
Statistics 
 
Set Theory Definitions: 
 Intersection: A ∩ B (A and B) 
 Union: A ∪ B (A or B) 
 Complement: AC (not A) 
 Disjoint: A ∩ B = ∅ ⇔ A and B are disjoint 
Set Theory Thoughts: 
 A ∪ AC = Ω (the entire set) 
 A ∩ AC = ∅ 
 Commutative Law:  
  A ∪ B = B ∪ A 
  A ∩ B = B ∩ A 
 Associative Law: 
  (A ∩ B) ∩ C = A ∩ (B ∩ C) 
  (A ∪ B) ∪ C = A ∪ (B ∪ C) 
 Distributive Law: 
  (A ∪ B) ∩ C = (A ∩ C) ∪ (B ∩ C) 
  (A ∩ B) ∪ C = (A ∪ C) ∩ (B ∪ C) 
 
 
Probability 
Sample Space (Ω) = the set of all possible outcomes; this depends on what is actually being measured. 
Event = a subset of the sample space 
Probability (P) is a function that maps subsets of Ω to real numbers and satisfies the following axioms: 

1. P(Ω) = 1 
2.  If A ⊆ Ω then P(A) ≥ 0 
3.  If A1 and A2 are disjoint, then P(A1) + P(A2) = P(A1 ∪ A2) 

 Conditional Property: The probability of one event given another: 
  P(A | B) = P(A ∩ B) / P(B) 
  If P(A) = P(A | B) then A and B are statistically independent. 
 Other properties of P: 
  P(AC) = 1 - P(A) 
  P(∅) = 0 
  If A ⊆ B then P(A) ≤ P(B) 
  P(A ∩ B) = P(A) P(B | A) = P(B) P(A | B) 
     = P(A) P(B) if A and B are statistically independent 
  P(A | B) = P(B | A) P(A) / (P(B | A) P(A) + P(B | AC) P(AC)) [Bayes’ Rule] 
 A method of finding joint probabilities: a tree 

• Split Ω into A and AC and label each edge with the probability. 
• Split each leaf into B and BC and label each edge with P(B | previous conditions) 
• Multiplying the numbers to the leaf gives the probability of that intersection of events

 . 
 If every outcome of Ω is equally likely, then P(A) = |A| / |Ω| = the fraction of outcomes in A 
Counting Theory 
 Permutation = an ordered arrangement  
  Permutations of K of N cards is N!/(N-K)! 
 Combination = an unordered arrangement 
  Combinations of k of n cards is “n choose k” = n!/k!(n-k)! 
 Then, multiply… 
 
Random Variables 
Random Variable = a variable whose value is determined by a random process 
 Random Variables may be discrete or continuous 
Cumulative Distribution Function: FX(x) = P(X ≤ x) 
 Necessary Properties 
  lim (x à -∞) FX(x) = 0 



  lim (x à ∞) FX(x) = 1 
  FX(x) is non-decreasing. 
 The distance between lim (x à a+) and lim (x à a-) is P(X = a) 
Probability Density Function: fX(x) = d FX(x) / dx (where this is defined) 
 Necessary Properties 
  fX(x) ≥ 0 for all x 
  ∫ fX(x) dx = 1  [from -∞ to ∞] 
Joint Density and Cumulative Distribution Functions: FXY(x, y) = P(X ≤ x and Y ≤ y) 
 FXY(x, y) = ∑ P(X = u and Y = v) = ∫x ∫y fxy (u, v) dv du 
 fXY (x, y) = ∂2 (FXY(x, y)) / ∂x ∂y 
 As before, fXY (x, y) ≥ 0 for all (x, y) and ∫∫ fXY (x, y) dx dy = 1 (from -∞ to ∞ for both) 
 P( (X, Y) ∈ A) = ∫∫A fXY(x, y) dx dy. 
 Marginal Densities:  fX(x) = ∫ fXY(x, y) dy  [from -∞ to ∞]  
  If X and Y are independent, then FXY(x, y) = FX(x) FY(y) and fXY(x, y) = fX(x) fY(y). 
 Conditional Distribution:  P(X = x | Y = y) =P(X = x, Y = y) / P(Y = y) 
Expected Value (mean) = the weighted average over all values of a random variable 
 E(X) = ∑ x P(X=x)  [over all possible x] 
 E(X) = ∫ x fX(x) dx  [from -∞ to ∞] 
 This is provided that ∫ |x| fX(x) dx or ∑ |x| P(X = x) does not diverge.  Otherwise, E(X) is undefined. 
 E(g(X)) = ∫ g(x) fX(x) dx.  [Law of the Unconscious Statistician] 
 E(g(X, Y)) = ∫∫ g(x, y) fxy(x, y) dx dy. 
 Conditional Mean:  µy | x = E(Y | X = x) = ∫ y fy|x(y | x) dy [where x is fixed and fy|x(y | x) depends on x] 
 Law of Total Expectation:  E(Y) = E(E(Y | X)) 
Variance (σ2) = the measure of the spread of the values 
 Var(X) = E((X - E(X))2) = E(X2) - E(X)2 

 σy|x
2 = Var(Y | X = x) = E((Y - µy|x)

2 | X = x) = E(Y2 | X = x) – (E(Y | X = x))2 

 Law of Total Variance:  Var(Y) = E(Var(Y | X)) + Var(E(Y | X)) 
Standard Deviation (σ) = the square root of the variance 
Covariance:  How Variables Move Together 
 σXY = Cov(X, Y) = E((X – E(X))(Y – E(Y))) = E(XY) – E(X)E(Y). 
 Cov(X, Y) = 0 if X and Y are independent (not vice versa).  X and Y are uncorrelated if Cov(X, Y) = 

0. 
 Cov(X, X) = Var(X). 
 Cov(a + ∑biXx, c + ∑djYj) = ∑∑bidj Cov(Xi, Yj) 
 Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y). 
Correlation: ρxy = Cov(X, Y) / √(Var(X)Var(Y)) 
 -1 ≤ ρXY ≤ 1 
 |ρXY| = 1 ó Y = a + bX. 
Transformations of Random Variables (CDF method):  Suppose X is a random variable and Y = g(X). 
 1. Express FY(y) in terms of FX(x). 
  FY(y) = P(Y ≤ y) = P(g(X) ≤ y)  
 2.  Differentiate to find fY(y). 
  fY(y) = d (FY(y)) / dy  (Hint:  Use the chain rule and fX(x).) 
 If g-1(x) exists, then  
  fY(y) = (d (g-1(y)) / dy) (fX (g

-1 (y)))  
Functions of Jointly Distributed Random Variables: 
 FS(s) = P(g(X, Y) < s) = ∫∫g(x, y) < s fXY(x, y) dx dy. 
Moments:  E((E – E(X))k) is the kth central moment. 
 The moment generating function is Mx(t) = E(etx) = ∑ etx P(X = x) = ∫ etx fx(x) dx.   
 If Mx(t) exists in an open interval about 0, Mxk(0) is the kth moment of X (fk is the kth derivative). 
 If MX(t) exists in an open interval about 0 then MX(t) uniquely determines the distribution of X. 
 If Y ~ a + bX then MY(t) = eat MX(bt). 
 If X and Y are independent and S = X + Y, then MS(t) = MX(t) MY(t). 
 
Statistics 
Statistic: A numerical summary of data.  It is a function of the random variables that are being measured.  

(Therefore, they are also random variables.) 



- The usefulness of statistics can be measured by: 
o bias(θ-hat) = E(θ-hat) - θ = expected distance from the mean.   A statistic is unbiased if 

the expectation of the statistic is the true value for the population. 
o Var(θ-hat) = E((θ-hat – E(θ-hat))2) 
o Mean squared error:  MSE = E((θ-hat - θ)2) = Var(θ-hat) + bias(θ-hat). 
o Asymptotically unbiased.  (lim (n à ∞) E(θ-hat) = θ) 
o Consistent:  θ-hat approaches θ in probability.  (ie:  lim (n à ∞) P( |θ-hat – θ| > ε) = 0.) 

Simple Random Sample (SRS):  A sample from a population of size Nis a simple random sample of size n 
if every set of n (usually distinct) individuals is equally likely to be the chosen sample. 

- If we take an SRS of size n from a population of size N and measure Xi ~ [µx, σx
2] then X-bar = 

∑Xi/n ~ [µx, (σx
2/n)(1 – (n-1)/(N-1))].  (This is an unbiased statistic.) 

- Note that the population mean and variance are the same as the mean and variance of the 
distribution of each Xi. 

- (Central Limit Theorem.)  lim (n à ∞) P((X-bar - µx)/(σx/√n) < z) = Φ(z).  (The distribution of 
X-bar approaches N(µx, σx

2/n).) 
- (Law of Large Numbers.)  With infinite N, lim (n à ∞) P(|X-bar - µx| > t) = 0 for all t > 0.  (The 

probability of the sample mean being any finite distance from the population mean goes to zero 
as the sample size gets infinite.)  

- If Xi and Xj are two elements of an SRS then Cov(Xi, Xj) = -σx
2 / (N-1).  [Big population à 

almost independent; with replacement à independent.] 
Estimating Variance:  (Not as easy.) 

- (σ-hat)2 = ∑(Xi-X-bar)2/n [biased but consistent] 
- s2 = ∑(Xi-X-bar)2/(n-1) [larger mean squared error] 
- If this is the variance of a binomial distribution, use the variance if p = .5.  (This is the maximum 

possible variance.) 
- If X1, …, Xn ~ N(µ, σ2) then ∑((Xi - µ)/σ)2 ~ χn-1

2; in other words, (n-1)s2/σ2 ~ χn-1
2. 

o This depends on the fact that s2 and X-bar are independent random variables. 
o This leads to confidence intervals for the variance, as well. 

Confidence Intervals:  Intervals which, with certain confidence, contain the true mean.   
- These are constructed to a probability interval for X-bar.  Only now X-bar is known and µX 

might not be.  Since µx is not a random variable, however, this is not a probability interval. 
- X-bar ± z*σx-bar is a confidence interval with z from N(0, 1) if σx-bar is known. 

o σx-bar = (σx/√n)(√(1-(n-1)/(N-1))) 
o If σx is not known, we estimate the standard error (see estimating variance above). 
o We may also use the T-distribution (with n-1 degrees of freedom) instead – this takes 

the uncertainty of variance into account. 
- Intervals get smaller with less confidence, more elements in the sample, or a smaller population 

variance. 
- The z*σx-bar is the margin of error.   

Estimating Parameters:   
- Method of Moments 

o Let µk = E(Xk); this is the kth moment.  We may estimate µk by (X-bar)k = ∑Xi
k / n.  This 

is an unbiased estimate. 
o Express parameters as function of µ1, µ2, …  Then use the estimates of µk to estimate the 

parameters.  (θi = fi(µ1, µ2, …), and θi-hat = fi(X-bar1, X-bar2, …).) 
o If the fi are continuous, then θ-hat is a consistent estimator for θ. 

- Maximum Likelihood Estimate 
o Suppose X1, … , Xn ~ fx(x | θ).  (The distribution depends on the values of some 

parameters.)   
o L(θ) = lik(θ) = Π fx(xi | θ).  This is the likelihood of getting this distribution of Xi given 

a value of the parameter.  The θ that maximizes this is the maximum likelihood 
estimate. 

o The log-likelihood function is:  l(θ) = ln(L(θ)) = ∑ ln(fx(xi | θ)).  Maximizing this is 
equivalent to maximizing L(θ) and is often easier. 

o The information function is:  I(θ) = E((∂ (ln(fx(x | θ))) / ∂ θ)2) =-E(∂2 (ln(fx(x | θ))) / ∂ 
θ2) 

o The variance of θ-hat is 1/nI(θ); this may be estimated with θ-hat. 



o Maximum likelihood estimates are asymptotically unbiased, consistent and 
asymptotically normal.  If θ is the mle of θ0 then θ ~ N(θ0, 1/nI(θ0)) as n grows. 

o Cramer-Rao Lower Bound:  Let T(X1, … , Xn) be an unbiased estimator for θ,  Then 
Var(T(X1, … , Xn) ≥ 1/nI(θ).  (This is the best possible variance.) 

o  For multiple parameters, the maximum likelihood estimates maximize l(θθ) for all.  
(Take all partials and solve.) 

o Transformation Invariance:  If θ is the mle for θ0 and g is an invertible function then the 
mle for φ = g(θ0) is g(θ). 

o Likelihood Principle.  Two likelihood functions are equivalent if L(θ) / L’(θ) is constant 
(or if l(θ) = c + l’(θ)).  If two experiments yield equivalent likelihood functions then the 
inference about θ made from each should be the same. 

- Sufficient Statistics   
o A statistic T(X1, …, Xn) is sufficient for θ if the conditional distribution of X1, …, Xn 

given T(X1, …, Xn) does not depend on θ. 
o Equivalently, P(X1 = x1, …, Xn = xn and T = t) / P(T = t) is not a function of θ. 
o Factorization Theorem.  T(X1, …, Xn) is sufficient for θ if and only if f(x1,…,xn | θ) = 

g(T(x1, …, xn), θ) h(x1, …, xn). 
o A sufficient statistic, T, is minimal if for any other sufficient statistics T’, T is function 

of T’. 
o Exponential Family of Probability Densities:  Densities which can be described by  

fX(x|θ) = exp(∑cj(θθ)T(x) + d(θθ) + S(x)) δ(x ∈ A), where A does not depend on θ.  In this 
case, ∑ Tj(Xi) for each j, are the sufficient statistics for fx. 

o If T(X) is sufficient for θ then the maximum likelihood estimator of θ is a function of 
T(X). 

Neyman-Pearson Paradigm: Choosing between two hypotheses, H0 and Ha. 
- Specify null and alternative hypotheses about the underlying data. 
- Specify a rejection region for T(X), some function of the data.  If T(X) is in the rejection region, 

then H0 is rejected.  Otherwise, it is not rejected. 
o The significance level of the test, α, is the probability of T(X) being in the rejection 

region when H0 is true (a type I error). 
o  The power of the test, 1-β, the probability of failing to reject H0 when it is false (type II 

error). 
- By the Neyman-Pearson Lemma, the most powerful test at any fixed significance level is based 

on the likelihood ratio.  (At least, for simple hypotheses, and in some general cases as well.)  We 
reject when the likelihood ratio is small. 

o For two simple hypotheses, T(X) = L(θ0) / L(θa).   
o Generalized Likelihood Ratio, when H0 is θ ∈ ω0 and Ha is θ ∈ ωa:   

§ Λ* = max (θ ∈ ω0) L(θ) / max (θ ∈ ωa) L(θ)  
§ Λ = max (θ ∈ ω0) L(θ) / max (θ ∈ ωa ∪ ω0) L(θ) 

  
  
 
Distributions 
(Discrete) 
Discrete Uniform: Each of n outcomes has an equally likely outcome. 
 P(X = x) =  1/n   if x is a possible outcome 
  0 otherwise   
Bernoulli: X is the number of successes in a single trial; X = {0, 1} 
     1 - p  if X = 0 
 P(X = x) =   p if X = 1 
    0 otherwise 
 E(X) = p 
Binomial Random Variable: the sum of n independent Bernoulli random variables with equal probability.  

Equivalent to sampling with replacement n times from a population with proportion p successes. 
 P(X = x) = px (1-p)n-x (n choose x) 
 E(X) = np 



Geometric:  If X is the number of trials up to and including  the first success (which has probability p), 
then  X ~ Geometric(p). 

 P(X = x) = (1-p)x-1p 
Negative Binomial:  If X is the number of trials up to and including the rth success (which has probability 

p), then X ~ Negative Binomial(r, p). 
 P(X = x) = (1-p)x-r pr (x-1 choose r-1) 
Hypergeometric: If X is the number of successes in a random sample without replacement of size n from a 

population of size N, in which r of the N elements are successes, X ~ Hypergeometric(N, n, r) 
 P(X = x) = (r choose x) (N-r choose n-x) / (N choose n) 
          if X = 0, 1, … , min{n, r} 
Poisson: If X is the number of events that occur in a fixed interval, with average rate λ, X ~ Poisson(λ). 
 Assumptions of a Poisson Process: 

• No simultaneous events 
• The number of events in any disjoint time intervals are independent. 
• The probability distribution of the number of events in two intervals of the same length are the 

same. 
 P(X = x) = λx e-λ / x!  for X = 0, 1, 2, … 
 E(X) = Var(x) = λ 
(Continuous) 
Continuous Uniform: if X has a uniform probability on [a, b] then X ~ Uniform(a, b) 
 fX(x) =  1/(b-a)  if a ≤ x ≤ b 
    0   otherwise 
Exponential: X ~ Exp(λ) if 
 fX(x) = 0  if x < 0 
    λ e-λx if x ≥ 0 
  Interesting Note:  This function is memory-less. 
Gamma: X ~ Gamma(α, λ) if 
 fX(x) = (λα / Γ(α)) xα-1 e-λx  where x ≥ 0  
 Γ(α) = ∫ uα-1 e-u du  [from 0 to ∞] 
  Note:  Γ(k+1) = k Γ(k) 
 E(X) = α / λ    
Normal Distribution: If X ~ N(µ, σ2) then 
 fX(x) = exp(-(x-µ)2/2σ2) / √(2πσ2) 
 MX(t) = exp(tµ + σ2t2/2) 
  Properties of the normal distribution: 

• Centered at and symmetric about µ 
• Inflection points at µ ± σ (one standard deviation away) 

   
Links Between Distributions: 
• Bernoulli(p) ~ Binomial(1, p) 
• Geometric(p) ~ Negative Binomial (1, p) 
• The limit of the Hypergeometric as the population increases and the proportion stays constant is 

Binomial (n, r / N). 
• The limit of the Binomial as the number of samples (n) increases and the probability (p) approaches 0 

in a way that n*p approaches a constant is Poisson(np). 
• The time between Poisson events is distributed as Exponential 
• Exp(λ) ~ Gamma(1, λ) 
• Standard Normal ~ N(0, 1) 
• χ2(n) ~ Gamma(n/2, 1/2) 
• χ2(n) is generated by finding the distribution of ∑(Xi - µx)

2/σx
2 when Xi ~ N(µx, σx

2). 
• If Z ~ N(0, 1) and U ~ χ2

k then Z / √ (U/k) ~ tk (Student’s t distribution). 
 
Finding probabilities in the normal distribution (using a table with the standard distribution): 
 P(X ≤ x) = P(Z ≤ (x - µ)/σ) 


