply and compare different data cleaning techniques on their sensor data.

Cleaning and query processing can be performed either at the individual sensors or at the base station. If
cleaning is performed at the sensors, there would be significant communication cost in sending the
parameters of the model to the individual sensors. Furthermore, there is a storage cost associated with
storing the parameters. In addition to communication and storage costs, performing the actual cleaning at
the sensors would incur a processing cost on the resource-constrained sensors. These problems do not arise
if cleaning is done at the base station, given the typical processing power and storage capacity of base
stations. Moreover, there would be huge savings by not having to communicate the model parameters to
each individual sensor. Given that the lifetime of the sensors is heavily dependent on the amount of
communication that they do, communication savings is very important. Having the data and the model at
the base station is advantageous when it comes to query processing, as answers to user queries can be easily
computed.

Performing the cleaning at the sensor level and query processing at the base station has no clear
advantages. This is because communicating a single noisy reading to the base station and performing the
cleaning work there incurs less communication cost than communicating all the model parameters over to
the sensor itself. The latter, as we have mentioned earlier, imposes unnecessary processing and storage
overhead on the sensors.

We begin by providing some background on the modeling techniques we use in the toolkit in Section 2.
We then present a high-level design of our toolkit and the query processing module in Section 3. In
Section 4, we describe specific details of our initial toolkit implementation, followed by an experimental
study of the Intel Lab dataset using the two modeling techniques provided by our toolkit in Section 5. In
Section 6, we discuss previous work related to data cleaning, and we conclude in Section 7.

 3

2. Background

2.1. Kalman filter

The Kalman filter is an efficient recursive filter which estimates the state of a dynamic system from a series
of incomplete and noisy measurements. It is based on linear algebra and the hidden Markov model [12,
16]. The underlying dynamical system is modeled as a Markov chain built on linear operators perturbed by
Gaussian noise. The state of the system is represented as a vector of real numbers. At each discrete time
increment, a linear operator is applied to the current state to generate a new state, with some noise mixed
in, and optionally, some information from the controls on the system if they are known. Then, another
linear operator mixed with more noise generates the visible outputs from the hidden state.

In order to use the Kalman filter to estimate the internal state of a process given only a sequence of noisy
observations, the process has to be modeled in accordance with the framework of the Kalman filter as
shown in the Figure 1. This means specifying the matrices Fk, Hk, Qk, Rk, and Bk for each time-step k as
described below.

Figure 1: Model underlying the Kalman filter. Circles are vectors, squares are matrices,
and stars represent Gaussian noise with the associated covariance matrix at the lower
right.

The Kalman filter model assumes the true state at time k, xk is evolved from the state at (k-1) according to

kkkkkk wuBxFx ++= −1

where

• Fk is the state transition model which is applied to the previous state xk-1;
• Bk is the control-input model which is applied to the control vector uk;
• wk is the process noise which is assumed to be drawn from a zero mean multivariate normal

distribution with covariance Qk

),0(~ kk QNw

At time k an observation (or measurement) zk of the true state xk is made according to

kkkk vxHz +=

where Hk is the observation model which maps the true state space into the observed space and vk is the
observation noise which is assumed to be zero mean Gaussian white noise with covariance Rk.

),0(~ kk RNv

 4

The initial state x0 and the noise vectors at each step {w1, …, wk, v1, ..., vk} are all assumed to be mutually
independent.

Since the Kalman filter is a recursive estimator, only the estimated state from the previous time step and the
current measurement are needed to compute the estimate for the current state. The filter has two distinct
phases: predict and update [12, 16]. The predict phase uses the estimate from the previous time step to
produce an estimate of the current state. In the update phase, measurement information from the current
time step is used to refine this prediction to arrive at a new, hopefully more accurate estimate.

2.2. Spatio-Temporal Regression

Regression is the process of fitting a curve to best define a set of real values. For the simplest case, a linear
regression model can be used to approximate the points generated from a linear random distribution. The
equation of the model is given by:

NWXY +=

where N is Gaussian noise with zero mean (unbiased noise).

Figure 2: Linear regression

For more complex distributions, the regression model would be a polynomial in X. The best regression
equation is usually found by iteratively adding more terms into the equation until there is negligible
improvement in the estimate. This process is done offline before the training step using some test data. In
the equation above we assumed the noise to follow a Gaussian distribution which might not be necessarily
true in general.

In our case, we are dealing with data which has two components, namely time and space. One way of
capturing the time dependency in this data is by fitting a time polynomial, such as f(t) = w0 + w1t + w2t

2.
Here 1, t, t2 are the basis functions, while w0, w1 and w2 are the corresponding weights to be estimated. In
general, regression attempts to fit a set of basis functions {h1, h2, …, hk} to the measurements using weights
{w1, w2, …, wk} such that:

)(...)()()(2211 thwthwthwtf kk+++=

When there are multiple measurements for different times, we need to define a basis matrix H with one
column for each basis function and one row for each measurement. Similarly a measurement vector f is
defined with one row for each measurement. Hence, the linear system of equations is as follows:

Hwf =

 5

where

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

)(
...

)(
)(

2

1

mtf

tf

tf

f

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

)(...)()(
............

)(...)()(
)(...)()(

21

22221

11211

mkmm

k

k

ththth

ththth

ththth

H

Note that f is a 1×m vector while H is a km× matrix. Formally, there are m time slots and k basis

vectors. We can find the optimal value of w by minimizing the error given by fHw− . The solution for

this optimization is found by setting the gradient of the quadratic objective function to zero:

fHHHw TT 1)(−=

The above regression model can be represented as a linear system Aw = b, where A = HTH and b = HTf.
This equation can be solved using methods available for linear systems, like Gaussian elimination [7].

The regression model thus far assumes the complete data corpus to be available before training. This is
sometimes not true for sensor data, in which data arrives in a streaming fashion. In such a scenario, we may
want to fit a regression model using a sliding window. Formally, we fit the basis functions with respect to
the measurements performed in the last T minutes. Here if we increase the sliding window, the model
would have more historical data to be trained upon and thus produce better estimates. But this will also
make the process computationally expensive. Usually an optimal value for the sliding window is defined
keeping in mind the above trade-off. In this scenario given the matrix A and the vector b for measurements
at times t1, …, tm-1, these matrices can be updated using the measurement at time tm [8]. With the updated
values, the linear system Aw = b can be solved again to obtain the new weight vector.

Sensors located close to each other typically show correlation in the values observed [8]. Thus, rather than
building a regression model for each sensor in isolation, we can model them together to capture the spatial
correlation as well. To do this, f and H have to be functions of both time and space (i.e. f(x,y,t) and
H(x,y,t)). The same regression model presented earlier can be used to solve for the optimal weight vector in
this new framework. However, defining a good basis function H in this case is tricky. [8] uses space kernels
to define the basis functions. But, in their approach, the kernels were found in an ad hoc manner and may
not work well in other situations. We will explore basis functions and find the ones which work better in
different settings.

3. Design Overview

The toolkit provides a platform for utilizing models to assist in data cleaning. More specifically, the toolkit
is designed to clean raw sensor data by exploiting the spatio-temporal aspects of sensor data.

 6

Figure 3: Toolkit architecture

As shown in Figure 3, the toolkit consists of three main components: input processor, learning module, and
query processor. Raw sensor data is fed through an input processor which performs some initial
preprocessing of the dataset before it is passed to the learning module. The learning module contains
learning libraries that are implemented as pluggable components. This allows for new libraries to be added
and increases the extensibility of our architecture. We have two learning libraries in our current
implementation—Kalman filter and regression. The output of the learning module is a model that is saved
to disk. The model is stored on disk so that the model need not be relearned for each user query.
Moreover, when queries are presented to the query processor, the model can be easily retrieved and used to
answer the user's queries. It also allows for comparisons between different models to be made.

In short, the data extracted by the input processor is modeled using a user-specified library with a given
time quantization. Once the model has been trained, the user can pose queries for dataset cleaning,
interpolation, and extrapolation to the system.

3.1. Learning Module

As mentioned above, the learning module contains learning libraries that are implemented as pluggable
components. New libraries can be easily incorporated into our toolkit architecture. This can be done by
modifying the input and output modules for the new library. The new library needs to accept the data
structure provided by the input processor. As for the output, the new library needs to produce the true and
estimated values in the format required by the query processing module.

3.2. Query Processing Module

Dataset Cleaning: The user can request for a dataset to be cleaned using a model that is trained on the
data from the same environment. For example, a model trained on temperature data for a given time period
(e.g. Nov-Dec) can be used to clean data for another time period (e.g. Jan). This will avoid repeating the
computationally expensive training process. The toolkit prototype currently cleans the dataset that was used
for training only.

The user can query the system to read a model from a file and then use it to clean the dataset. The output of
such a query will be a dataset in which outliers have been removed and noisy readings are corrected. The
output can either be saved into a file or visualized using a two dimensional plot (readings vs. time) for
every sensor. For visualization, the user needs to specify the time interval and the sensors for which data is
to be visualized. The user can also examine the data at various time steps.

Interpolation: Users can also query for missed readings of a particular sensor for a specified time interval.
The user can interpolate the reading for a given sensor using a trained model for a specified time range.

 7

The user can visualize the result on a graph to get a better understanding of how the sensor is behaving over
time.

Extrapolation: Similarly, users can ask the model to predict the values of a particular sensor for a future
time interval. In principle, this will work in a manner similar to interpolation but with a time interval in the
future. The prototype toolkit does not support this functionality currently, but it can be easily extended.

4. Implementation

We have built an initial prototype of the toolkit implementing the architecture described above in Java.
The toolkit uses Kalman filter and regression libraries to model sensor data. The Kalman filter library is
modified from a learning tool by Welch et al. [17]. Their Kalman filter learning tool was originally
designed to model the water level in a tank. We extended their implementation to model sensor data. The
Drej [3] regression library was used in the toolkit. Drej is an open-source java library for linear and non-
linear least-squares regression and classification. The user interface of the toolkit consists of the following
four windows—main window, edit window, plot window, and a step window—which were adapted from
the implementation in [17].

4.1. Main Window

The main window (Figure 4) serves to provide the user with choices that control the general execution of
the toolkit. In this window, the user can specify the file name of the raw dataset, the total number of
columns in the dataset, the number of features of the physical attributes in the dataset, the index of the
column containing the feature to be modeled, and the threshold value for that feature. Setting a threshold
for the feature being modeled helps in the removal of outliers in the preprocessing phase. In addition, the
user is required to specify the desired time quantization for analyzing the data. The current implementation
supports time quantization in hours and minutes. The user can choose to input model parameters, plot, and
step through the training process by making the corresponding selections in the main window. The “Edit”
button invokes the edit window, the “Plot” invokes the plot window, and “Step” invokes the stepper utility.

Figure 4: Main window

 8

4.2. Edit Window

The Edit Window (Figure 5) allows the user to select the desired model, and to input the corresponding
training parameters. For Kalman Filter, the training parameters are the initial values for the state estimate,
x0, and the error covariance, P0. The values for x0 and P0 can be set to any arbitrary value if the user does
not have any prior knowledge about the dataset. However, if the user knows that the physical attributed
that is being modeled has value around 20, then setting x0 to 20 would help speed up the training process.
The default values for x0 and P0 are 0.001 and 0.1, respectively.

For Regression, the training parameters are the kernel function, and the values for lambda and gamma. The
kernel functions that are currently supported are linear, quadratic, cubic, multi-quadric, inverse multi-
quadric and Gaussian. Lambda is basically a parameter that helps to control the fit, while gamma is used to
initialize the multi-quadric, inverse multi-quadric and Gaussian kernels. The range for lambda is between
0.001 and 1.0. The default values for lambda and gamma are 0.5 and 1.0 respectively. The kernels
supported by the toolkit are defined as follows:

a. Linear Kernel: K(x1, x2) = x1 · x2

b. Quadratic (d=2) and Cubic (d=3): K(x1,x2) = (x1 · x2 + 1)d

c. Multi-quadric:
2

2
1 2(,) 1 2K x x x x γ� �= − +� �

� �
−

d. Inverse multi-quadric:
2

2
1 2(,) 1 1 2K x x x x γ� �= +� �

� �
−

e. Gaussian:
2

1 2
2(,) exp 1 2K x x x xγ� �= � �

� �
− −

Figure 5: Edit window

 9

4.3. Plot Window

Once the model is trained, the user can visualize the results of the training process given a specific sensor
id. The plot window (Figure 6) displays three plots to the user. The first plot shows the actual and
estimated values for each time step, while the second plot tracks the change in the error covariance over
time. The third plot shows the residual, that is the difference between the actual and the estimated value,
over the training duration. This plot is useful when comparing the efficacy of the different models.

Figure 6: Plot Window

4.4. Step Window

The step window (Figure 7), which was adapted from the Kalman Filter Learning Tool by Welch et al [17],
allows the user to step through the actual Kalman filter training process for each time step. The step utility
is designed to allow users to study exactly how the Kalman Filter training works. The step function shows,
for a selected time step, the values that determine the true state, the predicted state, the corrected state, the
actual measurement, the predicted measurement, the Kalman gain, the predicted covariance, and the
corrected covariance. These values are displayed for two adjacent time steps so that the user can see how
these quantities change over time.

Figure 7: Step window

 10

5. Experimental Results

In this section, we report the results of an empirical study of the Intel lab dataset using our toolkit. We
present a comparative study of the Kalman filter and the regression models for each of the physical
attributes (temperature, humidity, light and voltage) in the dataset.

Only three regression kernels were used in our experiments: linear, quadratic, and multi-quadric. For each
of these experiments, we set the lambda and gamma parameters to 0.5 and 1.0, respectively. These values
were selected based on their effectiveness. For Kalman filters, we ran the experiments with time quantized
in both hours and minutes, while regression was done with time quantized in hours only. This is due to the
high space complexity and memory requirements needed for matrix manipulations in regression.

Intel Dataset: For our study, we used the publicly available Intel Lab dataset [10] which contains data
collected from 54 sensors deployed in the Intel Berkeley Research lab. Mica2Dot sensors with weather
boards collected time-stamped topology information, along with humidity, temperature, light and voltage
values once every 31 seconds. The data was collected using the TinyDB in-network query processing
system. The dataset consists of approximately 2.3 million readings collected from these sensors. The
format of the dataset is as follows: date, time, epoch, mote ID, temperature, humidity, light, and voltage.

The sensor ids range from 1-54. Figure 8 shows the placement of the sensors in the lab. Data from some
sensor motes may be missing or truncated. Temperature is measured in degrees Celsius. Humidity is
temperature corrected relative humidity, ranging from 0-100%. Light is in Lux (a value of 1 Lux
corresponds to moonlight, 400 Lux to a bright office, and 100,000 Lux to full sunlight.) Voltage is
expressed in volts, ranging from 2-3. The batteries that were used were lithium ion cells, which maintain a
fairly constant voltage over their lifetime. Note that variations in voltage are highly correlated with
temperature.

Figure 8: Sensor arrangement in the Intel Berkeley Research Lab

5.1. Temperature

The original temperature data in the lab dataset ranged up to 120 degrees Celsius, while the actual
temperature was around 20-40 degrees Celsius. To eliminate the outliers, we set a threshold of 40 degrees
Celsius which led to removal of 415,509 readings, which is approximately 18% of the total temperature
data. Since the temperature in the lab was typically around 20 degrees Celsius, we set the Kalman filter
parameter, x0, to 20 degrees Celsius.

Regression Model: Figure 10 shows that regression using a multi-quadric kernel function performed very
well for predicting temperature using time, sensor ID, humidity, light and voltage as features. By using
time and sensor ID in the input data, the model was able to capture temporal as well as spatial correlations.

 11

For this kernel function, the average residual for one of the sensors is 0.12 ± 0.01 degrees Celsius, as shown
in Table 1.

Using a simpler regression model like the linear kernel, an average residual of 2.08 ± 0.61 degrees Celsius
(see table 1) was obtained, which is significantly higher than that obtained by the multi-quadric kernel. By
comparing the truth vs. estimate plots for linear and multi-quadric kernels in Figures 11 and 10, we infer
that temperature modeling requires a more complex kernel.

Regression (Hours)
Features Statistics

Kalman
Filter

(Hours)

Kalman
Filter

(Minutes) Linear Quadratic Multi-quadric

Avg 2.32 0.59 2.08 0.90 0.12 Temperature Stdev 0.69 0.02 0.61 0.23 0.01
Avg 2.94 2.32 2.64 0.96 0.34 Humidity Stdev 0.12 0.07 0.86 0.17 0.08
Avg 131.75 21.84 154.02 205.94 71.54 Light Stdev 43.59 0.62 86.09 13.93 11.24
Avg 0.23 0.03 0.06 0.07 0.006 Voltage Stdev 0.03 0.001 0.04 0.01 0.001

Table 1: Average residual and standard deviation when modeling temperature, humidity, light and voltage
using Kalman filters and regression with various kernels. For Kalman filters, time was quantized in hours
and minutes, while regression was done with time quantized in hours only.

Kalman Filter Model: When time quantization was in hours, the Kalman filter was trained for only 24
epochs which is insufficient to complete the training process (Figure 9), and therefore shows a relatively
large average residual of 2.32 ± 0.69 degrees Celsius. We note that this average residual is higher than the
result from the simple linear regression model. This shows that when the number of training samples is
limited, regression outperforms Kalman filters.

When time was quantized in minutes instead, the number of training epochs increased 60 folds and the
learning process for the Kalman filter improved significantly, as shown in Figure 12. The average residual
was more encouraging at 0.59 ± 0.02 degrees Celsius.

Figure 9: Temperature truth and estimate plot using Kalman filter in hour

 12

Figure 10: Temperature using regression with multi-quadric kernel

Figure 11: Temperature using regression with linear kernel

Figure 12: Temperature truth and estimate plot using Kalman filter in minutes

5.2. Humidity

Since humidity readings are known to lie within the 0-100% range, the experiments were run with the value
of the feature threshold set to 100. This eliminated 3,901 outliers. Given that the indoor humidity in the
lab was around 30%, the initial value of the Kalman filter parameter x0 was set to 30.

Regression Model: Similar to temperature, when predictions were made on humidity, regression using a
multi-quadric kernel function was found to perform the best (Figure 13). The average residual was 0.34 ±
0.08 %, as shown in Table 1.

Regression with linear kernel, on the other hand, was not able to capture the humidity variable well (Figure
14). The average residual in this case was 2.64 ± 0.86 % (see Table 1). Like temperature, humidity
requires a more complex kernel function for modeling.

 13

Kalman Filter Model: Kalman filter was found to perform well for humidity too. Figure 16 shows
Kalman filter trained over sensor data with time quantized in hours. The average residual for this model
was 2.94 ± 0.12 %. Figure 15 shows the true and estimated humidity values for the Kalman filter trained
with minute quantization. The average residual in this case was 2.32 ± 0.07 %.

Figure 13: Humidity truth and estimate plot using regression with multi-quadric kernel

Figure 14: Humidity truth and estimate plot using regression with linear kernel

Figure 15: Humidity truth and estimate plot using Kalman filter in minutes

 14

Figure 16: Humidity truth and estimate plot using Kalman filter in hours

5.3. Light

In view of the fact that light readings can range up to 100,000 Lux for sensors exposed to full sunlight, we
set the feature threshold for the initial preprocessing phase to 100,000 Lux. This upper bound did not
eliminate any light readings from the dataset. Since indoor lighting is subject to human intervention and
could range from anywhere between 0-100,000 Lux, the Kalman filter parameter x0 was arbitrarily set to
an initial value of 0.001.

Regression Model: Unlike temperature and humidity, regression performs poorly on the light data.
Among the kernels, the multi-quadric kernel performed the best with an average residual of 71.54 ± 11.24
Lux (Table 1). See Figures 17 and 18 for the true vs. estimate plots from the multi-quadric and linear fits.
With the large amount of variability in light, none of the regression kernels were able to fit the data
properly.

Kalman Filter Model: Figure 20 shows that Kalman filter modeled with hour quantization performed
better than linear and multi-quadric regression, with an average residual of only 131.75 ± 43.59 Lux. From
Figure 19, we see that the Kalman filter model with minute quantization is able to learn the behavior of
light very well. The average residual is 21.84 ± 0.62 Lux. In view of the possibility of light readings
ranging from 1-100,000 Lux, this average residual value is quite impressive.

Figure 17: Light truth and estimate plot using regression with multi-quadric kernel

 15

Figure 18: Light truth and estimate plot using regression with linear kernel

Figure 19: Light truth and estimate plot using Kalman filter in minutes

Figure 20: Light truth and estimate plot using Kalman filter in hours

5.4. Voltage

All voltage readings from the dataset were used in the experiments, as no outliers were discarded in the
preprocessing phase. Since voltage is known to have values between 2-3 volts in this dataset, the Kalman
filter parameter x0 was set to an initial value of 2 volts.

Regression Model: In contrast to light, all the regression kernels were found to fit the voltage data very
closely. This is most likely due to the fact that the voltage values consistently ranged from 2-3 volts.
From Table 1, the average residual for the multi-quadric kernel is 0.006 ± 0.001 volts, while the average
residual for the linear kernel is 0.06 ± 0.04 volts. Figures 21 and 22 show the corresponding truth vs.
estimate plots for both of these kernels.

 16

Kalman Filter Model: The Kalman filter model learned the voltage data very quickly (within the first
hour), as shown in the Figures 24 and 23. The average residual over the training process is only 0.23 ±
0.03 volts for hour quantization, and 0.03 ± 0.001 volts for minute quantization.

Figure 21: Voltage truth and estimate plot using regression with multi-quadric kernel

Figure 22: Voltage truth and estimate plot using regression with linear kernel

Figure 23: Voltage truth and estimate plot using Kalman filter in minutes

Figure 24: Voltage truth and estimate plot using Kalman filter in hours

 17

In summary, Kalman filter performs better with time quantized in minutes instead of hours. This can be
attributed to the fact that in the former case the Kalman filter is trained with more epochs, and hence is able
to construct a more accurate model. This is especially true when the variability of the original feature (e.g.,
light) is high. In our experiments, we found that the difference in average residual when modeling light
using minute and hour quantization was very large (Table 1).

In the case of regression, multi-quadric kernel was found to perform better than linear and quadratic kernels
for all features. The better performance was most likely due to the higher complexity of the multi-quadric
function which allows for greater modeling capacity. Higher complexity, however, can increase the
chances of the model to overfit. The quadratic kernel performed better than the linear kernel for
temperature and humidity, while the inverse was true for light and voltage.

Although regression with multi-quadric kernel was found to perform very well, even better than Kalman
filter in all cases except light, we suspect that it may not generalize well to other datasets due to excessive
modeling. It would be interesting to investigate the tradeoff between generalization and over-fitting for this
kernel in the future. Kalman filter, on the other hand, uses fewer variables for modeling, and may
generalize better to other datasets. When the variability in the data is large as in the case with light, the
Kalman filter is still the best data cleaning method.

6. Related Work

Traditional data cleaning systems tend to address problems such as schema transformations, string analysis,
and duplicate elimination. Schema transformations usually involve writing ad hoc and laborious scripts for
preparing the data format for various analysis and visualization tools. Potter’s wheel [14] is an interactive
tool for defining schema operations for data cleaning and removing content and structure discrepancies in
data. AJAX [6] provides an extensible, declarative language similar to SQL for specifying data cleaning
operations in data warehouses. The data quality problems addressed in AJAX are the absence of universal
keys across different databases, the existence of keyboard errors in the data, and the presence of
inconsistencies in data coming from multiple sources. Both Potter’s wheel and AJAX address issues that
are intrinsically different from the data quality problems in sensor data. Some commercial data cleaning
tools [1, 9] are also available, but cannot be applied to sensor data, as they also do not take into account the
spatio-temporal aspects of the data.

Elnahrawy et al. [5] presents a framework for cleaning and querying noisy sensor data. They used a
Bayesian approach for reducing uncertainty associated with the data in an online fashion. Their approach
assumes an independent Gaussian distribution for each sensor at every time step. Parameters for the
distributions are estimated using only data of a particular sensor at the current time step. This assumption
leads to a loss of correlation not only along time but also across sensors. Additionally, they assume that all
the tuples exist and all the attributes are complete. Hence, their method is unable to handle missing and
incomplete sensor data and can perform interpolation only within the time window on which the model was
trained. Nevertheless, their model is simple and easily deployable because of the naïve Bayesian
assumptions used in their approach.

A recent work that attempts to address cleaning and error correction for sensor data is the ESP (Extensible
receptor Stream Processing) platform, which is part of the HiFi project. ESP is a pipelined data processing
framework for online cleaning of sensor data streams. It is developed with the intention to clean receptor
data streams at the edge of the HiFi network. The ESP platform consists of a pipeline of processing stages
designed to operate on data as it is streamed through the system. The stages segment the data cleaning
process into separate tasks, each responsible for a different logical aspect of the data. The stages include
tuple-level corrections, correction for missed readings, removal of outliers, removal of duplicate readings,
and utilization of readings from across different types of receptors to increase the confidence in the data.
The authors mentioned that the architecture proposed for ESP provides a platform for utilizing statistical
models to assist in data cleaning. Nevertheless, the stages in ESP are currently programmed independently
as declarative queries, without employing any such models.

 18

7. Conclusions

In this paper, we discussed the high-level design of a toolkit for cleaning noisy and incomplete sensor data.
The toolkit supports data cleaning, interpolation, and extrapolation functionalities. In addition, it provides
data analysis tools like visualization and a step utility to examine the actual training process. We present an
initial prototype of the toolkit that supports two modeling techniques: Kalman filter and regression. Using
this prototype, an experimental study was conducted to explore the effectiveness of the two techniques for
temperature, humidity, light, and voltage data. Our experiments show promising results for the Kalman
filter for all the physical attributes modeled. The regression model using a high-ordered polynomial also
modeled most of the attributes well, but performed poorly relative to Kalman filters when there is large
variability in the data, as in the case of light.

References

1. Ascential. http://www.ascential.com/
2. Breiman, L., Friedman, J., Olshen, R., and Stone, C., Classification and Regression Trees.

Wadsworth International Group, 1984.
3. Dennis, G., Drej - a Java regression library. http://www.gregdennis.com/drej.html
4. Duda, R., Hart, P., Stock, D., Pattern Classification. 2nd Ed. John Wiley and Sons, Inc. 2001.
5. Elnahwary, E., Nath, B., Cleaning and Querying Noisy Sensors. In WSNA’03: Proceedings of the

2nd ACM International Conference on Wireless Sensor Networks and Applications. 2003.
6. Galhardas, H., et al., Declarative data cleaning: Language, model, and algorithms. In VLDB, pp.

371-380, 2001.
7. Golub, G., Van Loan, C., Matrix Computations. Johns Hopkins, 1989
8. Guestrin, C., et al., Distributed Regression: An efficient framework for modeling sensor network

data. In ISPN’04, April 26-27, 2004.
9. Informatica. http://www.informatica.com/
10. Intel Lab Data. http://berkeley.intel-research.net/labdata/
11. Jefferey, S., Alanso, G., Franklin, M., Hong, W., Widom, J., A Pipeline Framework for Online

Cleaning of Sensor Data Streams. Technical Report No. UCB/CSD-5-1413, Computer Science
Division, University of California at Berkeley, Sept. 2005.

12. Kalman filter. Answers.com. http://www.answers.com/topic/kalman-filter. Wikipedia, 2005.
13. Mitchell, T., Machine Learning. McGraw Hill, 1997.
14. Raman, V. and Hellerstein, J.M. Potter's Wheel: An Interactive Data Cleaning System. In The

VLDB Journal, pp. 381-390, 2001.
15. Russell, S., Norvig, P., Artificial Intelligence: A Modern Approach. Prentice Hall, 1994.
16. Welch, G., Bishop, G., An Introduction to the Kalman Filter. Technical Report No. TR 95-041,

Department of Computer Science, University of North Carolina, March 2003.
17. Welch, G., Riley, C., Bodenheimer, T., Parker, E., Carpenter, J., Kalman Filter Learning Tool.

http://www.cs.unc.edu/~welch/kalman/kftool/index.html

