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1 Preliminaries

Statistical inference is based on a model given by {Pθ : θ ∈ Θ}. We then draw
observations, x1, ..., xn of the random vector X which are (usually) independent
and identically distributed from the distribution Pθ0 , where θ0 is the true para-
meter value. θ0 can never be known; statistical inference attempts to estimate
it as precisely as possible.

Definition If Θ ⊂ Rk, for finite k, then the model is called parametric. Oth-
erwise, the model is non-parametric (or semi-parametric).

It is always possible for the underlying set of models to be wrong. For
example, the distribution may be different, or the observations may not be
independent. This is not the problem of statistical inference; this is model
checking.

Definition Suppose we observe x from the model {Pθ : θ ∈ Θ}. The likelihood
function is given by:

lik(θ;x) = Pθ(x)

The likelihood function is a function of θ, while the probability density function
is a function of x.

2 Criteria for choosing an estimator

Definition An estimator is a statistic (that is, a mapping from random vari-
ables to other random variables) that attempts to get close to a function of a
parameter. An estimate is the value that the estimator takes for the particular
data observed. To estimate g(θ), we have an estimator ĝ(X) and an estimate
ĝ(x).

An estimator cannot be correct with probability one except in very unusual
situations (such as if the data partition the space). However, for very large
sample sizes this is approximately possible.
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Definition An estimator is (strongly) consistent if

lim
n→∞

Pθ (ĝ(Xn) = g(θ)) = 1

In finite samples, we hope that the estimator is close to the true value of the
parameter.

Definition An estimator ĝ is unbiased if Eθ(ĝ(X)) = g(θ) for all θ ∈ Θ.

Definition The mean square error of an estimator ĝ of g(θ) is Eθ

(
(ĝ(X)− g(θ))2

)
.

Proposition 2.1 The mean square error of an estimator is the sum of its vari-
ance and its squared bias. That is,

Eθ

(
(ĝ(X)− g(θ))2

)
= V ar(ĝ(X)) + (E(ĝ(X))− g(θ))2

3 Sufficiency

It is not always necessary to know the values and order of each observation
in order to do inference. We wish to reduce the data to a smaller number of
statistics that we may use instead. Statistics that summarize the data without
losing any information about the parameters are called sufficient (and vary with
the model being considered). This creates a partition of the space of outcomes,
in which samples are equivalent if they have the same sufficient statistics.

Definition Let Ω be the sample space of X. Let {Pθ : θ ∈ Θ} be a family of
models. Let Π be a partition of Ω. Π is a sufficient partition with respect to
θ ∈ Θ if Pθ(X | A ∈ Π) does not depend on θ for all A ∈ Π.

Definition Let T : Ω → Rk be a function which is constant on each suffi-
cient partition and takes a different value for different partitions (that is, each
T−1(a) corresponds to exactly one (possibly empty) set of the sufficient parti-
tion). Then, T is a sufficient statistic, and Pθ(X | T (X) = t) does not depend
on θ for all t ∈ Rk.

Notice that any one-to-one function of a sufficient statistic is also a sufficient
statistic, so that sufficient statistics are not unique.

Theorem 3.1 (Factorization Theorem) Given a family of densities, {Pθ : θ ∈
Θ}, T (X) is a sufficient statistic if and only if Pθ(X) = Pθ(T )h(X), where
h(X) does not depend on θ.

Definition A minimal sufficient partition is the coarsest partition which is still
sufficient. (This is the maximal data reduction possible.) A minimal sufficient
statistic is a statistic that takes a distinct value on each minimal sufficient
partition.
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If there is a minimal sufficient partition, then the sets in any other sufficient
partition must be subsets of the minimal partition.

Theorem 3.2 Given {Pθ : θ ∈ Θ}, define a partition made up of the sets
Y = {X : Pθ(X)/Pθ(Y ) does not depend on θ} for each Y . This partition is
minimal sufficient.

Proof Suppose Π = {{X : Pθ(X)/Pθ(Y ) does not depend on θ} : Y ∈ Ω}. This
is a partition. Furthermore, this partition is sufficient, since Pθ(X | X ∈ X) =
Pθ(X)/

∑
Y ∈X Pθ(Y ) is the reciprocal of the sum of Pθ(Y )/Pθ(X), none of which

depend on θ, so the probability of a certain sample given the partition does not
depend on θ.

Let T be any sufficient statistic. Suppose T (Y ) = T (X) because they are in
the same partition, and, by the Factorization Theorem:

Pθ(X)
Pθ(Y )

=
Pθ(T (X))h(X)
Pθ(T (Y ))h(Y )

=
h(X)
h(Y )

This does not depend on θ. Thus, Y and X must be in the same set of Π,
and the sets of the partition defined by any sufficient statistic are subsets of the
partition above.

Theorem 3.3 (Rao-Blackwell Theorem) Suppose g̃(X) is an unbiased estima-
tor of g(θ). Suppose T (X) is a sufficient statistic for the family of distributions.
Then, ĝ(X) = E(g̃(X) | T (X)) is an unbiased estimator of g(θ) with at most
the variance of g̃(X).

Proof ĝ(X) = E(g̃(X) | T (X)) is an estimator because E(g̃(X) | T (X)) does
not depend on θ since P (g̃(X) | T (X)) does not depend on θ. By the law of
iterated expectations,

E (Eθ(g̃(X) | T (X))) = E(g̃(X))
= g(θ)

For any random variables X and Y ,

V ar(X) = E(V ar(X | Y )) + V ar(E(X | Y )) ≥ V ar(E(X | Y ))

so,
V ar(g̃(X)) ≥ V ar(E(g̃(X) | T )) = V ar(ĝ(X))

In general, conditioning any estimator on a sufficient statistic tends to reduce
the mean square error.
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4 Completeness

Definition Let {Pθ(T ) : θ ∈ Θ} be a family of distributions of a sufficient
statistic T . This family is complete if Eθ(f(T )) = 0 for all θ implies that
f(t) = 0 almost everywhere. The family is bounded complete if Eθ(f(T )) = 0
for a bounded f implies that f(t) = 0 almost everywhere.

Theorem 4.1 If {Pθ(T ) : θ ∈ Θ} is complete, then T is a minimal sufficient
statistic for the original family.

Proof (Sketch.) Suppose t1 and t2 are in a single partition element, A, defined
by a sufficient partition, t. Then the probabilities fθ(t1 | A) = p and fθ(A− t1 |
A) = 1 − p do not depend on θ. Set h(t1) = −1/p and h(A − t1) = 1/(1 − p).
Then Eθ(h|A) = 0. This is a contradiction.

Note that minimal sufficient does not imply complete. (For example, com-
bining two experiments that measure the same parameter in different ways may
make a family incomplete.)

Theorem 4.2 If T is a complete sufficient statistic, then any unbiased estima-
tor g̃(X) of g(θ) can be used to find the minimum variance unbiased estimator
by conditioning on T . That is, the minimum variance unbiased estimator is
ĝ = E(g̃ | T ). The minimum variance estimator is unique (except for a set of
measure 0).

Definition If Pθ(X) = C(θ) exp(
∑k

i=1 Qi(θ)Ti(X))h(X), for known functions
C, Qi, Ti, and h, then Pθ is in the exponential family.

By the factorization theorem, we see that T = (T1, ..., Tk) is a sufficient
statistic for θ.

Theorem 4.3 Suppose we have an exponential family of distributions, Pθ(X) =
C(θ) exp(

∑k
i=1 Qi(θ)Ti(X))h(X). Define φi = Qi(θ), so that Pφ(t) = d(φ) exp(

∑k
i=1 φiti)

(this is possible in most cases). If the transformed Θ contains a k-ball in Rk,
then T is complete sufficient for φ.

So, in certain cases we may find the minimum variance unbiased estimator
in this way:

• Find a sufficient statistic, T , using the factorization theorem or equivalence
classes.

• Prove that the family with this sufficient statistic is complete, often by
showing that the statistic belongs to the exponential family and that the
parameter space contains a k-ball.

• Find any unbiased estimator, g̃(X). (This may depend on only one or two
of the observations.)

• Compute E(g̃(X) | T ). (This will require finding P (X | T ).)
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5 Efficiency

Definition In(θ) = E((∂ ln Pθ(X1,...,Xn)
∂θ )2) is called Fisher’s Information Cri-

terion, or the information contained in X. For a single observation, we have
i(θ) = Eθ((

∂ ln Pθ(X)
∂θ )2), and for independent observations, In(θ) = n · i(θ).

Proposition 5.1 Under certain regularity conditions, E( ∂
∂θ lnPθ(x)) = 0.

Proof

E(
∂

∂θ
lnPθ(x)) =

∫
∂ lnPθ(x)

∂θ
Pθ(X)dx

=
∫

∂Pθ(X)
∂θ

· 1
Pθ(x)

· Pθ(x)dx

=
∫

∂

∂θ
Pθ(x)dx

=
∂

∂θ

∫
Pθ(x)dx

=
∂

∂θ
(1)

= 0

Proposition 5.2 Under regularity conditions, Eθ(( ∂
∂θ lnPθ(x))2) = −Eθ( ∂2

∂θ2 lnPθ(x)).

Proof It is sufficient to prove this for a sample size of one, because of indepen-
dence.

− ∂2

∂θ2
lnPθ(x) = − ∂

∂θ
(

∂
∂θPθ

Pθ
)

= −(
( ∂2

∂θ2 Pθ) · Pθ

P 2
θ

−
( ∂

∂θPθ)2

P 2
θ

)

= −
∂2

∂θ2 Pθ

Pθ
+ (

∂
∂θPθ

Pθ
)2

Taking expectations of both sides, we have:

E(− ∂2

∂θ2
lnPθ(x)) = −Eθ(

∂2

∂θ2 Pθ

Pθ
) + i(θ)

The first term on the right hand side is zero (once again writing the expectation
as an integral and interchanging the order of integration and differentiation).
Thus, E(− ∂2

∂θ2 lnPθ(x)) = i(θ).

Theorem 5.3 Cramer-Rao Lower Bound Under certain regularity conditions,
for any unbiased estimator, θ̂(x) of θ, V ar(θ̂(x)) ≥ 1/In(θ).
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Proof Since θ̂(X) is unbiased, Eθ(θ̂(x)) = θ. We take the derivative of this
with respect to θ:

1 =
∂

∂θ
θ

=
∂

∂θ
Eθ(θ̂(x))

=
∂

∂θ

∫
θ̂(x)Pθ(x)dx

=
∫

θ̂(x)
∂

∂θ
Pθ(x)dx

=
∫

θ̂(x)
(

∂

∂θ
lnPθ(x)

)
Pθ(x)dx

= Eθ

(
θ̂(x) · ∂

∂θ
lnPθ(x)

)
= Cov

(
θ̂(x),

∂

∂θ
lnPθ(x)

)
≤ V ar(θ̂(x))V ar

(
∂

∂θ
lnPθ(x)

)
= V ar(θ̂(x))In(θ)

Thus, V ar(θ̂(x)) ≥ 1/In(θ), and Fisher’s information is a lower bound on the
variance of an unbiased estimator.

It may not be possible to achieve the Cramer-Rao lower bound, and more
than one estimator may achieve this lower bound.

Theorem 5.4 Suppose ĝ(x) is an unbiased estimator of g(θ). Then

V ar(ĝ(x)) ≥ (g′(θ)2)
In(θ)

Theorem 5.5 Suppose θ̂(x) is an biased estimator of θ, with E(θ̂(x)) = θ+b(θ).
Then

V ar(θ̂(x)) ≥
(1 + ∂

∂θ b(θ))2

In(θ)

Definition The efficiency of an unbiased estimator, ĝ(x), with a lower bound
of b(θ) on the variance is:

eff(ĝ(x)) =
b(θ)

V ar(ĝ(x))

An estimator is fully efficient if its efficiency is 1.
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Theorem 5.6 Under the same regularity conditions, an unbiased estimator,
θ̂(x) of θ is fully efficient if and only if

∂

∂θ
lnPθ(x) = In(θ)(θ̂(x)− θ)

Proof Let v(x) = ∂
∂θ lnPθ(x). Then,

1 = Cov(v(x), θ̂(x)) ≤ V ar(θ̂(x))In(θ)

If θ̂(x) is fully efficient, then the inequality above becomes an equality, and
the correlation between the two variables must be one. Thus, there is a linear
relationship:

φ(θ)(θ̂(x)− θ) = v(x)− Eθ(v(x))

Recall that Eθ(v(x)) = 0. Also,

In(θ̂) = V ar(θ̂)
= V ar(v(x))/(φ(θ))2

Thus, φ(θ) = In(θ).

This gives a test for whether a fully efficient unbiased estimator exists; look
at the form of ∂

∂θ lnPθ(x).
In the multivariate case, we have a parameter θ = (θ1, ..., θk), and an esti-

mator is unbiased if each coordinate is unbiased. The covariance matrix of an
unbiased estimator is given by:

V arθ(θ̂) = Eθ((θ̂ − θ)(θ̂ − θ)T )

A function B(θ) is a lower bound on the variance if V ar(θ̂) − B(θ) is positive
semi-definite. The Fisher Information Matrix, In(θ) is a k × k matrix with the
component in the (i, j) position equal to Eθ(

∂ ln Pθ(x)
∂θi

· ∂ ln Pθ(x)
∂θj

) (this also equals

−Eθ(
∂2 ln Pθ(x)

∂θi∂θj
)). Note that the diagonal elements are the Fisher information

for the individual parameters. In(θ)−1 is a lower bound on the variance for any
unbiased estimator.

Theorem 5.7 If θ̂ is an unbiased estimator for θ, then
∑k

i=1 aiθ̂i(x) is an
unbiased estimator for

∑k
i=1 aiθi, and a lower bound on the variance of this

estimator is aT In(θ)−1a.

Definition If an estimator has a variance lower than the Cramer-Rao lower
bound, then it is called super-efficient.

Super-efficient estimators are not regular. Either they do not obey the reg-
ularity conditions assumed in the theorem, or they do not behave the same way
on all of the real line, so that they are superefficient if the true value of θ is at
one of a countable number of points and just efficient everywhere else.
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6 Method of Least Squares

Suppose we have a multivariate model X = Aβ + ε, where E(ε) = 0, but we
make no assumption about the specific distribution of ε. Note that X and ε are
n-dimensional vectors, A is an n × k matrix, and β is a k-dimensional vector
of parameters to be estimated. (In terms of a single observations, xi, this is
written as xi = a1iβ1 + ... + aikβk + εi for i = 1, ..., n.) In this model, the
parameters β are of interest, while other parameters like the distribution of ε
are nuisance parameters. For this reason, we want an estimator that makes no
additional assumptions about the distribution of ε. We do assume, though, that
E(X) = Aβ.

Definition The least squares estimator is an estimator chosen to minimize the
sum of squared estimated errors (residuals) in the model. In the case above, β̂
is chosen to minimize (X −Aβ)T (X −Aβ).

If we take the derivative of (X − Aβ)T (X − Aβ) with respect to β and set
it equal to 0, we find the normal equation:

AT Aβ = AT X

Our estimator must always satisfy this. For any other β, we have:

(X −Aβ)T (X −Aβ) = (X −Aβ̂ + Aβ̂ −Aβ)T (X −Aβ̂ + Aβ̂ −Aβ)

= (X −Aβ̂)T (X −Aβ̂) + (β̂ − β)T AT A(β̂ − β) + 2(X −Aβ̂)T A(β̂ − β)

≥ (X −Aβ̂)T (X −Aβ̂)

(Notice that (β̂−β)T AT A(β̂−β) is always positive, and (X−Aβ̂)T A(β̂−β) = 0
by the normal equation.) Thus, any estimate that satisfies the normal equation
minimizes the squared residuals.

¿From a geometric point of view, we may think of Aβ as the image of the
linear transformation, A : Rk → Rn. Then, minimizing the squared residuals is
equivalent to finding the point in the image closest to X. This is the projection of
X onto Aβ; this projection is unique. Note that the residuals must be orthogonal
to Aβ-space. If A is one-to-one, then there is exactly one β that maps to
each point in the space; the β that maps to the projection is our estimate, β̂.
Otherwise, there is an entire flat of Rk that is mapped to the projection, and
there is not a unique β̂, even though there is a unique projection.

If A is of rank k, then we say A is of full rank, we know that (AT A)−1 exists,
and the least squares estimate is:

β̂ = (AT A)−1AT X

In this case, the fitted values (which are the estimates of E(X) and are the
projection onto Aβ-space), are:

X̂ = Aβ̂ = A(AT A)−1AT X

H = A(AT A)−1AT is the projection matrix onto Im(A). Some of its properties
include:
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• H is idempotent; that is H2 = H.

• The null space of H is the space orthogonal to A.

• H is symmetric.

The estimates of the parameters and the fitted values are unbiased:

E(β̂) = E((AT A)−1AT X)
= (AT A)−1AT E(X)
= (AT A)−1AT Aβ

= β

E(Aβ̂) = AE(β̂)
= Aβ

= E(X)

Under the additional assumption that the errors are uncorrelated and have equal
variance (that is, V ar(ε) = σ2I),

V ar(β̂) = V ar((AT A)−1AT X)
= (AT A)−1AT V ar(X)A(AT A)−1

= σ2(AT A)−1

If A is not of full rank, then we say β is not identifiable, since A is a many-
to-one map. That is, different values of β lead to the same distribution of the
X. Suppose rank(A) = r. Without loss of generality, assume that the first r
columns of A span the column space of A. Let B = (A1, ..., Ar). Then there is
some γ such that Aβ = Bγ. Since B is invertible, γ is identifiable. There are
multiple possible choices for B, but given B, the estimate of γ is unique.

Theorem 6.1 Gauss-Markov Theorem Suppose X = Aβ + ε with E(ε) = 0
and V ar(ε) = σ2I. Then the least squares estimator is the minimum variance
unbiased linear estimator.

Proof Let φ = cT β where c is a k-dimensional vector. β̂ is the minimum vari-
ance linear unbiased estimator if and only if, for any other unbiased estimator,
φ̂ = bT X, V ar(cT β̂) ≤ V ar(φ̂). Since β̂ is unbiased for β, cT β̂ is unbiased for
φ. In addition, for any β ∈ Rk,

cT β = E(φ̂)
= bT E(X)
= bT Aβ

This means that cT = bT A.
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First, suppose A is of full rank. Then,

V ar(cT β̂) = cT V ar(β̂)c
= σ2cT (AT A)−1c

= σ2bT A(AT A)−1AT b

V ar(φ̂) = bT V ar(X)b
= σ2bT b

V ar(φ̂)− V ar(cT β̂) = σ2bT (I −A(AT A)−1AT )b

The matrix I − A(AT A)−1AT maps any vector to its component that is or-
thogonal to the image of A. Thus, this matrix is symmetric and idempotent,
and

V ar(φ̂)− V ar(cT β̂) = σ2bT (I −A(AT A)−1AT )b
= ‖(I −A(AT A)−1AT )b‖2

≥ 0

Thus, no other linear unbiased estimator has smaller variance, and when A has
full rank, β̂ is the minimum variance linear unbiased estimator.

Now, suppose rank(A) = r < k. In this case, φ = cT β is not identifiable for
some c. If cT = bT A for some b, then φ is estimable, using bT (Aβ̂). We show
that this is the best linear unbiased estimator. Since b ∈ Rn, we we may write
b = a + (b− a), where a ∈ Im(A) and, therefore, b− a is orthogonal to Im(A).
Then,

E(bT X) = aT Aβ + (b− a)T Aβ = aT Aβ

Since the original estimator is unbiased, aT Aβ = cT β, and aT X is also a linear
unbiased estimator. In addition, this estimator has a smaller (or equal) variance:

V ar(aT X) = aT V ar(X)a
= σ2aT a

V ar(bT X) = bT V ar(X)b
= σ2(aT + (b− a)T )(a + (b− a))
= σ2aT a + σ2(b− a)T (b− a) + 0
≥ V ar(aT X)

We show that the estimator found through projection is always the least squares
estimator. We know that the least squares estimator is cT β̂, where β̂ satisfies
the normal equation, AT Aβ̂ = AT X, even though we cannot solve this equation.
Since cT = bT A,

cT β̂ = bT Aβ̂

= (aT + (b− a)T )Aβ̂

= aT Aβ̂
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Since a ∈ Im(A), we may write aT Aβ̂ = aT X, and we see that cT β̂ = aT X.
Thus, the least squares estimator is the minimum variance unbiased estimator
whenever φ is estimable.

We may rewrite:

εT ε = (X −Aβ)T (X −Aβ)

= (X −Aβ̂ + A(β̂ − β))T (X −Aβ̂ + A(β̂ − β))

= (X −Aβ̂)T (X −Aβ̂) + (β̂ − β)T AT A(β̂ − β) + 0

Suppose V ar(ε) = σ2I. The first term is the sum of squared observed residuals,
and can be calculated from the data. Consider an orthonormal change of coor-
dinates (that is, a rotation), so that Im(A) coincides with the first r = rank(A)
coordinates (remember, this need not be equal to the number of parameters!).
Then, this maps ε to η, where η1, ..., ηr represent A(β̂ − β) and ηr+1, ..., ηn rep-
resent X − Aβ̂. Since this is a rotation, lengths and angles are preserved, and
ηT η = εT ε and V ar(η) = σ2I. In particular,

E((X −Aβ̂)T (X −Aβ̂)) = E((ηr+1, ..., ηn)T (ηr+1, ..., ηn))
= V ar((ηr+1, ..., ηn))
= (n− r)V ar(ηr+1) = (n− r)σ2

Thus, σ̂2 = 1
n−r (X−Aβ̂)T (X−Aβ̂) is an unbiased estimator of σ2. Also, n− r

is the number of degrees of freedom in ε̂ and r is the degrees of freedom used
up in estimation.

6.1 Generalized Least Squares

Suppose X = Aβ + ε with E(ε) = 0 and V ar(ε) = σ2Σ, with Σ known. (The
simplest case is where Σ is a non-identity diagonal matrix, meaning that errors
are uncorrelated, but have different variances. Autocorrelation in the errors also
requires the use of generalized least squares.) Since Σ is a covariance matrix,
it must be symmetric and positive definite, and we may write Σ = PPT for
some matrix P . Let z = P−1X = P−1Aβ + P−1ε and η = P−1ε. Then,
Pz = Aβ + Pη, and z = P−1Aβ + η, and V ar(η) = P−1V ar(ε)(P−1)T = σ2I.
In fact,

(z − P−1Aβ)T (z − P−1Aβ) = (P−1X − P−1Aβ)T (P−1X − P−1Aβ)
= (X −Aβ)T Σ−1(X −Aβ)

So we can minimize the sum of squared residuals in the original model, weighted
by the inverse of the covariance matrix.
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6.2 The Normal Assumption

Up to now, we have assumed nothing about the distribution of ε. For some fur-
ther results, we assume that ε ∼ Normal(0, σ2I). If A is also of full rank, then
β̂ ∼ Normal(β, σ2(AT A)−1) and, for any c, cT β̂ ∼ Normal(cT β, σ2cT (AT A)−1c).
Using the rotation from before, we know that (X−Aβ̂)T (X−Aβ̂) =

∑n
i=k+1 η2

i .
Because the ηi are now independent normal with variance σ2, we know that
1

σ2 (X −Aβ̂)T (X −Aβ̂) ∼ χ2
n−k.

Since a distribution is specified, we may also write down a likelihood function.
Let θ = (β1, ..., βk, σ2). Then,

lik(θ, A, y) = Pθ(y | A)

= (2πσ2)−n/2 exp
(
− 1

2σ2
(y −Aβ)T (y −Aβ)

)
= (2πσ2)−n/2 exp

(
1

2σ2
(−yT y + 2βT AT y − βT AT Aβ)

)

= C(σ2, β) exp

− 1
2σ2

n∑
i=1

y2
i +

n∑
j=1

βj

σ2
tj(y)


where C(σ2, β) depends only on θ and tj(y) is the jth component of AT y. Thus,
this model is in the exponential family with complete sufficient statistics

∑
y2

i

and AT y, corresponding to β1/σ2, ..., βk/σ2, 1/2σ2. Since this parameter space
contains a k + 1-dimensional ball, any unbiased estimator that is a function
of these statistics is the minimum variance unbiased estimator. β̂ is clearly a
function of these sufficient statistics, and σ̂2 is a function of β̂ and

∑
y2

i . (It is
also the maximum likelihood estimator.)

6.3 Estimation with Restrictions on β

Suppose y = Aβ + ε with the linear restriction HT β = 0, with E(ε) = 0,
V ar(ε) = σ2I, and H an k × q-matrix. Notice that we may assume that H
is of full rank; otherwise, some of the restrictions are redundant, and we may
delete them with no loss of information. Also, if the restrictions are of the form
Hβ = c for some constant, then we may reparameterize β to absorb c. However,
this method does not apply to any nonlinear restrictions, where β is restricted
to a subset of Rk that is not a subspace.

In this case, the space of possible β-values has dimension k − q. Now, we
must minimize the sum of squares subject to the constraint; using the Lagrange
multiplier, this gives us the following system of linear equations:

AT Aβ −AT y + Hλ = 0
HT β = 0(

AT A H
HT 0

)(
β
λ

)
=

(
AT y

0

)
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If A is of full rank, then Σ =
(

AT A H
HT 0

)
has an inverse of the form Σ−1 =(

P QT

Q R

)
, with

P = (AT A)−1 − (AT A)−1H(HT (AT A)−1H)−1HT (AT A)−1

QT = (HT (AT A)−1H)−1HT (AT A)−1

R = −(HT (AT A)−1H)−1

Then, β̂ = PAT y and λ̂ = QAT y. By definition of P , Q, and R:

PAT A + QH = I

PHT = 0
QAT A + RHT = 0

QT H = I

We may use these identities (along with Hβ = 0) to show that β̂ is still unbiased
and E(λ̂) = E(QAT y) = QAT Aβ = 0. Furthermore, V ar(β̂) = σ2P , V ar(λ̂) =
−σ2R, and the two are uncorrelated.

If A does not have full rank, then some (or all) of the restrictions may be used
to identify β while the rest actually restrict it. Suppose H = (H1,H2)T , where
H1 are conditions that exactly identify β (along with A). Then AT A + HT

1 H1

is invertible. If we replace AT A above by AT A + HT
1 H1, then everything goes

through as before.

7 Maximum Likelihood

Let θ ∈ Θ ⊂ Rk be a parameter of interest. Suppose X = (x1, ..., xn) are inde-
pendent and identically distributed from f(x; θ0), where θ0 is the true parameter
value. Then, we have the likelihood function for θ:

lik(θ | X) = f(X | θ)

=
n∏

i=1

f(xi | θ)

This is a function of θ. In maximum likelihood estimation, we choose θ̂ to max-
imize the likelihood function for the observed data. To do this, we generally
maximize the log likelihood, l(θ), because the natural logarithm is a monotoni-
cally increasing function (and the log likelihood is usually easier to work with).
To maximize this, we check both points where the derivative is zero and the
boundaries of Θ.

Definition θ̂n → θ0 in probability if for all ε > 0, Pθ0(|θ̂n − θ0| > ε) → 0 as
n →∞. This is also called weak convergence.
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Definition θ̂n → θ0 almost surely if Pθ0(ω | lim θ̂n(ω) = θ0) → 1 as n → ∞.
This is also called strong convergence.

Definition If θ̂n(X) → θ0 in probability, then θ̂n is weakly consistent. If θ̂n →
θ0 almost surely, then θ̂n is strongly consistent. In both cases, θ̂n = θ0 + op(1);
that is, the difference between the estimate and the true value is of order smaller
than 1.

Definition If Pθ0(|θ̂n−θ0| < M) → 1 for a fixed number M , then θ̂n is bounded
in probability, and we write θ̂n = θ0 + Op(1), since their difference is of order 1.

Theorem 7.1 The maximum likelihood estimator is weakly consistent if the
sample is independent and identically distributed and if the number of parame-
ters is constant as the sample size grows.

Proof (Sketch.) Define Z(θ) = Eθ0(l(x1, θ)), where θ0 is the true parameter
value. Define Ẑn(θ) = 1

n

∑n
i=1 l(xi, θ). By the law of large numbers, Ẑn(θ) →

Z(θ) for all θ.
We first show that Z is maximized at θ0.

Z(θ0)− Z(θ) =
∫

log(f(x, θ0))f(x, θ0) dx−
∫

log(f(x, θ))f(x, θ0) dx

=
∫

log(
f(x, θ0)
f(x, θ)

)f(x, θ0) dx

=
∫
− log(

f(x, θ)
f(x, θ0)

)f(x, θ0) dx

Since the negative logarithm is convex, we may apply Jensen’s Inequality, which
states that if f is a convex function then E(f(X)) ≥ f(E(X)), with strict
inequality if the function is not a line.

Z(θ0)− Z(θ) =
∫
− log(

f(x, θ)
f(x, θ0)

)f(x, θ0) dx

≥ − log(
∫

f(x, θ)
f(x, θ0)

f(x, θ0) dx)

= − log
∫

f(x, θ) dx

= − log(1) = 0

In this case, strict inequality holds if f(x, θ) 6= f(x, θ0) on a set of positive
measure. Thus, Z(θ) is maximized at θ0.

We consider the case where the parameter space is finite; that is, Θ =
{θ0, θ1, ..., θk}. Since there are finitely many parameter values, the convergence
of Ẑn(θj) → Z(θj) must be uniform. Let ε = min{Z(θ1) − Z(θ0), ..., Z(θk) −
Z(θ0)}. Without loss of generality, assume that Z(θ1) − Z(θ0) = ε. Then we
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may choose N so that the probability of the Ẑn(θj) being far enough away from
their true values to make the minimum Ẑn(θj) different from zero is as small as
we want. Thus, the probability that θ̂n equals θ0 goes to 1 as n →∞.

For more general cases, some useful assumptions include:

• limm→∞E(sup|θ−θ0|>m
1
n

∑
l(xi, θ)− 1

n

∑
l(xi, θ0)) < 0. That is, far away

from θ0, the likelihood is smaller.

• The likelihood function is continuous with respect to θ.

• Singularities in lik(θ) do not depend on θ.

• The parameter space is finite-dimensional and compact.

Theorem 7.2 Under additional regularity conditions, the maximum likelihood
estimator is asymptotically normal, so that

√
n(θ̂ − θ0) ∼ Normal(0, i−1

θ0
), and

θ̂ ∼ Normal(θ0, In(θ0)−1).

Proof (Sketch.) Let D(θ) = ∂
∂θ log f(x, θ)|θ=θ0 and D2(θ) = ∂2

∂θ2 log f(x, θ)|θ=θ0 .
Using a Taylor expansion, we find that:

0 = D(θ̂) ≈ D(θ0) + D2(θ0)(θ̂ − θ0)

Then,
√

n(θ̂−θ0) ≈
√

n 1
D2(θ0)

D(θ0). By the Law of Large Numbers, − 1
nD2(θ0) →

i(θ0). Since 1√
n
D(θ0) is a sum of independent and identically distributed random

variables, each with mean 0 and variance i(θ), the sum converges to the normal
distribution, 1√

n
D(θ0) ∼ Normal(0, iθ). Thus,

√
n(θ̂ − θ0) ∼ Normal(0, I−1

θ0
)

asymptotically.

Definition An estimator, θ̂n, is self-consistent, or invariant, if g(θ̂n) is consis-
tent for g(θ) for any function g.

Note that the maximum likelihood estimator is self-consistent, because the θ
that maximizes the likelihood must be mapped to a value g(θ) that maximizes
the reparameterized likelihood. In the regular case,

√
n(g(θ̂mle) − g(θ0)) →

Normal(0, (g′(θ0))2i(θ0)−1) in distribution. (This also holds in the multivariate
case, though the variance is now written as g′(θ0)I(θ0)−1g′(θ0), which is also
the Cramer-Rao lower bound for estimating g(θ).) In finite samples, the Fisher
information is (as always) approximated by the information at θ̂.

This can be applied to variance-stabilizing transformations. Suppose that
x ∼ [µ, σ2]. Then, V ar(g(x̄)) ≈ (g′(µ))2σ2/n. If we may find a g such that
(g′(µ))2σ2 is a constant, this may be useful in estimation, particularly if you
are near a parameter value with unstable variance.
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7.1 Maximum Likelihood and the Exponential Family

Suppose f(x, θ) = exp(a(θ)b(x) + c(θ) + d(x)), θ ∈ R, and that x1, ..., xn are a
random sample from this distribution. Then,

∂

∂θ
log f(xi, θ) = b(xi)a′(θ) + c′(θ)

0 = E(
∂

∂θ
log f(xi, θ)) = a′(θ)E(b(xi)) + c′(θ)

Eθ0(b(xi)) = −c′(θ0)/a′(θ0) = µ(θ0)

V ar(
∂

∂θ
log f(xi, θ)) = (a′(θ))2V ar(b(xi))

Notice that the last equation equals the Fisher information. We may use the
alternative definition of the Fisher information to solve for V ar(b(xi)):

i(θ) = −E(
∂2

∂θ2
log f(xi, θ))

= −E(b(xi))a′′(θ)− c′′(θ)
= −µ(θ)a′′(θ)− c′(θ)

−µ(θ)a′′(θ)− c′(θ) = (a′(θ))2V ar(b(xi))

V ar(b(xi)) =
−a′′(θ)µ(θ)− c′′(θ)

(a′(θ))2

In this case, the maximum likelihood estimator is the mean of b(xi). Notice that
the second derivative of the log likelihood function is always negative if a′(θ) 6= 0,
because the variance of b(xi) is positive. This gives a global maximum for the
exponential family. (This method also extends to vector-valued θ.)

7.2 Restricted Maximum Likelihood Estimation

Suppose we want to estimate θ subject to a restriction h(θ) = (h1(θ), ..., hr(θ)) =
0 (where the dimension of the restriction is less than the dimension of the
parameter space, and the restriction may be non-linear). Let Hθ = (∂hi

∂θj
)|θ.

Then, Lagrange multipliers give us the following system of equations:

D(l(θ, x))−HT
θ λ = 0

h(θ) = 0

Let θ̂ be the unrestricted estimate and θ̃ be the restricted estimate. We assume
that θ̂, θ̃, and θ0 are all sufficiently close that we may use the following Taylor
expansions:

h(θ̃) = h(θ0) + Hθ(θ̃ − θ0)
Dl(θ̃) = Dl(θ0) + (θ̃ − θ0)D2l(θ0, x)

Dl(θ̃) ≈ Dl(θ̂, x) = 0
1
n

D2l(θ0, x) ≈ i(θ0)
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Multiplying everything by
√

n gives us a system of equations, which can also be
written in matrix form:

√
n(θ̃ − θ0)i(θ0) +

1√
n

HT
θ λ̃ =

1√
n

Dl(θ0, x)

Hθ(
√

n)(θ̃ − θ0) = 0(
i(θ0) HT

H 0

)( √
n(θ̃ − θ0)

1√
n
λ̃

)
=

( 1√
n
Dl(θ0, x)

0

)

We know that this square matrix has an inverse of the form
(

P QT

Q R

)
. Thus,

because 1√
n
P Dl(θ0, x) is asymptotically normal,

√
n(θ̃ − θ0) is asymptotically

normal as well.

7.3 Newton’s Method

In practice, closed forms solutions may not exist. Instead, we use Newton’s
Method to estimate the point at which the maximum occurs. Suppose we know
l(θ). Let Dθ = ( ∂

∂θ1
, ..., ∂

∂θn
). We wish to solve the equation Dθl = 0, since

either a solution of this equation (or a boundary) is the maximum likelihood
estimator. For this, suppose the solution is the correct estimator. Suppose we
have an estimate, θ(n), close enough to the true maximum, θ̂ to admit a Taylor
expansion. Then,

0 = Dθl(θ̂)

≈ Dθl(θ(n)) + D2
θ l(θ(n))(θ̂ − θ(n))

If D2
θ l(θ(n)) is invertible, then we may solve:

θ(n+1) ≈ θ(n) −D2
θ l(θ(n))−1Dθl(θ(n))

This process continues until the estimates converge.
If the initial guess θ(0) is relatively good, then the matrix D2

θ l(θ(0))−1 can
be used in every step, instead of being recalculated (since inverting matrices
is a very slow process). In addition, since −D2

θ l(θ) ≈ I(θ) (the latter is the
expectation of the former), we may also use the inverse Fisher’s information
of the initial estimate, if that is easier to calculate. In this case, the updating
formula is:

θ(n+1) = θ(n) + I(θ(0))−1(θ̂ − θ(n))

None of these variations of Newton’s method are guaranteed to converge to the
correct value (they may find a local but not global maximum, for example).

8 Estimating equations

Definition The equation g(θ, x) = 0 is an estimating equation if E(g(θ, x)) = 0
for all possible θ.
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Given data, we may use an estimating equation to estimate a parameter by
plugging in the observed data and solving for θ. Note that the derivative of the
log likelihood is an estimating equation (under sufficiently regular conditions).

As an example, we consider a one-dimensional maximum likelihood estimator
for a multinomial distribution with k cells and an asymptotically equivalent one
defined by an estimating equation. First, for the maximum likelihood estimator,
we have

g(θ, s1, ..., sk) =
∂

∂θ
l(θ)

= n
k∑

i=1

si
π′i(θ)
πi(θ)

(This is an estimation equation, since substituting πi(θ) for si gives zero.) Using
a Taylor expansion about the true parameter value, we have:

g(θ̂, s1, ..., sk) = g(θ0, π1(θ), ..., πk(θ)) + (θ̂)
∂g

∂x0
|x0=θ0 +

k∑
i=1

(si − πi(θ0))
∂g

∂xi
|xi=πi(θ0) + op(1)

∂g

∂x0
= n

k∑
i=1

si(
π′′i (θ)
πi(θ)

+ (
π′i(θ)
πi(θ)

)2) → −ni(θ)

∂g

∂xi
= n

π′i(θ)
πi(θ)

0 = 0 + (θ̂ − θ0)(−ni(θ0)) +
k∑

i=1

(si − πi)n
π′i(θ0)
πi(θ0)

θ̂ − θ0 =
k∑

i=1

(si − πi)
π′i(θ)

i(θ)πi(θ)

Any estimator that asymptotically has the same form (in particular, that
is a multiple of π′

i(θ)
i(θ)πi(θ) ) will asymptotically equal the maximum likelihood

estimator, and therefore will also be efficient. (The properties in finite sam-
ples will differ, though.) In particular, the minimal chi-square estimator, in
which G(θ) =

∑k
i=1

1
ni

(ni−nπi(θ))2 is minimized gives the estimation equation

g(θ, s1, ..., sk) = ∂
∂θG(θ) = 2n

∑k
i=1

πi(θ)π′
i(θ)

si
which has an asymptotic ratio of

derivatives − ∂g
∂xi

/ ∂g
∂x0

= π′
i(θ)

πi(θ)i(θ) , and is therefore asymptotically efficient.

9 The Jackknife Method

Given data, X1, ..., Xn from an unknown distribution, F , suppose we have an
estimator, θ̂n = θ̂n(x1, ..., xn), of a real-valued θ0(F ). We assume that the xi

are exchangeable, and that we may write:

E(θ̂n) = θ0 +
a1(θ0)

n
+

a2(θ0)
n2

+ ...
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We define θ̂n−1,i as the estimator based on the n−1 points X1, ..., Xi−1, Xi+1, ..., Xn,
and θ̂n−1,. as the average of θ̂n−1,1, ..., θ̂n−1,n. The jackknife estimate of bias or
Quenouille’s estimate of bias is:

ˆbias = (n− 1)(θ̂n−1,. − θ̂n)

Using this, we define the jackknife estimator as

θ̃n = nθ̂n − (n− 1)θ̂n−1,.

Then,

E(θ̂n−1,.) = θ0
a1(θ0)
n− 1

+
a2(θ0)

(n− 1)2
+ ...

E(θ̃n) = E(nθ̂n − (n− 1)θ̂n−1,.)

= n(θ0 +
a1(θ0)

n
+

a2(θ0)
(n)2

+ ...)− (n− 1)(θ0
a1(θ0)
n− 1

+
a2(θ0)

(n− 1)2
+ ...)

= θ0 +
−a2(θ0)
n(n− 1)

+ ...

This shows that the bias of the new estimator is of a smaller order than the bias
of the original estimator. In fact, the resulting bias will be zero if the only bias
was in the a1(θ0)

n term. More corrections can be done, but each correction tends
to increase the variance of the estimator, so there may be a tradeoff.

This method of deleting observations one at a time can also be used to
estimate variance. In particular, we have the Tukey estimate of variance:

ˆV ar(θ̂n) =
n− 1

n

n∑
i=1

(θ̂n−1,i − θ̂n−1,.)2

(We don’t divide by n since there is so much overlapping information being
used.) This estimate captures the variance of the influence function.

Theorem 9.1 E( ˆV arn) ≥ V ar(θ̂n), and this variance estimate is conservative.

Proof (Sketch.) We may use an ANOVA decomposition on θ̂n−1:

θ̂n = E(θ̂) + (
n∑

i=1

E(θ̂n|Xi)− µ) + (
∑
i<j

E(θ̂n|Xi, Xj)−
∑

i

E(θ̂n|Xi) + µ) + ... + ((θ̂n + ... + (−1)nE(θ̂))

= µ +
1
n

∑
i

αi +
∑
i<j

1
n2

1
nn

βij + ... + η12...n

Notice that this is a decomposition into 2n random variables, µ, α1, ..., αn, β11, ...η12...n.
It turns out that:

• Each of the random variables is a function only of the Xi referred to in
the subscripts (that is, αi depends only on Xi, βij depends on Xi and Xj

and nothing else, and so on).
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• Each of the random variables has expectation zero if it is conditioned on
zero up to all but one of the defining Xi’s.

• The random variables are pairwise uncorrelated (and therefore have ex-
pected pairwise products equal to 0).

This allows us to calculate the variance as the sum of the variances of the 2n

random variables. Notice that each of the α’s has the same variance (and so
on). This means we may count up the variables:

V ar(θ̂n−1) =
1

n− 1
V ar(αi)+

(
n− 2

1

)
1

2(n− 1)3
V ar(βij)+

(
n− 2

2

)
1

3(n− 1)5
V ar(γijk)+...

This is the true variance of the jackknife estimator. This allows us to calculate
the expectation of the estimated variance as well:

E(
n∑

i=1

(θ̂n−1,i − θ̂n−1,.)2) =
1
n

∑
i<j

E((θ̂n−1,i − θ̂n−1,j)2)

=
V ar(α)
n− 1

+
(

n− 2
1

)
V ar(β)
(n− 1)3

+
(

n− 2
2

)
V ar(γ)
(n− 1)5

+ ...

Note that the true variance is less than the estimated variance.

10 Confidence Regions

Definition A pivotal quantity is a random quantity whose distribution does not
depend on any unknown parameters. The pivotal quantity itself may depend
on unknown parameters.

Definition A 1− α confidence region, Cα(x) ⊂ Θ is a region that satisfies:

inf
θ

Pθ(θ ∈ Cα(x)) ≥ 1− α

Note that C(x) is a random region that tries to capture the true (fixed) θ. 1−α
is called the confidence coefficient.

We hope that the confidence regions are as small as possible.
If C(x) is based on a pivotal quantity, then Pθ(θ ∈ Cα(x)) does not depend

on any unknown parameters, and the infimum is no longer necessary. Note that
quantities might be pivotal only asymptotically; for example,

√
n

i(θ) (θ̂ − θ0)

is pivotal asymptotically, because its distribution is asymptotically standard
normal.
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11 Hypothesis Testing

Suppose we have a parameter θ ∈ Θ where we have a partition Θ = Ω ∪ ΩC .
We also observe a point, x, in the sample space, S. Our null hypothesis (H0) is
that θ ∈ Ω, and our alternative hypothesis (HA) is that θ ∈ ΩC . We choose a
critical set, R ⊂ S, and accept H0 if and only if x ∈ RC (equivalently, reject H0

if and only if x ∈ R). We define Type I Error as Pθ(R) when θ ∈ Ω, and Type
II Error as Pθ(RC) when θ ∈ Ω. The size of the test is maxPθ(R) when θ ∈ Ω
(this is the maximum Type I Error). The power of the test is 1− Pθ(Rc) when
θ ∈ ΩC (this is one minus the Type II Error). Ideally, we want both types of
error to be small. In general, we choose a size, α, and then try to find the most
powerful test (critical region) with that size.

Definition A test of size α with a power function that is uniformly no larger
than that of any other test of size α (or less) is the uniformly most powerful
(UMP) test.

Theorem 11.1 Neyman-Pearson Lemma. Suppose we have the simple hypothe-
ses, H0 : θ = θ0 and HA : θ = θ1. Suppose there is a critical region, R∗, such
that R∗ = {X ∈ S : fθ1(x) ≥ kfθ0(x), k > 0} and Pθ0(R

∗) = α. Then, for
any other R with Pθ0(R) ≤ α, Pθ1(R

∗) ≥ Pθ1(R). That is, a test of simple
hypotheses based on the ratio of the likelihoods is the most powerful.

Proof

Pθ1(R
∗)− Pθ1(R) =

∫
R∗∩R

fθ1(x)dx +
∫

R∗∩RC

fθ1(x)dx− (
∫

R∗∩R

fθ1(x)dx +
∫

R∗C∩R

fθ1(x)dx)

=
∫

R∗∩RC

fθ1(x)dx−
∫

R∗C∩R

fθ1(x)dx

≥
∫

R∗∩RC

kfθ0(x)dx−
∫

R∗C∩R

kfθ0(x)dx)

=
∫

R∗
kfθ0(x)dx−

∫
R

kfθ0(x)dx)

= k(Pθ0(R
∗)− Pθ0(R))

≥ 0

If the probabilities are discrete, such an R∗ may not exist. In this case, we
may wish to choose a more conservative region or the region with the probability
closest to α. Alternately, we may create a “randomized test” which randomly
assigns which hypothesis is accepted or rejected in certain cases and can achieve
a size of exactly α.

Lemma 11.2 Generalized Neyman-Pearson Lemma. Let f, g1, ...gm be regular
functions. Let 0 ≤ γ(x) ≤ 1 and 0 ≤ ki for i = 1, ...,m. Let

φ(x) =

 1 if f(x) > k1g1(x) + ... + kmgm(x)
γ(x) if f(x) = k1g1(x) + ... + kmgm(x)

0 if f(x) < k1g1(x) + ... + kmgm(x)
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Then, for any φ2 such that
∫

φ2(x)gi(x)dx ≤
∫

φ(x)gi(x)dx for i = 1, ...,m and
0 ≤ φ2(x) ≤ 1,

∫
φ(x)f(x)dx ≥

∫
φ2(x)f(x)dx.

Proof Consider
∫

R
(φ(x)−φ2(x))(f(x)−

∑m
i=1 kigi(x))dx. Notice that we may

write R = A ∪ B ∪ C, where A = {x : φ(x) = 1}, B = {x : φ(x) = γ(x)}, and
C = {x : φ(x) = 0}. On A, both terms in the product are positive. On B, the
second term is zero. On C, both terms are negative. Thus, the integral must
be positive, and we may rewrite it as:

0 ≤
∫

R

(φ(x)− φ2(x))(f(x)−
m∑

i=1

kigi(x))dx

=
∫

R

(φ(x)− φ2(x))f(x)dx−
∫

(φ(x)− φ2(x))(
m∑

i=1

kigi(x))dx

=
∫

R

(φ(x)− φ2(x))f(x)dx−
m∑

i=1

ki

∫
R

(φ(x)− φ2(x))gi(x)dx

Since the second term is non-negative, we must have
∫

R
φ(x)f(x)dx ≥

∫
R

φ2(x)f(x)dx.

In the case of simple hypotheses, it may happen that the likelihood ratio,
fθ1(x)/fθ0(x) is monotone in a test statistic. In this case, we may extend this
most powerful test to being the most powerful test for an interval (such as one-
sided tests of the mean of a normal distribution). This need not happen in
general.

Definition A test such that of the (possibly composite) hypotheses, HO : θ ∈ Ω
and HA : θ ∈ Θ − Ω, is a unbiased α-level test if α(θ) ≤ α for all θ ∈ Ω and
1− β(θ) ≥ α for all θ ∈ Θ− Ω.

Definition Suppose we wish to test (possibly composite) hypotheses, HO : θ ∈
Ω and HA : θ ∈ Θ− Ω. Define the (generalized) likelihood ratio as:

λ(x) =
supθ∈Θ−Ω fθ(x)
supθ∈Ω fθ(x)

The likelihood ratio test rejects the null hypothesis for large values of λ(x).

In simple cases, we may find a test statistic which is monotonically related
to λ(x), and then find a critical region for this test statistic. In more complex
cases, we must use asymptotics.

In our calculation of the likelihood ratio, we use the unrestricted maximum
likelihood estimator, θ̂n, and the restricted maximum likelihood estimator, θ̃n.
If the estimators obey regularity conditions and the sample is large enough, then√

n(θ̂n − θ0) ∼ Normal(0, B−1
θ0

), where Bθ0 is the Fisher information. Under
the null hypothesis that the restrictions hold,

√
n(θ̃n − θ0) ∼ Normal(0, Pθ0),
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where Pθ0 comes from the restricted maximum likelihood estimation. Then, the
likelihood ratio can be written as:

λ(x) =
fθ̂n

(x)
fθ̃n

(x)

Theorem 11.3 Suppose Ω ⊂ Θ is a subspace. Let d = dim(Θ)−dim(Ω) (this is
the number of restrictions implicit in the null hypothesis). Then, −2 log λ(x) ∼
χ2

d asymptotically under the null hypothesis.

Proof We use a Taylor expansion about θ̂n:

2 log λ(x) = 2 log

(
fθ̂n

(x)
fθ̃n

(x)

)

≈ 2(log(1)−D log(fθ̂n
(x))(θ̃n − θ̂n) +

1
2
(θ̂n − θ̃n)T D2 log(fθ̂n

(x))(θ̂n − θ̃n))

= (θ̂n − θ̃n)T D2 log(fθ̂n
(x))(θ̂n − θ̃n)

≈ (θ̂n − θ̃n)T (−nBθ0)(θ̂n − θ̃n)

Let Y ∼ Normal(0, Bθ0). Then, under the null hypothesis, we may write√
n(θ̂n − θ0) = B−1

θ0
Y and

√
n(θ̃n − θ0) = Pθ0Y , since V ar(Pθ0) = Pθ0Bθ0Pθ0 =

Pθ0 . Then,

√
n(θ̂n − θ̃n) =

√
n(θ̂n − θ0)−

√
n(θ̃n − θ0)

= B−1
θ0

Y − Pθ0Y

= (B−1
θ0
− Pθ0)Y

Substituting this into the Taylor expansion, we find:

2 log λ(x) ≈ (θ̂n − θ̃n)T (−nBθ0)(θ̂n − θ̃n)
= Y T (B−1

θ0
− Pθ0)Bθ0(B

−1
θ0
− Pθ0)Y

= Y T (B−1
θ0
− Pθ0)Y

Because Bθ0 is symmetric and positive definite, we may write Bθ0 = AT
θ0

Aθ0 ,
and then Y = Aθ0Z, where Z ∼ Normal(0, I). Then, we have:

2 log λ(x) ≈ Y T (B−1
θ0
− Pθ0)Y

= ZT AT
θ0

(B−1
θ0
− Pθ0)Aθ0Z

= ZT (I −AT
θ0

Pθ0Aθ0)Z

Note that the inner matrix is a projection matrix (and therefore idempotent).
Thus, this product is distributed as the sum of r squares of independent normals,
where r is the rank of the matrix (and equals the number of restrictions). Thus,
2 log λ(x) ∼ χ2

r asymptotically.
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This is a generalization of an optimal test, so it may not be optimal. Also,
the result above only holds in sufficiently regular cases; things go wrong if the
maxima lie on the boundary.

Theorem 11.4 Wald Test. Suppose we have restrictions on Θ, 0 = h(θ) =
(h1(θ), ..., hr(θ)) and hypotheses, H0 : h(θ0) = 0 and HA : h(θ0) 6= 0, so that
Ω = {θ ∈ Θ : h(θ) = 0}. Suppose dim(Θ) = k, so that dim(Ω) = k − r.
Let Hθ be the derivative matrix of h and Bθ0 be the information matrix of the
unrestricted estimator. Then, under regularity conditions, for large samples,
under the null hypothesis,

nh(θ̂n)(HT
θ0

B−1
θ0

Hθ0)
−1h(θ̂n)T ∼ χ2

r

For practical use (since θ0 is unknown), we have:

nh(θ̂n)(HT
θ̂n

B−1

θ̂n
Hθ̂n

)−1h(θ̂n)T ∼ χ2
r

Proof Using the Taylor expansion about θ0, under the null hypothesis,

h(θ̂n) ≈ h(θ0) + HT (θ0)(θ̂ − θ0)

≈ h(θ0) + HT (θ̂n)(θ̂n − θ0)

= HT (θ̂n)(θ̂n − θ0)

For sufficiently large samples,
√

nh(θ̂n) ≈ HT (θ̂n)
√

n(θ̂n − θ0)
∼ Normal(0,HT

θ0
B−1

θ0
Hθ0)

Taking the product of these normals, we find that

nh(θ̂n)(HT
θ0

B−1
θ0

Hθ0)
−1h(θ̂n)T ∼ χ2

r

For sufficiently large samples, we may evaluate the matrices at θ̂n instead of θ0.

Theorem 11.5 Chi-squared test. Under the same assumptions,

n(D log(fθ̃n
(x)))T B−1

θ0
D log(fθ̃n

(x)) ∼ χ2
r

Proof Using a Taylor expansion about θ̂n:
√

nD log(fθ̃n
(x)) ≈

√
nD log(fθ̂n

(x)) +
√

nD2 log(fθ̂n
(x))(θ̃n − θ̂n)

= −D2 log(fθ̂n
(x))

√
n(θ̂n − θ̃n)

≈ nBθ0(θ̂n − θ0)

Taking the square of this again gives a χ2
r distribution.

Note that the Wald test is useful when the restricted MLE is hard to cal-
culate, and the chi-square test is useful when the unrestricted MLE is hard to
calculate.

If we are testing multiple hypothesis, we should be careful about whether we
are controlling the size for each individual test or the overall size. (Controlling
the size overall tends to be more correct, but makes the power worse.)
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12 Bayesian Statistics

In Bayesian statistics, the uncertainty about the value of the parameter θ is
expressed by treating θ as a random variable. That is, θ ∼ π(θ) before any data
is collected. We call π(θ) the prior density ; this represents all the information
we have before new data is collected. Once we observe the data, X | θ ∼ Pθ(x),
we may use Bayes’ rule to compute a posterior probability:

π(θ | x) =
P (x | θ)π(θ)∫
P (x | θ)π(θ)dθ

=
P (x | θ)π(θ)

f(x)
∝ P (x | θ)π(θ)

(The last step follows because the denominator is a normalizing constant that
does not depend on θ.) However, the choice of a prior can be challenging to
justify.
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