Stochastic Calculus: NYU, Fall 2003

1 Preliminaries

1.1 Multivariate Normals

Definition 1 A Gaussian vector (multivariate normal random variable), X =
X1
, is a random variable in RP with the density function fx(x) =
Xp
where ;i € RP is the mean and 3 € RP*P is a symmetric positive definite matrix
and the covariance matriz.
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Note that the fact that ¥ is positive definite (and not positive semidefi-
nite) implies that no linear combination of some of the components is perfectly
correlated with the other components. Some other properties include:

e Each coordinate is Gaussian.
e Each subset of the coordinates with also a Gaussian vector.

e If C is a non-singular p X p matrix and Y = m+CX, then Y is distributed
multivariate normal with mean m + Cp and covariance CXC7.

2 Limit Theorems

Theorem 2 (Weak Law of Large Numbers). Let &; be a sequence of inde-
pendent, identically distributed random variables. Let n = E(§;) < co. Let
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Proof. For simplicity, we assume that o2 = E(fj
generality, assume that 7 = 0 (if not, we replace & ; by & — n). By Cheby-
shev’s Inequality, P(|X| > ) < LE(|X[") for all p > 0, since E(|X[") =
Jr 1XIP u(dz) = [ x5 1X 1P uldz) > € [ x5 p(de) = P P(IX] > €). Applying

Chebyshev’s Inequality, we find:
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Using the fact that the {; are independent and identically distributed, we find:

E(IS.°) = B} &)%)
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Thus, P( i >e) < J7m = T‘Z—;, which goes to 0 for fixed ¢ as n — oc.
Notice that P(|22| < ¢) — 1 if and only if P(|22| > &) — 0. Thus,
P( %ﬂ—n‘ <g)—lasn—ooforalle >0. m

Theorem 3 (Central Limit Theorem) Let §; be a sequence of independent,
identically distributed random variables.  Let n = E(§;) < oo. Let S, =
Z?:I £ Let E(§?) =02 <o00. Asn — o0, ST\/%”} converges 1s probability
to a normal random variable with mean 02(md variance 1, that is, a random
variable with probability density p(x) = e~ /2//2r.

Proof. We use the characteristic function of z: f(z) = E(e"**) = [, e"**p, (x)dz.
Note that the characteristic function is unique to a density, and that the char-
acteristic function of a standard normal random variable is fg(z) = e /2,
Without loss of generality, we assume that 7 = 0 (if not, we replace {; by §; —n).

We find the characteristic function of S, /v/no? using a Taylor expansion and
the definition of e:
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Since the characteristic function converges to the characteristic function of a
normal random variable, S”—\/_—";Z converges to a random variable with a standard
no

normal distribution. m

Lemma 4 (Borel-Cantelli Lemma) Let s be a sequence of events. Let B; =
{w: (wjs1,...,wj+r) = s}, where each w is an infinite vector (string) of events.
Then, P(Bj; infinitely often) = 0 if Zj’;l P(Bj) < oo and P(Bj infinitely
often) =1 if the B; are independent and Zj‘;l P(Bj) = oo.



Proof. B; occurs infinitely often if P( (| |J B;) > 0. Notethat P([ U B;) <
k=1j=k k=1j=k

(U Bj) < 3272, P(Bj). In the first case, >.°2, P(B;) converges, so that

ZJ kP( i) — 0 as k — oco. Since this is an upper bound on P(B; infi-
nitely often) P(Bj infinitely often) = 0. In the second case, ®

Theorem 5 (Strong Law of Large Numbers) Let {X;}52, be a sequence of
independent, identzcally distributed random variables. Let n = E(X). Let
Sn=3"5_1Xj. Then, n" — 1 almost surely if and only if E(|X,|) < oc.

Proof. For simplicity, we assume that E(X}) < oo, which also implies that
E(X ]2) < 00. Using the Chebyshev inequality with p = 4, we find that:
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Thus, E(S2 ) grows as n?, since £ (5 )and E(£7) are both fixed and finite. Thus,

’iﬂ‘ > ¢) is bounded above by a functlon of order ﬁ for any fixed €. Choose
B, = {w : w yields a sum of S,, with > ¢). Then, Z;il P(Bj) is the
sum of numbers bounded above by for some c¢. Since > o7, ~5 converges,

ijl P(Bj) < oo. Hence, P(|22| > ¢ infinitely often) = 0 and S"
almost surely. m
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2.1 Statistics of Extrema

Theorem 6 Let {§j}j€N be a sequence of independent, identically distributed
random variables. Let M, = max{&;,...,&,}. If there exist ay,b, such that
P(an (M, —b,) < z) — G(x) as n — oo, then G(x) is of one of three forms:
(1) Gx)=e ", (2)G(x) =e® "z >0,a>0, or (8) G(x) =e 1*I" z <
0,a> 0.

3 Markov Chains

Definition 7 Given a sequence { X, }nen, it has the Markov property if P(X,, =
| Xn-1 = Jn-1) = P(Xp, = i|Xn-1 = Jn-1,Xn-2 = jn-2,...). If a sequence
has the Markov property, we call it a Markov chain. We may then specify its

evolution through the transition probabilities pz(?) = P(X, =i|X,—1=1J).



Definition 8 A process is stationary if pgl) = P(X,, = i|Xn-1 = 34) = p(i]j)

does not depend onn. Then, we may simply write p;; = pE?). This also defines

a matrixz of transition probabilities, P, with each row sum equal to 1.

Note that defining an initial distribution, for Xy, and the transition proba-
bilities completely defines a Markov process.

Some properties of Markov chains with a state space, .S, initial distribution,
1, and transition probabilities p(i|j) include:

® > .cg (i) =1 (there is an initial condition in the space)

e Forall j €5, ,.gp(i[j) =1 (there is always a transition, even if it is to
the same state)

e 0<pu(i) <1and0<p(ilj) <1 (these are probabilities)

Definition 9 We say that i leads to j, i — j, if there exists s such that the ji
entry of P* is positive for some s. That is, there is some chain of finite length
and non-zero probability from i to j. Ifi — j and j — i, then we say that i
and j communicate, and i < j.

Theorem 10 If there exists a fixed s such that for all (3, 7) P >0, then (1)
there exists a unique w such that m = Pw and (2) for all p, then u, = P™u,
converges to m as n — oo exponentially fast.

Proof. Insert proof here. m

Definition 11 A chain is ergodic if all pairs of states communicate. That
is, there are no disconnected chains or groups of states to which return with
probability 0.

To find the probabilities of certain events, such as entering a state or getting
out of a certain set of states, we may create a modified chain, with a black
hole state (one from which one cannot exit) that is entered only when that
event occurs. Then, the probability of that event already having occurredin
the original chain equals the probability of being in the black hole state in the
modified chain.

4 Continuous Time Stochastic Processes

4.1 Brownian Motion (the Weiner Process)

Let {&,, }nen be independent and identically distributed with P(¢,, = +1) =
P(¢, = —1) = 3. Then, S, = Y1, & is a random walk, and we may write

Sp = Sn_1+&,. Forany integer N, set At = 1/N fort € [0,1]. Set z/n = %
We may define a piecewise continuous function by zn(t) = z;n|/n. Under
appropriate assumptions (Donsker), z x (t) converges in distribution to a random
process, W;.  We call this the Weiner Process, or Brownian motion. Some

properties of this process include:



e Wi"Normal(0,1)

e W,”Normal(0,t), since X = lim S\L/N—” lim \jLLNN_fi@’ where the

first term converges in distribution to a standard normal random variable
and the second converges to v/%.

e Since {9, }nen is Markov, the Weiner process is a continuous-time Markov
process. That is, P(W; < x|[{Wy }s<s) = P(W, < z|W).

Using the Markov property, we find that P(W; < z|W; = y) = P(W;—s <
—y), and Wy — W, has the same distribution as W;_g, that is, Normal(0,t—s).
Extending this, we find that, for any partition {toc = 0,%1,...,¢p—1,t, = 1} of
[0, 1], the joint probability density function of W, ..., Wy, = 0isp; ;.  (Tn|Tn_1)...pp, ¢, (T2|T1)ps, _o(21]0) =
Pto—t,r (@n = Tn=1]0)...pp, _y, (22 — 1]0)py, _o(21]0).
The covariance of any two points in time, ¢ > s, is given by:

BV = [ aup (alu)o.(ul0)dzdy
—(z—y)?/2(t—s) o—y*/2s
= xye c dxdy
R2

V2m(t — s) \/_

o (E-9)?/2(t—5) o—v? /25 o (2=9)?/2(t=5) o~ /28

/ (x—y)y da:dy +/ > dzdy
R? V2r(t—s) V2 27(t — s) 2ms

= 0+ E(W?2) = min(s,t)

Thus, E(W,W;) = min(s,t). In addition,

E(W; =W,)?) = EWY)+EW?) - 2E(W,W;)
= t+s—2min(t,s)
= |t—s]

This implies that the Weiner process is almost surely continuous, since lim;_, s E((W;—
W,)?) = 0. However, it is almost surely not differentiable anywhere, since
E(Wy — W)?) grows as (t — s)2.

The Weiner Process is self-similar: Given A > 0, AWy, is equal in distrib-
ution to Wy, since EOA™Y2Wa A7 2Wy,) = AT E(Wa Was) = A~ min(At, As) =
min(s, ). This allows us to study the properties of the Weiner process on [0, 1]
and apply them to any interval.

Another construction of the Weiner process: Let {fi(t)} be an orthonor-
mal basis (so that fo fk Vfr (t)dt = Oy ) in L2[0,1], so that for any g :
[0,1] — R, w1th fo )2dt < oo, we may write g(t) = >, afr(t), where

ag = fo t)dt. Note that fo t)2dt = >, ai. Let {B,} be indiepen-
dent, 1dentlcally dlstrlbuted standard normal random variables. Let W; =
>k ﬁ & fo fx(2)dz. Then, since each fo fx(2)dz is fixed, each W; is normal with



mean 0. In addition,
EW,W,) = E(;;ﬁkﬁk/ /O () /0 " ()
MHILLR [ s [ gt
t s
= ;/0 fk(z)dz/o fr(zhd2

Let x,(z) be the indicator function for the interval [0,¢]. Since x,(z) € L?[0,1],
we may write x,(2) = 3 fe(t)(fy Xe(2') fx(2)d=") = 5 () fy x, (') fx(2)d2"),
so that 3y fo fe(2)dz g (=)' = i xe(2)x,(2)d= Tn addition, fy x:(2)x, (2)dz =

fomin(t’s) X¢(2)xs(2)dz = min(t, s). Thus, E(W;W;) = min(¢, s).

4.2 Filtrations and Martingales

Definition 12 A o-field, F', on a probability space, 2, is a collection of subsets
of Q which contains &, Q, and is closed under completements and countable
unions and intersections. For a stochastic process Y = (Yy,t € [0,T],w € Q),
the o-field o(Y') is the smallest o-field containing all sets of the form {w : (Y, t €
[0,T]) € C}, where C is a set of functions on [0, T]. This is the o-field generated
by Y.

Basically, o(Y") contains all information about the structure of Y. In par-
ticular, if s < t, then o(Y;) C 0(Y:), because more information is known about
the path of Y at a later time.

Definition 13 A collection (Fy,t > 0) of o-fileds of Q is called a filtration if
Fs C F for all0 < s <t. The stochastic process Y; is adapted to the filtration
(Fi,t > 0) if o(Yy) C Fy for allt > 0. The natural filtration generated by a
stochastic process Yy is Fy = 0(Ys, s <'t).

Definition 14 The stochastic process X; is called a continuous-time martingale
with respect to the filtration (Fy) if E|X:| < oo, X¢ is adapted to (Fy), and
E(X|Fs) = Xs for all 0 < s < t.

Brownian motion is a martingale.

4.3 Gaussian Processes

Definition 15 X, for t € [0,1], is a Gaussian process if, for any partition
X,

0<ty <..<t, <1, the vector is a Gaussian vector.
Xt

n



As with Gaussian normals, Gaussian processes are completely determined
by their mean and covariance. In this case, X; is completely determined by
E(X:) and E(X:X,) = K(t,s) for all t,s € [0,1]. Given a Gaussian process,
Gy, with a zero mean, we may construct a process with mean m; at each time
as Gy + mg.

Definition 16 W, is the Weiner process (Brownian motion) if (1) Wy is a
Gaussian process, (2) E(Wy) = 0 and E(W;W;) = min(s,t), and (3) Wy is
almost surely continuous.

Given a certain covariance, K (t, s), we may construct a zero mean Gaussian
process on [0, 1] using the Karhunen-Loeve Expansion. First, we find a count-
able set of functions, {¢, }ren, ¢ : [0,1] — R, such that fol K(t,s)p(s)ds =
Ay (t) for each k. (We also assume that we have the ordering Ay > Ay >

. > 0.) Then, we may write K(t,8) = > pooMer(t)pr(s). Then, the
Gaussian process with covariance K (¢,s) is Gy = > oy vV Ae&ppi(t), where
{&,}ken are independent, identically distributed standard Gaussian random
variables. Clearly, this process is Gaussian (since each point is a linear combi-
nation of independent random variables), and its covariance is actually K (¢, s):

E(G:G,) = E(ZZ\/Ak)\kffk'fk@k(t)@k/(s))
[

ZZ MMk 0 (1) prr (8) B (€€ g )

P

D e()er(s)

%

= K(t,s)

We find the Karhunen-Loeve expansion of the Weiner process. In this case,
K(t,s) = min(¢,s). Thus, we solve:

1
Ap(t) = /Omin(t,s)cp(s)ds

= /Ot min(t, s)p(s)ds + /tl min(t, s)¢(s)ds

- /Oscp(s)ds-i-/t to(s)ds

Taking the first and second derivatives with respect to ¢, we find:

M) = tp(t) — to(t) + / o(s)ds
= /tcp(s)ds
A" (t) = —o(t)



The general solution to this differential equation is p(t) = A sin(% +B). From
the original equation, we have the boundary condition that ¢(0) = foo sp(s)ds+
fo 0p(s)ds = 0. This means that 0 = p(t) = Asin( \(/)— +B) = Asin(B) so that

= 0. From the first derivative, we find that ¢'( fl s)ds = 0. Then,

0 =¢/(1) = % cos(ﬁ). Since A = 0 gives the tr1V1al solutlon we instead fix

% =5 +km k€ Z, so that A\, = m, for k € N. We then choose A

to make this an orthonormal basis, so that 1 = fol(A sin(25tL 1)) 2dt = A%/2.
So A =+/2. Thus, our basis is {v2sin(Zt7t)} ey, and we may write Wy =

2ken VARERen(t) =D ken fk(TzJ% sin(2&tL 7).

The Karhunen-Loeve Expansion is useful to calculate certain integrals. For
example, if Gy = Y77 o VA& (t) for some {(Ag, @)} een, then we have:

1
Blea(-y [[Gian) = Beo [ Vigeo

keEN

= E(exp ——/ Z Z VAR €& i (P g (1)) dt))

kEN K'eN

= E(exp ——Z Z / V A Ek i i (V) prs (D) dR)))

keEN E'eN

= (] TJ exn(-“ / VAN oi (Dw (D)

keEN K'eN

= H H E(exp( f—/ VA e pr (D) g (2)dE))

keEN E'eN

- H H E(exp(— \/ Ak)\kffkfk//o () (t)dt))

keEN E'eN

= II II E(exp(—g\/)\k)\kf((sk,k'fi)((sk,k’)))

keN k'eN

= ]I Blen(-5xned)

kEN

1 2
_ — LN 2? e ? /de
1)

keEN

_ e~ B At1)2 g
H /R V2T

keEN

ren V1 +p’)"“

This may be evaluated for any expansion for which this will converge.



4.4 The Weiner Measure

Given a partition of time, 0 = tg < t; < ... < t, < 1, we have the probability
density function:

_ 1
Pty (Tns ooy T1) anexp(*ijn)

Z, = o []# —t-)

I (zj —wj-1)® _ i (%: —zj1)

(tj —tj—1)
j=1

This can be calculuated for any numerable partition. Since knowing about
every numerable partition completely defines a continuous function and the
Weiner process is almost always continuous, this gives us information about the
entire Weiner process, if we consider the partitions with ¢t; —t;_; = At = % as
n — 0. .

Let h(t) be a function with X; = h(<£). Then,

j=1

L dh,
— —_ :I
/O(dt)dt

This means that the "density" converges to Z ! exp(—1 fol(%)th)Dh(t), where

Dh(t) = ][] dh:. However, Z, will not converge, so we formally define
0<i<1

Z = [exp(—3 J(%)th)Dh(t). This gives the Weiner measure as

Ay = 2~ exp(—51(h(1))) Dh()

5 Stochastic Differential Equations

The most general form of a stochastic differential equation is:
XN = Xt]Z +b(Xt]Z7{gt;c}kgn)At+U(Xt]:i7{€tk}k§n)V Atgt

tni1
where b and ¢ are fixed functions that may depend on random inputs which de-
pend only on past values of the random variable £, . Under certain conditions,
XN will converge is in distribution to Xy, with supy<;<r E|X; — X¥| < C1vV/At
and supg<,< |E(f(Er)) — E(f(X}))| < CoAt, where At = +.

The simplest example is the Weiner Process, which has b = 0 and o = 1.
Two other ways of writing this stochastic differential equation are

n41

Xt]ZJrl = thz + b(Xt]X’ {Wtk }kSn)At + U(Xt]:{’ {Wtk }kgﬂ) v At(Wt7l+1 - Wt”)
dXt = b(Xt7 W[U,t])dt + U(Xt7 W[O,t])th



The latter of these suggests the solution
t t
Xo=an+ [ B Wogds + [ (X Wio.g)aW,
0 0

5.1 It6 Isometries and Formula

Theorem 17 E( [} b(W,)dW,) = 0. BE((f; b(W)dW,)?) = [1 E(b(W,)?)ds.
Proof. At a discrete level, define I,, = Z;l 1 6(W;) (W1 — W), where W; =
Wi,. Note that I,, converges to fo <)dWs. For the first equation, we find
that
E(I,) = ZE Wi —Wj))
= ZE Wit —Wj)
j=1
= ZE
j=1
=0

using the fact that b(W;) depends only on past values of W, and therefore is inde-

pendent of W, —W,. Taking the limit of this, we find that E( fo s)dWs) =
0. For the second equation, we find:

n n

E(I2) = >3 BOWH)(WE) (W — W) (Wigr — Wi)
j=1k=1
n j*l n n
- ZE Wi)(Wii1 — Wj)(Wj+1*Wj))+Z 0+ Z 0
j=1k=1 j=1k=J=1
= ZE Wit = W;)?)

_ ZE(b(Wp?)E((Wm - W;)%)

= zn:E(b(W )?)At

In the limit, then, we find that E((fot b(W, fo Hds. m

Note that this cannot be done if we use other deﬁmtlons of the integral
(such as the midpoint approximation) because we would not have independent
intervals.

10



Theorem 18 (1té’s formula) If dX; = b(X:)dt + o(X:)dW; and Yy = f(Xy),
then d}/t = df(Xt) = f/(Xt)(b(Xt)dt + O'(Xt)th) + %f”(Xt)O'(Xt)th. Note
that this last term makes this formula different from the standard chain rule.

Proof. Using the discrete form of the stochastic differential equation (and then
taking the limit), we have:

Xn+1 = Xn + b(Xn)At =+ U(Xn)(Wn+1 — Wn)

Note that we many consider Wy 1 — W,, has the product vVAt{, ,; with a
standard normal random variable. Using the Taylor expansion for f, up to
terms of order (At)!we find:

f(XnJrl) - f(Xn) = f(Xn + b(Xn)At + U(Xn)(Wn+1 - Wn)) - f(Xn)

= F(X0) + X))+ (X0 VED + 3 (Xa) B(X) At + 0(X0)E, 41V

= P G)AL+ (X060 VET) + (X)X, A

If we consider &,,,; as a random variable that takes only the values +1 and
—1 with probability 1/2, then §i 41 = 1. Alternately, we may note that
2

> i1 EAt = > i %—% which converges to E(£2)t = Var(€)t = t. Thus,

we may say that its derivative with respect to ¢ is 1. Thus,

4F(X0) = (X)Xt + o(X )W) + 3 " (X)o(X,)dr
| |

Corollary 19 If we have Y; = g(X3,t) and dX; = b(Xy)dt + o(X¢)dWs, then

2 . .
dg(Xe,t) = %th(Xt,t)dXt + %%Q(Xtat)a(Xt)th + £g(Xy,t)dt.  (This is
the same formula above except for the final time component.)

Corollary 20 E(([! f(W,)dW,)(fi F(W.)dWy)) = [0 B(F(W,)2)ds. (This
can help find covariances.)

For example, df (Wy,t) = (% + %gfyﬁ)dt + g—ith.
In addition, if dX; = b(X,;)dt + o(X;)dW; and dY; = ¢(Y;)dt + 7(Y})dt, for
the same realization of dW;, then:

A(X,Y;) = YidX, + X,dY, + o(X,)7(Yy)dt

More generally, we note that dW? = dt and fot dWs =t.

11



5.2 Solving Stochastic Differential Equations

Let f(t) be any function. Given a stochastic differential equation for X, define
Y:; = f(t)X;. Then,

dY; = d(f(1)Xy)
= f(O)Xdt + f()dX,
= (f'(OXe+ f()b(X0))dt + f(t)o (t)dW;

In some cases, we may choose f(t) so that the coefficient on d¢ does not depend
on X;. In that case, we find that f(¢)X; is the sum of a fixed function of ¢t and
an integral with respect to dW;; we may understand the latter by noting that
its expected value is 0 and we may calculate its covariance as well using the Ito
Isometries.

Let f(x) be any function. Given the stochastic differential equation dX; =
b(Xy)dt + o(X¢)dWy, we may set Y; = f(X¢) and then find:

d(f(Xz))
f(Xy)dX, + %f“(Xt)a2(Xt)dt

dYy

1
= (f'(X)b(Xy) + §f”(Xt)02(Xt))dt + f1(X1)o(Xi)dW,
As before, we may be able to choose f(t) so that the coefficient on dt is 0.

5.3 Examples of Stochastic Differential Equations and their
Solutions

5.3.1 X, = [, WedW,=1W2 -1

We begin by guessing what would be the solution in ordinary differential equa-

tions: Y; = W2, We find dY;:

1 1
dy; = 5d(wf) = WidW; + dt
This implies that Wy dW; = 1d(W?) — 1dt, so that

Xy

I

=
s
=

12



We may check this with the It6 isometries:

1, 1t
BGWE-3) = 5t—5=0
1 t 1 1 1
E((§Wt2 - 5)2) = ZE(Wf) - §tE(Wt2) + Zt2
I 1 1,
= LB — it +
1,
= §t
t
= / E(W2)ds
0
5.3.2 dX; = —yXidt + odW; (Orstein-Uhlenbeck)
Note that
de'Xy) = v’ Xidt + e'dX,
= "' Xydt + " (—y Xdt + odWy)
oeVt dW,

Thus, we know that
t
X, —xy = a/ e’ dW,
0
t
X = moe*era/ eV dW,
0

This allows us to find some properties. First, X; is Gaussian, since it is the
sum of a fixed number and an infinite linear combination of Gaussian random
variables. Second, F(X;) = zoe™ 7", since the second term is 0 by the first Ito
Isometry. In addition,

t t
B(X}) = aie '+ onae_’ytE(/O e 1= aw,) + U2E((/o e 1= qWw,)?)
t
= 22 L0+ 02/ E(efA’(tfs))st
0

t
x%e*%t +02/ e~ 27(t=9) g
0

o2
= ()33672"/)5 + %(1 —e 27

Thus, Var(X;) = E(X?) — BE(X;)? = z3e 2" + %(1 —e ) — (zge )% =

%(1 — e~ 2%). Thus, we can consider this as a combination of drift (zge %)
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and a noise term. In addition, we may find the covariance, if ¢t > s:

s t t
E(X,X,) = axe o) 4 U:er_7tE(/ e T2 dW,) + UiCoe_’YsE(/ e 72w, + JQE((/ e 1t=2)q]
0 0 0

s t s
= 227D L0404+ GZE((/ e AW, +/ e*W*Z)dWZ)(/ e 772 dw,))
0 s 0

s s t s
= gle (o) 4 O'QE((/ e_V(t_z)sz)(/ e 772w, + 02E((/ e_W(t_Z)dWZ)(/ e (=2),
0 0 s 0

s t s
— x?)e_”(“rs)+02e_7te_73E((/ e’ydeZ)Q)_l_O,ZE((/ e"V(t‘Z)dWZ)(/ e_V(S—Z)dWZ))
0 s 0
= g2e (o) —1—026_7’56_73/ E(e**)dz +0
0

— x%e—w(t+s) + U2e—v(t+8)2i(e2v —1)
v

In the limit, with |¢ — s| is fixed, then the covariance is g—ie_'”t_s‘.

5.3.3 dXt = —’}/Xtdt + O'Xtth

Note that this is equivalent to Xitht = —vdt + odW;. We consider g(X;) =
In(X;). Using Ito’s formula, we find that

1 1,
d(lnXt) = ZdXt — WO’ Xtdt
1 1 5,
= Z(*’}/Xtdt+0'deWt) - 2—)(1‘/20' Xt dt
0.2
= —’}/dt + O'th — 7dt
Integrating, we find that:
o2
h’lXt—IIlJZO = —’7t+0’Wt—7t
Xt 0'2
(=) = —(v+=
Il(xo) (")/+ 2)t+0’Wt
X, = zge(HEItoW

Notice that X{* = zj exp(—n(y + ";)t +noWy). Then,
o2
E(X}) = zyE(exp(—n(y+ E)t + noWhy))

2
n U no
= xgexp(—n(y+ 7)75)]5(6 W)

2

1
= zgexp(—n(y+ %)t) eXp(§n202t)

14



dX; = 0X;dW; We know from above that X; = exp(—";t + oW;) = f(o).
We could also consider this differential equation iteratively:

t
Xt = 1+0-/ XdeS

t
= 1+U(1+/ (1+o XdW)dW)

-1 / / WV,
Z 0<s1<...<sp, <t *

Since we can also write a Taylor expansion of f(o) = exp(—%Qt—&—UWt), we could
use the coefficients to compute the values of [ ... [ . _  _ dWj, ...dW;, for
any .

5.4 Approximation Schemes for stochastic differential equa-
tions

We may write X¢yar = Xt + fHAt s)ds + fHAt X;)dWs. A first ap-

proximation of this is XHAt X+ b(Xt)At + O'(Xt)(WH_At Wy). As with
other stochastic approximations, this must be evaluated at the beginning of
each interval, not at intermediate points. We evaluate this approximation by
noting that supy<,<p F(|X; — X;|) < Cv/At (and the approximation is of strong

order 1) and supg<i<r [ E(f(X¢)) — E(f(j(\t)ﬂ < CAt for suitable test functions
f (and the approximation is of weak order 1). To improve this, we may use
higher order terms as well. One such scheme is:

— —~ —~ 1 —~ —
Xivar = Xt+b(Xt)At+a(Xt)(Wt+At—Wt)—§b(Xt)b’(Xt)((Wt+At—Wt)2—At)
This is called the Milstein (Talay) Approximation.

6 Path Integral Representations of Stochastic
Differential Equations

Given a one-dimensional random variable, Z, with probability density function,
p(z), and a new random variable X = ®(Z), then we may write:

E(f(X))

|
S—
=
sy

/ F@)p(@ (@) e



where p is a pdf for X. In addition, if p(z) = Z~! exp(—32? + g(x)), where Z
is the normalizing constant:

Jr (@) exp(—32® + g(x))dx
[ exp(—2a2 + g(z))dx
[ f(x) exp(=3a’+g(z))da
Ir exp(—3x2)dz
Ir exp(—3x2+g(x))dz
= exp(—3x2)dx
E(f(W)exp(g(W)))
E(exp(g(W)))

where W is a standard normal random variable.

In the case of a discrete stochastic process Xo.77 = X (Wp, 1)) with differen-
tial equation X, 11 = X,, + b(X,,)At + (W, 41 — W,,) evaluated at N intervals
of At, this becomes:

E(f(X)) =

E((X)) = / F(a(w))p(w)duw

RN

where p(w) = mexp(—ﬁ Z;-V:l(wj —wj_1)?). Since X1 — X, —
b(Xn)At = (W1 — W),

N
1 1 Xny1 — — b(X,,)At)?
gv)f,"n = 0 when
m > n, since X,, does not depend on future value of W,,,. In addition, gffvn =1,

since X, 11 = X, + b(X,,)At + (Wy41 — W,,) and the only occurrence of W, 11
is in the last term, with a coefficient of 1. (Note that this step relies on the
assumption that o(X,) = 1.) Thus, [Wﬂ—] is a triangular matrix with only
ones on the diagonal, and the Jacobian is 1" That means that

N
N 1 1 (X1 — X — b(X,)AL)?
P@) = Grapye o3 2 At )

Jj=1

&

=

=
I

| S@p(a)dz..doy

This gives a mapping from the density of paths of Wy 1) to the density of paths
in X[(LT] .
In addition, this gives us another expression for E(f(X)) :

wj—wj_1)>
fRN J(z(w)) eXp(_% Z;V 1 %)dw1...dw]\]
E(f(X)) = Ry o v
fRN eXp(__ ZJ 1 %)dwl d’LUN
fRN eXp __Z;‘\;l (zjixjilgtb(a:jil)) )dl’lde

S exp(—3 5L, s ey day
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Extending to the continuous case (and a path integral), we note that:

J F(hio,my) exp(=4 [i7 (W' (£) — b(h(#)))dt)dH o 1y
Jexp(—4 [ (' (t) — b(A(t)))dt)dH o 1

This allows us to compute expectations for the stochastic process defined by
dX; = b(Xy,t)dt + o(Xy, t)dW; with Xo = x in terms of expectations of the
Weiner process:

E(f(X)) =

E(f(l[! -+ W[07T]) exp(fOT CC -+ W[O T] th 5 fO T+ Wt th))
E(exp(f; b(x + Wiorp)dW; — L [T b(x + W;)2dt))

E(f(X[O,T])) =

We show that this denominatoris 1. Let Q; = fo Wi o JAW—35 fo VV[0 S])2cls.
Then:

i, - b(Wf)th—%b(th)th

dZ, = d(e®)
= e OWE)dW; — %b(Wg’”)th) + %leb(Wf)th
= Zb(WE)dW,

Since Qo =0, Zg =e®=1,and Z, =1+ fg Zsb(WZ)dWs. Using the first Ito
Isometry, E(Z,) =1+ E(fot Zsb(WZ)dW,) = 1. Returning to the formula for
expectations of functionals of a stochastic process:

T 1 T
B (X)) = BGWm)expl [ Ve =5 [ bowean)

As an example, if we have dX; = —X;dt + dW; and f(X;) = exp(—« fOT X2dt),
then,

E(f(Xo,17))

E(exp(—a [} Wdt)exp( [, Widt — L [T W2dt))
E(exp(fOT Wydt — 3 fOT WEdt))

T
E(exp(—oz/0 XZ2dt))

6.1 The Girsanov Principle

We may generalize to relationships between other stochastic processes. Suppose
dX; = b(Xy)dt + dW, and dY; = c¢(Xy)dt + dW;. Then, discretizing, squaring,
and substituting, we find

B (X)) = B (ompesn( | (09=c0)¥i= [ 000 —eVd3 [ (b(ri)—c(vi)2dn)

This can help prove the existence of related processes. In addition, this is a
convenient way to remove or change the drift term.
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6.1.1 An Example using Girsanov

Let dX; = b(t,Xy)dt + dWy, Xo = 0. Let dP(w) be the Weiner measure.
Define M; = exp(— fot b(t, Xy )dWs — %fot b(t, X;)ds). Define a new measure
by dQ(w) = MypdP(w). With respect to this new measure, X; is Brownian
motion; that is, dX; = th with respect to the measure Q.

6.2 Theory of Large Deviations

According to the Laplace method, if a function g(z) has a unique minimum at
Zg, then —eln fRf(x)e_ég(”)dx — g(xp) as € — 0 for any reasonable function
f(z). We say that [, f(x)e’%g("”)dx = e~ z9(@0) (this is asymptotic equality).
Extending this to the continuous case, we find that

[ Fbomyesv(-g L[ (0-bin0) 2Dl ) = exp(— 5L [ (Bo(0)=bCha(t)*de) Dho)

where hy minimizes fOT(h’ (t) — b(h(t)))?dt. 1If there are no constraints, the
minimizer is simply the solution to the ordinary differential equation h'(t) =
b(h(t)), in which case g(hop, 1)) = fOT 0dt = 0.

Let dX§ = b(XE)dt + /edWy, for 0 < e << 1. Ase — 0, X — X1
where dX; = b(X;). We may also find the probability of "rare events" in which
X{ deviates greatly from its expected path. Let ¢(t)be any deterministic
function. Let f(Xjo4) = fOT(XLzE — (t))?dt; then E(f(X[y 1)) can give us an
idea of the deviation. Let M[h] = exp(—zz fOT(h’(t) — b(h(t)))?dt); this is
proportional to the density of X; (or something). Given any functional F[h],
we know that

By - LR
Juirysa MIR)dh
P(XT > a) = —fM[h]dh

We evaluate the numerator of second expression by minimizing fOT (W' (t) —
b(h(t)))?dt subject to the constraint that h(T) > a. To do this, we note that

we may apply the Laplace method and minimize fOT(h’ (t) — b(h(t)))?dt subject
to the relevant constraints. Integrating by parts, we find that we must solve:

0 = (ho +b(ho))" + (ho + b(h0))b'(ho)
Let p(t) = (h{, + b(ho)). Then we must solve hyy = b(hg) + p and p’ = —b/(ho)p

subject to the boundary conditions; note that this looks like the stochastic
differential equation with the stochastic term /edW; replaced by p(t).
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6.2.1 An Example

Let dX§ = —X/dt + edW;, with Xg = . The deterministic solution of this
differential equation is X; = ze™". In this case, M[h] = exp(—zz fOT(h'(t) +
h(t))%dt), and we must minimize fOT(h'(t) + h(t))%dt subject to the constraints
that (0) = = and h(T") > a. Suppose hg minimizes the integral subject to the
constraints. Then, for any arbitrary function hq,

T T T T
/(hg+h’1+ho+h1)2dt=/ (hg+ho)2dt+2/ (hg+h0)(h’1+h1)dt+/ (R} +hy)?dt
0 0 0 0

Note that the last term must be positive. We set the middle term to 0 and
integrate by parts to find:

o
Il

T
/ (W) + ho) (K, + hy)dt
0

T
/ (= (hly+ ho)'hy + (hly + ho)ha )dt
0

Since hg and hg + h; satisfy the boundary conditions h(0) = x and h(T) > a,
h1(0) = hi(T) = 0, which is how the integration by parts worked. Thus, we
find a minimum when (h{, + ho)’" = (h{ + ho), that is, hj = hg. The solution
is h(t) = Ae~! + Be!, with x = h(0) = A+ B and a = h(T) = Ae™T + BeT.
Thus,

1 (7 et
Mlho] = —— [ 20—t
) = esplogg | 2oz
1 [* a? o
- = dt
e e S
a2 2T -1

|

By the Laplace method, P(Xr > a) = fh(T)>a M]Ih)dh =< exp(—‘;—zm).
(Note that any path that does go above a is likely to look similar to hqg.)

6.2.2 Applying the Girsanov Principle

We may also use the Girsanov principle, using dX; = b(X;)dt + edW; and
dY; = ¢(t)dt + edW;. note that

(W =b(h)? = (b =+¢—bh)?
= (W = ¢)* +2(h' = §)(¢ — b(h)) + (¢ — b(h))?
This means that the density of Y; is proportional to exp(—zis fOT((h’ — )2+

2(h — ¢)(¢ — b(h)) + (¢ — b(h))?)dt), and the first term provides the weights
for Y. Note that (h(t) — ¢(t)) = L(dY; — ¢(t)) = dW;. Thus, M (Yo 1)) =
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exp(z fo B(t))dW; — fo #(t))%dt). Returning to the prob-
ablhty we are calculatlng, we recall that

P(Xt > a) = E(1x;>4) = E(lyp>a M (Yjo,17))

This formula does not depend on ¢, so we may choose ¢(t) = h{(t), so that it
solves 0 = (h{, — b(ho))" + (h{, — b(ho)V' (ho). Then, Y; = ho(t) + eW; (since we
may just integrate the two terms separately). Substituting for Y;, we find:

e I
M(Y[O,T]) = eXP(g/ (b(ho(t)—l—th)—hE)(t))th—@/ (b(ho(t)+5Wt)_h6(t))2dt)
0 0
Using a Taylor expansion in €, the first term of the exponent becomes:

! /T(b(ho(t)) +eWill (ho(t)) + O(?) — hy (t))dW,

3

T
- /0 é(b(ho(t))fhg(t))JrWtb/(ho(t))JFO(a))th

and the second term of the exponent becomes:

1
2e2

T
/0 (b{ho(0)) + Wil (ho(1)) + 5" (ho(0)2W7 + O(*) — (1)

The highest order term is —3 fOT 2 (b(ho(t)) — h§(t))?dt, which depends only on
non-stochastic functions. We show that the terms with order % cancel, using
integration by parts and the definition of hg:

= [ 0o = m@)aWs = 55 [ 20000(0) = B 0)eb o) Wi

g

1 T T
- L / (b(ho(t)) — By (£)) Widt) — / (b(ho(t)) — By (£) (ho () Wit
0 0

e

= 2 [ (@t = R = Blho(0) ~ Ko(e)W (o0 Wi

g

1 T
= —/ OWidt =0
€ Jo

Thus, as ¢ — 0,

1

T4 .
M (Vo) = expl(—3 [ Z5(b(h(t) = B5(0)d) M (Vo)

where M (Y[o,r7) has a limit as ¢ — 0. By the Laplace Method,

2

. T
—e?log P(Xr > a) = —’log(E(ly;>aM (Y1) + %/ (b(ho(t)) — ho(t))dt)

1

g P(Xp > )1 / (b(ho (1)) — i (£))dt
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Using lower order terms, we may also find that

e—0

1 ! Tbh hy(t))2dt)P(X7 > a) = E(ly,>a M(h
imexp(gzg | (ho(t) = ()P P(Xr > @) = B(lyi> T (h)

where M (ho) = exp(fy b (ho(t))Widt—3 fy ((8'(ho(t)We)*+2(b(ho (1))~ (£)8" (ho (£)) W )dt.

7 The Fokker-Planck Equations

These are also known as the Forward and Backward Kolmogorov equations.

Let dX; = b(X¢)dt+o(X;)dWy, with Xo = z. Define p¥(y) by f[a’b} pf(y)dy =
P(X; € [a,b]); that is, pf (y) is the probability density function of X; for a fixed
t. In addition, define u(x,t) = E(f(X7)). Note that:

u(t) = B(f(X7)) = /R )Pt () dy

7.1 The Forward Kolmogorov Equation
Using this fact, we find p7 (y):

df(Xy) = f'(Xt)(b(Xt)dtJrU(Xt)th)+%f”(Xt)02(Xt)dt

$xr) = s [ PO [ et [ e
T — 0 t t 0 t t t 0 2 t t

w@,T) = E(f(Xr))

T T
= S+ B[ XX +0+ B( [ 5o xa

We may write these expectations as integrals using p7 (y). Changing the order
of integration and then integrating by parts, we find:

/R Fps(y)dy = / / B(Xe) + 31" (X0)o® (X,)dyds

2
+ f (y)(—— (o(y)pi (W) + 5 0—2(02(y)pf (y)))dydt
0o JR Jy 20y

Taking the derivative with respect to time yields:

82

[tz @y = [ 105 0w ) + 5 50 )y

Since this is true for any function f(y), we have the Forward Kolmogorov Equa-
tion: 5 5 o2
1
T - _ 2 b T - 2 T
5Pt (W) 6y( (W)ri (y) + 5 97 (o= (v)pf (y))
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In addition, we have the boundary conditions that lim; g+ p¥(y) = d(z — y),
since Xy = z, and lim, o (%pf(y) = 0, because this is a pdf. We will later

define:
A () =~ 0 0) + 35 (0 )
(f(y) = 3y( VI + 55z W
so that we have the equation %pf(y) = A*(p¥(y)).
There is a "statistical steady state" — that is, a limiting distribution — if
p¥ (y) has a limit, in which case there is a finite solution to

2
0 = 5 W) + 55 0)
0 = U+ 5 (W)
W) = 55O W)
19 a0 L ()
28y( (¥)pi (y)) “(y) o2(y)
(e (y)p; (v)) = C+ / :i(yy))dy
sy — O o b(y)
pi(y) = Y p( / UQ(y)dy)

7.2 The Backward Kolmogorov Equation

We will consider lim, o 2LEDSE@) - Note that E(f(X7)—f(x)) = B(f} f/(Xs)b(X,)ds+

Ot $/7(Xs)o?(X,)ds). Since, recursively, X, = z+ [; b(XZ)dz+ [ o(XZ)dW.,
E(f(XF) = f(x) = t(f'(z)b(z) + 5 f"(x)o*(x)) + o(t). Define the infinitesimal
generator, A, on a function f by:

N
A @) = () 5 + 50°(@)55)1 (@)

(The A* defined above satisfies [, g(x)A(f(z))dx = [}, f(z)A*(g(x))dx for any
functions f and g.)

Since u(z,t) = E(f(X7)), lims_o 86—1; = A(f(z)), and u(z,0) = f(xr). We
will show that % = A(u) = b(x)g—z + %02(:5)% for all t. For simiplicity, we
assume that not only is X; a Markov process, but it is stationary (the second
assumption is not quite necessary). Then, pi,,(y) = [, pf(2)pj(y)dz. We
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calculate:

E((Xnt) = / P () uy, £)dy

(y,1)

- [ swr)

_ / P @ph)dyf (2)dz

_ /R Pin(2)1(2)
(

= B(f(X{n)
= u(x,t+h)

=

d
2) f(z)dzdy

=)

=

dz

Thus, M = A(p(x)) for any ¢ and any ¢. In particular, % =
w = A(u(z,t)) for all ¢. Consider the function f(y) = d(y — 2)
for some z.  Then, u(x,t) = [, pf(y)f(y)dy = pf(z). Using this function in
the formula above, we find the Backward Kolmogorov equation:

£t () = (o) (0) + 50°(@) 55 ()

subject to the boundary condition that lim; g+ pf(y) = 6(z — y).
The Kolmogorov equations allow us to relate partial differential equations
and stochastic differential equations.

7.3 First Passage Time

Given a process X; with an initial condition z, a < z < b, define 7 as the first
time that X; moves outside [a b, that is, 7 = inf{t : X; ¢ [a,b]}. Let m(¢t)
be the pdf of 7, so that fo z)dz is the probability that Xt leaves the interval
before time ¢t. Just as with dlbcrete time Markov chains, we may modify this
chain to set p¥(a) = p7(b) = 0. This gives additional boundary conditions for
the solution of the Forward equation:

2
S0 =~ 5 W) + 555 (0 0)

Using these conditions, we find that

b
% /a pi (y)dy = (=b(y)p (y) + %a%(az(y)pf(y))i <0

(We would expect that the probability of escape increases with time.) Using
the Backward equation, with the same boundary conditions we find that:

b 2 b
gt/ pi(y)dy = a /pt dy+10( )88—/ Pt (y)dy
%mm) _ b(x)a"ém() %UQ(:C) W()
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Let T(x) = E(t%) = [;~ tm®(t)dt. Using the equation above, we find that:

t 9 o t 1 ) 2 t
/0 toom®(t)dt = b(x)%/o m* (t)dt + 5o (:r)@/o m*(t)dt

0 1, . 0?
%T(x) + -0 (a:)WT(:C)

/oom””(t)dt—&-(tmm(t))g" ~ ba) .
0

Since the left-hand-side is the sum of a density and something that is 0 (al-
legedly), we have the differential equation 1 = b(z)T"(z) + 102(2)T"(z), with
the boundary conditions T'(a) = T'(b) = 0, which can be solved with standard
methods.
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