
Stochastic Calculus: NYU, Fall 2003

1 Preliminaries

1.1 Multivariate Normals

Definition 1 A Gaussian vector (multivariate normal random variable), X =X1

...
Xp

, is a random variable in Rp with the density function fX(x) = 1
(2π)p/2| detΣ|1/2 e

− 1
2 (x−µ)TΣ−1(x−µ),

where µ ∈ Rp is the mean and Σ ∈ Rp×p is a symmetric positive definite matrix
and the covariance matrix.

Note that the fact that Σ is positive definite (and not positive semidefi-
nite) implies that no linear combination of some of the components is perfectly
correlated with the other components. Some other properties include:

• Each coordinate is Gaussian.
• Each subset of the coordinates with also a Gaussian vector.
• If C is a non-singular p×p matrix and Y = m+CX, then Y is distributed
multivariate normal with mean m+ Cµ and covariance CΣCT .

2 Limit Theorems
Theorem 2 (Weak Law of Large Numbers). Let ξj be a sequence of inde-
pendent, identically distributed random variables. Let η = E(ξj) < ∞. Let

Sn =
Pn

j=1 ξj. Then, P (
¯̄̄
Sn
n − η

¯̄̄
≤ ε) −→ 1 as n −→∞ for all ε > 0.

Theorem 3 (Central Limit Theorem) Let ξj be a sequence of independent,
identically distributed random variables. Let η = E(ξj) < ∞. Let Sn =Pn

j=1 ξj. Let E(ξ2j ) = σ2 < ∞. As n −→ ∞, Sn−nη√
nσ2

converges is probability
to a normal random variable with mean 0 and variance 1, that is, a random
variable with probability density ρ(x) = e−x

2/2/
√
2π.

Lemma 4 (Borel-Cantelli Lemma) Let s be a sequence of events. Let Bj =
{w : (wj+1, ..., wj+k) = s}, where each w is an infinite vector (string) of events.
Then, P (Bj infinitely often) = 0 if

P∞
j=1 P (Bj) < ∞ and P (Bj infinitely

often) = 1 if the Bj are independent and
P∞

j=1 P (Bj) =∞.

Theorem 5 (Strong Law of Large Numbers) Let {Xj}∞j=1 be a sequence of
independent, identically distributed random variables. Let η = E(X). Let
Sn =

Pn
j=1Xj. Then, Sn

n −→ η almost surely if and only if E(|Xj |) <∞.
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2.1 Statistics of Extrema

Theorem 6 Let {ξj}j∈N be a sequence of independent, identically distributed
random variables. Let Mn = max{ξ1, ..., ξn}. If there exist an, bn such that
P (an(Mn − bn) ≤ x) −→ G(x) as n −→∞, then G(x) is of one of three forms:
(1) G(x) = e−e

−x
, (2) G(x) = e−x

−α
, x > 0, α > 0, or (3) G(x) = e−|x|

α

, x ≤
0, α > 0.

3 Markov Chains
Definition 7 Given a sequence {Xn}n∈N , it has the Markov property if P (Xn =
i|Xn−1 = jn−1) = P (Xn = i|Xn−1 = jn−1,Xn−2 = jn−2, ...). If a sequence
has the Markov property, we call it a Markov chain. We may then specify its
evolution through the transition probabilities p(n)ij = P (Xn = i|Xn−1 = j).

Definition 8 A process is stationary if p(n)ij = P (Xn = i|Xn−1 = j) = p(i|j)
does not depend on n. Then, we may simply write pij = p

(n)
ij . This also defines

a matrix of transition probabilities, P , with each row sum equal to 1.

Some properties of Markov chains with a state space, S, initial distribution,
µ, and transition probabilities p(i|j) include:
• Pi∈S µ(i) = 1 (there is an initial condition in the space)

• For all j ∈ S,
P

i∈S p(i|j) = 1 (there is always a transition, even if it is to
the same state)

• 0 ≤ µ(i) ≤ 1 and 0 ≤ p(i|j) ≤ 1 (these are probabilities)
Definition 9 We say that i leads to j, i −→ j, if there exists s such that the ji
entry of P s is positive for some s. That is, there is some chain of finite length
and non-zero probability from i to j. If i −→ j and j −→ i, then we say that i
and j communicate, and i↔ j.

Theorem 10 If there exists a fixed s such that for all (i, j) P s
ij > 0, then (1)

there exists a unique π such that π = Pπ and (2) for all µ0 then µn = Pnµ0
converges to π as n −→∞ exponentially fast.

Definition 11 A chain is ergodic if all pairs of states communicate. That
is, there are no disconnected chains or groups of states to which return with
probability 0.

To find the probabilities of certain events, such as entering a state or getting
out of a certain set of states, we may create a modified chain, with a black
hole state (one from which one cannot exit) that is entered only when that
event occurs. Then, the probability of that event already having occurredin
the original chain equals the probability of being in the black hole state in the
modified chain.
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4 Continuous Time Stochastic Processes

4.1 Brownian Motion (the Weiner Process)

Let {ξn}n∈N be independent and identically distributed with P (ξn = +1) =
P (ξn = −1) = 1

2 . Then, Sn =
Pn

i=1 ξi is a random walk, and we may write
Sn = Sn−1+ξn. For any integerN , set∆t = 1/N for t ∈ [0, 1]. Set xk/N = Sk√

N
.

We may define a piecewise continuous function by xN (t) = xbtNc/N . Under
appropriate assumptions (Donsker), xN (t) converges in distribution to a random
process, Wt. We call this the Weiner Process, or Brownian motion. Some
properties of this process include:

• W1˜Normal(0, 1)

• Wt˜Normal(0, t), since XN
t = lim

SbNtc√
N

= lim
SbNtc√
bNtc

√
bNtc√
N
, where the

first term converges in distribution to a standard normal random variable
and the second converges to

√
t.

• Since {Sn}n∈N is Markov, the Weiner process is a continuous-time Markov
process. That is, P (Wt ≤ x|{Ws0}s0≤s) = P (Wt ≤ x|Ws).

• P (Wt ≤ x|Ws = y) = P (Wt−s ≤ x − y), and Wt − Ws has the same
distribution as Wt−s, that is, Normal(0, t− s)

• ρtn−tn−1(xn|xn−1)...ρt2−t1(x2|x1)ρt1−0(x1|0) = ρtn−tn−1(xn−xn−1|0)...ρt2−t1(x2−
x1|0)ρt1−0(x1|0) (this is the the joint probability density function ofWtn , ...,Wt0

for any partition {t0 = 0, t1, ..., tn−1, tn = 1} of [0, 1]
• E(WsWt) = min(s, t)

• E((Wt−Ws)
2) = |t− s| (The Weiner process is almost surely continuous,

and it is almost surely not differentiable anywhere.

• Given λ > 0, λ−1/2Wλt is equal in distribution to Wt. (The Weiner
Process is self-similar.)

Another construction of the Weiner process: Let {fk(t)} be an orthonor-
mal basis (so that

R 1
0
fk(t)fk0(t)dt = δk,k0) in L2[0, 1], so that for any g :

[0, 1] → R, with
R 1
0
g(t)2dt < ∞, we may write g(t) =

P
k αkfk(t), where

αk =
R 1
0
g(t)fk(t)dt. Note that

R 1
0
g(t)2dt =

P
k α

2
k. Let {βk} be indiepen-

dent, identically distributed standard normal random variables. Let Wt =P
k βk

R t
0
fk(z)dz. Then, since each

R t
0
fk(z)dz is fixed, each Wt is normal with
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mean 0. In addition,

E(WtWs) = E(
X
k

X
k0

βkβk0

Z t

0

fk(z)dz

Z s

0

fk0(z
0)dz0)

=
X
k

X
k0

E(βkβk0)

Z t

0

fk(z)dz

Z s

0

fk0(z
0)dz0

=
X
k

Z t

0

fk(z)dz

Z s

0

fk(z
0)dz0

Let χt(z) be the indicator function for the interval [0, t]. Since χt(z) ∈ L2[0, 1],
we may write χt(z) =

P
k fk(t)(

R 1
0
χt(z

0)fk(z0)dz0) =
P

k fk(t)(
R t
0
χt(z

0)fk(z0)dz0),
so that

P
k

R t
0
fk(z)dz

R s
0
fk(z

0)dz0 =
R 1
0
χt(z)χs(z)dz In addition,

R 1
0
χt(z)χs(z)dz =Rmin(t,s)

0
χt(z)χs(z)dz = min(t, s). Thus, E(WtWs) = min(t, s).

4.2 Gaussian Processes

Definition 12 Xt, for t ∈ [0, 1], is a Gaussian process if, for any partition

0 < t1 < ... < tn ≤ 1, the vector
Xt1

...
Xtn

 is a Gaussian vector.

As with Gaussian normals, Gaussian processes are completely determined
by their mean and covariance. In this case, Xt is completely determined by
E(Xt) and E(XtXs) = K(t, s) for all t, s ∈ [0, 1]. Given a Gaussian process,
Gt, with a zero mean, we may construct a process with mean mt at each time
as Gt +mt.

Definition 13 Wt is the Weiner process (Brownian motion) if (1) Wt is a
Gaussian process, (2) E(Wt) = 0 and E(WsWt) = min(s, t), and (3) Wt is
almost surely continuous.

Given a certain covariance, K(t, s), we may construct a zero mean Gaussian
process on [0, 1] using the Karhunen-Loeve Expansion. First, we find a count-
able set of functions, {ϕk}k∈N , ϕk : [0, 1] → R, such that

R 1
0
K(t, s)ϕk(s)ds =

λkϕk(t) for each k. Then, we may write K(t, s) =
P∞

k=0 λkϕk(t)ϕk(s). Then,
the Gaussian process with covariance K(t, s) is Gt =

P∞
k=0

√
λkξkϕk(t), where

{ξk}k∈N are independent, identically distributed standard Gaussian random
variables.
To find a Karhunen-Loeve expansion, solve λϕ(t) =

R 1
0
E(BsBt)ϕ(s)ds,

subject to the boundary conditions implied by the original equation, such as
ϕ(0) = 0, and the fact that {ϕk}k∈N should be orthonormal.
The Karhunen-Loeve Expansion is useful to calculate certain integrals. For

example, if Gt =
P∞

k=0

√
λkξkϕk(t) for some {(λk, ϕk)}k∈N , then we have:

E(exp(−µ
2

Z 1

0

G2tdt)) =
Y
k∈N

1√
1 + µλk
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This may be evaluated for any expansion for which this will converge.

5 Stochastic Differential Equations
The most general form of a stochastic differential equation is:

XN
tn+1 = XN

tn + b(XN
tn , {ξtk}k≤n)∆t+ σ(XN

tn , {ξtk}k≤n)
√
∆tξtn+1

where b and σ are fixed functions that may depend on random inputs which de-
pend only on past values of the random variable ξtn . Under certain conditions,
XN
t will converge is in distribution to Xt, with sup0≤t≤T E|Xt−XN

t | ≤ C1
√
∆t

and sup0≤t≤T |E(f(Et))−E(f(XN
t ))| ≤ C2∆t, where ∆t = 1

N .
The simplest example is the Weiner Process, which has b = 0 and σ = 1.

Two other ways of writing this stochastic differential equation are

XN
tn+1 = XN

tn + b(XN
tn , {Wtk}k≤n)∆t+ σ(XN

tn , {Wtk}k≤n)
√
∆t(Wtn+1 −Wtn)

dXt = b(Xt,W[0,t])dt+ σ(Xt,W[0,t])dWt

The latter of these suggests the solution

Xt = x0 +

Z t

0

b(Xs,W[0,s])ds+

Z t

0

σ(Xs,W[0,s])dWs

5.1 Itô Isometries and Formula

Theorem 14 E(
R t
0
b(Ws)dWs) = 0. E((

R t
0
b(Ws)dWs)

2) =
R t
0
E(b(Ws)

2)ds.

Theorem 15 (Itô’s formula) If dXt = b(Xt)dt + σ(Xt)dWt and Yt = f(Xt),
then dYt = df(Xt) = f 0(Xt)(b(Xt)dt + σ(Xt)dWt) +

1
2f

00(Xt)σ(Xt)
2dt. Note

that this last term makes this formula different from the standard chain rule.

Corollary 16 If we have Yt = g(Xt, t) and dXt = b(Xt)dt + σ(Xt)dWt, then
dg(Xt, t) =

∂
∂Xt

g(Xt, t)dXt +
1
2

∂2

∂X2
t
g(Xt, t)σ(Xt)

2dt + ∂
∂tg(Xt, t)dt. (This is

the same formula above except for the final time component.)

Corollary 17 E((
R t
0
f(Ws)dWs)(

R t0
0
f(Ws)dWs)) =

Rmin(t,t0)
0

E(f(Ws)
2)ds. (This

can help find covariances.)

In addition, if dXt = b(Xt)dt+ σ(Xt)dWt and dYt = c(Yt)dt+ τ(Yt)dt, for
the same realization of dWt, then:

d(XtYt) = YtdXt +XtdYt + σ(Xt)τ(Yt)dt

More generally, we note that dW 2
t = dt and

R t
0
dWs = t.
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5.2 Solving Stochastic Differential Equations

Let f(t) be any function. Given a stochastic differential equation for Xt, define
Yt = f(t)Xt. Then,

dYt = d(f(t)Xt)

= f 0(t)Xtdt+ f(t)dXt

= (f 0(t)Xt + f(t)b(Xt))dt+ f(t)σ(t)dWt

In some cases, we may choose f(t) so that the coefficient on dt does not depend
on Xt. In that case, we find that f(t)Xt is the sum of a fixed function of t and
an integral with respect to dWt; we may understand the latter by noting that
its expected value is 0 and we may calculate its covariance as well using the Ito
Isometries.
Let f(x) be any function. Given the stochastic differential equation dXt =

b(Xt)dt+ σ(Xt)dWt, we may set Yt = f(Xt) and then find:

dYt = d(f(Xt))

= f 0(Xt)dXt +
1

2
f 00(Xt)σ

2(Xt)dt

= (f 0(Xt)b(Xt) +
1

2
f 00(Xt)σ

2(Xt))dt+ f 0(Xt)σ(Xt)dWt

As before, we may be able to choose f(t) so that the coefficient on dt is 0.

5.3 Approximation Schemes for stochastic differential equa-
tions

We may write Xt+∆t = Xt +
R t+∆t
t

b(Xs)ds +
R t+∆t
t

σ(Xs)dWs. A first ap-

proximation of this is \Xt+∆t ≈ Xt + b(cXt)∆t+ σ(cXt)(Wt+∆t −Wt). As with
other stochastic approximations, this must be evaluated at the beginning of
each interval, not at intermediate points. We evaluate this approximation by
noting that sup0≤t≤T E(|Xt−cXt|) ≤ C

√
∆t (and the approximation is of strong

order 12) and sup0≤t≤T |E(f(Xt))−E(f(cXt))| ≤ C∆t for suitable test functions
f (and the approximation is of weak order 1). To improve this, we may use
higher order terms as well.

6 Path Integral Representations of Stochastic
Differential Equations

E(f(X)) =

R
f(h[0,T ]) exp(−12

R T
0
(h0(t)− b(h(t)))dt)dH[0,T ]R

exp(−12
R T
0
(h0(t)− b(h(t)))dt)dH[0,T ]

This allows us to compute expectations for the stochastic process defined by
dXt = b(Xt, t)dt + σ(Xt, t)dWt with X0 = x in terms of expectations of the
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Weiner process:

E(f(X[0,T ])) = E(f(Wx
[0,T ]) exp(

Z T

0

b(Wx
t )dWt − 1

2

Z T

0

b(Wx
t )
2dt))

6.1 The Girsanov Principle

Suppose dXt = b(Xt)dt+ dWt and dYt = c(Xt)dt+ dWt. Then,

E(f(X[0,T ])) = E(f(Y[0,T ]) exp(

Z T

0

(b(Yt)−c(Yt))dYt−
Z T

0

c(Yt)(b(Yt)−c(Yt))dt+1
2

Z T

0

(b(Yt)−c(Yt))2dt))

7 The Fokker-Planck Equations
Let dXt = b(Xt)dt+ σ(Xt)dWt, with X0 = x. Define pxt (y) by

R
[a,b]

pxt (y)dy =

P (Xt ∈ [a, b]); that is, pxt (y) is the probability density function of Xt for a fixed
t. In addition, define u(x, t) = E(f(Xx

t )). Note that:

u(x, t) = E(f(Xx
t )) =

Z
R

f(y)pxt (y)dy

7.1 The Forward Kolmogorov Equation

The Forward Kolmogorov Equation:

∂

∂t
pxt (y) = −

∂

∂y
(b(y)pxt (y)) +

1

2

∂2

∂y2
(σ2(y)pxt (y))

In addition, we have the boundary conditions that limt→0+ pxt (y) = δ(x − y),
since X0 = x, and limy→∞ ∂

∂yp
x
t (y) = 0, because this is a pdf. We will later

define:

A∗(f(y)) = − ∂

∂y
(b(y)f(y)) +

1

2

∂2

∂y2
(σ2(y)f(y))

so that we have the equation ∂
∂tp

x
t (y) = A∗(pxt (y)).

There is a "statistical steady state" — that is, a limiting distribution — if
pxt (y) has a limit, in which case there is a finite solution to

0 = − ∂

∂y
(b(y)pxt (y)) +

1

2

∂2

∂y2
(σ2(y)pxt (y))

pxt (y) =
C

σ2(y)
exp(

Z
b(y)

σ2(y)
dy)

7.2 The Backward Kolmogorov Equation

A(f(x)) = (b(x)
∂

∂x
+
1

2
σ2(x)

∂2

∂x2
)f(x)

7



(The A∗ defined above satisfies
R
R
g(x)A(f(x))dx =

R
R
f(x)A∗(g(x))dx for any

functions f and g.)
Using this function in the formula above, we find the Backward Kolmogorov

equation:

∂

∂t
pxt (y) = b(x)

∂

∂x
pxt (y) +

1

2
σ2(x)

∂2

∂x2
pxt (y) = A(pxt (y))

subject to the boundary condition that limt→0+ pxt (y) = δ(x− y).
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