
Stochastic Calculus: NYU, Fall 2003

1 Preliminaries

1.1 Multivariate Normals

Definition 1 A Gaussian vector (multivariate normal random variable), X =X1

...
Xp

, is a random variable in Rp with the density function fX(x) = 1
(2π)p/2| detΣ|1/2 e

− 1
2 (x−µ)TΣ−1(x−µ),

where µ ∈ Rp is the mean and Σ ∈ Rp×p is a symmetric positive definite matrix
and the covariance matrix.

Note that the fact that Σ is positive definite (and not positive semidefi-
nite) implies that no linear combination of some of the components is perfectly
correlated with the other components. Some other properties include:

• Each coordinate is Gaussian.
• Each subset of the coordinates with also a Gaussian vector.
• If C is a non-singular p×p matrix and Y = m+CX, then Y is distributed
multivariate normal with mean m+ Cµ and covariance CΣCT .

2 Limit Theorems
Theorem 2 (Weak Law of Large Numbers). Let ξj be a sequence of inde-
pendent, identically distributed random variables. Let η = E(ξj) < ∞. Let

Sn =
Pn

j=1 ξj. Then, P (
¯̄̄
Sn
n − η

¯̄̄
≤ ε) −→ 1 as n −→∞ for all ε > 0.

Proof. For simplicity, we assume that σ2 = E(ξ2j ) < ∞. Without loss of
generality, assume that η = 0 (if not, we replace ξj by ξj − η). By Cheby-
shev’s Inequality, P (|X| ≥ ε) ≤ 1

εpE(|X|p) for all p > 0, since E(|X|p) =R
R
|X|p µ(dx) ≥ R|X|≥ε |X|p µ(dx) ≥ εp

R
|X|≥ε µ(dx) = εpP (|X| ≥ ε). Applying

Chebyshev’s Inequality, we find:

P (

¯̄̄̄
Sn
n

¯̄̄̄
≥ ε) ≤ 1

ε2
E(

¯̄̄̄
Sn
n

¯̄̄̄2
) =

1

n2
1

ε2
E(|Sn|2)

Using the fact that the ξj are independent and identically distributed, we find:

E(|Sn|2) = E((
nX
j=1

ξj)
2)

= E(
nX
j=1

ξj
2)

= nσ2
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Thus, P (
¯̄̄
Sn
n

¯̄̄
≥ ε) ≤ nσ2

n2ε2 =
σ2

nε2 , which goes to 0 for fixed ε as n −→ ∞.
Notice that P (

¯̄̄
Sn
n

¯̄̄
≤ ε) −→ 1 if and only if P (

¯̄̄
Sn
n

¯̄̄
> ε) −→ 0. Thus,

P (
¯̄̄
Sn
n − η

¯̄̄
≤ ε) −→ 1 as n −→∞ for all ε > 0.

Theorem 3 (Central Limit Theorem) Let ξj be a sequence of independent,
identically distributed random variables. Let η = E(ξj) < ∞. Let Sn =Pn

j=1 ξj. Let E(ξ2j ) = σ2 < ∞. As n −→ ∞, Sn−nη√
nσ2

converges is probability
to a normal random variable with mean 0 and variance 1, that is, a random
variable with probability density ρ(x) = e−x

2/2/
√
2π.

Proof. We use the characteristic function of x: f(z) = E(eizx) =
R
R
eizxρx(x)dx.

Note that the characteristic function is unique to a density, and that the char-
acteristic function of a standard normal random variable is fG(z) = e−z

2/2.
Without loss of generality, we assume that η = 0 (if not, we replace ξj by ξj−η).
We find the characteristic function of Sn/

√
nσ2 using a Taylor expansion and

the definition of e:

gn(z) = E(
nY
j=1

e
i√
nσ2

ξjz
)

=
nY
j=1

E(e
i√
nσ2

ξjz
)

=
nY
j=1

E(1 + (
iz√
nσ2

ξj)−
z2

2(
√
nσ2)2

ξ2j + ...)

=
nY
j=1

(1 + 0 +− z2

2nσ2
σ2 + ...)

≈
nY
j=1

(1− z2

2n
)

= (1− z2

2n
)n

−→ e−z
2/2

Since the characteristic function converges to the characteristic function of a
normal random variable, Sn−nη√

nσ2
converges to a random variable with a standard

normal distribution.

Lemma 4 (Borel-Cantelli Lemma) Let s be a sequence of events. Let Bj =
{w : (wj+1, ..., wj+k) = s}, where each w is an infinite vector (string) of events.
Then, P (Bj infinitely often) = 0 if

P∞
j=1 P (Bj) < ∞ and P (Bj infinitely

often) = 1 if the Bj are independent and
P∞

j=1 P (Bj) =∞.
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Proof. Bj occurs infinitely often if P (
∞T
k=1

∞S
j=k

Bj) > 0. Note that P (
∞T
k=1

∞S
j=k

Bj) ≤

P (
∞S
j=k

Bj) ≤
P∞

j=k P (Bj). In the first case,
P∞

j=1 P (Bj) converges, so thatP∞
j=k P (Bj) −→ 0 as k −→ ∞. Since this is an upper bound on P (Bj infi-

nitely often), P (Bj infinitely often) = 0. In the second case,

Theorem 5 (Strong Law of Large Numbers) Let {Xj}∞j=1 be a sequence of
independent, identically distributed random variables. Let η = E(X). Let
Sn =

Pn
j=1Xj. Then, Sn

n −→ η almost surely if and only if E(|Xj |) <∞.

Proof. For simplicity, we assume that E(X4
j ) < ∞, which also implies that

E(X2
j ) <∞. Using the Chebyshev inequality with p = 4, we find that:

P (

¯̄̄̄
Sn
n

¯̄̄̄
> ε) ≤ 1

n4ε4
E(S4n)

E(S4n) = E(
XXXX

ξj1ξj2ξj3ξj4)

=
nX
j=1

E(ξ4j ) + 3
nX
i=1

nX
j=1,j 6=i

E(ξ2i )E(ξ
2
j )

= nE(ξ4j) + 3n(n− 1)(E(ξ2i ))2

Thus, E(S4n) grows as n
2, since E(ξ4j ) and E(ξ

2
i ) are both fixed and finite. Thus,

P (
¯̄
Sn
n

¯̄
> ε) is bounded above by a function of order 1

n2 for any fixed ε. Choose
Bn = {w : w yields a sum of Sn with

¯̄
Sn
n

¯̄
> ε). Then,

P∞
j=1 P (Bj) is the

sum of numbers bounded above by c
n2 for some c. Since

P∞
n=1

c
n2 converges,P∞

j=1 P (Bj) < ∞. Hence, P (
¯̄
Sn
n

¯̄
> ε infinitely often) = 0 and Sn

n −→ η
almost surely.

2.1 Statistics of Extrema

Theorem 6 Let {ξj}j∈N be a sequence of independent, identically distributed
random variables. Let Mn = max{ξ1, ..., ξn}. If there exist an, bn such that
P (an(Mn − bn) ≤ x) −→ G(x) as n −→∞, then G(x) is of one of three forms:
(1) G(x) = e−e

−x
, (2) G(x) = e−x

−α
, x > 0, α > 0, or (3) G(x) = e−|x|

α

, x ≤
0, α > 0.

3 Markov Chains
Definition 7 Given a sequence {Xn}n∈N , it has the Markov property if P (Xn =
i|Xn−1 = jn−1) = P (Xn = i|Xn−1 = jn−1,Xn−2 = jn−2, ...). If a sequence
has the Markov property, we call it a Markov chain. We may then specify its
evolution through the transition probabilities p(n)ij = P (Xn = i|Xn−1 = j).
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Definition 8 A process is stationary if p(n)ij = P (Xn = i|Xn−1 = j) = p(i|j)
does not depend on n. Then, we may simply write pij = p

(n)
ij . This also defines

a matrix of transition probabilities, P , with each row sum equal to 1.

Note that defining an initial distribution, for X0, and the transition proba-
bilities completely defines a Markov process.
Some properties of Markov chains with a state space, S, initial distribution,

µ, and transition probabilities p(i|j) include:
• Pi∈S µ(i) = 1 (there is an initial condition in the space)

• For all j ∈ S,
P

i∈S p(i|j) = 1 (there is always a transition, even if it is to
the same state)

• 0 ≤ µ(i) ≤ 1 and 0 ≤ p(i|j) ≤ 1 (these are probabilities)
Definition 9 We say that i leads to j, i −→ j, if there exists s such that the ji
entry of P s is positive for some s. That is, there is some chain of finite length
and non-zero probability from i to j. If i −→ j and j −→ i, then we say that i
and j communicate, and i↔ j.

Theorem 10 If there exists a fixed s such that for all (i, j) P s
ij > 0, then (1)

there exists a unique π such that π = Pπ and (2) for all µ0 then µn = Pnµ0
converges to π as n −→∞ exponentially fast.

Proof. Insert proof here.

Definition 11 A chain is ergodic if all pairs of states communicate. That
is, there are no disconnected chains or groups of states to which return with
probability 0.

To find the probabilities of certain events, such as entering a state or getting
out of a certain set of states, we may create a modified chain, with a black
hole state (one from which one cannot exit) that is entered only when that
event occurs. Then, the probability of that event already having occurredin
the original chain equals the probability of being in the black hole state in the
modified chain.

4 Continuous Time Stochastic Processes

4.1 Brownian Motion (the Weiner Process)

Let {ξn}n∈N be independent and identically distributed with P (ξn = +1) =
P (ξn = −1) = 1

2 . Then, Sn =
Pn

i=1 ξi is a random walk, and we may write
Sn = Sn−1+ξn. For any integerN , set∆t = 1/N for t ∈ [0, 1]. Set xk/N = Sk√

N
.

We may define a piecewise continuous function by xN (t) = xbtNc/N . Under
appropriate assumptions (Donsker), xN (t) converges in distribution to a random
process, Wt. We call this the Weiner Process, or Brownian motion. Some
properties of this process include:
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• W1˜Normal(0, 1)

• Wt˜Normal(0, t), since XN
t = lim

SbNtc√
N

= lim
SbNtc√
bNtc

√
bNtc√
N
, where the

first term converges in distribution to a standard normal random variable
and the second converges to

√
t.

• Since {Sn}n∈N is Markov, the Weiner process is a continuous-time Markov
process. That is, P (Wt ≤ x|{Ws0}s0≤s) = P (Wt ≤ x|Ws).

Using the Markov property, we find that P (Wt ≤ x|Ws = y) = P (Wt−s ≤
x−y), andWt−Ws has the same distribution asWt−s, that is, Normal(0, t−s).
Extending this, we find that, for any partition {t0 = 0, t1, ..., tn−1, tn = 1} of
[0, 1], the joint probability density function ofWtn , ...,Wt0 = 0 is ρtn−tn−1(xn|xn−1)...ρt2−t1(x2|x1)ρt1−0(x1|0) =
ρtn−tn−1(xn − xn−1|0)...ρt2−t1(x2 − x1|0)ρt1−0(x1|0).
The covariance of any two points in time, t > s, is given by:

E(WtWs) =

Z
R2

xyρt−s(x|y)ρs(y|0)dxdy

=

Z
R2

xy
e−(x−y)

2/2(t−s)p
2π(t− s)

e−y
2/2s

√
2πs

dxdy

=

Z
R2

(x− y)y
e−(x−y)

2/2(t−s)p
2π(t− s)

e−y
2/2s

√
2πs

dxdy +

Z
R2

y2
e−(x−y)

2/2(t−s)p
2π(t− s)

e−y
2/2s

√
2πs

dxdy

= 0 +E(W 2
s ) = min(s, t)

Thus, E(WsWt) = min(s, t). In addition,

E((Wt −Ws)
2) = E(W 2

t ) +E(W 2
s )− 2E(WsWt)

= t+ s− 2min(t, s)
= |t− s|

This implies that theWeiner process is almost surely continuous, since limt→sE((Wt−
Ws)

2) = 0. However, it is almost surely not differentiable anywhere, since
E((Wt −Ws)

2) grows as (t− s)2.
The Weiner Process is self-similar: Given λ > 0, λ−1/2Wλt is equal in distrib-

ution toWt, sinceE(λ
−1/2Wλtλ

−1/2Wλs) = λ−1E(WλtWλs) = λ−1min(λt, λs) =
min(s, t). This allows us to study the properties of the Weiner process on [0, 1]
and apply them to any interval.
Another construction of the Weiner process: Let {fk(t)} be an orthonor-

mal basis (so that
R 1
0
fk(t)fk0(t)dt = δk,k0) in L2[0, 1], so that for any g :

[0, 1] → R, with
R 1
0
g(t)2dt < ∞, we may write g(t) =

P
k αkfk(t), where

αk =
R 1
0
g(t)fk(t)dt. Note that

R 1
0
g(t)2dt =

P
k α

2
k. Let {βk} be indiepen-

dent, identically distributed standard normal random variables. Let Wt =P
k βk

R t
0
fk(z)dz. Then, since each

R t
0
fk(z)dz is fixed, each Wt is normal with
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mean 0. In addition,

E(WtWs) = E(
X
k

X
k0

βkβk0

Z t

0

fk(z)dz

Z s

0

fk0(z
0)dz0)

=
X
k

X
k0

E(βkβk0)

Z t

0

fk(z)dz

Z s

0

fk0(z
0)dz0

=
X
k

Z t

0

fk(z)dz

Z s

0

fk(z
0)dz0

Let χt(z) be the indicator function for the interval [0, t]. Since χt(z) ∈ L2[0, 1],
we may write χt(z) =

P
k fk(t)(

R 1
0
χt(z

0)fk(z0)dz0) =
P

k fk(t)(
R t
0
χt(z

0)fk(z0)dz0),
so that

P
k

R t
0
fk(z)dz

R s
0
fk(z

0)dz0 =
R 1
0
χt(z)χs(z)dz In addition,

R 1
0
χt(z)χs(z)dz =Rmin(t,s)

0
χt(z)χs(z)dz = min(t, s). Thus, E(WtWs) = min(t, s).

4.2 Filtrations and Martingales

Definition 12 A σ-field, F , on a probability space, Ω, is a collection of subsets
of Ω which contains ∅, Ω, and is closed under completements and countable
unions and intersections. For a stochastic process Y = (Yt, t ∈ [0, T ], ω ∈ Ω),
the σ-field σ(Y ) is the smallest σ-field containing all sets of the form {ω : (Yt, t ∈
[0, T ]) ∈ C}, where C is a set of functions on [0, T ]. This is the σ-field generated
by Y .

Basically, σ(Y ) contains all information about the structure of Y . In par-
ticular, if s < t, then σ(Ys) ⊂ σ(Yt), because more information is known about
the path of Y at a later time.

Definition 13 A collection (Ft, t ≥ 0) of σ-fileds of Ω is called a filtration if
Fs ⊂ Ft for all 0 ≤ s ≤ t. The stochastic process Yt is adapted to the filtration
(Ft, t ≥ 0) if σ(Yt) ⊂ Ft for all t ≥ 0. The natural filtration generated by a
stochastic process Yt is Ft = σ(Ys, s ≤ t).

Definition 14 The stochastic process Xt is called a continuous-time martingale
with respect to the filtration (Ft) if E|Xt| < ∞, Xt is adapted to (Ft), and
E(Xt|Fs) = Xs for all 0 ≤ s < t.

Brownian motion is a martingale.

4.3 Gaussian Processes

Definition 15 Xt, for t ∈ [0, 1], is a Gaussian process if, for any partition

0 < t1 < ... < tn ≤ 1, the vector
Xt1

...
Xtn

 is a Gaussian vector.
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As with Gaussian normals, Gaussian processes are completely determined
by their mean and covariance. In this case, Xt is completely determined by
E(Xt) and E(XtXs) = K(t, s) for all t, s ∈ [0, 1]. Given a Gaussian process,
Gt, with a zero mean, we may construct a process with mean mt at each time
as Gt +mt.

Definition 16 Wt is the Weiner process (Brownian motion) if (1) Wt is a
Gaussian process, (2) E(Wt) = 0 and E(WsWt) = min(s, t), and (3) Wt is
almost surely continuous.

Given a certain covariance, K(t, s), we may construct a zero mean Gaussian
process on [0, 1] using the Karhunen-Loeve Expansion. First, we find a count-
able set of functions, {ϕk}k∈N , ϕk : [0, 1] → R, such that

R 1
0
K(t, s)ϕk(s)ds =

λkϕk(t) for each k. (We also assume that we have the ordering λ1 > λ2 >
... > 0.) Then, we may write K(t, s) =

P∞
k=0 λkϕk(t)ϕk(s). Then, the

Gaussian process with covariance K(t, s) is Gt =
P∞

k=0

√
λkξkϕk(t), where

{ξk}k∈N are independent, identically distributed standard Gaussian random
variables. Clearly, this process is Gaussian (since each point is a linear combi-
nation of independent random variables), and its covariance is actually K(t, s):

E(GtGs) = E(
X
k

X
k0

p
λkλk0ξkξk0ϕk(t)ϕk0(s))

=
X
k

X
k0

p
λkλk0ϕk(t)ϕk0(s)E(ξkξk0)

=
X
k

λkϕk(t)ϕk(s)

= K(t, s)

We find the Karhunen-Loeve expansion of the Weiner process. In this case,
K(t, s) = min(t, s). Thus, we solve:

λϕ(t) =

Z 1

0

min(t, s)ϕ(s)ds

=

Z t

0

min(t, s)ϕ(s)ds+

Z 1

t

min(t, s)ϕ(s)ds

=

Z t

0

sϕ(s)ds+

Z 1

t

tϕ(s)ds

Taking the first and second derivatives with respect to t, we find:

λϕ0(t) = tϕ(t)− tϕ(t) +

Z 1

t

ϕ(s)ds

=

Z 1

t

ϕ(s)ds

λϕ00(t) = −ϕ(t)
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The general solution to this differential equation is ϕ(t) = A sin( t√
λ
+B). From

the original equation, we have the boundary condition that ϕ(0) =
R 0
0
sϕ(s)ds+R 1

0
0ϕ(s)ds = 0. This means that 0 = ϕ(t) = A sin( 0√

λ
+B) = A sin(B), so that

B = 0. From the first derivative, we find that ϕ0(1) =
R 1
1
ϕ(s)ds = 0. Then,

0 = ϕ0(1) = A√
λ
cos( t√

λ
). Since A = 0 gives the trivial solution, we instead fix

1√
λ
= π

2 + kπ, k ∈ Z, so that λk = 4
(2k+1)2π2 , for k ∈ N . We then choose A

to make this an orthonormal basis, so that 1 =
R 1
0
(A sin( 2k+12 πt))2dt = A2/2.

So A =
√
2. Thus, our basis is {√2 sin(2k+12 πt)}k∈N , and we may write Wt =P

k∈N
√
λkξkϕk(t) =

P
k∈N ξk

2
√
2

(2k+1)π sin(
2k+1
2 πt).

The Karhunen-Loeve Expansion is useful to calculate certain integrals. For
example, if Gt =

P∞
k=0

√
λkξkϕk(t) for some {(λk, ϕk)}k∈N , then we have:

E(exp(−µ
2

Z 1

0

G2tdt)) = E(exp(−µ
2

Z 1

0

(
X
k∈N

p
λkξkϕk(t))

2dt))

= E(exp(−µ
2

Z 1

0

(
X
k∈N

X
k0∈N

p
λkλk0ξkξk0ϕk(t)ϕk0(t))dt))

= E(exp(−µ
2

X
k∈N

X
k0∈N

(

Z 1

0

p
λkλk0ξkξk0ϕk(t)ϕk0(t)dt)))

= E(
Y
k∈N

Y
k0∈N

exp(−µ
2

Z 1

0

p
λkλk0ξkξk0ϕk(t)ϕk0(t)dt))

=
Y
k∈N

Y
k0∈N

E(exp(−µ
2

Z 1

0

p
λkλk0ξkξk0ϕk(t)ϕk0(t)dt))

=
Y
k∈N

Y
k0∈N

E(exp(−µ
2

p
λkλk0ξkξk0

Z 1

0

ϕk(t)ϕk0(t)dt))

=
Y
k∈N

Y
k0∈N

E(exp(−µ
2

p
λkλk0(δk,k0ξ

2
k)(δk,k0)))

=
Y
k∈N

E(exp(−µ
2
λkξ

2
k))

=
Y
k∈N

Z
R

e−
µ
2 λkz

2 1√
2π

e−z
2/2dz

=
Y
k∈N

Z
R

1√
2π

e−
1
2 (µλk+1)z

2

dz

=
Y
k∈N

1√
1 + µλk

This may be evaluated for any expansion for which this will converge.
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4.4 The Weiner Measure

Given a partition of time, 0 = t0 < t1 < ... < tn ≤ 1, we have the probability
density function:

ρtn...t1(xn, ..., x1) = Z−1n exp(−1
2
In)

Zn = (2π)−
n
2

nY
j=1

(tj − tj−1)−
1
2

In =
nX
j=1

(xj − xj−1)2

(tj − tj−1)
=

nX
j=1

(xj − xj−1)2

(tj − tj−1)2
(tj − tj−1)

This can be calculuated for any numerable partition. Since knowing about
every numerable partition completely defines a continuous function and the
Weiner process is almost always continuous, this gives us information about the
entire Weiner process, if we consider the partitions with tj − tj−1 = ∆t = 1

n as
n→∞.
Let h(t) be a function with Xj = h( jn). Then,

In =
nX
j=1

(
h( jn)− h( j−1n )

1/n
)2(
1

n
)

→
Z 1

0

(
dh

dt
)2dt = I

This means that the "density" converges to Z−1 exp(−12
R 1
0
(dhdt )

2dt)Dh(t), where
Dh(t) =

Q
0≤t≤1

dht. However, Zn will not converge, so we formally define

Z =
R
exp(−12

R 1
0
(dhdt )

2dt)Dh(t). This gives the Weiner measure as

dµW = Z−1 exp(−1
2
I(h(t)))Dh(t)

5 Stochastic Differential Equations
The most general form of a stochastic differential equation is:

XN
tn+1 = XN

tn + b(XN
tn , {ξtk}k≤n)∆t+ σ(XN

tn , {ξtk}k≤n)
√
∆tξtn+1

where b and σ are fixed functions that may depend on random inputs which de-
pend only on past values of the random variable ξtn . Under certain conditions,
XN
t will converge is in distribution to Xt, with sup0≤t≤T E|Xt−XN

t | ≤ C1
√
∆t

and sup0≤t≤T |E(f(Et))−E(f(XN
t ))| ≤ C2∆t, where ∆t = 1

N .
The simplest example is the Weiner Process, which has b = 0 and σ = 1.

Two other ways of writing this stochastic differential equation are

XN
tn+1 = XN

tn + b(XN
tn , {Wtk}k≤n)∆t+ σ(XN

tn , {Wtk}k≤n)
√
∆t(Wtn+1 −Wtn)

dXt = b(Xt,W[0,t])dt+ σ(Xt,W[0,t])dWt
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The latter of these suggests the solution

Xt = x0 +

Z t

0

b(Xs,W[0,s])ds+

Z t

0

σ(Xs,W[0,s])dWs

5.1 Itô Isometries and Formula

Theorem 17 E(
R t
0
b(Ws)dWs) = 0. E((

R t
0
b(Ws)dWs)

2) =
R t
0
E(b(Ws)

2)ds.

Proof. At a discrete level, define In =
Pn

j=1 b(Wj)(Wj+1 −Wj), where Wj =

Wtj . Note that In converges to
R t
0
b(Ws)dWs. For the first equation, we find

that

E(In) =
nX
j=1

E(b(Wj)(Wj+1 −Wj))

=
nX
j=1

E(b(Wj))E(Wj+1 −Wj)

=
nX
j=1

E(b(Wj))0

= 0

using the fact that b(Wj) depends only on past values ofWt and therefore is inde-
pendent ofWj+1−Wj . Taking the limit of this, we find that E(

R t
0
b(Ws)dWs) =

0. For the second equation, we find:

E(I2n) =
nX
j=1

nX
k=1

E(b(Wj)b(Wk)(Wj+1 −Wj)(Wk+1 −Wk))

=
nX
j=1

E(b(Wj)b(Wj)(Wj+1 −Wj)(Wj+1 −Wj)) +
nX
j=1

j−1X
k=1

0 +
nX
j=1

nX
k=J=1

0

=
nX
j=1

E(b(Wj)
2(Wj+1 −Wj)

2)

=
nX
j=1

E(b(Wj)
2)E((Wj+1 −Wj)

2)

=
nX
j=1

E(b(Wj)
2)∆t

In the limit, then, we find that E((
R t
0
b(Ws)dWs)

2) =
R t
0
E(b(Ws)

2)ds.
Note that this cannot be done if we use other definitions of the integral

(such as the midpoint approximation) because we would not have independent
intervals.
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Theorem 18 (Itô’s formula) If dXt = b(Xt)dt + σ(Xt)dWt and Yt = f(Xt),
then dYt = df(Xt) = f 0(Xt)(b(Xt)dt + σ(Xt)dWt) +

1
2f

00(Xt)σ(Xt)
2dt. Note

that this last term makes this formula different from the standard chain rule.

Proof. Using the discrete form of the stochastic differential equation (and then
taking the limit), we have:

Xn+1 = Xn + b(Xn)∆t+ σ(Xn)(Wn+1 −Wn)

Note that we many consider Wn+1 − Wn has the product
√
∆tξn+1 with a

standard normal random variable. Using the Taylor expansion for f , up to
terms of order (∆t)1we find:

f(Xn+1)− f(Xn) = f(Xn + b(Xn)∆t+ σ(Xn)(Wn+1 −Wn))− f(Xn)

= f(Xn) + f 0(Xn)(b(Xn)∆t+ σ(Xn)ξn+1
√
∆t) +

1

2
f 00(Xn)(b(Xn)∆t+ σ(Xn)ξn+1

√
∆t)2

= f 0(Xn)(b(Xn)∆t+ σ(Xn)ξn+1
√
∆t) +

1

2
f 00(Xn)σ(Xn)

2ξ2n+1∆t

If we consider ξn+1 as a random variable that takes only the values +1 and
−1 with probability 1/2, then ξ2n+1 = 1. Alternately, we may note thatPn

j=1 ξ
2
j∆t =

Pn
j=1

ξ2j
n

n
N which converges to E(ξ2)t = V ar(ξ)t = t. Thus,

we may say that its derivative with respect to t is 1. Thus,

df(Xt) = f 0(Xt)(b(Xt)dt+ σ(Xt)dWt) +
1

2
f 00(Xt)σ(Xt)

2dt

Corollary 19 If we have Yt = g(Xt, t) and dXt = b(Xt)dt + σ(Xt)dWt, then
dg(Xt, t) =

∂
∂Xt

g(Xt, t)dXt +
1
2

∂2

∂X2
t
g(Xt, t)σ(Xt)

2dt + ∂
∂tg(Xt, t)dt. (This is

the same formula above except for the final time component.)

Corollary 20 E((
R t
0
f(Ws)dWs)(

R t0
0
f(Ws)dWs)) =

Rmin(t,t0)
0

E(f(Ws)
2)ds. (This

can help find covariances.)

For example, df(Wt, t) = (
∂f
∂t +

1
2
∂2f
∂w2 )dt+

∂f
∂wdWt.

In addition, if dXt = b(Xt)dt+ σ(Xt)dWt and dYt = c(Yt)dt+ τ(Yt)dt, for
the same realization of dWt, then:

d(XtYt) = YtdXt +XtdYt + σ(Xt)τ(Yt)dt

More generally, we note that dW 2
t = dt and

R t
0
dWs = t.

11



5.2 Solving Stochastic Differential Equations

Let f(t) be any function. Given a stochastic differential equation for Xt, define
Yt = f(t)Xt. Then,

dYt = d(f(t)Xt)

= f 0(t)Xtdt+ f(t)dXt

= (f 0(t)Xt + f(t)b(Xt))dt+ f(t)σ(t)dWt

In some cases, we may choose f(t) so that the coefficient on dt does not depend
on Xt. In that case, we find that f(t)Xt is the sum of a fixed function of t and
an integral with respect to dWt; we may understand the latter by noting that
its expected value is 0 and we may calculate its covariance as well using the Ito
Isometries.
Let f(x) be any function. Given the stochastic differential equation dXt =

b(Xt)dt+ σ(Xt)dWt, we may set Yt = f(Xt) and then find:

dYt = d(f(Xt))

= f 0(Xt)dXt +
1

2
f 00(Xt)σ

2(Xt)dt

= (f 0(Xt)b(Xt) +
1

2
f 00(Xt)σ

2(Xt))dt+ f 0(Xt)σ(Xt)dWt

As before, we may be able to choose f(t) so that the coefficient on dt is 0.

5.3 Examples of Stochastic Differential Equations and their
Solutions

5.3.1 Xt =
R t
0
WsdWs =

1
2W

2
t − t

2

We begin by guessing what would be the solution in ordinary differential equa-
tions: Yt = 1

2W
2
t . We find dYt:

dYt =
1

2
d(Wt

2) =WtdWt +
1

2
dt

This implies that WtdWt =
1
2d(W

2
t )− 1

2dt, so that

Xt =

Z t

0

WsdWs

=
1

2

Z t

0

d(W 2
s )−

1

2

Z t

0

dt

=
1

2
W 2

t −
t

2

12



We may check this with the Itô isometries:

E(
1

2
W 2

t −
t

2
) =

1

2
t− t

2
= 0

E((
1

2
W 2

t −
t

2
)2) =

1

4
E(W 4

t )−
1

2
tE(W 2

t ) +
1

4
t2

=
1

4
(3t2)− 1

2
t(t) +

1

4
t2

=
1

2
t2

=

Z t

0

E(W 2
s )ds

5.3.2 dXt = −γXtdt+ σdWt (Orstein-Uhlenbeck)

Note that

d(eγtXt) = γeγtXtdt+ eγtdXt

= γeγtXtdt+ eγt(−γXtdt+ σdWt)

= σeγtdWt

Thus, we know that

eγtXt − x0 = σ

Z t

0

eγsdWs

Xt = x0e
−γt + σ

Z t

0

eγsdWs

This allows us to find some properties. First, Xt is Gaussian, since it is the
sum of a fixed number and an infinite linear combination of Gaussian random
variables. Second, E(Xt) = x0e

−γt, since the second term is 0 by the first Ito
Isometry. In addition,

E(X2
t ) = x20e

−2γt + 2x0σe−γtE(
Z t

0

e−γ(t−s)dWs) + σ2E((

Z t

0

e−γ(t−s)dWs)
2)

= x20e
−2γt + 0 + σ2

Z t

0

E(e−γ(t−s))2ds

= x20e
−2γt + σ2

Z t

0

e−2γ(t−s)ds

= x20e
−2γt +

σ2

2γ
(1− e−2γt)

Thus, V ar(Xt) = E(X2
t ) − E(Xt)

2 = x20e
−2γt + σ2

2γ (1 − e−2γt) − (x0e−γt)2 =
σ2

2γ (1 − e−2γt). Thus, we can consider this as a combination of drift (x0e−γt)

13



and a noise term. In addition, we may find the covariance, if t > s:

E(XtXs) = x20e
−γ(t+s) + σx0e

−γtE(
Z s

0

e−γ(s−z)dWz) + σx0e
−γsE(

Z t

0

e−γ(t−z)dWz) + σ2E((

Z t

0

e−γ(t−z)dW

= x20e
−γ(t+s) + 0 + 0 + σ2E((

Z s

0

e−γ(t−z)dWz +

Z t

s

e−γ(t−z)dWz)(

Z s

0

e−γ(s−z)dWz))

= x20e
−γ(t+s) + σ2E((

Z s

0

e−γ(t−z)dWz)(

Z s

0

e−γ(s−z)dWz)) + σ2E((

Z t

s

e−γ(t−z)dWz)(

Z s

0

e−γ(s−z)d

= x20e
−γ(t+s) + σ2e−γte−γsE((

Z s

0

eγzdWz)
2) + σ2E((

Z t

s

e−γ(t−z)dWz)(

Z s

0

e−γ(s−z)dWz))

= x20e
−γ(t+s) + σ2e−γte−γs

Z s

0

E(e2γz)dz + 0

= x20e
−γ(t+s) + σ2e−γ(t+s)

1

2γ
(e2γ − 1)

In the limit, with |t− s| is fixed, then the covariance is σ2

2γ e
−γ|t−s|.

5.3.3 dXt = −γXtdt+ σXtdWt

Note that this is equivalent to 1
Xt

dXt = −γdt + σdWt. We consider g(Xt) =
ln(Xt). Using Ito’s formula, we find that

d(lnXt) =
1

Xt
dXt − 1

2X2
t

σ2Xtdt

=
1

Xt
(−γXtdt+ σXtdWt)− 1

2X2
t

σ2X2
t dt

= −γdt+ σdWt − σ2

2
dt

Integrating, we find that:

lnXt − lnxo = −γt+ σWt − σ2

2
t

ln(
Xt

x0
) = −(γ + σ2

2
)t+ σWt

Xt = x0e
−(γ+σ2

2 )t+σWt

Notice that Xn
t = xn0 exp(−n(γ + σ2

2 )t+ nσWt). Then,

E(Xn
t ) = xn0E(exp(−n(γ +

σ2

2
)t+ nσWt))

= xn0 exp(−n(γ +
σ2

2
)t)E(enσWt)

= xn0 exp(−n(γ +
σ2

2
)t) exp(

1

2
n2σ2t)
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dXt = σXtdWt We know from above that Xt = exp(−σ2

2 t + σWt) = f(σ).
We could also consider this differential equation iteratively:

Xt = 1 + σ

Z t

0

XsdWs

= 1 + σ(1 +

Z t

0

(1 + σ

Z s

0

XudWu)dWs)

= ...

= 1 +
∞X
n=1

σn
Z

...

Z
0≤s1≤...≤sn≤t

dWsn ...dWs1

Since we can also write a Taylor expansion of f(σ) = exp(−σ2

2 t+σWt), we could
use the coefficients to compute the values of

R
...
R
0≤s1≤...≤sn≤t dWsn ...dWs1 for

any n.

5.4 Approximation Schemes for stochastic differential equa-
tions

We may write Xt+∆t = Xt +
R t+∆t
t

b(Xs)ds +
R t+∆t
t

σ(Xs)dWs. A first ap-

proximation of this is \Xt+∆t = Xt + b(cXt)∆t+ σ(cXt)(Wt+∆t −Wt). As with
other stochastic approximations, this must be evaluated at the beginning of
each interval, not at intermediate points. We evaluate this approximation by
noting that sup0≤t≤T E(|Xt−cXt|) ≤ C

√
∆t (and the approximation is of strong

order 12) and sup0≤t≤T |E(f(Xt))−E(f(cXt))| ≤ C∆t for suitable test functions
f (and the approximation is of weak order 1). To improve this, we may use
higher order terms as well. One such scheme is:

\Xt+∆t = Xt+b(cXt)∆t+σ(cXt)(Wt+∆t−Wt)−1
2
b(cXt)b

0(cXt)((Wt+∆t−Wt)
2−∆t)

This is called the Milstein (Talay) Approximation.

6 Path Integral Representations of Stochastic
Differential Equations

Given a one-dimensional random variable, Z, with probability density function,
ρ(z), and a new random variable X = Φ(Z), then we may write:

E(f(X)) =

Z
R

f(Φ(Z))ρ(z)dz

=

Z
R

f(x)ρ(Φ−1(x))
dz

dx
dx

=

Z
R

f(x)bρ(x)dx
15



where bρ is a pdf for X. In addition, if bρ(x) = Z−1 exp(−12x2 + g(x)), where Z
is the normalizing constant:

E(f(X)) =

R
R
f(x) exp(−12x2 + g(x))dxR
R
exp(−12x2 + g(x))dx

=

R
R
f(x) exp(− 1

2x
2+g(x))dxR

R
exp(− 1

2x
2)dxR

R
exp(− 1

2x
2+g(x))dxR

R
exp(− 1

2x
2)dx

=
E(f(W ) exp(g(W )))

E(exp(g(W )))

where W is a standard normal random variable.
In the case of a discrete stochastic process X[0.T ] = X(W[0,T ]) with differen-

tial equation Xn+1 = Xn + b(Xn)∆t + (Wn+1 −Wn) evaluated at N intervals
of ∆t, this becomes:

E(f(X)) =

Z
RN

f(x(w))ρ(w)dw

where ρ(w) = 1
(2π∆t)N/2

exp(− 1
2∆t

PN
j=1(wj − wj−1)2). Since Xn+1 − Xn −

b(Xn)∆t = (Wn+1 −Wn),

ρ(w(x)) =
1

(2π∆t)N/2
exp(−1

2

NX
j=1

(Xn+1 −Xn − b(Xn)∆t)
2

∆t
)

We find the Jacobian of the transformation by noting that ∂Xn

∂Wm
= 0 when

m > n, since Xn does not depend on future value ofWm. In addition, ∂Xn

∂Wn
= 1,

since Xn+1 = Xn + b(Xn)∆t+ (Wn+1 −Wn) and the only occurrence of Wn+1

is in the last term, with a coefficient of 1. (Note that this step relies on the
assumption that σ(Xn) = 1.) Thus, [ ∂Xn

∂Wm
] is a triangular matrix with only

ones on the diagonal, and the Jacobian is 1. That means that

bρ(x) =
1

(2π∆t)N/2
exp(−1

2

NX
j=1

(Xn+1 −Xn − b(Xn)∆t)
2

∆t
)

E(f(X)) =

Z
RN

f(x)bρ(x)dx1...dxN
This gives a mapping from the density of paths of W[0,T ] to the density of paths
in X[0,T ].
In addition, this gives us another expression for E(f(X)) :

E(f(X)) =

R
RN

f(x(w)) exp(−12
PN

j=1
(wj−wj−1)2

∆t )dw1...dwNR
RN
exp(−12

PN
j=1

(wj−wj−1)2
∆t )dw1...dwN

=

R
RN

f(x) exp(−12
PN

j=1
(xj−xj−1−b(xj−1))2

∆t )dx1...dxNR
RN
exp(−12

PN
j=1

(xj−xj−1−b(xj−1))2
∆t )dx1...dxN
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Extending to the continuous case (and a path integral), we note that:

E(f(X)) =

R
f(h[0,T ]) exp(−12

R T
0
(h0(t)− b(h(t)))dt)dH[0,T ]R

exp(−12
R T
0
(h0(t)− b(h(t)))dt)dH[0,T ]

This allows us to compute expectations for the stochastic process defined by
dXt = b(Xt, t)dt + σ(Xt, t)dWt with X0 = x in terms of expectations of the
Weiner process:

E(f(X[0,T ])) =
E(f(x+W[0,T ]) exp(

R T
0
b(x+W[0,T ])dWt − 1

2

R T
0
b(x+Wt)

2dt))

E(exp(
R T
0
b(x+W[0,T ])dWt − 1

2

R T
0
b(x+Wt)2dt))

We show that this denominator is 1. LetQt =
R t
0
b(Wx

[0,s])dWs−12
R t
0
b(Wx

[0,s])
2ds.

Then:

dQt = b(Wx
t )dWt − 1

2
b(Wx

t )
2dt

dZt = d(eQt)

= eQt(b(Wx
t )dWt − 1

2
b(Wx

t )
2dt) +

1

2
eQtb(Wx

t )
2dt

= Ztb(W
x
t )dWt

Since Q0 = 0, Z0 = e0 = 1, and Zt = 1 +
R t
0
Zsb(W

x
s )dWs. Using the first Ito

Isometry, E(Zt) = 1 + E(
R t
0
Zsb(W

x
s )dWs) = 1. Returning to the formula for

expectations of functionals of a stochastic process:

E(f(X[0,T ])) = E(f(Wx
[0,T ]) exp(

Z T

0

b(Wx
t )dWt − 1

2

Z T

0

b(Wx
t )
2dt))

As an example, if we have dXt = −Xtdt+ dWt and f(Xt) = exp(−α
R T
0
X2
t dt),

then,

E(exp(−α
Z T

0

X2
t dt)) = E(f(X[0,T ]))

=
E(exp(−α R T

0
W 2

t dt) exp(
R T
0
Wtdt− 1

2

R T
0
W 2

t dt))

E(exp(
R T
0
Wtdt− 1

2

R T
0
W 2

t dt))

6.1 The Girsanov Principle

We may generalize to relationships between other stochastic processes. Suppose
dXt = b(Xt)dt+ dWt and dYt = c(Xt)dt+ dWt. Then, discretizing, squaring,
and substituting, we find

E(f(X[0,T ])) = E(f(Y[0,T ]) exp(

Z T

0

(b(Yt)−c(Yt))dYt−
Z T

0

c(Yt)(b(Yt)−c(Yt))dt+1
2

Z T

0

(b(Yt)−c(Yt))2dt))

This can help prove the existence of related processes. In addition, this is a
convenient way to remove or change the drift term.
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6.1.1 An Example using Girsanov

Let dXt = b(t,Xt)dt + dWt, X0 = 0. Let dP (w) be the Weiner measure.
Define Mt = exp(− R t

0
b(t,Xt)dWs − 1

2

R t
0
b(t,Xt)ds). Define a new measure

by dQ(w) = MTdP (w). With respect to this new measure, Xt is Brownian
motion; that is, dXt = dfWt with respect to the measure Q.

6.2 Theory of Large Deviations

According to the Laplace method, if a function g(x) has a unique minimum at
x0, then −ε ln

R
R
f(x)e−

1
εg(x)dx → g(x0) as ε → 0 for any reasonable function

f(x). We say that
R
R
f(x)e−

1
ε g(x)dx ³ e−

1
εg(x0) (this is asymptotic equality).

Extending this to the continuous case, we find thatZ
f(h[0,T ]) exp(− 1

2ε
[

Z T

0

(h0(t)−b(h(t)))2dt]Dh[0,T ]) ³ exp(− 1
2ε
[

Z T

0

(h00(t)−b(h0(t)))2dt]Dh0[0,T ])

where h0 minimizes
R T
0
(h0(t) − b(h(t)))2dt. If there are no constraints, the

minimizer is simply the solution to the ordinary differential equation h0(t) =
b(h(t)), in which case g(h0[0,T ]) =

R T
0
0dt = 0.

Let dXε
t = b(Xε

t )dt+
√
εdWt, for 0 < ε << 1. As ε → 0, Xε

[0,T ] → X[0,T ],
where dXt = b(Xt). We may also find the probability of "rare events" in which
Xε
t deviates greatly from its expected path. Let ϕ(t)be any deterministic

function. Let f(X[0,t]) =
R T
0
(Xε

t − ϕ(t))2dt; then E(f(Xε
[0,T ])) can give us an

idea of the deviation. Let M [h] = exp(− 1
2ε2

R T
0
(h0(t) − b(h(t)))2dt); this is

proportional to the density of Xt (or something). Given any functional F [h],
we know that

E(F (Xt)) =

R
F [h]M [h]dhR
M [h]dh

P (XT > a) =

R
h(T )>a

M [h]dhR
M [h]dh

We evaluate the numerator of second expression by minimizing
R T
0
(h0(t) −

b(h(t)))2dt subject to the constraint that h(T ) > a. To do this, we note that
we may apply the Laplace method and minimize

R T
0
(h0(t)− b(h(t)))2dt subject

to the relevant constraints. Integrating by parts, we find that we must solve:

0 = (h00 + b(h0))
0 + (h00 + b(h0))b

0(h0)

Let p(t) = (h00 + b(h0)). Then we must solve h00 = b(h0) + p and p0 = −b0(h0)p
subject to the boundary conditions; note that this looks like the stochastic
differential equation with the stochastic term

√
εdWt replaced by p(t).
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6.2.1 An Example

Let dXε
t = −Xε

t dt + εdWt, with X0 = x. The deterministic solution of this
differential equation is Xt = xe−t. In this case, M [h] = exp(− 1

2ε2

R T
0
(h0(t) +

h(t))2dt), and we must minimize
R T
0
(h0(t) + h(t))2dt subject to the constraints

that h(0) = x and h(T ) > a. Suppose h0 minimizes the integral subject to the
constraints. Then, for any arbitrary function h1,Z T

0

(h00+h
0
1+h0+h1)

2dt =

Z T

0

(h00+h0)
2dt+2

Z T

0

(h00+h0)(h
0
1+h1)dt+

Z T

0

(h01+h1)
2dt

Note that the last term must be positive. We set the middle term to 0 and
integrate by parts to find:

0 =

Z T

0

(h00 + h0)(h
0
1 + h1)dt

=

Z T

0

(−(h00 + h0)
0h1 + (h00 + h0)h1)dt

Since h0 and h0 + h1 satisfy the boundary conditions h(0) = x and h(T ) > a,
h1(0) = h1(T ) = 0, which is how the integration by parts worked. Thus, we
find a minimum when (h00 + h0)

0 = (h00 + h0), that is, h000 = h0. The solution
is h(t) = Ae−t + Bet, with x = h(0) = A + B and a = h(T ) = Ae−T + BeT .
Thus,

M [h0] = exp(− 1

2ε2

Z T

0

2(a
et

eT − e−T
)2dt)

= exp(− 1
ε2

Z T

0

a2

(eT − e−T )2
e2tdt)

= exp(−a
2

ε2
e2T − 1

(eT − e−T )2
)

By the Laplace method, P (XT > a) =
R
h(T )>a

M [h]dh ³ exp(−a2

ε2
e2T−1

(eT−e−T )2 ).
(Note that any path that does go above a is likely to look similar to h0.)

6.2.2 Applying the Girsanov Principle

We may also use the Girsanov principle, using dXt = b(Xt)dt + εdWt and
dYt = φ(t)dt+ εdWt. note that

(h0 − b(h))2 = (h0 − φ+ φ− b(h))2

= (h0 − φ)2 + 2(h0 − φ)(φ− b(h)) + (φ− b(h))2

This means that the density of Yt is proportional to exp(− 1
2ε2

R T
0
((h0 − φ)2 +

2(h0 − φ)(φ − b(h)) + (φ − b(h))2)dt), and the first term provides the weights
for Y . Note that (h(t) − φ(t)) = 1

ε (dYt − φ(t)) = dWt. Thus, M(Y[0,T ]) =
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exp( 1ε
R T
0
(b(Yt)−φ(t))dWt−− 1

2ε2

R T
0
(b(Yt)−φ(t))2dt). Returning to the prob-

ability we are calculating, we recall that:

P (XT ≥ a) = E(1XT≥a) = E(1YT≥aM(Y[0,T ]))

This formula does not depend on φ, so we may choose φ(t) = h00(t), so that it
solves 0 = (h00 − b(h0))

0 + (h00 − b(h0)b
0(h0). Then, Yt = h0(t) + εWt (since we

may just integrate the two terms separately). Substituting for Yt, we find:

M(Y[0,T ]) = exp(
1

ε

Z T

0

(b(h0(t)+εWt)−h00(t))dWt− 1

2ε2

Z T

0

(b(h0(t)+εWt)−h00(t))2dt)

Using a Taylor expansion in ε, the first term of the exponent becomes:

1

ε

Z T

0

(b(h0(t)) + εWtb
0(h0(t)) +O(ε2)− h00(t))dWt

=

Z T

0

1

ε
(b(h0(t))− h00(t)) +Wtb

0(h0(t)) +O(ε))dWt

and the second term of the exponent becomes:

− 1

2ε2

Z T

0

(b(h0(t)) + εWtb
0(h0(t)) +

1

2
b00(h0(t))ε2W 2

t +O(ε3)− h00(t))
2dt

The highest order term is −12
R T
0

1
ε2 (b(h0(t))−h00(t))2dt, which depends only on

non-stochastic functions. We show that the terms with order 1
ε cancel, using

integration by parts and the definition of h0:

1

ε

Z T

0

(b(h0(t))− h00(t))dWt − 1

2ε2

Z T

0

2(b(h0(t))− h00(t))εb
0(h0(t))Wtdt

=
1

ε
(

Z T

0

(b(h0(t))− h00(t))
0Wtdt)−

Z T

0

(b(h0(t))− h00(t))b
0(h0(t))Wtdt

=
1

ε

Z T

0

((b(h0(t))− h00(t))
0 − (b(h0(t))− h00(t))b

0(h0(t)))Wtdt

=
1

ε

Z T

0

0Wtdt = 0

Thus, as ε→ 0,

M(Y[0,T ]) = exp(−1
2

Z T

0

1

ε2
(b(h0(t))− h00(t))

2dt)fM(Y[0,T ]))

where fM(Y[0,T ]) has a limit as ε→ 0. By the Laplace Method,

−ε2 logP (XT ≥ a) = −ε2 log(E(1YT≥afM(Y[0,T ])) + ε2

2ε2

Z T

0

(b(h0(t))− h00(t))
2dt)

−ε2 logP (XT ≥ a)→ 1

2

Z T

0

(b(h0(t))− h00(t))
2dt
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Using lower order terms, we may also find that

lim
ε→0

exp(
1

2ε2

Z T

0

(b(h0(t))− h00(t))
2dt)P (XT ≥ a) = E(1YT≥aM(h0))

whereM(h0) = exp(
R T
0
b0(h0(t))Wtdt−12

R T
0
((b0(h0(t)Wt)

2+2(b(h0(t))−h00(t))b00(h0(t))W 2
t )dt.

7 The Fokker-Planck Equations
These are also known as the Forward and Backward Kolmogorov equations.
Let dXt = b(Xt)dt+σ(Xt)dWt, withX0 = x. Define pxt (y) by

R
[a,b]

pxt (y)dy =

P (Xt ∈ [a, b]); that is, pxt (y) is the probability density function of Xt for a fixed
t. In addition, define u(x, t) = E(f(Xx

t )). Note that:

u(x, t) = E(f(Xx
t )) =

Z
R

f(y)pxt (y)dy

7.1 The Forward Kolmogorov Equation

Using this fact, we find pxt (y):

df(Xt) = f 0(Xt)(b(Xt)dt+ σ(Xt)dWt) +
1

2
f 00(Xt)σ

2(Xt)dt

f(XT ) = f(x) +

Z T

0

f 0(Xt)b(Xt)dt+

Z T

0

f 0(Xt)σ(Xt)dWt +

Z T

0

1

2
f 00(Xt)σ

2(Xt)dt

u(x, T ) = E(f(XT ))

= f(x) +E(

Z T

0

f 0(Xt)b(Xt)dt) + 0 +E(

Z T

0

1

2
f 00(Xt)σ

2(Xt)dt)

We may write these expectations as integrals using pxt (y). Changing the order
of integration and then integrating by parts, we find:Z
R

f(y)pxT (y)dy = f(x) +

Z T

0

Z
R

(f 0(y)b(Xt) +
1

2
f 00(Xt)σ

2(Xt))dydt

= f(x) +

Z T

0

Z
R

f(y)(− ∂

∂y
(b(y)pxt (y)) +

1

2

∂2

∂y2
(σ2(y)pxt (y)))dydt

Taking the derivative with respect to time yields:Z
R

f(y)
∂

∂t
pxt (y)dy =

Z
R

f(y)(− ∂

∂y
(b(y)pxt (y)) +

1

2

∂2

∂y2
(σ2(y)pxt (y)))dy

Since this is true for any function f(y), we have the Forward Kolmogorov Equa-
tion:

∂

∂t
pxt (y) = −

∂

∂y
(b(y)pxt (y)) +

1

2

∂2

∂y2
(σ2(y)pxt (y))
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In addition, we have the boundary conditions that limt→0+ pxt (y) = δ(x − y),
since X0 = x, and limy→∞ ∂

∂yp
x
t (y) = 0, because this is a pdf. We will later

define:

A∗(f(y)) = − ∂

∂y
(b(y)f(y)) +

1

2

∂2

∂y2
(σ2(y)f(y))

so that we have the equation ∂
∂tp

x
t (y) = A∗(pxt (y)).

There is a "statistical steady state" — that is, a limiting distribution — if
pxt (y) has a limit, in which case there is a finite solution to

0 = − ∂

∂y
(b(y)pxt (y)) +

1

2

∂2

∂y2
(σ2(y)pxt (y))

0 = −b(y)pxt (y) +
1

2

∂

∂y
(σ2(y)pxt (y))

b(y)pxt (y) =
1

2

∂

∂y
(σ2(y)pxt (y))

1

2

∂

∂y
(σ2(y)pxt (y))

1

pxt (y)
=

b(y)

σ2(y)

ln(σ2(y)pxt (y)) = C +

Z
b(y)

σ2(y)
dy

pxt (y) =
C

σ2(y)
exp(

Z
b(y)

σ2(y)
dy)

7.2 The Backward Kolmogorov Equation

We will consider limt→0
E(f(Xx

t )−f(x))
t . Note thatE(f(Xx

t )−f(x)) = E(
R t
0
f 0(Xs)b(Xs)ds+R t

0
1
2f

00(Xs)σ
2(Xs)ds). Since, recursively, Xs = x+

R s
0
b(Xx

z )dz+
R s
0
σ(Xx

z )dWz,
E(f(Xx

t )− f(x)) = t(f 0(x)b(x) + 1
2f

00(x)σ2(x)) + o(t). Define the infinitesimal
generator, A, on a function f by:

A(f(x)) = (b(x)
∂

∂x
+
1

2
σ2(x)

∂2

∂x2
)f(x)

(The A∗ defined above satisfies
R
R
g(x)A(f(x))dx =

R
R
f(x)A∗(g(x))dx for any

functions f and g.)
Since u(x, t) = E(f(Xx

t )), limt→0 ∂u
∂t = A(f(x)), and u(x, 0) = f(x). We

will show that ∂u
∂t = A(u) = b(x)∂u∂x +

1
2σ

2(x)∂u∂x for all t. For simiplicity, we
assume that not only is Xt a Markov process, but it is stationary (the second
assumption is not quite necessary). Then, pxt+h(y) =

R
R
pxt (z)p

z
h(y)dz. We
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calculate:

E(u(Xh, t)) =

Z
R

pxh(y)u(y, t)dy

=

Z
R2

pxh(y)p
y
t (z)f(z)dzdy

=

Z
R2

pyt (z)p
x
h(y)dyf(z)dz

=

Z
R

pxt+h(z)f(z)dz

= E(f(Xx
t+h))

= u(x, t+ h)

Thus, E(ϕ(Xx
h))−ϕ(x)
h = A(ϕ(x)) for any ϕ and any t. In particular, ∂u

∂t =
E(u(Xt,h))−u(x,t)

h = A(u(x, t)) for all t. Consider the function f(y) = δ(y − z)
for some z. Then, u(x, t) =

R
R
pxt (y)f(y)dy = pxt (z). Using this function in

the formula above, we find the Backward Kolmogorov equation:

∂

∂t
pxt (y) = b(x)

∂

∂x
pxt (y) +

1

2
σ2(x)

∂2

∂x2
pxt (y)

subject to the boundary condition that limt→0+ pxt (y) = δ(x− y).
The Kolmogorov equations allow us to relate partial differential equations

and stochastic differential equations.

7.3 First Passage Time

Given a process Xt with an initial condition x, a < x < b, define τ as the first
time that Xt moves outside [a, b], that is, τ = inf{t : Xt /∈ [a, b]}. Let m(t)
be the pdf of τ , so that

R t
0
m(z)dz is the probability that Xt leaves the interval

before time t. Just as with discrete time Markov chains, we may modify this
chain to set pxt (a) = pxt (b) = 0. This gives additional boundary conditions for
the solution of the Forward equation:

∂

∂t
pxt (y) = −

∂

∂y
(b(y)pxt (y)) +

1

2

∂2

∂y2
(σ2(y)pxt (y))

Using these conditions, we find that

∂

∂t

Z b

a

pxt (y)dy = (−b(y)pxt (y) +
1

2

∂

∂y
(σ2(y)pxt (y))

b
a < 0

(We would expect that the probability of escape increases with time.) Using
the Backward equation, with the same boundary conditions we find that:

∂

∂t

Z b

a

pxt (y)dy = b(x)
∂

∂x

Z b

a

pxt (y)dy +
1

2
σ2(x)

∂2

∂x2

Z b

a

pxt (y)dy

∂

∂t
mx(t) = b(x)

∂mx(t)

∂x
+
1

2
σ2(x)

∂2mx(t)

∂x2
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Let T (x) = E(τx) =
R∞
0

tmx(t)dt. Using the equation above, we find that:Z t

0

t
∂

∂t
mx(t)dt = b(x)

∂

∂x

Z t

0

mx(t)dt+
1

2
σ2(x)

∂2

∂x2

Z t

0

mx(t)dtZ ∞
0

mx(t)dt+ (tmx(t))∞0 = b(x)
∂

∂x
T (x) +

1

2
σ2(x)

∂2

∂x2
T (x)

Since the left-hand-side is the sum of a density and something that is 0 (al-
legedly), we have the differential equation 1 = b(x)T 0(x) + 1

2σ
2(x)T 00(x), with

the boundary conditions T (a) = T (b) = 0, which can be solved with standard
methods.
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