Statistics

Set Theory Definitions:
Intersection: A C B (A and B)
Union: A E B (A or B)
Complement: A€ (not A)
Digoint: AC B=/&U A and B aredisjoint
Set Theory Thoughts:
A E A® = W(the entire set)
ACA°= &
Commutative Law:
AEB=BEA
ACB=BCA
Associative Law:
(AGB)GC=AC(BCC)
(AEB)EC=AE(BEC)
Distributive Law:
(AEB)GC=(AGCOE(BGC)
(ACB)EC=(AEC)C(BEC)

Probability
Sample Space (W) = the set of all possible outcomes; this depends on what is actually being measured.
Event = a subset of the sample space
Probability (P) is afunction that maps subsets of Wto real numbers and satisfies the following axioms:
1L.PW=1
2. IfAT WthenP(A)3 0
3. IfAjand A, are dlqmﬂt, then P(Al) + P(Az) = P(Al E Az)
Conditional Property: The probability of one event given another:
P(A|B) =PA C B)/P(B)
If P(A) = P(A | B) then A and B are statistically independent.
Other properties of P:
P(A®) = 1- P(A)
P =0
If Al Bthen P(A) £ P(B)
P(A C B) =P(A) P(B |A) = P(B) P(A | B)
=P(A) P(B) if A and B are statistically independent
P(A | B) =P(B | A) P(A) / (P(B | A) P(A) + P(B | A°) P(A%)) [Bayes Rule]
A method of finding joint probabilities: atree
Split Winto A and A© and label each edge with the probability.
Split each leaf into B and B and label each edge with P(B | previous conditions)
Multiplying the numbers to the leaf gives the probability of that intersection of events

If every outcome of Wis equally likely, then P(A) = |A|/ W = the fraction of outcomesin A
Counting Theory
Permutation = an ordered arrangement
Permutations of K of N cardsis N!/(N-K)!
Combination = an unordered arrangement
Combinations of k of n cardsis “n choose k” = nl/k!(n-k)!
Then, multiply...

Random Variables
Random Variable = a variable whose value is determined by a random process
Random Variables may be discrete or continuous
Cumulative Distribution Function: Fx(x) = P(X £ X)
Necessary Properties
lim(Xx->-¥)FX)=0




lIimXx>¥)~KX) =1
Fx(x) is non-decreasing.
The distance between lim (x 2 a") and lim (x = &) isP(X = a)
Probability Density Function: fy(x) = d Fx(x) / dx (where this is defined)
Necessary Properties
fx(x) 3 Ofor al x
Ofy(x) dx = 1 [from -¥ to ¥]
Joint Density and Cumulative Distribution Functions: Fxy(X,y) =P(X £xand Y £Y)
Fxv(x,y)=& PX=uandY =v) =8 & f,, (u, v) dv du
fxv (%, y) = 2 (Fxv (X, ¥)) / Tx Ty
As before, fxy (X, y) 3 Ofor al (x,y) and ®fxy (X, y) dx dy =1 (from -¥ to ¥ for both)
PO Y)T A) =@ fxv(x, y) dx dy.
Marginal Densities: fx(x) = Ofxy(X, y) dy [from -¥ to ¥]
If X and Y are independent, then Fyy(X, ¥) = Fx(X) Fy(y) and fxy(X, y) = fx(X) fv(y).
Conditional Distribution: P(X =x|Y =y) =P(X =x,Y =y)/ P(Y =vy)
Expected Value (mean) = the weighted average over al values of arandom variable
E(X) = a x P(X=x) [over all possible ]
E(X) = 0x fy(x) dx [from -¥ to ¥]
Thisis provided that o|x| fx(x) dx or & [x| P(X = x) does not diverge. Otherwise, E(X) is undefined.
E(g(X)) = 0g(x) fx(x) dx. [Law of the Unconscious Statistician]
E(9(X, Y)) = ag(x, y) fy(x, y) dx dy.
Conditional Mean: | = E(Y | X =x) = 0y fyx(y | x) dy [where x is fixed and f,(y | x) depends on x]
Law of Total Expectation: E(Y) = E(E(Y | X))
Variance (s?) = the measure of the spread of the values
Var(X) = E((X - E(X))’) = E(X?) - E(X)*
sy = Var(Y | X =x) = E((Y - mp)® | X =x) =E(Y? | X =x) = (E(Y | X =x))?
Law of Total Variance: Var(Y) = E(Var(Y | X)) + Var(E(Y | X))
Standard Deviation (s) = the square root of the variance
Covariance: How Variables Move Together
Sxy = Cov(X, Y) = E(X —E(X))(Y —E(Y))) = E(XY) — E(X)E(Y).
Cov(X,Y)=0if X and Y areindependent (not viceversa). X and Y are uncorrelated if Cov(X, Y) =
0.
Cov(X, X) = Var(X).
Cov(a+ ébiXX, c+ édJYJ) = éébidj COV(Xi, YJ)
Var(X +Y) =Var(X) + Var(Y) + 2 Cov(X, Y).
Correlation: r, = Cov(X, Y) / QVar(X)Var(Y))
lErgw £1
|rxyl=1¢> Y =a+ bX.
Transformations of Random Variables (CDF method): Suppose X isarandom variableand Y = g(X).
1. Express Fy(y) in terms of Fx(x).
Fv(y) =P(Y £y) =P(g(X) £y)
2. Differentiate to find fy(y).
fy(y) =d (Fv(y)) / dy (Hint: Use the chain rule and fx(x).)
If g*(x) exists, then
fy(y) = (d (@) / dy) (Fx (g™ (¥)))
Functions of Jointly Distributed Random Variables:
Fs(9) = P(X, Y) < 8) = By <s Fxv(X, ¥) dx dly.
Moments: E((E — E(X))) is the k™ central moment.
The moment generating function is M,(t) = E(€*) = & € P(X = x) = 0€” f,(x) dx.
If Mx(t) exists in an open interval about 0, Mxk(0) is the k™ moment of X (f* is the k™ derivative).
If My(t) existsin an open interval about O then My(t) uniquely determines the distribution of X.
If Y ~a+ bX then My(t) = €* Mx(bt).
If X and Y are independent and S= X + Y, then Mg(t) = My(t) My(t).

Statistics
Statistic: A numerical summary of data. It isafunction of the random variables that are being measured.
(Therefore, they are also random variables.)



- The usefulness of statistics can be measured by:
0 bias(g-hat) = E(g-hat) - q = expected distance from the mean. A statistic is unbiased if
the expectation of the statistic is the true value for the population.
Var(g-hat) = E((g-hat — E(q-hat))?)
Mean squared error: MSE = E((g-hat - ) = Var(g-hat) + bias(g-hat).
Asymptotically unbiased. (lim (n - ¥) E(g-hat) = q)
o Consistent: g-hat approaches q in probability. (ie: lim (n > ¥) P(|g-hat —q|>€) =0.)
Simple Random Sample (SRS): A sample from a population of size Nis a simple random sample of sizen
if every set of n (usually distinct) individualsis equally likely to be the chosen sample.
- If wetake an SRS of size n from a population of size N and measure X; ~ [, S,7] then X-bar =
aXiin ~[m, (s,2/n)(1 - (n-1)/(N-1))]. (Thisisan unbiased statistic.)
Note that the population mean and variance are the same as the mean and variance of the
distribution of each X;.
(Central Limit Theorem.) lim (n = ¥) P((X-bar - m)/(s/On) < z) = F (2). (The distribution of
X-bar approaches N(m, s,2/n).)
(Law of Large Numbers.) Withinfinite N, lim (n = ¥) P(]X-bar - m|>t) =0for al t>0. (The
probability of the sample mean being any finite distance from the population mean goes to zero
as the sample size getsinfinite.)
If Xi and X; are two elements of an SRS then Cov(X;, X;) = -s,2/ (N-1). [Big population >
almost independent; with replacement = independent.]
Estimating Variance: (Not as easy.)
- (s-hat)? = & (X;-X-bar)?/n [biased but consistent]
- &= &(X;-X-bar)?/(n-1) [larger mean squared error]
- If thisisthe variance of abinomial distribution, use the variance if p=.5. (Thisisthe maximum
possible variance.)
- I Xy, ..., Xn~ N(m s?) then &((X; - m)/s)? ~ cn.1% in other words, (n-1)s¥s2 ~ cp.i2
0 Thisdepends on the fact that s and X-bar are independent random variables.
0 Thisleadsto confidence intervals for the variance, as well.
Confidence Intervals: Intervals which, with certain confidence, contain the true mean.
- These are constructed to a probability interval for X-bar. Only now X-bar is known and
might not be. Since m is not arandom variable, however, thisis not a probability interval.
- X-bar £ z¥s,py isaconfidence interval with z from N(O, 1) if Sypy iS known.

0 Swpar = (SYON)(QL-(n-1)/(N-1)))

o If syisnot known, we estimate the standard error (see estimating variance above).

0 Wemay also usethe T-distribution (with n-1 degrees of freedom) instead — this takes
the uncertainty of variance into account.

- Intervals get smaller with less confidence, more elements in the sample, or a smaller population
variance.
- The z*s,py isthe margin of error.
Estimating Parameters:
- Method of Moments

o Let m=E(XY); thisisthe k™ moment. We may estimate m by (X-bar), = &X{/ n. This
is an unbiased estimate.

0 Express parameters as function of m, m, ... Then use the estimates of nmy to estimate the
parameters. (q; = fi(m, m, ...), and gi-hat = f(X-bar,, X-bar,, ...).)

o If thef; are continuous, then g-hat is a consistent estimator for g.

- Maximum Likelihood Estimate

0 Suppose Xy, ..., X, ~f(X| Q). (Thedistribution depends on the values of some
parameters.)

0 L(qg)=lik(g) =P f(xi | q). Thisisthelikelihood of getting this distribution of X; given
avalue of the parameter. The g that maximizes this is the maximum likelihood
estimate.

0 Thelog-likelihood functionis: 1(g) = In(L(g)) = & In(f,(xi | g)). Maximizing thisis
equivalent to maximizing L(q) and is often easier.

o Theinformation functionis: 1(q) = E((T (In(fx(x | @))) / T a)%) =-E(T? (In(fx(x | q))) / T
o)

0 Thevariance of g-hat is 1/nl(q); this may be estimated with g-hat.
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o Maximum likelihood estimates are asymptotically unbiased, consistent and
asymptotically normal. If qisthe mle of g then g ~ N(qo, 1/nl(qo)) as n grows.

0 Cramer-Rao Lower Bound: Let T(Xy, ..., Xp) be an unbiased estimator for g, Then
Var(T(Xy, ..., Xy) 2 Unl(qg). (Thisisthe best possible variance.)

o For multiple parameters, the maximum likelihood estimates maximize I(q) for all.
(Take al partials and solve.)

o Transformation Invariance: If qisthe mlefor go and gis an invertible function then the
mlefor f =g(qo) is9(q).

o Likelihood Principle. Two likelihood functions are equivalent if L(q) / L’(q) is constant
(orifI(g) =c+1'(qg)). If two experimentsyield equivalent likelihood functions then the
inference about g made from each should be the same.

- Sufficient Statistics

0 A statistic T(Xy, ..., X;) issufficient for q if the conditional distribution of X4, ..., X,
given T(Xy, ..., X;,) does not depend on q.

o Equivaently, P(X; =Xy, ..., Xp=Xp,and T =t) / P(T =) isnot afunction of g.

o Factorization Theorem. T(Xq, ..., Xp) issufficient for g if and only if f(Xy,...,X,| Q) =
O(T(Xq, -y Xn), ) N(Xq, -+, Xp)-

o0 A sufficient statistic, T, isminimal if for any other sufficient statistics T', T is function
of T".

0 Exponential Family of Probability Densities: Densities which can be described by
fx(x|a) = exp(Ag(a)T(x) + d(q) + S(x)) d(xT A), where A does not depend on g. In this
case, & T;(X;) for eachj, are the sufficient statistics for f,.

o If T(X) issufficient for g then the maximum likelihood estimator of q is afunction of
T(X).

Neyman-Pearson Paradigm: Choosing between two hypotheses, Hy and H,,.

- Specify null and alternative hypotheses about the underlying data.

- Specify argjection region for T(X), some function of the data. If T(X) isin the rejection region,
then Hy isrejected. Otherwise, it is not rejected.

o Thesgnificance level of thetest, a, is the probability of T(X) being in the rgjection
region when Hg istrue (atypel error).

0 The power of the test, 1-b, the probability of failing to reject Hy when it is false (type 11
error).

- By the Neyman-Pearson Lemma, the most powerful test at any fixed significance level is based
on the likelihood ratio. (At least, for simple hypotheses, and in some general cases aswell.) We
reject when the likelihood ratio is small.

o For two simple hypotheses, T(X) = L(qo) / L(Q)-

0 Generalized Likelihood Ratio, when HyisqT wpand Haisql wa

= L*=max(ql wp) L(q)/max (ql w) L(q)
= L=max(ql wp) L(q)/max(ql waE wo) L(q)

Distributions
(Discrete)
Discrete Uniform: Each of n outcomes has an equally likely outcome.
PX=x)= 1/n if x isa possible outcome
0 otherwise
Bernoulli: X isthe number of successesin asingletrial; X ={0, 1}
I 1-p ifX=0
PX=x)=i p if X=1
70 otherwise
EX)=p

Binomial Random Variable: the sum of n independent Bernoulli random variables with equal probability.
Equivalent to sampling with replacement n times from a population with proportion p successes.
P(X = x) = p*(1-p)™™* (n choose x)
E(X)=np



Geometric: If X isthe number of trials up to and including the first success (which has probability p),
then X ~ Geometric(p).
P(X =x) = (1-p)“p
Negative Binomial: If X is the number of trials up to and including the r'"" success (which has probability
p), then X ~ Negative Binomial(r, p).
P(X =x) = (1-p)*"p' (x-1 choose r-1)
Hypergeometric: If X isthe number of successesin arandom sample without replacement of size n from a
population of size N, in which r of the N elements are successes, X ~ Hypergeometric(N, n, r)
P(X =x) = (r choose x) (N-r choose n-x) / (N choose n)
if X=0,1,...,min{n, r}
Poisson: If X isthe number of events that occur in afixed interval, with average rate | , X ~ Poisson(l ).
Assumptions of a Poisson Process:
No simultaneous events
The number of eventsin any digoint time intervals are independent.
The probability distribution of the number of events in two intervals of the same length are the
same.
PX=x)=1%e"/x! forX=0,12, ...
E(X) =Var(x) =1
(Continuous)
Continuous Uniform: if X has a uniform probability on [a, b] then X ~ Uniform(a, b)
fx(x)= 1U(b-a) ifaExEb

0 otherwise
Exponential: X ~ Exp(l ) if
fx(x)=i 0 if x<0
Ple ifx30

Interesting Note: This function is memory-less.
Gamma: X ~ Gamma(a, | ) if
fx(X) = (1% / Ga)) x** e'* wherex3 0
Ga) = ou** e" du [from 0to ¥]
Note: Gk+1) =k Gk)
EX)=a/l
Normal Distribution: If X ~ N(m s?) then
fu(x) = exp(-(x-m?/2s®) / Q2ps?)
My(t) = exp(tm+ s%%/2)
Properties of the normal distribution:
Centered at and symmetric about m
Inflection points at m+ s (one standard deviation away)

Links Between Distributions:
Bernoulli(p) ~ Binomial (1, p)
Geometric(p) ~ Negative Binomia (1, p)
The limit of the Hypergeometric as the population increases and the proportion stays constant is
Binomial (n, r/ N).
The limit of the Binomial as the number of samples (n) increases and the probability (p) approaches 0
in away that n* p approaches a constant is Poisson(np).
The time between Poisson events is distributed as Exponential
Exp(l ) ~ Gamma(1, | )
Standard Normal ~ N(O, 1)
c?(n) ~ Gamma(n/2, 1/2)
c?(n) is generated by finding the distribution of & (X; - m)?%/s,? when X; ~ N(m, s,°).
If Z~N(0, 1) and U ~ ¢ then Z / O(U/K) ~ t, (Student’s t distribution).

Finding probabilities in the normal distribution (using atable with the standard distribution):
PX £x) =P(Z £ (x - m/s)



