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The Question 
 Women make up almost half the workforce, but occupy only 22% of science, 
engineering, and technology jobs (Hanson, Schaub, Baker, 1996).  This differential may deprive 
society of scientific talent that could be put to better use.  Some of the gender difference in the 
workforce stems from the choices that students make in college; if a woman decides not to major 
in a scientific field, it will be harder for her to move into a technological area.  In fact, much of 
the gender difference in earnings comes from the choice of major (Jacobs 1996).   Because half of 
all college students change majors (Jacobs 1996), college is an important time to try to retain or 
even gain women with interest in the sciences, so that they may go on to have scientific careers.  
For this reason, we look at how women and men are divided in science majors.   
 
 Women have made progress in some of the sciences in the last thirty years, but this 
progress has not been uniform and has slowed down over time.  In 1960, 13.7% of degrees 
awarded to women were in sciences and engineering.  This number increased to 22.7% in 1976 
and has stayed constant since then.  At the same times, 44.4% and then 38.9% of degrees awarded 
to men were in science and technology (Barber 1995).  However, much of this desegregation of 
majors has occurred in medicine, biology, law and business, while engineering and the physical 
sciences have stayed male-dominated (Davies and Guppy 1997).  The gender divide between life 
sciences such as biology and medicine, and physical sciences widened between 1976 and 1989, 
even after controlling for SAT scores (Turner and Bowen, 1999).  
 

By understanding the breakdown of genders in the sciences, perhaps we can better 
motivate future women to enter all of them.  This paper looks at two years of data on the 
distribution of male and female science majors to do this.   
 
The Data 
To study the distribution of science majors, we consider the number of natural science majors of 
each gender at Swarthmore College in the graduating classes of 2000 and 2001.  The data are 
reproduced in a 7 × 2 × 2 contingency table below: 
 
(2000) 

Department Female Majors Male Majors Total Majors 
Biology 24 10 34 

Chemistry 5 7 12 
Computer Science 1 6 7 

Engineering 10 11 21 
Mathematics/Statistics 2 5 7 

Physics/Astronomy 3 3 6 
Special Major 5 7 12 

Total 50 49 99 
 



(2001) 
Department Female Majors Male Majors Total Majors 

Biology 25 9 34 
Chemistry 0 2 2 

Computer Science 0 15 15 
Engineering 7 18 23 

Mathematics/Statistics 0 7 7 
Physics/Astronomy 3 8 11 

Special Major 5 5 10 
Total 40 62 102 

 
(Total) 

Department Female Majors Male Majors Total Majors 
Biology 49 19 68 

Chemistry 5 9 14 
Computer Science 1 21 22 

Engineering 17 29 46 
Mathematics/Statistics 2 12 14 

Physics/Astronomy 6 11 17 
Special Major 10 12 22 

Total 90 113 203 
 
These data come from the office of Institutional Research at Swarthmore College.  Each cell 
contains the number of majors of that gender in that department.  This means that people with two 
majors, both in the sciences, are counted twice, once for each department.  To simplify the 
analysis, we ignore this, instead considering the total number of majors, instead of the total 
number of people in the sciences. 
 
Notice that these are the true values for the majors in these two years.  However, we may consider 
the number of majors in a year as realizations of a random variable.  Thus, we may compute p-
values for the parameters of this process. 
 
Analysis of One Variable 
We first consider the sciences as a whole, to test whether men and women major in the natural 
sciences equally often.  Pooling the two years, we find that we have 90 female majors and 111 
male majors.  We test the hypothesis that majors are equally likely by testing the probability of 
seeing 90 female majors if the number of female majors is distributed according to the binomial 
distribution, Binomial(203, 0.5); this hypothesis conditions on the total number of majors we 
observed.  With this distribution, we find a two-sided p-value of 0.09.  Thus, if majors are equally 
likely to be male or female, a distribution this far or further from equal will occur only 9% of the 
time.  We do not reject the two-sided hypothesis that males and females are equally likely to 
major in the sciences overall, though this result does cast doubt on it.   
 
We may also find approximate confidence intervals for the true proportion of female science 
majors in general.  Using the normal approximation to the binomial distribution, with a 
conservative estimate of the variance, σ2 = (0.5)(1 – 0.5)/n, we find the 95% confidence interval: 

90/203 ± sqrt(1.96(0.5)2/203) = (0.39, 0.49) 
Notice that this confidence interval does not contain 0.5, though it is quite close.  This occurs 
because we are using an approximation to this confidence interval, so it is not the confidence 
interval that would be found using the binomial distribution. 



 
The two years taken individually yield different results.  In 2000, the numbers of male and female 
science majors were basically equal, which yields a two-sided p-value of 0.84.  We have no 
reason to reject the null hypothesis for the class of 2000.  However, in 2001, women were less 
than 40% of all science majors.  Under the same null hypothesis of equality, we find a two-sided 
p-value of 0.04, which gives evidence against the null hypothesis.  This suggests a possible 
difference between the two years.  We will model this difference in coming sections.   
 
The Simplest Contingency Table Analysis: Homogeneity 
We now consider the two-dimensional contingency table of gender and major.  The most 
important question in a contingency table is whether the two categories are related in any way.  
To measure this, we test whether being a certain gender and choosing a certain major are 
independent.  Mathematically, this is equivalent to: 

P(gender = j and major = i) = P(gender = j)P(major = i), 
where i might be any of the seven majors and j might be either male or female.  If this equation 
holds for each cell in the table, then we say the table is homogenous.   The null hypothesis of 
homogeneity for a contingency table is: 

H0: πij = πi+π+j, for all i and j. 
We test for homogeneity by finding the difference between the observed probabilities, pij, and the 
probabilities we would see if homogeneity held, pi+p+j.   
 
One way to make the comparison between the two sets of probabilities is by estimating the 
expected number of entries in each cell if homogeneity held.  This is pi+p+jY++, which can be 
simplified to Yi+Y+j/Y++.  Since we now have observed and expected probabilities for each cell, 
we use Pearson’s Chi-Square Test: 

Χ2 = ∑j=1 ∑i=1 (Oij – Eij)
2/Eij. 

The distribution of X2 is χ2, with (I-1)(J-1) degrees of freedom, because we are assuming that the 
row and column totals are fixed; this means that once we have chosen what numbers are in I-1 of 
the rows and J-1 of the columns, we may figure out the rest of the totals by ensuring that each 
row or column adds up to the correct number.  
 
We test for homogeneity in the contingency tables for 2000, 2001, and the table with both years 
combined.  Pearson’s Test yields the following test statistics: 
 2000:  X2 = 11.33 
 2001:  X2 = 65.48 
 Both:  X2 = 42.12 
The 5% cutoff point for the χ2 distribution with (7-1)(2-1) = 6 degrees of freedom is 12.59.  
Therefore, we reject the hypothesis of homogeneity for the total distribution over both years and 
for 2001, but not for the class of 2000.  The p-values are: 
 2000: p = 0.079  
 2001: p < 0.001 
 Both: p < 0.001  
 
In order to see which majors contribute most to the test statistic, we reproduce the table 
containing both years with X2 = (Oi – Ei)

2/Ei in each cell below: 



 
Department Female Majors Male Majors Total Majors 

Biology 11.30 9.67 20.98 

Chemistry 0.26 0.16 0.42 

Computer Science 7.95 6.02 13.98 

Engineering 0.37 0.73 1.11 

Mathematics/Statistics 2.91 2.17 5.07 

Physics/Astronomy 0.34 0.22 0.56 

Special Major 0.002 0.01 0.01 

Total 23.13 18.99 42.12 

 
The cells with the largest entries are those in biology, followed by those in computer science.  If 
one looks at the original data, one can see that biology has the largest percentage of women (49 of 
68 majors – 72% – are female) and computer science has the smallest percentage of women (1 of 
22 majors – 5% – is female).  It seems reasonable that the most extreme majors would contribute 
more to the test statistic.   
 
We may also perform this test on the total number of male and female science majors for the two 
years, to see if they are homogenous.  In this case, X2 = 2.98 is not significant in the χ2

1 
distribution, and in fact has a p-value of 0.08.  This means that we do not reject the null 
hypothesis that the overall proportions of male and female science majors changed from 2000 to 
2001. 
 
Breaking Down Tables 
We may break down a large contingency table to better understand the data.  Because the 
distribution of χk

2 is equal to the sum of k independent χ1
2 variables, we may consider the 

contingency table as k distinct 2 × 2 contingency tables, using the method outlined in Iversen 
(1979).  In order for the test statistics to add up exactly, we must use the maximum likelihood 
form of the chi-square statistic: 

L2 = 2 ∑ Oij ln(Oij/Eij) 
The asymptotic distribution of L2 is also χk

2, so that our results should not be changed by using L2 
instead of X2. 
 
We focus on the table with both years combined for this analysis.   
 
One way of thinking of the sciences at Swarthmore is to divide them into the theoretical sciences, 
such as biology, chemistry, physics, and math, and the applied sciences, such as engineering and 
computer science.  Special majors might be either, so we keep them as a separate category.  We 
can then break up the theoretical sciences into biology and everything else, since biology has 
already been shown to be a great contributor to the lack of homogeneity.  Then, we compare 
mathematics to physics and chemistry.  The final tables, then, must have computer science and 
engineering in one and chemistry and physics in the other.   
 
The tables that result from this decomposition are reported here, along with the maximum 
likelihood chi-squared (L2) statistic for the table, its p-value, and the percentage of the overall 
chi-square statistic that it makes up: 
 



Department Female Majors Male Majors Total 
Biology 49 19 68 

Other Theoretical Sciences 13 32 45 
Total 62 51 113 

L2 = 20.91, p < 0.0001, 44% of non-homogeneity 
 

Department Female Majors Male Majors Total 
Theoretical Sciences 62 51 113 

Applied Sciences 18 50 68 
Total 80 101 181 

L2 = 14.30, p = 0.0002, 30% of non-homogeneity  
 

Department Female Majors Male Majors Total 
Computer Science 1 21 22 

Engineering 17 29 46 
Total 18 50 68 

L2 = 9.86, p = 0.002, 21% of non-homogeneity 
 

Department Female Majors Male Majors Total 
Chemistry & Physics/Astro 11 20 31 

Math/Stat 2 12 14 
Total 13 32 45 

L2 = 2.30, p = 0.13, 5% of non-homogeneity 
 

Department Female Majors Male Majors Total 
Special Major 10 12 22 

All Other Sciences 80 101 181 
Total 90 113 203 

L2 = 0.01, p = 0.91, 0.03% of non-homogeneity 
 

Department Female Majors Male Majors Total 
Chemistry 5 9 14 

Physics/Astronomy 6 11 17 
Total 11 20 31 

L2 = 0.0006, p = 0.98, 0.001% of non-homogeneity 
 
Thus, we see that the difference between biology and the other theoretical sciences is the biggest 
contributor to the differences in the overall contingency table, followed by the difference between 
the theoretical sciences and the applied sciences; women are more likely to major in theoretical 
sciences than in applied sciences.  This result agrees with other findings, such as Camp (1998), 
that found women less likely to major in applied sciences than in theoretical sciences.  The 
difference between engineering and computer science is also significant.  Other test statistics are 
both much smaller and statistically insignificant. 
 
2 x 2 Tables: Measures of Association 
In order to understand how closely categorical variables are related, we consider one measure of 
association, the odds ratio.  The odds ratio does not change when the rows and columns are 



interchanged.  This means that the odds ratio does not assume that one variable causes the other.  
This differentiates the odds ratio from other measures of association, like relative risk.  In 
addition, the odds ratio has a more intuitive explanation than some measures of association, like 
Yule’s Q and Yule’s Y.  We now offer this explanation. 
 
If the two categorical variables are associated, then the odds of being in a certain row depends on 
which column contains the observation.  To describe how the odds change, we consider the ratio 
of the odds: 

OR = π11π22/π12π21. 
As always, we do not know the probability of falling into any given cell.  Therefore, we estimate 
πij by pij again, to find the estimated odds ratio: 

OR = p11p22/p12p21 
If the estimated odds ratio is much greater than 1, then the odds of being in the first column given 
that one is in the first row is OR times greater than the odds of being in the first column given that 
one is in the second row.   
 
We now find the odds ratios for the three tables that test as being significantly not homogenous, 
since they contain approximately 95% of the non-homogeneity.  To find the strength of the 
relationship, we estimate the odds ratio for each: 
 Biology vs. Other:    OR = 6.35 
 Theoretical vs. Applied:   OR = 3.38 
 Computer Science vs. Engineering: OR = 1/12.31 
Thus, we see that the difference between computer science and engineering is stronger than the 
difference in the other tables, despite the fact that the sub-table containing them contributes less 
to the overall chi-square statistic.  These odds ratios show us that being female increases the odds 
of majoring in a theoretical science by a factor of 3.  Once a person has chosen between the 
theoretical and applied sciences, being female increases the odds of majoring in biology, given 
that one is majoring in a theoretical science, another 6 times, while being male increases the odds 
of majoring in computer science, given that one has chosen to major in an applied science, 
another 12 times.   
 
Tables in More Dimensions:  Homogeneity Again 
We now use the data from all three categories.  As before, we test for homogeneity before 
proceeding with our analysis.  We now define homogeneity, also called complete independence, 
by the null hypothesis,  

H0: πijk = πi++π+j+π++k, 
which states that being in a certain row is independent of what column or layer one is in, and that 
being in a certain column is independent of layer.  Using the estimation methods of before, we 
find that the expected count in one cell, Eijk is given by: 

Eijk = pi++p+j+p++kY+++ = (Yi++Y+j+Y++k)/Y+++
2 

Pearson’s chi-square test can be used in this situation as well; X2 is now distributed χ2
(I-1)(J-1)(K-1). 

 
When we use this method in our 2 × 2 × 7 table, we find: 
 X2 = 62.17 
 p < 0.001 
We reject the null hypothesis of overall homogeneity.  However, this does not give us 
information about what variables are causing this hypothesis to be rejected.  To understand that 
better, we need a more detailed model. 
 



Log-Linear Models 
One model that describes contingency tables more explicitly is a log-linear model.  In the 
saturated form of this model, the count in each cell, Yijk, is described by an overall table effect, T, 
the effect of being in its row, Ri, the effect of being in its column, Ci, the effect of being in its 
layer, Li, the two-way interactions of each pair of the row, column, and layer, (RC)ij, (RL)ik, and 
(CL)jk, and the three-way interaction of the cell’s row, column and layer, (RCL)ijk.  We may 
consider the cell count as the product of these effects: 

Yijk = T(Ri)(Ci)(Li)(RCij)(RLik)(CLjk)(RCLijk), 
where we assume Π(R)i = Π(C)i = Π(L)i = Π(RC)ij = Π(RL)ik = Π(CL)jk = Π(RCL)ijk= 1.  This 
allows us to exactly describe all the cells in the table with exactly IJK parameters.  In order to 
find deeper statistical insights, however, we remove some of these parameters, testing to see 
whether the model has lost a significant amount of explanatory power as we do so.  This allows 
us to model a table more succinctly.  
 
One way to test a model is by considering L2.  Under the null hypothesis that the model is correct, 
L2 is distributed approximately as a chi-squared variable with the degrees of freedom equal to the 
number of cells less the number of parameters estimated.  If the null hypothesis is rejected, the 
model is incorrectly specified, and needs more terms.  However, failing to reject the null 
hypothesis does not mean that all work is done.  It might be possible to remove more parameters 
without losing significant explanatory power.   
 
The most common way to test whether more parameters can be removed is through hierarchical 
models.  In these models, whenever an interaction term, say the interaction of row and column, is 
included, any terms which depend on the same variables, in this case the overall row term and the 
overall column term, are also included.  This means that a model can be completely specified by 
giving the highest order interaction terms containing each variable.  For example, the model 
{Row*Column, Layer} includes the terms {Overall, Row, Column, Layer, Row*Column}, while 
{Row*Column, Column*Layer} includes all of these terms and the interactions of column and 
layer as well. 
 
Since we see that models are often contained in each other, we remove terms one at a time and 
compare the change in explanatory power, as measured by the change in maximum likelihood 
chi-square statistic, ∆L2.  We may consider Lold

2 = ∆L2 + Lnew
2.  Since Lold

2 and Lnew
2 are both 

distributed as chi-squares and since they are independent under the hypothesis that the new model 
is correct, their difference is a chi-square variable as well.  Thus, ∆L2

 also follows a chi-square 
distribution, with degrees of freedom equal to the difference of the degrees of freedom of Lold

2 
and Lnew

2. 
 
These models are estimated by taking logarithms, so that we estimate: 

ln Yijk = ln T + ln Ri + ln Ci + ln Li + ln (RC)ij + ln (RL)ik + ln (CL)jk + ln (RCL)ijk. 
This simplifies the estimation process by making the model linear in the parameters.  
 
We now consider a log-linear model for the entire 2 × 2 × 7 table.  Because there are zeroes in the 
table, we adjust by adding a fixed amount less than one (in particular, 0.5); this allows us to take 
logarithms of all the cells in the table.  Because we are adding equal amounts to all cells, this 
should make results less significant than they would be otherwise. 
 
We now find the results of applying different models to the data (formulas from Freeman (1987)): 



 
Model df L2 P-Value ∆df ∆L2 P-Value 
Major * Gender, Gender * Year,    

Major * Year 
28 8.91 > 0.999 28 8.91 > 0.999 

Major * Gender, Major * Year 32 20.41 0.94 4 11.49 0.02 
Major * Gender, Year * Gender 42 29.84 0.37 14 20.93 0.10 
Year * Gender, Year * Major 42 97.72 < 0.001 14 88.80 < 0.001 
Major * Gender, Year 46 41.33 0.67 14 20.93 0.10 
Major * Gender 48 116.35 < 0.001 2 13.78 0.32 
Major, Gender, Year 60 130.14 < 0.001 14 88.80 < 0.001 
 
We reject all models that exclude the major-gender interaction term, as well as the model without 
a year term.  Thus, without comparisons, we see that there is a significant interaction between 
gender and major, just as we found in previous analysis.  We also see that the overall number of 
majors changed over the two years. 
 
If we consider the models hierarchically, we see that we may remove the overall interaction term 
and the year-major interaction term.  However, we find that we cannot remove the major-gender 
interaction term at any stage of the process, just as we rejected any model that did not contain it.  
We also marginally reject removing the year and gender interaction term, even though the model 
without it is not rejected.  This suggests that the interaction between year and gender exists, but is 
not very strong.  In addition, we reject the model that removes the year term, though we do not 
reject the change in L2 that it causes.  Overall, then, we choose the {Major*Gender, Year} model. 
 
The parameters estimated by these models show what these effects actually are.  We report the 
parameters used in the two best models we chose, with those used only in the model with the 
Year*Gender italicized: 
Variable Level Female Male Main Effects 
Year 2000 0.23 

(1.258) 
-0.23 
(0.795) 

0.16 
(1.169) 

 2001 -0.23 
(0.795) 

0.23 
(1.258) 

-0.16 
(0.856) 

Major Biology 0.84 
(2.316) 

-0.84 
(0.432) 

1.12 
(3.056) 

 Chemistry -0.10 
(0.906) 

0.10 
(1.104) 

-0.66 
(0.518) 

 Computer Science -0.84 
(2.316) 

0.84 
(2.325) 

-0.56 
(0.570) 

 Engineering 0.13 
(1.142) 

-0.13 
(0.876) 

0.79 
(2.220) 

 Mathematics and Statistics -0.49 
(0.612) 

0.49 
(1.637) 

-0.66 
(0.518) 

 Physics and Astronomy 0.16 
(1.173) 

-0.16 
(0.853) 

-0.17 
(0.845) 

 Special Major 0.30 
(1.355) 

-0.30 
(0.738) 

0.14 
(1.149) 

Main Effects  -0.38 
(0.683) 

0.38 
(1.464) 

1.64 
(5.171) 

 



Thus, we see that some of the results we have seen before – being male raises one’s chances of 
being a science major overall, and being female raises the chances of being a biology major and 
lowers the chances of being a computer science major.  This also shows some other results which 
we did not identify before – once we control for the fact that fewer women are science majors, 
being female raises the odds of being an engineering or physics major as well, though these 
effects are much smaller than the effect in biology.  In addition, this model gives us a better idea 
of the overall distribution of majors; once someone is a science major, it is more likely that he or 
she is a biology major or an engineering major than any other major.   
 
Also, we notice that the Year*Gender interaction term shows that female science majors are more 
likely to have come from 2000 than 2001; this agrees with the previous results that the percentage 
of female science majors is significantly less than half in 2001, but not in 2000.   
 
Conclusion 
We have used various models to better understand two years of data on the relationship between 
major and gender.  Whether we combine years in a 2 × 7 contingency table or consider them 
separately in a 2 × 2 × 7 contingency table, we see that gender and major are not independent.  In 
further analysis, we have seen that there is some divide between the theoretical and applied 
sciences, but that more of the difference is caused by individual majors, biology and computer 
science in particular.   
 
Analysis of two years of observed data is not enough to determine a cause of these disparities.  
However, knowing where there are disparities is the first step to understanding them.  Thus, this 
analysis may provide useful information about what to study next. 
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