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1 Preliminaries

1.1 A Review of Trigonometry and Complex Numbers

Definition Let Xt = R cos(ωt+φ). Then, φ is the phase of the wave (where it
is at time 0), the period of the wave is 2π/ω and the frequency is ω/2π, which
is the reciprocal of the period.

Some facts about sines and cosines:

• cos(A+B) = cos(A) cos(B)− sin(A) sin(B)

• sin(A+B) = sin(A) cos(B) + cos(A) sin(B)

• Cosine is an even function: cos(−θ) = cos(θ)

• Sine is an odd function: sin(−θ) = − sin(θ)

• cos(ωt− π/2) = sin(ωt)

• R cos(ωt + φ) = R sin(φ) cos(ωt) + R cos(φ) sin(ωt), and any wave form
can be written as a linear combination of sines and cosines. Similarly,
A sin(ωt) +B cos(ωt) can be converted to the form R cos(ωt+ φ).

According to Euler’s formula, exp(iω) = eiω = cos(ω) + i sin(ω). The con-
jugate of a complex number, z = A + Bi is z = A − Bi. In particular, the
conjugate of a complex exponential is eiω = e−iω. Also, multiplication of
complex exponentials is like the multiplication of normal exponentials, so that
exp(iω) exp(iλ) = exp(i(ω + λ)). This implies all of the trigonometric addition
rules.

1.2 Cumulative Distribution Functions and Probability Mea-
sures

Suppose F is a cumulative distribution function. Then we know that F is a non-
decreasing, right-continuous function with limx→−∞ F (x) = 0 and limx→∞ F (x) =
1. If F is continuous and differentiable, then the derivative is the corresponding
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probability measure. If F is a step function, then it is the cumulative distrib-
ution function of a discrete random variable. If F has jumps but is not a step
function, then it is a mixture of a discrete random variable and a continuous
random variable. A cumulative distribution function can be used to determine
the measure of sets.

Given a cumulative distribution function, F , the Lebesgue integral with
respect to F is

∫
g(x)dF (x). If F is differentiable with derivative f , then∫

g(x)dF (x) =
∫
g(x)f(x)dx. If F is a step function with jumps at the points

xi, then
∫
g(x)dF (x) =

∑
g(xi)µ({xi}). In general, the integral can be con-

structed using indicator functions to create simple functions that approximate
arbitrary functions.

The Lebesgue decomposition of a measure, µ is µ = µac + µd + µs, where
the µac is an absolutely continuous measure, µd is a discrete measure, and µs is
everything else (which will not come up in simple examples).

2 The Spectrum

Definition A time series {Xt}∞t=−∞ is weakly stationary if:

• E(Xt) = µ is finite and does not depend on t.

• V ar(Xt) = σ2 is finite and does not depend on t.

• Cov(Xt, Xt−u) depends only on |u|.

When it is not otherwise stated, we assume that {Xt} is a zero-mean process.

Definition Let {Xt} be a stationary, mean-zero time series. Then the theoret-
ical (population) autocovariance at lag r is cr = Cov(Xt, Xt−r) = E(XtXt−r).
The population autocorrelation at lag r is ρrE(XtXt−r)/E(X2

t ). Note that au-
tocorrelations and autocovariances are symmetric about 0.

Definition An infinite sequence, {br}∞t=−∞ is nonnegative definite (or positive
semidefinite) if for any sequence, {ak}∞t=−∞,

∑∞
r=−∞

∑∞
s=−∞ arbr−sas ≥ 0.

Theorem 2.1 The theoretical autocovariance sequence is nonnegative definite.
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Proof

0 ≤ V ar(
∞∑

r=−∞
arXt−r)

= E((
∞∑

r=−∞
arXt−r)2)

= E((
∞∑

r=−∞
arXt−r)(

∞∑
s=−∞

asXt−s))

=
∞∑

r=−∞

∞∑
s=−∞

arE(Xt−rXt−s)as

=
∞∑

r=−∞

∞∑
s=−∞

arcr−sas

Definition The spectral distribution function for a time series with theoreti-
cal autocovariance sequence, {cr}, is a non-decreasing, right-continuous spectral
distribution function, F (ω), defined on [−π, π] such that cr =

∫ π

−π
exp(irω)dF (ω).

If F is differentiable with derivative f(ω), then f(ω) is called the spectral density
or the spectrum, and we may write cr =

∫ π

−π
exp(irω)f(ω) dω.

Theorem 2.2 Herglotz’s Theorem For every nonnegative definite sequence,
{cr}, there exists such a non-decreasing, right-continuous spectral distribution
function, F (ω).

If a process has an exact cycle, then there is a jump in F (ω) at that frequency
(and the spectrum does not exist, or would seem to have an infinite peak at
that point), and a process that is the sum of countably many cycles would
have a spectral distribution function that is a step function. A “pseudo-cyclical
process” would have the mass of the spectrum centered around the approximate
cycle. The spectrum of a persistent process is concentrated around the low
frequencies and tends to slope downward.

If Xt and Yt are independent with spectra f(λ) and g(λ), then the spectrum
of Xt + Yt is f(λ) + g(λ).

Theorem 2.3 Bochner’s Theorem In all cases, cr =
∫
eiλrF (dλ). If there is a

spectral density, f(ω) = 1
2π

∑∞
r=−∞ cr exp(−irω).

In particular, V ar(Xt) = c0 =
∫ π

−π
f(ω) dω. Thus, dF (λ) = f(λ)dλ is the

contribution to the variance from the frequency λ.
The spectrum of white noise with variance σ2 is f(ω) = σ2

2π .
(Note that all of this holds for continuous time processes as well, except that

cr can have r ∈ R and all integrals have limits of (−∞,∞) instead of (−π, π).)
We may use the Lebesgue decomposition to decompose the spectrum into

discrete and continuous parts. There are corresponding decompositions for the
time series (into pure cycles and everything else) and the spectral measure.
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Theorem 2.4 Riemann-Lebsgue Lemma. If {Xt} has a spectral density, then
cr =

∫
eirλf(λ)dλ→ 0 as r →∞.

2.1 The spectral representation

Definition A process X(t) is strictly stationary if P (X(t1) ∈ S1, ..., X(tn) ∈
Sn) = P (X(t1 + τ) ∈ S1, ..., X(tn + τ) ∈ Sn) for all τ, t1, ..., tn.

Definition A vector space is an inner product space if there exists an inner
product, (x, y), such that:

• (x, y) = (y, x)

• (αx+ βy, z) = α(x, z) + β(y, z)

• (x, x) = 0 if x = 0 and (x, x) > 0 otherwise

The norm of an inner product space is
√

(x, x). If the vector space is a complete
metric space under this norm, then it is a Hilbert space.

Definition Let {x1, ..., xn} be an orthonormal basis of a complex vector space.
If z = β1x1 + ... + βnxn, with βi = (z, xi), then β1, ..., βn are the Fourier
coefficients of z.

Definition The Hilbert space, L2(P ), is the space of mean-zero, complex-
valued random variables on a probability space (Ω, S, P ) such that E(X2) <
∞, with inner product (X,Y ) = E(XȲ ). Notice that the squared norm of
X ∈ L2(P ) is the variance.

Definition Given a stochastic process, {Xt} on (Ω, S, P ), we define MX ⊂
L2(P ) as the set of linear combinations of the {Xt} for all t. (That is, the
individual variables {X1, X2, ...} are the basis.)

Definition Let F be the spectral distribution of a weakly stationary stochas-
tic process {Xt}. The Hilbert space, L2(F ), is the space of complex-values
functions, g(λ) such that

∫
|g(λ)|dF (λ) < ∞. The inner product is defined as

(g(λ), h(λ))F =
∫
g(λ)h(λ)dF (λ).

We define a one-to-one mapping between MX and L2(F ) by mapping Xt to
exp(iλt), for t = 1, 2, 3.... This is a mapping of bases, and may be extended
linearly to the rest of the elements. This is an isometric isomorphism, because:

(Xt, Xu)P = E(XtXu)
= C(t− u)

=
∫ ∞

−∞
exp(iλ(t− u))dF (λ)

=
∫ ∞

−∞
exp(iλt)exp(iλu)dF (λ)

= (exp(iλt), exp(iλu))F
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Definition We define a random variable called the random measure, Z(A) (in
MX) as the image of the indicator function, I(A) (in L2(F )), under the trans-
formation above. Taking the limit, dZ(λ) is the image of the indicator function
of a point, I({λ}).

Some properties of the random measure:

• If A ∩ B = ∅ then E(Z(A)Z(B)) = 0; as a corollary, E(dZ(λ)dZ(ω)) = 0
if λ 6= ω.

• E(|Z(A)|2) =
∫

A
dF (λ) = F (A) and E(dZ(λ)dZ(λ)) = dF (λ).

• If Xt has mean zero, then E(dZ(λ)) = 0.

Definition The spectral representation of a mean-zero weakly stationary process,
{Xt}, is Xt =

∫
eiλtdZ(λ).

dZ(λ) describes the phase and amplitude for the wave at frequency λ.

2.2 Sample Analogues

Definition Given a time series of length n, we define the Fourier frequencies
as ωj = 2πj

n for j = 0, ..., n− 1.

Note that
∑n−1

t=0 exp(−iωjt) = 0 if j 6= 0 (mod n). As a corollary,
∑n−1

t=0 cos(ωjt) =∑n−1
t=0 sin(ωjt) = 0 if j 6= 0.

Definition Consider a time series, {X0, ..., Xn−1}. The Fourier decomposition
is

Xt = A0+A1 cos(ω1t)+B1 sin(ω1t)+...+An
2−1 cos(ωn

2−1t)+Bn
2−1 sin(ωn

2−1t)+An
2
(−1)t

(where the last term is only there if n is even), whereA0 = X, An
2

= 1
n

∑n−1
t=0 Xt(−1)t,

and for 0 < j < n/2, Aj = 2
n

∑n−1
t=0 Xt cos(ωjt) and Bj = 2

n

∑n−1
t=0 Xt sin(ωjt).

We may think of {exp(iωjt)}n−1
t=0 as a vectors in Cn for each j. This set of

vectors forms an orthonormal basis of the space.

Definition The discrete Fourier transform (DFT) of the series {Xt}n−1
t=0 is

given by {Jj}n−1
j=0 where

Jj =
1
n

n−1∑
t=0

Xt exp(−iωjt)

Notice that Jn−j = Jj , so all the information in the series is contained in the
first half of the coordinates. We may also define J(ω) = 1

n

∑n−1
t=0 Xt exp(−iωt)

for non-Fourier frequencies.
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Definition The inverse Fourier transform is given by

Xt =
n−1∑
j=0

Jj exp(iωjt)

Theorem 2.5 The inverse Fourier transform of the discrete Fourier transform
recovers the original series.

Proof

n−1∑
j=0

Jj exp(iωjt) =
n−1∑
j=0

(
1
n

n−1∑
u=0

Xu exp(−iωju)) exp(iωjt)

=
n−1∑
u=0

Xu(
1
n

n−1∑
j=0

exp(iωj(t− u)))

=
n−1∑
u=0

Xu1(u = t)

= Xt

Definition The periodogram is the set of random variables {Ij}n−1
j=0 , where

Ij = n
2π |Jj |2 = n

2πJjJj . It is also a name for the plot of these random variables.
Note that we only need to plot j = 1, ..., n/2.

|Jj | is the strength of the ωj frequency in the data (if j < n/2). Small values
of j correspond to low frequencies (that is, long periods, and therefore smoother
data). Peaks in the periodogram suggest cycles or pseudo-cycles.

Because we observe only a finite number of {Xt}, we are not able to observe
all possible frequencies. In particular, if the true frequency (relative to the
sample size n) is larger than π (that is, half the sample period, which is called
the folding frequency), then it will be aliased to a lower frequency. For example,
a frequency ω with π ≤ ω ≤ 2π will appear as the frequency ω′ = 2π − ω.

Notice that
∑n−1

t=0 |Xt|2 = n
∑n−1

j=0 |Jj |2, and each |Jj |2 is the contribution
of the jth Fourier frequency to the variance of the time series.

Definition The sample autocovariance at lag r (for |r| < n) is ĉr = 1
n

∑n−1
t=|r|XtXt−|r|.

Theorem 2.6 We may write I(ω) = 1
2π

∑
|r|<n ĉr exp(−irω) = 1

2π (ĉ0+2
∑n−1

r=1 ĉr cos(rω))
and ĉr =

∫ π

−π
I(ω) exp(irω) dω.

Proof We know that I(ω) = 1
2πn

∑n−1
t=0

∑n−1
u=0 XtXu exp(−i(t − u)ω). Let v =

t − u. We may split the summation into two parts: first, v = 0, ..., n − 1 and
u = 0, ..., n − 1 − v, and second, v = −(n − 1), ...,−1 and u = −v, ..., n − 1.
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Then, the summation becomes:

I(ω) =
1

2πn

−1∑
v=−(n−1)

(
n−1∑

u=−v

Xv+uXu) exp(−ivω) +
1

2πn

n−1∑
v=0

(
n−1−v∑

u=0

Xv+uXu) exp(−ivω)

=
1
2π

n−1∑
v=0

ĉv exp(−ivω) +
1
2π

−1∑
v=−(n−1)

ĉ−v exp(−ivω)

=
1
2π

∑
|r|<n

ĉr exp(−irω)

Second,∫ π

−π

I(ω) exp(irω)dω =
∫ π

−π

(
1
2π

∑
|s|<n

ĉs exp(−isω)) exp(irω)dω

=
∑
|s|<n

ĉs
1
2π

∫ π

−π

exp(iω(r − s))dω

= ĉr
1
2π

∫ π

−π

1dω

= ĉr

(The second-to-last step follows because
∫ π

−π
exp(iω(r−s))dω = 0 unless r = s.)

Note that we only calculate the values of the periodogram at Fourier fre-
quencies, which means that we cannot integrate over them to calculate autoco-
variances. However, we may use the interpolation formula to calculate autoco-
variances as well.

Theorem 2.7 Suppose {Xt} is of length n. Append n (or more) zeroes to
the end of the series to create the new series {X ′

t}, and let I(ω′j) for j =
1, ..., 2n be the periodogram of the new series. Then, we may calculate ĉr =
2π
2n

∑2n−1
j=0 I(ω′j) exp(irω′j).

Definition A series is ergodic if time averages equal sample averages. (This
might fail if there is a one-time random variable that affects each realization of
the series instead of individual points.)

Theorem 2.8 If a series is Gaussian and has a spectral density, then it is
ergodic.

Theorem 2.9 For an ergodic stationary series, nV ar(X̄) → 2πf(0). Also,
nV ar(X̄) = 2πE(I0). (This gives a consistent estimate of the variance of the
mean, even in the presence of autocorrelation and heteroskedasticity.)

If f(0) = 0, then the variance of the mean grows more slowly than n. If
f(0) = ∞, then the variance of the mean grows faster than n.
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2.3 Linear Filters and Spectra

Definition Let {yt} be any time series. A linear filter is a set of weights,
{gr, gr+1, ..., gs}, where we define

zt =
s∑

u=r

guyt−u

Note that zt is a local weighted average of yt, and that {zt} is a convolution of
the sequence {yt} with {gu}.

Equivalently, L is a linear filter if L : {Xt} → L({Xt}) such that L is:

• Scale preserving: L(α{Xt}) = αL({Xt})

• Superposable: L({Xt}+ {Yt}) = L({Xt}) + L({Yt})

• Time invariant: If L({Xt}) = {Yt} then L({Xt+h}) = {Yt+h}

If a time series is a sum of signal and noise, we hope to choose weights so
that they cause the noise to cancel out, leaving only the signal.

Definition The transfer function of a filter, {gr, gr+1, ..., gs}, is given by

G(ω) =
s∑

u=r

gu exp(−iωu)

Then, if {zt} is the filtered version of {yt}, Jz(ω) = G(ω)Jy(ω). More generally,
if L is any linear filter, then there exists some B(λ) such that L(eiλt) = B(λ)eiλt.
B(λ) is called the transfer function. |B(λ)| is called the gain function.

The transfer function shows how the filter affects the amplitude at each
frequency. (A linear filter always converts a wave at frequency ω to another
wave at frequency ω, but may affect the phase and amplitude.) If we wish to
annihilate a certain frequency (in seasonal adjustment, for example), we must
choose a filter such that the transfer function is 0 at that frequency.

Notice that, if {αλ} does not depend on t, then L(
∑

λ αλe
iλt) =

∑
λ αλL(eiλt).

Then, if Xt =
∑

λ e
iλt, L({Xt}) =

∑
λ αλB(λ)eiλt =

∑
λ αλ|B(λ)|eiθλeiλt. If

{Xt} is weakly stationary, then L(Xt) =
∫
eiλtB(λ)dZX(λ), and the spectral

distribution of the filtered sequence is |B(λ)|2dFX(λ), provided that the integral
of this is finite (this ensures that the resulting series has finite variance).

Definition For a linear filter, the condition
∫
|B(λ)|2dFX(λ) <∞ is called the

matching condition.

The inverse, L∗ of a filter, L, should satisfy L∗(L(Xt)) = Xt. This implies
that the transfer function of the inverse filter is 1

B(λ) . This means that the
transfer function of any invertible filter must be non-zero for all λ. In addition,
the inverse filter must satisfy the matching condition,

∫
| 1
B(λ) |

2dFX(λ) < ∞.
There is not always an inverse filter.

8



2.4 The Periodogram of Noise

Suppose Xt ∼ Normal(0, 1) are independent and identically distributed (this
is called Gaussian white noise). Then, Jj and I(ωj) are random variables. We
may write:

I(ω) =
n

2π
|J(ω)|2

=
1

2πn
|
n−1∑
t=0

Xt exp(−iωt)|2

=
1

2πn
((

n−1∑
t=0

Xt cos(ωt))2 + (
n−1∑
t=0

Xt sin(ωt))2)

If k 6= j are both strictly between 0 and π, then
∑n−1

t=0 Xt cos(ωjt)∑n−1
t=0 Xt sin(ωjt)∑n−1
t=0 Xt cos(ωkt)∑n−1
t=0 Xt sin(ωkt)

 ∼ Normal(0,
n

2
I)

Thus, each I(ωj) is the sum of the squares of two independent normals, and
I(ωj) ∼ 1

2πExponential(λ = 1) are distributed independent and identically.
Since this distribution is right-skewed, periodograms will tend to have peaks,
even if the time series is just noise. Also, because the distribution of I(ωj) does
not depend on n, the periodogram is not consistent. (However, more frequencies
are estimated as the sample size increases.) If we have non-Gaussian white
noise, sums will only be uncorrelated, not independent, but everything will hold
asymptotically.

To test for whether a time series is significantly different from white noise,
we use Fisher’s Test. Let m be the number of frequencies of interest (most
likely, all n/2 of them). Let

Gm =
max(I(ωj))m

j=1∑m
j=1 I(ωj)

Asymptotically, under the null hypothesis of white noise,

P (mGm ≤ x+ ln(m)) ≈ exp(−e−x)

2.5 Leakage and Data Windows

The discrete Fourier transform of a sequence of ones (called “the boxcar”) is

J(ω) =
1
n

n−1∑
t=0

exp(−iωt) = exp(−i(n− 1)ω/2)
sin(nω/2)
n sin(ω/2)
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The Dirichlet Kernel isDn(ω) = sin(nω/2)
n sin(ω/2) . Notice thatDn(0) = 1 andDn(ωj) =

0 for j 6= 0. However, between Fourier frequencies, Dn(ω) is non-zero (though
smaller than one). These non-zero parts are called the sidelobes.

Suppose xt = exp(iωt). Then,

Jj =
1
n

n−1∑
t=0

exp(i(ω − ωj)t)

= Dn(ω − ωj) exp(
1
2
i(n− 1)(ω − ωj))

If ω is a Fourier frequency, then Jj is one for that frequency and zero for all
others. However, if ω is not a Fourier frequency, Jj will be non-zero for many j.
This is called leakage. In this simple case, Jj will be largest when ωj is closest
to ω, and values will decay proportionally to |ω − ωj |.

A data window is a set of constants, {wt}n−1
t=0 . We taper the data according

to the data window by analyzing zt = wtxt. One common taper is the cosine
bell :

wt =
1
2
(1− cos(2π(t+

1
2
)/n))

Jw(ω) = exp(−iωn− 1
2

)(
1
4
Dn(ω − 2π

n
) +

1
2
Dn(ω) +

1
4
Dn(ω +

2π
n

))

The second term of Jw(ω) is called the Hanned version of Dn(ω). The Hanned
version of Dn(ω) is approximately zero for all ω 6= 0, and the sidelobes decay
more rapidly, decreasing the leakage. A split cosine bell tapers just the ends of
the data, which helps reduce leakage, but is not as dramatic an improvement:

wt =


1
2 (1− cos( 1

mπ(t+ 0.5))) t = 0, ...,m− 1
1 t = m, ..., n−m− 1
1
2 (1− cos( 1

mπ(n− t− 0.5))) t = n−m, ..., n− 1

2.6 Estimating the Spectrum

We use the periodogram to estimate the true spectrum. Asymptotically, when-
ever 0 ≤ ωj ≤ π/2, I(ωj) ∼ f(ωj) · 1

2χ
2
2, and E(I(ωj)) ≈ f(ωj). The ordinates

are approximately independent. Notice that this estimate is inconsistent, but
more frequencies are estimated each time; therefore, we may use weighted av-
erages to try to get a better estimate. Knowing the approximate distribution
allows us to put confidence bands on the periodogram (if we have an idea of
what f(ω) is).

Definition The discrete periodogram average is a way to do smoothing, defined
by:

f̂(ωj) =
m∑

k=−m

gkIj−k

where m is a fixed fraction of the sample size n or a function of n (such as n4/5).
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If f is relatively smooth, then E(f̂(ωj)) =
∑m

k=−m gkf(ωj−k) ≈ f(ωj)
∑m

k=−m gk,
so we generally choose

∑m
k=−m gk = 1 so that the estimator is asymptotically

unbiased. In addition, V ar(f̂(ωj)) ≈ f(ωj)2
∑
g2

k.

Definition Lag-weights (Blackman and Tukey) estimation is defined by:

f̂(ω) =
1
2π

∑
|r|<m

wr ĉr exp(irω)

where wr are lag weights with w0 = 1 and wr = w−r (their shape is called the
lag window and m is the lag number). The Fourier transform of the weights,
W (λ) = 1

2π

∑
r wr exp(irλ), is called the spectral window.

Using the relationship between the sample autocorrelations and the peri-
odogram, we find out that lag-weights estimation is an integral convolution of
the periodogram:

f̂(ω) =
1
2π

∑
|r|<m

wr ĉr exp(irω)

=
1
2π

∑
|r|<m

wr(
∫ π

−π

I(λ) exp(−irλ)dλ) exp(irω)

=
∫ π

−π

W (ω − λ)I(λ)dλ

Of the two methods, the former tends to be noisier, while the latter has
sidelobes and therefore leakage. Both of these estimates are non-parametric; if
we assume that f has a functional form, such as that of an AR(p) process, then
we may be able to get a tighter estimate.

Under the null hypothesis that a time series {Xt} is white noise, V ar(X̄m) =
σ2

m , for any m. We may estimate ˆV ar(X̄m) by finding the sample variance of
1
m (X1 + ...+Xm), 1

m (Xm+1 + ...+X2m), .... (This is called the Variance Ratio
Test.) This can be extended to making a periodogram based on each block of
length m and using the average to estimate the spectral density. This method
is equivalent to using the Bartlett lag-weights, wr = 1 − |r|

m , and ˆV ar(X̄m) is
the Barlett estimate of 2πf(0).

2.7 Fast Fourier Transforms

Computing Fourier Transforms (and other related things) in the naive way takes
O(n2) steps. However, a Fast Fourier Transform allows calculation in (a best
case of) O(n log n) steps. We consider the two-factor case, in which we wish to
find the Fourier Transform of a time series, {Xt} of length n = n1n2:

• Convert the time series into an n1 × n2 array, Y , where Y (t1, t2) =
X(t1n2 + t2); that is, we put the time series along the rows.
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• Calculate the discrete Fourier transform of each column (using this method
recursively, if desired), and replace each entry by the JjW

j1t2
n , whereWn =

exp(− 2πi
n ) is called the twiddle factor.

• Calculate the discrete Fourier transform of each row.

• The overall discrete Fourier Transform is read down the columns; that is,
Jj2n1+j1 is in the (j1, j2) position.

3 ARMA Models

Definition A time series, {εt}, is white noise if it is uncorrelated at all lags,
has mean zero, and constant variance σ2. A process is white noise if and only
if it has a spectral density, fε(λ) = σ2

2π .

Definition The backshift operator, B, is defined by Bxt = xt−1. The differ-
encing operator, ∆, is defined by ∆ = 1−B.

Definition A time series, {Xt} is a moving average process if it can be written
as Xt =

∑∞
j=−∞ ajεt−j , with

∑∞
j=−∞ a2

j <∞. It is a one-sided moving average
process if it can be written as xt =

∑∞
j=0 ajεt−j =

∑∞
j=0 ajB

jεt.

Definition A time series, {Xt}, is an autoregression of order p, or AR(p), if
there exists a white noise process, {εt}, with variance σ2 and constants b1, ..., bp
such that

Xt + b1Xt−1 + ...+ bpXt−p = εt

and E(Xsεt) = 0 whenever s < t. {Xt} is an autoregression of infinite order,
AR(∞), if

∞∑
k=0

bkXt−k = εt

with b0 = 1,
∑∞

k=0 b
2
k <∞, and E(Xsεt) = 0 when s < t.

Definition An MA(q) model, xt =
∑q

j=0 ajεt−j , if invertible if all the roots of
Q(z) = 1 + a1z + ...+ aqz

q lie outside the unit circle. Equivalently, an MA(q)
model is invertible if it can be written as an AR(∞) model.

Since the transfer function from white noise to the MA process, Xt =∑∞
j=−∞ ajεt−j , is B(λ) =

∑∞
j=−∞ aje

−iλj , the spectral representation is Xt =∫ π

−π
eiλtB(λ)dZε(λ), and the spectral density is fX(λ) = |B(λ)|2fε(λ) = σ2

2π |
∑∞

j=−∞ aje
−iλj |2.

The spectral density of a non-invertible model is 0 at frequency 0.

Theorem 3.1 Any weakly stationary time series with a continuous spectrum
can be represented as a (possibly two-sided) moving average process.

12



Proof Suppose Yt has a strictly positive spectral density, fY . Let εt =
∫∞
−∞ eiλtA(λ)dZY (λ),

where A(λ) = σ√
2πfY (λ)

. Then,
∫ π

−π
|A(λ)|2fY (λ) = σ2 which satisfies the

matching condition. Furthermore, fε(λ) = |A(λ)|2fY (λ) = σ2

2π , and εt is white
noise. Thus, Yt =

∫ π

−π
eiλt 1

A(λ)dZε(λ). We may write 1
A(λ) =

∑∞
j=−∞ aje

−iλj .
Then, we have Yt =

∑∞
j=−∞ ajεt−j .

For an autoregression, we have a transfer function, B(λ) =
∑∞

k=0 bke
−iλk

from Xt to εt, so that dZε(λ) = B(λ)dZX(λ), or dZX(λ) = 1
B(λ)dZε(λ), and

fX(λ) = σ2

2π|
P

bke−iλk|2 .

Theorem 3.2 An AR(p) process exists and is weakly stationary if β(z) = 1 +
b1z + ...+ bqz

q has all its roots outside the unit circle.

Proof Note that B(λ) = β(e−iλ) =
∑p

k=0 bke
−iλk is the transfer function from

Xt to white noise. Suppose all the roots of β(z) lie outside the unit circle.
Since e−iλ traces out the unit circle, B(λ) 6= 0 and is in fact bounded away
from zero, so that |B(λ)| > ε for all λ. Then, V ar(Xt) = σ2

2π

∫ π

−π
1

|B(λ)|2 dλ <
σ2

2π

∫ π

−π
1
ε2 dλ < ∞. By the definition of the linear filter, this process satisfies

the difference equation describing the original process. By complex analysis, it
turns out that 1

B(λ) is analytic inside a circle of radius 1 + ε/2 and therefore
can be written as 1

|β(z)| = a0 + a1z+ a2z
2 + ... and 1

B(λ) =
∑∞

j=0 aje
−iλj , which

gives an expression of Xt in terms of only past and present shocks. Since future
shocks are uncorrelated with past shocks, E(Xtεs) = 0 when t < s, and this
process exists.

If any roots are inside the unit circle, the process is explosive. If there is a
root on the unit circle (and none inside), the process has a “unit root”. Note
that a process with roots inside the unit circle may be able to be written as a
weakly stationary process in terms of future shocks.

Parameters of the autoregression can be estimated using maximum likeli-
hood:

L(θ) = (2π)−n/2|Σθ|−1/2 exp(−xT Σ−1
θ x/2)

where Σθ(i, j) = ci−j is the autocovariance implied by the parameters (this
matrix is Toeplitz, since it has the same value along each diagonal). However,
estimation can be hard because of the matrix inversion, and the result may not
be stationary. Other methods include the Burg method and the Yule-Walker
equations:

cr =
p∑

k=1

akcr−k

(The Yule-Walker equations are equivalent to using PACF’s to calculate coeffi-
cients; since the PACF’s are zero after the pth PACF, so are the true coefficients.)

13



Combining results from autoregressive and moving average models, we find
that the spectral representation and density of the ARMA(p, q) process Xt +
b1Xt−1 + ...+ bpXt−p = εt + a1εt−1 + ...+ aqεt−q are

dZX(λ) =

∑q
j=0 aje

−iλj∑p
k=0 bke

−iλk
dZε(λ)

fX(λ) = |
∑q

j=0 aje
−iλj∑p

k=0 bke
−iλk

|2 σ
2

2π

Using the backshift operator, an ARMA process can be written as φ(B)xt =
θ(B)εt, the MA(∞) representation is Xt = θ(B)

φ(B)εt, and the spectral density is
σ2

2π |
θ(e−iλ)
φ(e−iλ)

|2.

Definition The dynamic range of a process is defined as max f(λ)
min f(λ) .

With a fraction in the spectral representation of an ARMA process, the
dynamic range can be made quite large. Note that peaks and poles in the middle
spectrum will make the process pseudo-cyclical (“seasonal long memory”, or a
process with slowly-changing seasonality) while a spectral density that tends to
infinity at 0 leads to long memory in the process.

In estimation, we must choose p and q (this is model selection). Three differ-
ent information criteria may be used; the (p, q) that minimizes the information
criterion is the one chosen.

AIC = −2 log(likelihood) + 2(#parameters)

AICC = −2 log(likelihood) + 2(m+ 1)
n

n−m− 2
BIC = −2 log(likelihood) + (log(n))(#parameters)

(In the case of these models, −2 log(likelihood) = n log(σ̂2).)

4 Long Memory Processes

4.1 Differencing and Unit Roots

Definition A process, {Xt}, is a random walk if Xt = Xt−1 + εt. Equivalently,
the difference of a random walk is white noise.

We may use the Dickey-Fuller test to test whether ρ = 1 in the equation
Xt = ρXt−1 + εt. To do this:

1. Regress Xt on Xt−1.

2. Construct τ̂µ = ρ̂−1
se(ρ̂) .

3. Under the null hypothesis that ρ = 1, τ̂µ has a Dickey-Fuller distribution
(which is non-normal!).

To test for a unit root with additional lags of x, we use a Augmented Dickey-
Fuller test. (The Said-Dickey test also allows lags of ε, but this is ugly.)

14



4.2 Long Memory Processes

Definition We say that f(x) ∼ g(x) as x→ K if f(x)/g(x) → 1 as x→ K.

Definition A weakly stationary process, {Xt}, has long memory with memory
parameter −0.5 < d < 0.5, d 6= 0 if the spectral density f(λ) ∼ kλ−2d as
λ → 0+. Such processes are also called I(d). (If d = 0, we say that {Xt} has
short memory.)

Though the process will no longer be weakly stationary with |d| ≥ 0.5
and therefore the spectral density will not exist, this generalizes to a “pseudo-
spectral density” for all −1 ≤ d ≤ 1. Then, we have:

• d = 0: Usual ARMA models

• −1 < d ≤ −1/2: Stationary, mean-reverting processes that are not invert-
ible.

• −1/2 < d < 1/2: Stationary and invertible processes

• 1/2 ≤ d < 1: Non-stationary but mean-reverting processes

• d = 1: Non-stationary and not mean-reverting

(A process is mean-reverting if the effect of a shock will disappear eventually.)
The difference of a long memory process with memory parameter d has a mem-
ory parameter d − 1. In general, higher memory parameters correspond to
smoother series.

In the presence of long memory,

• Autocovariances decay as cr ∼ k|r|2d−1 as |r| → ∞. This is called hyper-
bolic decay. In this case, the autcovariances are not summable if d > 0
(this also shows that f(0) = ∞ in this case).

• Forecasts tend to revert to the unconditional mean slowly.

Note that long memory affects low frequencies and long autocovariances – that
means that long memory is a long-term effect.

Theorem 4.1 V ar(Xn) ∼ k1n
2d−1 as n → ∞, if d > −1. (This means that

long memory processes do not obey the Central Limit Theorem, and, when d > 0,
confidence intervals are too narrow.)
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Proof Assume that E(Xt) = 0 and d > 0. Then,

I(0) =
1

2πn
|
n−1∑
t=0

Xt|2

=
n

2π
X

2

=
1
2π

∑
|r|<n

ĉr

V ar(X) = E(X
2
) = E(

1
n

∑
|r|<n

ĉr)

=
1
n

∑
|r|<n

E(ĉr)

=
1
n

∑
|r|<n

(1− |r|
n

)cr

∼ 1
n

∑
|r|<n

(1− |r|
n

)kr2d−1

=
2k
n

n∑
r=1

(1− |r|
n

)r2d−1

= n2d−1 2k
n

n−1∑
r=1

(1− r

n
)(
r

n
)2d−1

≈ n2d−1(2k)
∫ 1

0

(1− x)x2d−1dx

∝ n2d−1

In estimation, negative values of d require tapering to achieve good estimates
– there tends to be leakage near the 0 frequency. (In general, if f(λ) has a large
range, then tapering helps control leakage.)

4.3 ARFIMA(0,d,0) Models

Definition The Gamma function is defined by Γ(p) =
∫∞
0
xp−1exdx for p > 0.

For p ≤ 0, we define Γ(p + 1) = pΓ(p); with this extension, Γ(p) is defined
everywhere except the negative integers. Γ(p+ 1) = p! for positive integers.

Definition We define ∆d = (1−B)d by

∆d = (1−B)d =
∞∑

j=0

(−1)j

(
d

j

)
Bj =

∞∑
j=0

πjB
j
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where
(
d
j

)
= 1

j!d(d− 1)...(d− j + 1) and πj = Γ(j−d)
Γ(j+1)Γ(d) .

Definition A time series, {Xt} is ARFIMA(0, d, 0) if ∆dXt = εt where εt is
white noise. That is, {Xt} is fractionally integrated white noise.

This is an AR(∞) representation:
∑∞

j=0 πjXt−j = εt. Stirling’s Formula
states that as p→∞, Γ(p) ∼

√
2πe−p+1(p−1)p− 1

2 . This means that as j →∞,
πj ∼ jd−1/Γ(−d), which is hyperbolic decay. (In fact, if d > 0, the πj always
decay faster than j−d−1, and if d < 0, the πj decay more slowly.)

Similarly, writing Xt = ∆−dεt = ψjεt−j , where ψj = (−1)j
(−d

j

)
∼ jd−1

Γ(d) .
Notice that

∑∞
j=0 ψ

2
j ≤ c

∑
j2d−2 < ∞ if d < 0.5, and this process is weakly

stationary if d ∈ (−0.5, 0.5).
The spectral representation and spectral density of an ARFIMA(0, d, 0)

process are:

Xt = (1−B)−dεt

=
∫
eitλ(1− e−iλ)−ddZε(λ)

fx(λ) =
σ2

2π
|1− e−iλ|−2d

=
σ2

2π
|eiλ/2 − e−iλ/2|−2d|e−iλ/2|−2d

=
σ2

2π
|2 sin(λ/2)|−2d(1)

∼ σ2

2π
λ−2d

as λ→ 0 since sinx ≈ x as x→ 0. This shows that the long memory parameter
of this process really is d.

Notice that the optimal linear forecasts for these models depend on all past
values; for practical purposes, we must truncate. In addition, there is no simple
updating formula for forecasts, which can make forecasting computationally
intensive.

4.4 ARFIMA(p,d,q)

Definition A zero mean process, {Xt}∞t=−∞ in discrete time obeys a fractional
ARIMA(p,d,q) model if φ(B)∆dXt = θ(B)εt, where εt is white noise, φ(B) is a
lag polynomial of order p, θ(B) is a lag polynomial of order q, and 0 < |d| < 0.5.

This process is stationary and invertible if all the roots of θ(B) and φ(B) lie
outside the unit circle. Because polynomials commute, this is equivalent to:

• ∆dXt is ARMA(p, q).

• φ(B)Xt = θ(B)(∆−dεt), and Xt is an ARMA(p, q) process driven by
fractionally integrated white noise (ARFIMA(0, d, 0)).
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The MA(∞) and AR(∞) representations can be found by solving:

θ(e−iλ)
φ(e−iλ)

(1− e−iλ)−d =
∞∑

k=0

ψke
−ikλ

φ(e−iλ)
θ(e−iλ)

(1− e−iλ)d =
∞∑

k=0

πke
−ijλ

These allow us to calculate the best linear forecast.
The spectral representation and spectral density are:

Xt =
∫ π

−π

eitλ θ(e
−iλ)

φ(e−iλ)
(1− e−iλ)−ddZε(λ)

fX(λ) =
σ2

ε

2π

∣∣∣∣ θ(e−iλ)
φ(e−iλ)

∣∣∣∣2 |1− e−iλ|2

=
σ2

ε

2π

∣∣∣∣ θ(e−iλ)
φ(e−iλ)

∣∣∣∣2 |2 sin(λ/2)|−2d

∼ σ2
ε

2π

∣∣∣∣ θ(1)
φ(1)

∣∣∣∣2 |λ|−2d

as λ → 0, and this process has long memory. The choice of d affects the low
frequency components, while θ(e−iλ)

φ(e−iλ)
affects the higher frequency components.

With the proper choice of ARMA parameters, there can be peaks elsewhere in
the spectral density with a sort of power law decay on either side of them (even
with different powers), corresponding to slowly evolving seasonal behavior.

Note that forecasting still requires the infinite past. If you want to avoid the
truncation, solving the Yule-Walker equations allows you to calculate the best
linear forecast based on up to n observations.

4.5 Parameter estimation

4.5.1 Semi-parametric long memory estimation

Suppose f(λ) = |1−e−iλ|−2df∗(λ), where |d| < 0.5 and f∗(λ) is a short memory
process; that is, f∗(λ) is positive, finite, and continuous in a neighborhood of 0.
If we only wish to estimate the long memory parameter, then f∗(λ) is a nuisance
parameter, and is also subject to misspecification (which will bias estimates of
d).

If we assume that Ij

fj
∼ Exponential are independent and identically dis-

tributed, then log( Ij

fj
) has mean −C = −0.577216 (negative Euler’s constant)

and standard deviation π2

6 . Let εj = log( Ij

fj
)+C. Then, the εj are independent

and identically distributed with mean 0, and we have:

log(Ij) = (log(f∗j )− C)− 2d log |1− e−iωj |+ εj
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If we estimate only using j = 1, ...,M (so that estimation is mean-invariant),
where M → ∞ and M

n → 0, then we assume that log(f∗j ) ≈ log(f∗0 ) for all
j = 1, ...,M . In addition, notice that |1− e−iωj | = |2 sin(ωj

2 )|. Then, with this
choice of M , we have:

log Ij ≈ Constant− 2d log |2 sin
ωj

2
|+ εj

The estimate from this regression, d̂, is called the Geweke-Porter-Hudak (GPH)
estimator. Furthermore, |2 sin(ωj

2 )| ≈ |ωj | ∝ |j|, and we may also use the
regression:

log Ij ≈ Constant− 2d log |ωj |+ εj

Both of these estimators are robust against misspecification of the short-memory
part of the process.

Theorem 4.2 Suppose M →∞ and M
n → 0. Then,

√
M(d̂GPH −d) converges

in distribution to Normal(0, π2

24 ). Thus, for large samples, E(d̂GPH) = d and
V ar(d̂GPH) = π2

24M .

Note that holding M fixed at some constant leads to bias (and isn’t con-
sistent). In general, choosing M ∝ n4/5 is optimal; the constant depends on
f∗(λ). If there is additional noise in the periodogram (such as in the stochastic
volatility model), the exponent should be closer to 0.

Even though the spectral density is not defined above d > 0.5, we may define
a non-integrable “pseudo-spectrum” of the same form for higher d. If d > 0.75,
tapering and a correction to the standard errors is necessary, but the method
holds for d < 1.5.

Note that this method is semi-parametric. This means that the specific
model (aside from long memory) doesn’t matter, but it also means that the
estimates are not as tight as if the correct parametric model were used.

4.5.2 Parametric Long Memory Estimation

For an ARFIMA(p, d, q) model (with p, q known), maximum likelihood estima-
tion can be used to estimate Θ(d, θ(B), φ(B), σ2

ε ) simultaneously, if we assume
that the white noise is Gaussian. (“Quasi-Gaussian Maximum Likelihood Es-
timation” makes this assumption and tries to show that the results apply even
if the Gaussian assumption is relaxed.) Despite the odd asymptotic behavior
of the variance of the mean,

√
n(Θ̂ − Θ0) →D Normal(0,ΣΘ). However, we

cannot estimate the mean as one of the parameters and have this hold. This
method involves inverting an n× n matrix, so it can be slow. It also fails when
d ≥ 1/2, since the covariance matrix no longer exists.

Definition The Whittle estimator is given by:

−2 log(likelihood) ≈
n/2∑
j=1

(log(fΘ(ωj)) +
I(ωj)
fΘ(ωj)
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where I(ωj) is the periodogram of the data (and does not depend on the para-
meter estimates) and fΘ(ωj) = | θ(e−iλ)

φ(e−iλ)
|2|eiλ − e−iλ|−2d.

Theorem 4.3 The Whittle estimator is asymptotically equal to the maximum
likelihood estimator.

Proof Let X = (X0, ..., Xn−1)T where {Xt} is Gaussian with zero mean, has
spectral density fΘ(ω), and covariance matrix Σn,Θ = E(XXT ). Then we have
the likelihood:

−2l(Θ) = n log(2π) + log |Σn,Θ|+XT Σn,ΘX

Σn,Θ is Toeplitz, because the lag r covariance is constant along each diagonal
(by stationarity). As n→∞, the eigenvectors of a Toeplitz matrix are approx-
imately vj = 1√

n
{exp(−itωj)}n−1

t=0 for j = 0, ..., n − 1. This is an orthonormal
basis. The corresponding eigenvalues are 2πfΘ(ωj). Let V be the matrix with
the vj ’s down the columns. Let Λ be the matrix with 2πfΘ(ωj) down the diag-
onal. Then V is a unitary matrix, and Σn,Θ ≈ V ΛV ∗. We may rewrite the log
likelihood as:

−2l(Θ) = m log(2π) + log(|det(Λ|)) + (XTV Λ−1/2)(XTV Λ−1/2)∗

Note thatXTV is a row vector containing the DFT’s, and det(Λ) =
∏n−1

i=0 2πfΘ(ωj),
so that we find that:

−2l(Θ) = 2n log(2π) +
n−1∑
j=0

log(fΘ(ωj)) +
n−1∑
j=0

Ij/fΘ(ωj)

We leave off j = 0 since fΘ(0) is infinite for long memory time series, and this
also makes the estimator invariant to the mean.

The Whittle estimator also works from d ≥ 1/2, through the use of a pseudo-
spectral density.

Both of these estimators will be biased for d if p and q are wrong (this is
one reason that the semiparametric method is used instead). We may also use
the local Whittle estimator to estimate d (ignoring the short memory part):
−2 log(likelihood) ≈

∑m
j=1(log(fΘ(ωj))+ I(ωj)

fΘ(ωj)
), where m/n→ 0 but m→∞.

Using this estimator,
√
m(d̂LW − d0) →D Normal(0, 0.25) (as opposed to the

log periodogram estimator, which has variance π2

24 ).

4.6 Continuous Time Long Memory

Definition A Gaussian stochastic process, VH(t), is fractional Brownian mo-
tion with Hurst index H if 0 < H < 1 and, for all t1, t2, V ar(VH(t2)−VH(t1)) ∝
|t2 − t1|2H .
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This is regular Brownian motion if H = 0.5.
Let Xt = VH(t) − Vh(t − 1); these are called increments. Note that the

process {Xt} is strictly stationary, and

V ar(X̄) = V ar(
1
n

(Vh(n)− Vh(0))) ∝ n2H−2

so that {Xt} is a long-memory process with memory parameter ddiff = H−1/2.
(The memory parameter for the levels is dlevels = H + 1/2, so the levels of
fractional Brownian motion are non-stationary.)

The “derivative” (limit of the changes) of fractional Brownian motion is
called fractional Gaussian noise and is a continuous time analog ofARFIMA(0, d, 0).

For any r > 0, VH(rt) has the same distribution as rHVH(t). Thus, the
process does not change (except for the scale) as we zoom in. In fact, this
process is a fractal with dimension D = logN2−H/ logN = 2 − H, which is
between 1 and 2.

The pseudo-spectral density of this process is fH(ω) ∝ |ω|−2H+1 = |ω|−2dlevels

on (0,∞), and the continuous-time periodogram (
∫ 1

0
x(t)e−itωdt) is still a good

estimate of the pseudo-spectral density. If we only observe the continuous time
process in discrete time, the the periodogram will not have as clear a shape
because of aliasing.

5 Linear Prediction

Let {Xt}∞t=−∞ be a mean zero weakly stationary process with a spectral density,
f . For a given lead time, ν, we want to find a linear combination, X̂t+ν of
Xt, Xt−1, ... to minimize the forecasting error, E((Xt+ν − X̂t+ν)2). Let MX

t be
the subspace ofMX generated byXt, Xt−1, ... (this is called the linear past of the
time series). Minimizing the squared forecast error is equivalent to minimizing
the (squared) distance between Xt+ν and this subspace; that is, X̂t+ν is the
orthogonal projection of Xt+ν onto this subspace. That means that:

• X̂t+ν ∈MX
t

• Xt+ν − X̂t+ν ⊥ MX
t , which means that E((Xt+ν − X̂t+ν)Y ) = 0 for all

Y ∈MX
t

Since the forecast is a linear combination of present and past values, X̂t+ν =∑∞
k=0 d

(ν)
k Xt−k, this defines a linear filter and a transfer function, D(λ) =∑∞

k=0 d
(ν)
k e−iλk.

Theorem 5.1 Wold’s Theorem Any weakly stationary process, {Xt}, which is
not perfectly linearly predictable can be written as Xt = Ut + Vt where:

• {Ut} and {Vt} are uncorrelated.

• {Ut} has a one-sided moving average representation, Ut =
∑∞

k=0 akεt−k

with a0 = 1 and M ε
t = MU

t
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• {Vt} is perfectly predictable; that is, MV
t = MV

s for all s, t.

Definition Given a spectral density, f , for {Xt}, a spectral factorization is an
expression of the form f(λ) = σ2

2π |A(λ)|2, where A(λ) =
∑∞

k=0 ak exp(−iλk) is
a one-sided linear filter mapping a white noise process to {Xt}.

If we do not require that A(λ) is one-sided, then it is not unique (for example,
A(λ) works as well). If |A(λ)| > 0, then we may use the reciprocal of this filter
to find an AR(∞) representation of {Xt} as well.

Theorem 5.2 Kolgomorov’s Formula If {Xt} can be written as a one-sided
MA(∞) process, then the variance of this white noise process (which equals the
variance of the one-step-ahead forecast error) is given by

σ2 = 2π exp
(

1
2π

∫ π

−π

ln(fX(λ))dλ
)

Theorem 5.3 We may find a spectral factorization if and only if σ2 = 2π exp( 1
2π

∫ π

π
ln(fX(λ))dλ) >

0.

σ2 = 0 when the integral is −∞. This may occur if f(λ) = 0 for a range of
λ; if this occurs, the part of the process corresponding to that range is perfectly
predictable. The integral may be −∞ in other cases as well.

6 Non-linear models and prediction

Two random variables, X and Y are uncorrelated if Y cannot be predicted
by a linear function of X. X and Y are independent if no function of Y can
be predicted by any function of X. Independent implies uncorrelated. For
multivariate normal random variables, uncorrelated implies independent.

The optimal (not-necessarily-linear) forecast is given by the conditional mean,
E(Xt+h|Xt, εt, Xt−1, εt−1, ...) = E(Xt+h|Ψt).

Definition A process, {et} is strict white noise if E(et) = 0, V ar(et) = σ2 > 0,
and the et are independent and identically distributed.

Definition A time series is linear if it may be written as Xt =
∑∞

k=0 aket−k,
where et is strict white noise.

Notice that any weakly stationary process has an MA(∞) representation,
but only linear processes have MA(∞) representations involving strict white
noise. Non-linear time series may have optimal forecasts that are not linear
combinations of past errors and observations; however, the best forecasts of the
level of a non-linear time series may still be linear (forecasts of other functions
of the time series might not be linear, though).

Definition {εt} is a martingale difference if E(εt+h|εt, εt−1, ...) = 0 for all h >
0.
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Theorem 6.1 A martingale difference sequence (with constant variance) is
white noise.

Theorem 6.2 The best possible forecast equals the best linear forecast if and
only if the white noise sequence is a martingale difference.

Definition The time series {Xt} is a martingale if E(Xt|Xt−1, ...) = Xt−1.

Some non-linear models include:

• Bilinear models: Xt+
∑p

k=1 akXt−k = et+
∑q

k=1 bket−k+
∑q

i=1

∑p
j=1 cijet−iXt−j

• Threshold autoregression: Xt =

{
a(1)Xt−1 + e

(1)
t , Xt−1 < d

a(2)Xt−1 + e
(2)
t , Xt−1 ≥ d

• General non-linear autoregression: Xt = λ(Xt−1) + εt where λ() is a non-
linear function.

7 Volatility Models

7.1 ARCH and GARCH Models

Definition A white noise series, {εt} is GARCH(p, q) if:

εt|Ψt−1 ∼ Normal(0, ht)

ht = ω +
q∑

i=1

αiε
2
t−i +

p∑
j=1

βjht−j

where ω > 0, αi ≥ 0, βi ≥ 0, and
∑
αi +

∑
βj < 1 (for weak stationarity).

Equivalently, we may write εt =
√
htet, where et is standard Gaussian white

noise. If p = 0, this is called an ARCH(q) model.

In this model, the variance of future shocks increases if past shocks were
large (this is observation-driven since the present variance depends on past ob-
servations of shocks). Since the conditional variances are predictable from past
observations, this is a non-linear model, but the {εt} are martingale differences.
Notice that volatility is more persistent in a GARCH model than in an ARCH
model.

Note that this is a model only for white noise. We may use this as the white
noise for an ARMA process. In this case, the point forecasts are the same as
with any other ARMA model, but the one-step-ahead confidence interval is now
Ẑt+1 ± zα/2

√
ht+1.

If {et} is strict white noise, then the asymptotic standard errors for sample
autocorrelations are 1/

√
n. Suppose εt ∼ ARCH(q) and E(ε4t ) < ∞. Then,

the sample autocorrelations, ρ̂r = ĉr/ĉ0, are asymptotically independent with
V ar(ρ̂r) ≈ 1

n (1+ γr(1−
∑q

i=1 α
2
i )/ω

2), where γr = Cov(ε2t , ε
2
t−r). In particular,
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for an ARCH(1) process, the asymptotical variance is V ar(ρ̂r) ≈ 1
n (1+ 2αr

1
1−3α2

1
),

which means that the standard errors are bigger than one would calculate for
white noise. In the ARCH(1) case, E(ε4t ) < ∞ if and only if α1 <

1√
3
. If the

fourth moment is infinite, then the variance of squared returns is infinite, and
the ACF’s converge in distribution, not to a number.

We may estimate the coefficients of an ARCH(q) model using the Yule-
Walker equations. We may also use maximum likelihood estimation for general
GARCH models:

L(ε1, ..., εn|Ψ0, θ) = f(ε1|Ψ0, θ)f(ε2|Ψ1, θ)...f(εn|Ψn−1, θ)

=
n∏

t=1

1√
2πht

exp(− 1
2ht

ε2t )

−2 logL(θ) =
n∑

t=1

log(ht) +
n∑

t=1

ε2t/h
2
t

(We cut off the initial q observed errors and initialize h0 in order to be able to
estimate this.)

Theorem 7.1 Engle’s Criterion An ARCH(q) process, {εt} is weakly station-
ary if and only if P (Z) = 1−α1Z − ...−αqZ

q has all its roots outside the unit
circle.

Theorem 7.2 Milhoj’s Criterion If
∑q

i=1 αi < 1, the corresponding ARCH(q)
process is weakly stationary.

If αi ≥ 0 for all i (as they are in an ARCH process), these two conditions
are equivalent.

To deal with long memory in volatility, we may use FIGARCH, where ht =
ω+

∑∞
k=1 αkε

2
t−k, where the αk are theAR(∞) coefficients of anARFIMA(1, d, 0)

model. However, because of the restrictions on the ARCH parameters (and the
importance of the fourth moment), no FIGARCH process with both long mem-
ory and a finite unconditional variance has been shown to exist.

7.2 Stochastic Volatility Models

Definition A stochastic volatility model models returns as εt = eht/2et, where
ht is any stationary Gaussian process (which is not observation-driven) and the
et are strict white noise.

To actually estimate this, we must put more structure on ht (since it is a
latent process and cannot be observed directly). Often, part of the structure
is that ht and et are contemporaneously independent. In this case, log(ε2t ) =
ht + log(e2t ), where log(e2t ) is just extra error. Also by the independence of ht

and et, the spectral density of ε2t is a constant plus the spectral density of ht.
To get long memory in volatility, ht may be a latent long memory process

(which does not depend on the observed shocks). In this case, we may still
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regress the logarithm of the periodogram of squared returns on the log of the
index to estimate d, but there will be more noise in the estimation.

7.3 Realized Volatility

We may measure realized volatility using high frequency data. The realized
volatility for a day is the sum of squared returns over all the short intervals in
a day. (This assumes no intra-day effects.) Using this realized volatility, one
may measure the properties of volatility; empirically, realized volatility seems
to have a long memory parameter of d = 0.4.

This also gives a simple forecasting method: σ̂t+1 = (1−B)d̂σt. (This should
be checked for additional ARMA structure, though.)

At a very high frequency, stock prices are jumps caused by individual trades
(this is the difference between “trading time” and “clock time”). Autoregressive
conditional duration studies the relationship between price changes and the
duration between trades; more activity may make volatility higher.

8 Chaos and Fractals

A simple chaos model for a time series defines a time series by Xt = f(Xt−1),
where f is a non-random (and non-linear) function. In this case, a time series
is completely determined by f and its initial condition, X0. For many f , even
rounding error can lead to chaotic effects, so these time series can seem random.
(Adding a random component into the function or choosing a random initial
value can add even more randomness.)

Definition For a given function, f , the Lyapunov exponent is defined as λ =
limn→∞

1
n log | d

dxf
n(x)|, where fn(x) = f ◦ f ◦ ... ◦ f(x).

Given two initial conditions, x0 and x′0, the distance initially grows as (xt−
x′t) ∼ (x0 − x′0)e

λt, and paths diverge exponentially fast.

Definition Suppose an initial value, x0, is chosen from randomly from a prob-
ability distribution, F . If the probability distribution of f(x0) equals the prob-
ability distribution of x0, then F is called an invariant distribution.

Definition Given a path in the plane, suppose we cover it with boxes with sides
of length 1/N . Let N(L) be the number of boxes of side L required to cover
the path. The dimension of a curve is given by D = limN→∞

1
N logN(1/N).

Definition A fractal is a set in space with fractional dimension.

25



9 Other types of Spectra

9.1 Cross-Spectra

Definition Consider two jointly weakly stationary time series,Xt =
∫
eiλtdZX(λ)

and Yt =
∫
eiλtdZY (λ). The cross-spectrum, fXY (λ) is given by:

fXY (λ)dλ = E(dZX(λ)dZY (λ))

As before, there is a relationship between autocorrelations and spectra:

fXY (λ) =
1
2π

∞∑
r=−∞

cXY,r exp(−iλr)

where cXY,r = E(XtYt−r). Note that the cross-spectrum may be complex-
valued.

Definition The coherence of two time series is given by:

rXY (λ) =
|fXY (λ)|√

fXX(λ)fY Y (λ)

This is the correlation at frequency λ. The corresponding phase, θXY , measures
the difference in the angles of fXY (λ) and

√
fXX(λ)fY Y (λ).

Definition The cross-periodogram is given by:

IXY (λ) =
n

2π
JX(λ)JY (λ) =

1
2π

∑
|r|<n

ĉXY,r exp(−irλ)

As before, the values of the cross-periodogram at different frequencies are
roughly independent and we estimate the cross-spectrum by smoothing the
cross-periodogram.

9.2 Bispectrum

Definition Let {Xt} be a strictly stationary process with zero mean. We define
the third order moment function by C(r, s) = E(XtXt+rXt+s). We define the
bispectrum, fX(λ1, λ2), as the contribution of the frequencies λ1, λ2 to the third
moment of Xt. That is,

C(r, s) =
∫ π

−π

∫ π

−π

eirλ1eisλ2f(λ1, λ2)dλ1dλ2

As before, we may invert this to find that f(λ1, λ2) = 1
(2π)2

∑∞
r=−∞

∑∞
s=−∞ C(r, s)e−irλ1e−isλ2 .

Note that C(0, 0) = E(X3
t ) is the skewness. The bispectrum does not have to
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be positive or real-valued. We may use this to find something about the spectral
representation for strictly stationary time series:

C(r, s) = E((
∫ π

−π

eiλ1tdZ(λ1))(
∫ π

−π

eiλ2tdZ(λ2))(
∫ π

−π

eiλ3tdZ(λ3)))

=
∫ π

−π

∫ π

−π

∫ π

−π

eit(λ1+λ2+λ3)E(dZ(λ1)dZ(λ2)dZ(λ3))

Since the third moment cannot depend on time for a strictly stationary series,
this means that E(dZ(λ1)dZ(λ2)dZ(λ3)) = 0 unless λ1+λ2+λ3 = 0. This means
we may write C(r, s) =

∫ π

−π

∫ π

−π

∫ π

−π
eiλ1reiλ2sE(dZ(λ1)dZ(λ2)dZ(−λ1 − λ2)).

To estimate the bispectrum, we may use J(ωj)J(ωk)J(−ωj − ωk). Since all
the higher order moments of a Gaussian random variable are 0, the bispectrum
(and all higher versions of this) must be 0 for a Gaussian process. For a linear
process, the bispectrum is constant (and equal to µ2

3
2π(σ2

ε )3 , where µ3 is the skew-

ness). Let T (λ1, λ2) = |f(λ1,λ2)|2
|f(λ1)f(λ2)f(λ3)| ; comparing an estimate of this quantity

to the values above gives a test for linearity and Gaussianity. (This may be
extended to spectra based on even higher moments, which can also be used for
tests of linearity and Gaussianity.)

10 Cointegration

Definition We say that a process is integrated of order d, or I(d), if its kth

difference has spectral density f(λ) ∼ C|λ|−2(d−k) as λ → 0, where k is any
non-negative integer with d− k ≤ 1

2 .

Definition Suppose we have two time series, {Xt} and {Yt}, each of which is
I(d). Suppose there is some β such that Ut = Yt − βXt is I(dU ) with dU < d.
Then, we say that Xt and Yt are fractionally cointegrated. If d = 1 and dU = 0,
then we say that Xt and Yt are classically cointegrated. The degree of correlation
is d− dU .

The series Ut represents deviations from an equilibrium. With fractional
cointegration, reversion to the equilibrium will be slower than with classical
cointegration.

Testing for classical cointegration (ignoring the possibility of fractional coin-
tegration):

• Test that {Xt} and {Yt} have unit roots, using a Dickey-Fuller Test.

• Regress {Yt} on {Xt} using ordinary least squares, and find β̂.

• Test whether {Yt − β̂Xt} has a unit root, using a Dickey-Fuller test.

Note that the Dickey-Fuller test will reject the null hypothesis of a unit root
even if Ut has long memory with a long memory parameter between 0 and 1.

Testing for fractional cointegration:
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• Difference Xt and Yt enough times to remove any possible polynomial
trends.

• Test that the long memory parameters of Xt and Yt are equal.

• Regress the discrete Fourier transforms of the two series on each other:
JY,j = βJX,j . To exclude short-memory movements (and possibly a con-
stant term) from the regression, use only j = 1, ...,M . Tapering the data
first also helps.

• Test that the long memory parameter of Yt−β̂Xt is lower than the original
long memory parameters.

28


