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1 Time Series Concepts and Challenges
The linear regression model (and most other models) assume that observations
are independent and identically distributed. This may not be true in time series,
because current values often depend on what happened in previous periods.
This may cause series to seem to have trends ("autocorrelation masquerading
as trend") and will make standard errors wrong.
A time series is a stochastic process (a sequence of random variables). This

allows us to define the following values:

• Mean: E(Xt) = µXt

• Variance: V ar(Xt) = E((Xt − µXt
)2)

• Standard Deviation: StdDev(Xt) =
p
V ar(Xt)

• Covariance: Cov(Xt, Ys) = E((Xt − µXt
)(Ys − µYs))

• Autocovariance: The covariance between Xt and Xt−k

• Correlation: Corr(Xt, Ys) =
Cov(Xt,Ys)√

V ar(Xt)V ar(Ys)
, and −1 ≤ Corr(Xt, Ys) ≤

1

• Autocorrelation: The correlation between Xt and Xt−k. We call this
number ρk.

If the correlation between two variables is zero, then the value of one has no
effect on a linear prediction of the other. Autocorrelation means that past values
of Xt can be used to predict future values. Even if the autocorrelation is zero,
they may be related non-linearly, and thus are not necessarily independent.

Definition 1 A time series is weak (covariance) stationary if the mean and
variance are constant over time, and the autocovariance, Cov(Xt,Xt−k), de-
pends only on the lag, k. A time series is wideset stationary if the distribution
of (Xt,Xt−k1 ,Xt−k2 , ...,Xt−kn) does not depend on anything except (k1, ..., kn).

Definition 2 A time series, εt, is white noise if E(εt) = 0 for all t and
Corr(εt, εs) = 0 for all t 6= s. (It need not be normally distributed.) These
are sometimes called the shocks or innovations in a time series, and they might
not be observed directly.
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1.1 The basics of forecasting

Let h be the lead time, which is how far ahead the forecast is for. Let n be the
current period, so that all values from period 0 to n are observed. That is, we
know X0, ...,Xn; this is called the information set, Ψn. A trace forecast is a
forecast for leads h = 1, ...H. A point forecast is a single number for eachXn+h.
An interval forecast provides a likely range for each Xn+h. Event forecasting
estimates the probability of certain future events. A conditional forecasting
approach takes the past as fixed and considers the future as random. Using the
known information from the past helps to predict the future better.
Let fn,h be the forecast of Xn+h based on the information set, Ψn. Then

en,h = Xn+h − fn,h is the forecast error. (This is a random variable.)
A cost function gives the cost of a wrong forecast, which may vary depending

on how wrong the forecast is or whether it is above or below the realization.
The cost function may affect the choice of intervals and forecasts. The simplest
(and usually implicit) cost function is the squared error cost function, where
the cost is the square of the distance between the forecast and the realization.
This means that we want to minimize E(e2n,h) with E(en,h) = 0.

1.2 Transformations of Time Series

Let Xt be a time series. Then, Yt = ∆Xt = Xt −Xt−1 is the first difference of
the time series. This removes linear trends and, sometimes, non-stationarity.
We recover a time series from its difference by:

Xt = Zt − Zt−1
Zt = Xt + Zt−1

= Xt +Xt−1 + ...Xt−k−1 + Zt−k

=
∞X
k=0

Xt−k

This is integration. Note that two time series that differ by a constant can have
the same first difference.
In general, the dth difference is of the formXt = Zt−dZt−1+...+(−1)k

¡
d
k

¢
Zt−k+

...+ (−1)dZt−d =
Pd

k=0(−1)k
¡
d
k

¢
Zt−k.

If the volatility of Xt seems to depend on the level of Xt, then it can be
helpful to take the natural log of Xt before further analysis. This is particularly
necessary for price series. The first difference of the natural log of a time series
is approximately the return: Xt−Xt−1

Xt−1
≈ ln(Xt)− ln(Xt−1).
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2 ARIMA

2.1 Moving Average (MA)

2.1.1 The MA(1) Model

This model is given by
Xt = εt + βεt−1

That is, the observed value is the weighted average of the last two shocks. With
this model, we find:

E(Xt) = E(εt + βεt−1) = 0 + β ∗ 0 = 0
V ar(Xt) = V ar(εt + βεt−1) = V ar(εt) + β2V ar(εt−1) + Cov(εt, εt−1)

= (1 + β2)V ar(εt)

Cov(Xt,Xt−1) = Cov(εt + βεt−1, εt−1 + βεt−2)
= Cov(εt, εt−1) + βCov(εt−1, εt−1) + βCov(εt, εt−2) + β2Cov(εt−1, εt−2)
= βCov(εt−1, εt−1) = βV ar(εt)

Corr(Xt,Xt−1) =
Cov(Xt,Xt−1)p

V ar(Xt)V ar(Xt−1)
=

βV ar(εt)

(1 + β2)V ar(εt)
=

β

1 + β2

Cov(Xt,Xt−k) = Corr(Xt,Xt−k) = 0 if k > 1

(This last result occurs because they have no shocks in common.) Thus the
process has a very short memory.
The series is positively correlated if Corr(Xt,Xt−1) > 0. Negatively cor-

related series are rare. If your series is negatively correlated, you may have
overdifferenced. For example, if Xt is white noise, then ∆Xt = εt − εt−1 is
MA(1) with β = −1.
Note that the theoretical forecastability, R2 = β2

(1+β2)2
, is at most 0.5. Thus,

MA(1) series are not very forecastable.
To forecast in MA(1) series, one step ahead, if β is known:

1. Note that xn+1 = εn+1 + βεn.

2. The best forecast of εn+1 is its expected value, 0.

3. Thus,we forecast: fn,1 = βεn.

However, we generally do not observe εn directly. Instead, we may estimate
it from previous values:

1. Forecast f0,1 = 0.

2. Set bε0 = x1 − f0,1 = x1.

3. In general, set bεk = xk − fk−1,1, and then use this to forecast fk,1 = β bεk.
4. Continue until you have an estimate, cεn.
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2.1.2 MA(q) Models

The MA(q) model is given by Xt = εt + β1εt−1 + β2εt−2 + ... + βqεt−q. This
model has autocorrelation from lags 1 to q, and no autocorrelation after that.
This model will be stationary for any set of βi’s.
The forecast for this model is: fn,k = βkεn+ ...+βqεn+k−q, since we include

all the known shocks in the forecast and set all future shocks to 0. If the
lead time, k, is greater than q, then the forecast is 0. The forecast error is
en,k = Xn+k − fn,k = εn+k + β1εn+k−1 + ... + βk−1εn+1. The variance of
this forecast error is V ar(en,k) = V ar(εn+k + β1εn+k−1 + ... + βk−1εn+1) =
V ar(εt)(1 + β21 + ... + β2k−1). Note that the forecast error variance increases
with the lead time. After q periods, the forecast error is simply the variance of
Xt.
AnMA(q) model is invertible if we can write εt in terms of Xt,Xt−1, .... In

the case of the MA(1), this is simply:

εt = Xt − βεt−1
= Xt − β(Xt−1 − βεt−1)
= ...

=
∞X
k=0

(−β)kXt−k

This will converge only if |β| < 1. More generally, an MA(q) model, Xt =
εt + β1εt−1 + ... + βqεt−q is invertible if the polynomial zq + β1z

q−1 + ... +
βq−1z+ βq = 0 has all of its roots inside the unit circle. (Generally, a model is
not invertible if it has been over-differenced.)

2.2 Autoregressive Models

2.2.1 AR(1) Model

This model is given by
Xt = αXt−1 + εt

Note that, if the white noise is independent (not just uncorrelated), then this is
a Markov process, and E(Xt|Xt−1, ...,Xt−k) = E(Xt|Xt−1).
We may write Xt in terms of past shocks, as anMA(∞) model, and use this
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to compute the variance:

Xt = εt + α(εt−1 +Xt−2)
= ...

=
N−1X
j=0

αjεt−j + αNXt−N

=
∞X
j=0

αjεt−j

V ar(Xt) = V ar(
∞X
j=0

αjεt−j)

=
∞X
j=0

α2jV ar(εt)

=
V ar(εt)

1− α2j

If |α| = 1, then this model is a random walk. Its variance is infinite. If
|α| > 1, then the model is explosive. In most cases that we consider, |α| < 1,
and the process is zero-mean-reverting. That is, E(Xn+1|Xn) = αXn, which is
closer to 0. The closer |α| is to 0, the faster the mean reversion happens. If
|α| < 1, then the autocorrelation is Corr(Xt,Xt−k) = αk. Thus, the current
observation provides some information about every future value.
To forecast an AR(1) model, we set all future errors to 0, and use the equa-

tions to find:

fn,1 = αXn +E(εn+1) = αXn

fn,2 = αE(Xn+1) +E(εn+2) = α2Xn

fn,h = αhXn

As h→ 0, fn,h → 0 = E(Xn+h).

2.2.2 AR(p) Model

The AR(p) model is given by

Xt = α1Xt−1 + α2Xt−2 + ...+ αpXt−p + εt

The autocorrelations are more complex, but decrease exponentially fast to 0 if
the process is stationary.
An AR(p) model is stationary if and only if the largest (in modulus) root, θ,

of zp = α1z
p−1+ ...+αp−1z+αp, has modulus less than one. (That is, all roots

have modulus less than one — all roots lie within the unit circle.) If any root
lies outside the unit circle, then the process is explosive. If at least one root
is on the unit circle and all other roots are inside, then the process has a unit
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root; that is, the differences (first, second, or more, depending on the number
of unit roots) are stationary but the process itself is not mean-reverting. In the
AR(1) case, this simply tests whether |α| is greater than, less than, or equal to
one.

2.3 The Box-Jenkins ARMA(p, q) model

The ARMA(p, q) model is given by:

Xt = α1Xt−1 + ...+ αpXt−p + εt + β1εt−1 + ...+ βqεt−q

Note that an AR(p) model is an ARMA(p, 0) model and an MA(q) model is
an ARMA(0, q) model. Note that some non-trivial-looking ARMA models
are really white noise: For example, Xt = −0.5Xt−1 + εt − 0.5εt−1 reduces to
Xt = εt.
To forecast using these models:

1. Forecast all future errors as 0.

2. Estimate past εt by bεt = Xt − ft−1,1.

3. Plug these values into the equation along with the observed Xt’s.

The sum of two time series that are ARMA’s is also an ARMA. In particular,
the sum of an ARMA(p1, q1) and an ARMA(p2, q2) is ARMA(p1+p2,max{p1+
q2, p2 + q1}).

2.4 The full Box-Jenkins ARIMA(p, d, q) model

An ARIMA(p, d, q) model is a model where the dth difference is a stationary,
invertible ARMA(p, q) model. In this case, we say that the time series is
integrated of order d. An ARMA(p, q) model is an ARIMA(p, 0, q) model.
Some special ARIMA models include:

• White noise: ARIMA(0, 0, 0)

• Random walk: ARIMA(0, 1, 0)

Any ARIMA model can also include a constant term. If an ARIMA(p, 0, q)
model has a constant term, then the series no longer necessarily has a zero mean.
The constant is not the new mean, however. For example, in an AR(1) model
with a constant:

E(Xt) = αE(Xt−1) + c = αE(Xt) + c

E(Xt) =
c

1− α

If an ARIMA(p, 1, q) model has a constant term, then it has a linear trend.
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2.4.1 Integrated Moving Averages and Exponential Smoothing

The exponential smoothing (exponentially weighted moving average) model as-
sumes that each period has a local mean, Xt−1. The next observation follows:

Xt = Xt−1 + εt

Since εt is white noise, we forecast fn,h = Xn, for any lead h. The local mean
is updated according to:

Xt = αXt + (1− α)Xt−1
= ...

=
∞X
k=0

α(1− α)kXt−k

This shows that the local mean is a moving weighted average of previous obser-
vations, and that the weights decrease exponentially. This forecasting method
is equivalent to the forecasting method for the ARIMA(0, 1, 1), with

Xt −Xt−1 = εt − (1− α)εt−1

Since the difference must be invertible, −1 ≤ (1− α) ≤ 1, and 0 ≤ α ≤ 2.
Double exponential smoothing and Winter’s method are more complex forms

of this, allowing for separate parameters for the trend, level, and seasonality.

2.5 Model Identification

Model identification consists of choosing p, d, and q. First, choose d to make the
time series stationary. Then, look at autocorrelations, partial autocorrelations,
and other tests to choose p and q. In general, the most parsimonious model
that seems to fit the data is the best option; more parameters lead to overfitting
and bad forecasts, as well as unstable parameter estimates and multicollinearity.

2.5.1 Autocorrelation functions and partial autocorrelation func-
tions

Recall that the autocorrelation function (ACF) for a stationary process is given
by ρk =

Cov(Xt,Xt−k)
V ar(Xt)

. The autocorrelation function, ρk, for an MA(q) process
is zero when k > q. The autocorrelation function for an AR(p) process dies
down exponentially fast, but is technically non-zero for all k. Thus, if a graph of
the autocorrelation function cuts off after a certain lag, q, the model is MA(q).
The partial autocorrelation at lag k describes the relationship between Xt

and Xt−k once the effects of Xt−1, ...,Xt−k+1 are removed. (This is done by
regressing Xt on Xt−1, ...,Xt−k+1and looking at the correlation between the
residuals and Xt−k. Note that the first partial autocorrelation equals the
first autocorrelation.) The partial autocorrelation function (PACF) for an
AR(p) model cuts off after lag p, but the PACF for an MA(q) model dies down
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exponentially. Thus, if a graph of the partial autocorrelation function cuts off
after a certain lag, p, the model is AR(p).
The ACF and PACF for an ARMA(p, q) model (with p > 0 and q > 0) both

die down exponentially. Thus, the ACF and PACF only identify pure AR and
MA models.
Since we only know the realizations of the time series, we can only plot the

sample ACF and PACF. Because these are only sample estimates, they will not
be exactly zero, even after they theoretically should cut off. Instead, one should
compare the sample ACF and PACF to the standard errors to determine if they
are really zero. The simplest hypothesis test is whether the autocorrelation or
partial autocorrelation is greater (in absolute value) than 2√

n
, where n is the

sample size. A more correct way adjusts the standard errors for the kth element
to assume that the model isMA(k−1) or AR(k−1); this increases the standard
error as k increases.
Note that both the ACF and the PACF may seem to cut off. That is an

artifact of the data. Just because the ACF stops being significant at lag q
and the PACF stops being significant at lag p does NOT mean that this is an
ARMA(p, q) series!

2.5.2 The (Corrected) Akaike Information Criterion

The Akaike Information Criterion (AIC) measures the "distance" of an esti-
mated model from the "truth" (assuming that the truth is not in the set of
possible models). This criterion decreases as the fit improves and increases
with the number of parameters, which rewards parsimony. The standard ver-
sion of the AIC is:

AIC(p, q) = −2n log(SS
n
) + 2(p+ q)

where n is the number of observations (if the observations have been differenced,
it is the sample size after differencing, that is, n−d) and SS is the residual sum
of squares from the model. If a constant term is also being estimated, then
p+ q should be replaced by p+ q+1. However, the AIC may sometimes choose
models with very large numbers of parameters. The corrected AIC (which fixes
this) is:

AICc(p, q) = n log(
SS

n
) + 2(p+ q + 1)

n

n− p− q − 2
Again, if a constant term is also being estimated, then p+ q should be replaced
by p+ q + 1. In the case of a random walk, we many compute

SS =
X
(Xt −Xt−1)2

if the model has no constant, and

SS =
X
(Xt −Xt−1 − (Xt −Xt−1))2
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Another test statistic (which assumes that the truth is one of the possible
models) is the Bayesian Information Criterion (BIC):

BIC(p, q) = n log(
SS

n
) + (p+ q) logn

Note that all of these test statistics assume that d is determined beforehand;
they only help determine p and q.

2.6 Estimating Parameters

The most common and general approach to estimating parameters is optimiza-
tion using a computer. Programs generally choose parameters to minimize
squared forecast errors or use maximum likelihood estimates. Certain cases
can be estimated by hand. (Since this is a different method, these estimates
may not agree with the parameters found by optimization.)

2.6.1 Yule-Walker System of Equations (AR models)

In the AR(1) model, the first autocorrelation is equal to the parameter, α.
This is a simple estimate of the parameter. More generally, the Yule-Walker
equations use the relationships among the autocorrelations to estimate the pa-
rameters:

ρk = α1ρk−1 + α2ρk−2 + ...+ αpρk−p
Substituting rj for ρj , we find the Yule-Walker equations:

rk = cα1rk−1 +cα2rk−2 + ...+cαprk−p
and then solve for the bαi.
2.6.2 MA(1) Estimation

Recall that ρ1 =
β

1+β2
. We may use this fact to solve for β in terms of ρ1.

Solving and subsituting the sample autocorrelation r1, we find the estimates:

bβ = 1±
p
1− 4r21
2r1

In theory, since |ρ1| ≤ 0.5, this always has real solutions. However, sample
autocorrelations might be greater than 0.5, which can be a problem. Assuming
that the solutions are real, only one will lead to an invertible model; that is the
solution with absolute value less than (or equal to) one.

2.7 Checking the model

Once the model has been estimated, there should be no structure in the residuals
and the model should reflect known properties of the data.
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2.7.1 Ljung-Box-Pierce Test

This test sums the squares of the autocorrelations, to test the null hypothesis
that all of them are zero. This can be done over any number of autocorrelations;
testing only the first few makes finding structure in those more likely, but may
miss structure in residuals further out. If the Ljung-Box-Pierce test rejects the
null hypothesis, then the model might require more lags, require that the data
be used in logs, suggest seasonality, or reflect other factors.

2.7.2 Implied Forecasts

Plot both the forecasts and the forecast errors from the model, either at the
end of the data or beginning in the middle of the series. If the forecast seems
unreasonable or if the forecast intervals seem too wide or narrow, the model may
need to be changed. In particular, the forecast intervals for any stationary time
series will approach a constant, since the variance is constant into the future.
If this seems unlikely, the model should not be stationary.

2.8 Box-Jenkins Model-Building

The following method is used to build an ARIMA model:

1. Transformation and pre-processing: Detrend, seasonally adjust, or take
the logarithm of the series, if necessary. These parts of the series should
be added back in after forecasting with ARMA to predict the level of the
series better.

2. Identification: Choose p, d, and q.

3. Estimation: Estimate α1, ..., αp, β1, ..., βq.

4. Diagnostic checking: Ensure that the residuals are white noise. Make
sure that the model is parsimonious. If this is not true, return to the
identification step.

Note that ARMA models are only an approximation of the truth. The fact
that they are not true implies an unmeasurable forecast error.

2.9 Prediction Intervals

To estimate the variance of forecasts, we use the MA(∞) representation of a
time series:

Xt = εt + c1εt−1 + c2εt−2 + ...

This representation exists for any time series. However, the sequence {ck}
might not converge to zero for non-stationary series. We may then write future
values as:

Xn+h = (εn+h + c1εn+h−1 + ...+ ch−1εn+1) + (chεn + ch+1εn−1 + ...)

= FutureShocks+ PastShocks
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Since the best forecast uses the actual values of all past and present shocks and
sets all future shocks to zero (their expected value), we have:

fn,h = chεn + ch+1εn−1 + ...

en,h = εn+h + c1εn+h−1 + ...+ ch−1εn+1
V ar(en,h) = (1 + c21 + ...+ c2h−1)V ar(εt)

If we assume that the shocks are independent and normally distributed, then
our 95% prediction interval is:

fn,h ± 1.96
q
V ar(en,h)

This shows us that the width of the prediction interval depends on the volatility
of the shocks, the lead time, the model and the parameters, and the error rate
(95%) in this case. This is a prediction interval conditional on all of the shocks
observed through this period.
All of this assumes that the model and its parameters are known, not esti-

mated, and that errors are normally distributed. If any of these assumptions
are not true, then the prediction interval may be incorrect (and should probably
be wider).

3 Testing for Time Series Properties

3.1 Testing for Autocorrelation: Durbin-Watson

Recall that in any time series regression, autocorrelation in the errors will mean
that the true standard errors are larger than the estimated standard errors.
The Durbin-Watson test checks for this autocorrelation.
First, fit the model using ordinary least squares regression and get the residu-

als, {et}. To test for autocorrelation, we have the Durbin-Watson test statistic:

d =

Pn
t=2(et − et−1)2Pn

t=1 e
2
t

=

Pn
t=2(e

2
t + e2t−1 − 2etet−1)Pn

t=1 e
2
t

≈ 1 + 1− 2
Pn

t=2 etet−1P
e2t

≈ 2− 2r1 = 2(1− r1)

where r1 is the sample first autocorrelation. Under the null hypothesis. ρ1 = 0
and d = 2; if ρ1 > 0 then d < 2. Informally, values of dmuch smaller than 2 (0 is
a lower bound) indicate autocorrelation. However, cutoffs and p-values are hard
to construct. In addition, this test will not catch if higher autocorrelations are
non-zero if the first autocorrelation is 0. Finally, the test can be inconclusive,
leaving one to have to decide whether to correct for autocorrelation.
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3.2 Testing for Random Walks and Unit Roots

Given an AR(p) model, xt = α1xt−1 + ... + αpxt−p + εt, {xt} has a unit root
if the polynomial zp = α1z

p−1 + ... + αp−1z + αp has a root on the unit circle
(and none outside it). In particular, any ARIMA(p, 1, q) process has a unit
root and therefore is I(1), and any ARIMA(p, 2, q) process has two unit roots
and is I(2). We test for unit roots under the null hypothesis of a unit root,
using the Dickey-Fuller unit root test.
The null hypothesis is that xt = xt−1 + εt and the alternative hypothesis is

that xt = c + ρxt−1 + εt, with |ρ| < 1. The test statistic is simply the t-test
from the regression of xt on a constant and xt−1:

bτµ = bρ− 1
se(bρ)

However, under the null hypothesis, bτµ does not have a standard normal distri-
bution. Instead, one must use Dickey-Fuller-specific cutoff values (for example,
−2.86 instead of -1.645). An augmented Dickey-Fuller test is used to distin-
guish between ARIMA(p, 1, 0) and ARIMA(p+1, 0, 0). The same test statistic
(from a regression involving more lagged values) but different cutoff values are
used in this case.
To test for a random walk with drift, the null hypothesis is xt = x+xt−1+εt,

and the alternative hypothesis is xt = α0 + α1t + yt, where yt = ρyt−1 + εt (a
trend-stationary process). In this case, we regress xt on a constant, a trend,
and xt−1, and test whether the coefficient on xt−1 is 1. That is, we have a test
statistic bτ τ = bρ−1

se(bρ) , which again has a non-normal distribution.
3.2.1 Testing for Cointegration

Definition 3 Suppose that two series, {x1,t} and {x2,t} are I(1), but the series
{x1,t − βx2,t} is I(0). Then we say that {x1,t} and {x2,t} are cointegrated, or
that there is a stationary equilibrium.

If we know or hypothesize a specific value for β, then we may test for
cointegration by testing that the two original series have unit roots but that
{x1,t − βx2,t} does not, using the Dickey-Fuller test.

4 Long Memory Models and ARFIMA
In ARIMA models, the d term is always an integer. In ARFIMA models, we
allow it to be a fraction (usually between 0 and 1). This means that models
will have more memory than stationary ARMA models but less memory than
ARIMA(p, 1, q) models.

Definition 4 Let B be the backshift (lag) operator, so that Bxt = xt−1. Then
we may represent the difference operator as ∆ = 1 − B. We define the dth

difference as ∆d = (1− B)d =
P∞

k=0(−1)k
¡
d
k

¢
Bk, where

¡
d
k

¢
= d(d−1)...(d−k+1)

k! .
This holds for both integer and fractional d.
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An ARFIMA model is one in which the number of differences is fractional.
For example, an ARFIMA(0, d, 0) has ∆dxt = εt. This gives us an MA(∞)
representation of:

xt = ∆−d(∆xt) = ∆−dεt = (1−B)−dεt

= εt + (−1)
µ−d
1

¶
εt−1 + (−1)2

µ−d
2

¶
εt−2 + ...

= εt + dεt−1 +
d(d− 1)

2
εt−2 +

d(d− 1)(d− 2)
6

εt−2 + ...

The coefficients on this MA model die down more slowly than the exponential
rate we have previously seen. This model is stationary and invertible if −12 <
d < 1

2 . Similarly, the AR(∞) representation is:

∆dxt = εt

xt −
µ
d

1

¶
xt−1 +

µ
d

2

¶
xt−2 −

µ
d

3

¶
xt−3 + ... = εt

xt = εt +

µ
d

1

¶
xt−1 −

µ
d

2

¶
xt−2 +

µ
d

3

¶
xt−3 − ...

= εt + dxt−1 − d(d− 1)
2

xt−2 +
d(d− 1)(d− 2)

6
xt−3 − ...

Again, the coefficients decay more slowly than an exponential decay.
In an ARFIMA model with |d| < 0.5, the autocorrelations have a power

law decay: ρk ∝ k2d−1. This is a slower decay than for ARMA models, since
k2d−1 decays more slowly than αk. Because the autocorrelations decay more
slowly, the standard error of sample means (and other such statistics) decay
more slowly as well. In particular, V ar(Xn) ∝ n2d−1 instead of V ar(Xn) ∝ 1

n
when d = 0. Thus, getting precise estimates is (even) harder.

5 Non-Linear Models
Definition 5 A stationary time series is linear if it can be represented as an
MA(∞) model with independent shocks, {et}. That is, Xt = et + a1et−1 +
a2et−2 + ....

Definition 6 The best linear forecast (in terms of mean squared errror), fLinn,h is
the forecast such that fLinn,h is a linear combination of xn, xn−1, ... and the forecast
error xn+h − fLinn,h is uncorrelated with all linear combinations of xn, xn−1, ....

Definition 7 The optimal forecast (in terms of mean squared error) is simply
the conditional expectation, E(xn+h|xn, xn−1, ...).
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In all of these cases, notice that conditioning on all previous values of {xt}
is equivalent to conditioning on all previous values of {εt}, since one may be
derived from the other in a completely specified model.
Non-linear models improve forecasts when uncorrelated errors are not inde-

pendent. That is, errors that cannot be predicted linearly may be able to be
predicted in other ways. If the shocks are independent (that is, strict white
noise), then the linear model is the best model, and the optimal linear forecast is
also the optimal forecast. Note that all multivariate normal variables that are
uncorrelated are also independent. Thus, any model with multivariate normal
shocks is linear and any non-linear model has shocks that are not multivariate
normal.

Definition 8 A white noise process {εt} which satisfies E(εn+1|εn, εn−1) = 0
is called a martingale difference.

Definition 9 A process {xt} is a martingale if, for all n and h, E(xn+h|xn, xn−1, ...) =
0. The differences in this process are martingale differences.

The optimal linear forecast is the optimal forecast if and only if the shocks
are a martigale difference.

5.1 Bilinear models

Bilinear models are time series in which:

Xt + a1Xt−1 + ...+ apXt−p = et + b1et−1 + ...+ bqet−q +
IX
i=1

JX
j=1

cijet−iXt−j

where {et} is independent white noise. Note that this is an ARMA model with
the additional terms in

PI
i=1

PJ
j=1 cijet−iXt−j . To test whether a series is

non-linear, one may estimate this model and then test whether all the cij are
zero.

5.2 Threshold Autoregressive Models

A threshold autoregressive model is given by:

Xt =

(
a(1)Xt−1 + ε

(1)
t Xt−1 < d

a(2)Xt−1 + ε
(2)
t Xt−1 ≥ d

)

where d is the threshold value. Such a model can have "limit-cycles" if the
model cycles between the regimes over the forecast period.
This can be generalized to multiple states. In the limit, this can become:

Xt = λ(Xt−1) + εt

where λ is a non-linear function. λ can be estimated with smoothing technology.
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5.3 Chaos Theory

Suppose that Xt = f(Xt−1), where f is a non-stochastic mapping. Then paths
are given by {X0, f(X0), f(f(X0)), ...}. These paths may be periodic, explosive,
or chaotic. If f(x) = x, then x is a fixed point. In the chaotic case, these
paths can appear to be a stochastic time series, even though the path is entirely
predictable.

6 Volatility and (G)ARCH Models
In general, it is possible that the variance (volatility) of a series is not constant
over time. It may vary because of some underlying process or because of
the effect of previous observations (as in ARCH models). The simplest non-
parametric measure of volatility is the sum of squared returns at a high frequency
over a short period. This is called the realized volatility. Plotting this (or its
log) can show whether volatility seems to be constant or changing over time.

6.1 ARCH(q) Model

The Autoregressive Conditional Heteroskedasticity model assumes that the vari-
ance of the shocks changes over time, conditional on the previous shocks. In
particular, we have shocks, {εt}, such that:

εt|Ψt−1˜Normal(0, ht)

ht = ω +

qX
i=1

αiε
2
t−i

For stationarity and no possibility of having the series become constant at zero,
we assume that ω > 0, αi ≥ 0, and

Pq
i=1 αi < 1. Then, ht ≥ ω > 0 for all t.

The conditional mean and variance are E(εt|Ψt−1) = 0 and V ar(εt|Ψt−1) = ht.
The shocks are zero mean white noise, because their unconditional mean and
variance are constant at E(εt) = 0 and V ar(εt) =

ω
1−(Pq

i=1 αi)
. In addition,

this is a martingale difference, but the shocks are not independent, because we
may forecast the volatility. In this model, volatility can be quite persistent;
one large shock increases the probability of a large shock in the next period as
well. Since εt is a mixture of normal distributions, it is not Gaussian and has
very heavy tails (how heavy they are depends on the αi’s).
If we let ηt = ε2t − ht, then {ηt} is white noise and ε2t = ω + α1ε

2
t−1 + ... +

αqε
2
t−q + ηt is an AR(q) process. Note that E(ε2t |Ψt−1) = ht, and E(ht) =

E(E(ε2t |Ψt−1)) = E(ε2t ) = V ar(εt) =
ω

1−(Pq
i=1 αi)

.
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6.2 The ARIMA(k, l) Model with ARCH(q) Errors

Suppose that the process {xt} obeys the model:
xt = a1xt−1 + ...+ akxt−k + b1εt−1 + ...+ blεt−l + εt

εt|Ψt−1˜Normal(0, ht)

ht = ω +

qX
i=1

αiε
2
t−i

Then {xt} is ARMA(k, l) with ARCH(q) errors. We compute point forecasts
just as we did before (since the shocks are martingale differences, these are still
the optimal forecasts). However, the width of our forecast intervals change.
Since εn+1|Ψn˜Normal(0, hn+1), the correct width is zα2

√
hn, where zα2 is the

correct critical value in the normal distribution. Thus, the width depends on
the recent volatility of the shocks (by way of the current variance).
However, we cannot estimate this more than one step ahead, because the

two forecast errors come from normal distributions with different variances (and
the variance of the second distribution depends on the first error). Simulation
may help solve this problem.

6.2.1 Choosing the order of the ARCH Model

Since {εt} is white noise, the ACF and PACF will be identically zero. However,
{ε2t} is an AR(q) process. Thus, the ACF of {ε2t} should die down, while the
PACF should cut off after the qth lag. In addition, the AICC can be used to
choose a model. The formula in this case is:

AICC = −2 log likelihood+ 2(q + 1) N

N − q − 2
for a model that is zero mean white noise. (Add one to q if a constant term is
being estimated as well.)

6.2.2 Combining ARCH and ARIMA

The simplest way to estimate an ARIMA+ARCH model is to estimate the
ARIMA model and then use the residuals from that in the ARCH estimation.
However, the ARIMA model assumes that the errors are unconditionally

normally distributed, which is not true in the ARCH model. This means
that the standard errors of the ACF and PACF are wrong. In particular, the
standard errors for an ARCH(1) for the kth autocorrelation should be

se(rk) =

s
1

n
(1 +

2αk1
1− 3α1 )

Notice that this is not defined for α1 ≥ 1√
3
; in that case, the tails are too fat for

the variance of rk to exist. In addition, the AICC is not exactly correct (but
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should be close). This is only a problem in choosing the ARMA model; the
AICC, ACF and PACF are valid for the squared errors in the ARCH model.
Ideally, one would estimate both the ARIMA and the ARCH parameters

jointly. However, that is more complicated.

6.3 Extensions of the ARCHModel and other Conditional
Heteroskedasticity Models

6.3.1 I-ARCH

In the I-ARCH model, we model:

ht = ω + ε2t−1

In this case, the unconditional variance is infinite and therefore the process
is non-stationary. {ε2t} is a random walk with drift, so that the forecasted
volatility is not mean reverting and tends toward infinity.

6.3.2 ARCH-T

Sometimes, even with an ARCH correction, the (corrected) errors have tails
that are too heavy. We try to correct this by assuming that the errors have
a t-distribution instead of a normal distribution. (The number of degrees of
freedom for the t-distribution must be specified, though.) In this case,

εt
ht
|Ψt−1˜tk

instead of εt
ht
|Ψt−1˜Normal(0, 1).

6.3.3 GARCH Models

The GARCH model allows for more persistent volatility than a parsimonious
ARCH model. The most common GARCH model is GARCH(1, 1), which is
defined by:

εt|Ψt−1˜Normal(0, ht)

ht = ω + αε2t−1 + βht−1
α+ β < 1

In this case, ε2t is ARMA(1, 1), with the AR term equal to α+ β and the MA
term equal to β. If α + β = 1, then this is an I-GARCH model. Notice that
V ar(εt) =

ω
1−α−β , and ht is an exponentially decaying moving average of {ε2t}.

Some other models also relate predicted volatility (bσ2T ) to squared returns
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(R2T ):

bσ2T = (1− θ)
∞X
i=1

θi−1R2T+1−i

bσ2T = α0 +

pX
i=1

αiR
2
T+1−i

bσ2T = α0 +

pX
i=1

αiR
2
T+1−i +

qX
i=1

βibσ2T−i
= δ0 +

∞X
i=1

δiR
2
T+1−i

6.3.4 Stochastic Volatility Models

Suppose that et are independent shocks and {ht} is a latent, NOT observation
driven process. Then we model returns as

rt = exp(ht)et

However, using this assumes that the process {ht} is known. Since {ht} can be
any process, it can be adapted to any purpose (such as long memory).

6.3.5 Long Memory Volatility (FIGARCH)

For longer memory of volatility, one can use fractionally integrated GARCH.
In this case,

εt|Ψt−1˜N(0, ht)
ht = ω + α1ε

2
t−1 + α2ε

2
t−2 + ...

where the αi decay as the AR(∞) coefficients of an ARFIMA(1, d, 0).

6.4 Aggregating Risk

The total risk over a group of time periods differs from the risk over a single time
period. If observations are independent and identically distributed, then the
variance over k periods is k times the variance in one period, since V ar(r1+ ...+
rk) = V ar(r1)+...+V ar(rk) = k∗V ar(r). However, under the GARCH model,
the volatility is not constant and the volatility one period affects volatility the
next period. If the returns, {εt} are martingale differences, then V ar(εn+1 +

... + εn+h|Ψn) =
Ph

i=1 V ar(εn+i|Ψn) = E(ε2n+1|Ψn) + ... + E(ε2n+h|Ψn). As
h → ∞, E(ε2n+h|Ψn) approaches the unconditional variance. Because of this
tendency toward the unconditional variance, conditional heteroskedasticity can
be harder to detect if measurements are taken farther apart.
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7 Seasonality
A seasonal effect is one that occurs identically at certain intervals (such as
months or days of the week). One can often detect seasonality in evenly-spaced
spikes in the ACF or PACF of the level or the difference.
The simplest method to deal with seasonality is to subtract out monthly

averages from each observation. However, this assumes that there is no change
in seasonal patterns over time. The Census has procedures called X-11 and
X-12 that are complex but built into SAS for seasonal adjustment.
Exponential smoothing can be used to account for slowly changing seasonal

factors. In this, we define the current monthly effect as a weighted average of
the previous calculated effect and the current observation. That is,

Effectt = α(Effectt−1) + (1− α)xt

Alternatively, we may use SARIMA. We define seasonal differences as
y
(M)
t = xt − xt−M , where M is the period (such as 12 for monthly data).
This should remove any seasonal components that repeat exactly. However,
this leads to a seasonal difference of the stationary parts, so autocorrelations as
lag M might be created. For example, if S(t) is a seasonal component and zt
is the non-seasonal component:

y
(M)
t = (S(t) + zt)− (S(t−M) + zt−M )

= zt − zt−M

A more complex form is Seasonal Multiplicative ARIMA, described by (p, d, q)×
(P,D,Q)S . In this model, the values for a fixed period (such as Janurary) follow
an ARIMA(P,D,Q) model; the model is the same for every different period.
The shocks across months follow an ARIMA(p, d, q) model. This is a more
parsimonious model than just including M or 2M lags.
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