Statistics 111

Probability and Statistical Theory
The axioms of probability are:

PW) =1

P(A) 3 Ofor all events A

P(AE B)=P(A)+PB)ifACB=/&
Other facts that follow include:

P(A%) = 1—P(A)

P(A =0

P(A)£PB)iIfAl B

P(A E B) = P(A) + P(B) —P(A C B)

Conditional Probability

Definition. A and B are independent if P(A) = P(A|B) or, equivaently, if P(A C B) =
P(A)P(B).

Events may aso be considered as sets of random variables.

Definition. X and Y are independent random variablesif P(X £ x, Y £y) = P(X £ xX)P(Y
£y), thatis, Fxy(x, y) = Fx(X)Fv(y). Thisisequivalent to fxy(x, y) = fx(X)fv(y) and
fxv(X | y) = fx(x). (If fxy factors, then X and Y are independent.)

Definition. Let X and Y be discrete random variables. Then, we define P(Y =y | X = X)
=PX =x,Y =y)/P(X =x). For continuous random variables, we define fyx(y | X) =
fxy(X, y) /fx(X)

Definition. X1, ..., Xpare mdggendent if Fx]_, ...,Xn(Xl, veey Xn) = Fx1(X1) FXn(Xn).
Equivalently, fx1, ...,Xn(Xl, veey Xn) = fx1(X1) an(Xn) for all X1y evny XnT R.

Proposition. Let X, Y be continuous random variables. Them fxy(x, y) fx(X)fv(y) if and
only if fxyy (X | y) = fx(x).

Distributions of Functions of Random Variables

Let X and Y be independent random variables. Suppose S=X + Y. Thenfg(s) = &* fu(s
—y)fv(y) dy. SupposeS=X —Y. Then, f(s) = &* fu(s + y)fv(-y) dy

Suppose Z = XY. Then, h(z) = & f(zly) g(y) dy / ly|.

Expectations of Random Variables

E(x) = &* x fy(x) dx, provided that & * [x| fx(X) dx < ¥.

Example. Let f(x) =1/ p(1+x?). Then, E(X) does not exist.

Note. E(X) = &' (1 — F(x)) dx for a continuous variable, or E(X) = 8=0* P(X 3 X).

Law of the Unconscious Statistician. LetY = g(X). Then, E(Y) = &* g(x) fx(x) dx or

E(Y) = &aix 9(X) P(X = X).

Note. SupposeY =a+ by X3+ bXo + ..., where E(Xj) = m. Then, E(Y) =a+bm +

b + ...

Definition. The variance is given by Var(X) = E((X - m)?) = E(X?) — E(X)2

Defintion. The covariance is given by Cov(X, Y) = E((X - m)(Y - my)) = E(XY) - mkny.

Note. If X4, ...., Xn areuncorrelated, then Var(a+ b X1 + boXo +...) = b1$x12 + szx22 +
. Moregenerdly, Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y).




Note. COV(X]_ + X5, Y1+ Yz) = COV(X]_, Y]_) + COV(Xz, Y]_) + COV(X]_, Yz) + COV(Xz,
Y,).

Note. Cov(X, X) = Var(X).

Definition. The correlation coefficient is given by r = Cov(X, Y) / OVar(X) Var(Y).
Note. |[r| £ 1. (Proof: Consider that Var(X/sx + Y/sy) must be positive.)
Chebyshev's Inequality. P(X - mx| > t) < sx?/t%.

Law of Large Numbers. Suppose X-bar ~ [k, sx?/n]. Then X-bar convergesto ny in
probability.

Note. Since P(JX - mx| < 2sx) 3 1-s,%/4s,?, at least 75% of observations will lie within
two standard deviations of the mean.

Corollary. If Var(X) =0, P(X =nx) = 1.

Moment Generating Functions

Definition. If X isarandom variable, then the moment-generating function is given by
Mx(t) = E(e™).

Proposition. M®(0) = E(X")

Proof. MO(t) = 0,¥ x" € fx(x) dx. Whent =0, thisis precisely E(X").

Theorem. If M(t) existsin an open interval containing O, then it uniquely determinesf.
Proposition. Let Z=X + Y, with X and Y independent. Then, Mz(t) = Mx(t)My(t).
Proposition. If Y = a+ bX then My(t) = e*Mx(t).

Example. If X ~ N(m s2), then Mx(t) = €"e"?2

Central Limit Theorem. Let X1, X2, ... be asequence of random variables identically
distributed with mean mand variance s and moment generating function M defined in a
neighborhood of 0. Then, limn, x P((&X; - nm/sOn £ k) = F (k).

Note. Because Gamma(a, | ), B(n, p), and Poisson(l ) can be considered sums, they are
approximately normal for large values of a, n, and | respectively.

Likelihood Functions

Definition. Suppose X is arandom variable whose distribution depends on a parameter q.
Then, the likelihood function of g given x isL(q) = fx(x | ). This measures how
probable the data would be for a given value of q.

Definition. The Bayes posterior density is fqx(q | X). In this, we think of the unknown g
as arandom variable. If we call p(q) the prior density, fqx(q[x) = fx (X|q)p(a)/O ¥
fx(x|a)p(q) da.

Note. Notice that the denominator is a constant (with respect to g). So the posterior
density is proportional to L(g)p(q). In particular, aflat prior (assuming a uniform
distribution on possible values of q) smply yields a posterior density of L(q).

Large Sample Theory of Maximum Likelihood Estimators

Definition. 1(co) = E((1 (In f(x|qo)) / 10)?) = - E(T* (In f(x | 40))/19°) is the information
conveyed about the parameter of adistribution. Qo is the true parameter value and x ~ f(x
| Qo)-

Theorem. The distribution of nl(qo)] (qA - Qo) =2 N(O, 1), where qp is the true value of
the parameter and g is the estimate.




Definition. Suppose X; ~f(X |q). Let T =T(x). T issufficient for q if fx(x | T) does not
depend on q.

Theorem. T issufficient if and only if fx(x | g) = g(T, q) h(x) [the rest of the x can be
factored out].

Note. If T issufficient for q, then the rest of the datais not needed to estimate.
Theorem (Rao-Blackwell). Let " be an unbiased estimator for g. Thenq™ = E(q" | T) is
an unbiased estimator with a smaller variance.

Definition. A sufficient statistic is complete if E(g(T)) = 0if and only if g isidentically
0.

Theorem. The lowest possible variance is achieved when T is complete. Then, thisis
called the unigue minimum variance unbiased estimator (UMVU).

Theorem. An sufficient statistic from the exponential family is complete.

Theorem. Any two minimal sufficient statistics are functions of each other.

Hypothesis Testing
The Neyman-Pearson Testing Paradigm:
Specify null and aternative hypotheses.
0 A hypothesisissimpleif it specifies the values of all parameters
0 We define w to be the region of possible values of the parameters under
the null hypothesis and w;, to be the region under the alternative
hypothesis.
Specify a statistic of the data and the acceptance and rejection regions for the
statistic.
Type | Error: Reecting the null hypothesis when it istrue. The probability of
type | error is controlled and called the significance level, a.
Type Il Error: Failing to reject the null hypothesiswhen it isfalse. The
probability of not committing atype Il error is called the power of thetest. The
Neyman-Pearson lemma states that, for two simple hypotheses, the likelihood
ratio test is the most powerful. A test isuniformly most powerful (UMP) if itis
most powerful in all cases covered by H, and Ha.
Generalized Likelihood Ratio Test: Let L = maX qi wo lik(Q) / max ¢ w lik(q), where Ho
specmes ql wo and Ha specmesq T W- wp. Reject for small valuesof L.
The T-test and the c’-test are both GLRT’s, since the p-values are small if and
only if L issmall.
Theorem. Suppose f(x | g) is smooth as a function of g and the mle of g is
consistent. Then, under Ho, the distribution of —2 log L approaches ¢, where k =
dim W- dim wo.

Matrix Statistics

Suppose z=c + Ay. Supposey ~[m &,y]. Then:
8, =A&,A".
m=c+Am

Definition. U isapivotal quantity (pivot) if U = g(Y, q) hasadensity free of Y and g.
Example. Thet-statistic for datais a pivot.




Definition. If the density of Y issuch that fyq(y-q|q) isfree of y and g, then g isapure
location parameter and U =Y - qisapivot.

Example. If Y ~N(m 1), then U =Y - m~ N(O, 1), and mis a pure location parameter.

Definition. If the density of Y|q issuch that Y/qisfree of Y and g, then q isapure scale
parameter, and U = Y/q is apivot.

Example. Y | s?~N(0, s?), then s is a pure scale parameter.

Statistical Distributions

Order Statistics

Definition. X ~ Beta(a, b) if fx(x) = (Ga+b)/qa)3b)) x* (L —x)*L, 0 £ x £ 1.

Note. &' x*x"? dx = Ga)G(b) / Ga+b).

Note. If X ~Beta(a, b) thenE(X) =a /(a +b).

Definition. Let X, ..., X, beidentically distributed. Let X be the k" largest value (that
is, Xi < X(k) fork —1 X;and X; > X(k) forn—k Xi). Then, X(k) iscaled the kth order
Statigtic.

Fact. Suppose X4, ..., Xn ~ Uniform(0, 1). Then X ~ Beta(k, n—k + 1). Hence,
E(Xw) =k / (n+1).

More generally:

fxw(X) = P(X; = x for some i)P(X; < x for k —1 X;)P(X; > x for n—k X;)
= FxOQ (Fx () (L = Fx ()™ "k, 1, n)
= (G+1)/GK)GN-k+1)) Fx(X) (Fx(%)) (L = Fx(x))™
so the distributions may be plugged in to find the distribution of the order statistics.

Bivariate Normals
The bivariate normal distribution is given by fxy = (1/(2psxsyQ(1-r %)) exp(-((X -
m)4/sx® + (Y - my)4/sy? - 2r (X - m)(Y - m)/sxsvy)/2(1-r?)
- Then, Y | X ~N(my + r (sy/sx)(X - nx), sv3(1 - r?).
- Cov(X,Y)=rsxSy
- Wemay consider generating U, V ~ N(O, 1) independently. With the proper
choices of coefficients, welet X =aU + bV and Y = cU+dV, and these will
generate any bivariate normal.
(The trick for normals: Factor the exponent into (Y —A)%/2V% A isthemean and V isthe
variance. The leftover constants can be ignored.
Linear Predictions: Suppose we want to minimize E((aX + b - Y)?) by predicting Y from
X. Wepredict Y = my + (svy/sx)r (X - my).

Multivariate Normal Distributions

Definition. We say X = (X4, ..., Xp) ismultivariate normally distributed, X ~ N,(m S),
where Sisann” n matrix with non-negative eigenvalues, if fx(x) = (2p)™? |S[¥? exp(-
0.5 (x - m'S(x - m).

Note. If Y =AX +b, the Y ~ Npy(Am+ b, ASAT)

Definition. X isdistributed as a standard multivariate normal if m=0and S=1.

Note. Let S be defined by the inverse of SY2, where SY3(S¥?)" = S. For any
multivariate normal X, S¥? (X - m) ~ Ny(0, 1). Notethat S¥? and therefore S¥2 are not
uniquely defined.




Example. If S=(}"1), m= (%), theny; and y, are standard normal with correlationr .
Example. If S can be written in block form, the variables in one block are independent of
the variables in the other block. Independent, identically-distributed variables have a
covariance matrix of the form s?l.

Statistics for Specific Situations
Testing for Goodness of Fit
Chi-Square Goodness of Fit Test: Suppose X3, ..., Xm are distributed according to a
multinomial distribution. Then & (X; — E(X:))?/E(X;) approaches a cm.” distribution.
- Thismay be used for grouped observations as well; combining categories
improves the approximation, because the approximation is better with large E(X).
Fitting Data Visually:
- Hanging Histogram: Draw a histogram of expected (n;) — observed (n,-A).
o Assuming E(n—n) =0, Var(ni—n) » ;.
- Hanging c-gram: Plotc = (nj—ny") / Oy
o Va(c)»1
- Hanging Rootgram: Plot R = (n; - Oy
o Var(R) » Var((n) » Var(n) / (20n)? = 1/4

Testing for Normality
Quantile Plot: Take the inverse CDF's of the order statistics of the uniform (ie. F*(k /
(n+1))); these are the “ expected quantiles’. Plot these against the ordered data—the line
should be very straight.
Some other tests statistics: The distributions may be found through simulation.
Skewness. (1/n)(& (X; — X- bar) )/s
Kurtosis: (1/n)(& (Xi — X-bar)*)/s*
- 4 |quantile — E(quantile)| or max { |quantile — E(quantile)|[}

Survey sampling
Statification: Suppose we divide a population of size N into L strata based on some
characteristic. Let N, be the population size of the I™ stratum, W, = Ni/N. Let ny be the
sample size from the ™ stratum.
- Estimating m X-bars=a W, X-bar, =&, W, (&; Xi))/ny
Var(X-barg) =& W2 (si?/ n) (L=n/N)
The proportional allocation is given by n = W, n. The variance of the estimate in
thiscaseis&W, s?/ .
The Neyman allocation isgiven by ni=nW,s; /& (Wisk). Ignoring the finite
population correction, this allocation minimizes variance, to be (& W, s))?/n. This
is (@ W, (m - m?)/n less than the variance of the non-stratified estimate.
Note that stratifying does not increase variance (assuming a good allocation). So
stratifying on something irrelevant to the parameter being estimated is only
useless. ldedlly, strata have small variances within them and large variances
between them.
Stratifying based on sampling method can be useful for combining them properly.




Prior Information: Suppose nx is known and we want to know my. We may take a
random sample and find X, Y; for each element. We then estimate my as a function of
nx, X-bar, and Y -bar.

- Difference Estimation: m,"” = Y-bar — k(X-bar - mx), where k is any constant.

o Va(m') =sy¥n+k®sx?n—2ksxy/n

- Regression Estimation: Choose the k above by regressing y; — y-bar on x; — x-bar
(no constant). This asymptotically minimizes the variance.

- Ratio Estimation: my” = Y-bar * mx / X-bar

o Thisisbiased: E(m) - my » (/n)(1 — (n-1)/(N-1))(s x°my/m -
I xySxSy)/nm.
o Var(m) » (1/n)(1 - (N-1)/(N-1))((my/mk)*s x* + Sy — 2T S,Sy)
. Var(mf) <Var(y-bar) < |r|>|r s)/sy|/2, so thisisuseful whenr is
large relative to s,/sy,.

- Thiscan aso be useful when the x; are cheaper/easier to obtain (say, eye
estimates). Then, a census of the x; can be taken and a sample of they; (say, exact
measurement) can be used to estimate ny.

Non-response: Collect data from a sub-sample to non-respondents. Let y;-bar be the
mean for respondents and y»-bar be the mean of the non-respondents. Then, we estimate
y-bar as aweighted average of the respondents and the non-respondents (note that y, is
weighted by the total number of non-respondents, not the number who were sampled to
find y»-bar). Thisincreases the variance.

Categorical Data Analysis
One factor: Suppose there are k categories with p; probability of an observation being the
in the i™ category and y; observationsin each category.

- Mode: The category with the higheest y;

- Concentration: a measure of spread

o Genie Concentration: Vg = a pi(1- pi)
o Entropy: Ve=a piInpj, wherewe assume0In 0= 0.
o If al the observations are in one category, Ve = Vg = 0.
0 If the observations are evenly spread out: p; = Lk for al i, and Vg = (k-
1)/k whileVeg =Ink.
= |If we normalize by dividing by the maximum value, Ve and Vg
will be close.

- Measures of Association: Let pj =P(x11 i,x21 j) and pix =P(x T i). xq and x,
can have to do with different measurements in the same category. We assumej is
known but i is not.

o t=(4& pi% pi - & p9)/(1- & p°)
Uncertainty coefficient: U = (&& pj; In(pii/pip+j))/ & p+j In(p+j)
t =U =0if p; = pip+ (ie. i and | are independent)
t =U = 1if knowing j ensures that one knowsi.
Cohen'skappa: k = (& pii - & pip«)/(1 - & pi=p+i); measures the
probability that two are in the same category.
Multinomial & Poisson Models: Suppose we have N thingsin k categories. Let X, be
the category of the n™ object and Y; be the number of objectsin thei™ category.
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L(p [X) =Papxn=p1"'p2"%...p]
Py |N, K, p1, ..., pxr) =nl P p' / P ;!
I(py, ..., Px1) = constant + &y; In pi(q), where we may consider pi(q) to bea
function describing the probabilities.
o I(g)=constant+& y;Iny;" (wherey; isthe expected value under q')
Poisson Model: Wait for atimet to observe k events.
0 P(eventtypei occursindT) = a;dT
Y =# of events of typei ~ Poisson(a;T) = Poisson(m)
Then, the number of events seen is arandom variable.
L(m|x) =P P(Xnisof typei) p €™ P ni'/y;!
I(m|y) =constant-a m+a vy Inm
P(Y |g) =P(N=n)P(y |[N=n)
= This means that once we condition on the total number of
observations, the Poisson model is still multinomial. Conversely,
we may model multinomia data as though it came from a Poisson
process.
- Sufficient Statistics: {ya, ..., Yx}; N and k-1 of the y;.
o m|n=E(yi|n)=np;, som=piE(n)
- Non-Poisson multinomial: P(y) = P(N = n)P(y | N = n), where P(N = n) may be
any distribution. Note that the same results hold after we condition on n.
Two (and more) Way Tables
- Fisher's Exact Test

0 We assume that marginal probabilities (in both rows and columns) and
count arefixed. Ina2” 2 table, this allows exactly one parameter to vary
(and affect the others). Fisher’s exact test finds the distribution of this
parameter under the constraints (which is hypergeometric, with some
parameters), assuming that there is no interaction between the columns
and rows. This allows the p-value to be found.

0 Tousethison alarger table, combine rows or columnsto createa2” 2
table. Or the test may be used, but the distributions must be found for
multiple parameters.

- Pearson Goodness of Fit test
0 Expected Vaues. E=Count* P Margina Probabilities
0 Then, & (O — E)%E; ~ c? with df = #cells - #parameters fixed

© O O 0O

ANOVA
One-Way Layout: J measurements of arandom variable Y; are taken in each of |
treatments (“levels’).
- F-Test: Assumethat Y; ~ N(m+ a;, s?), with & a; = 0. Let Y;; be the realizations
of the Y.
o &4 (Y;-Y.-bar)>=84 (Y- Yi-bar)*+4& J (Yi—Y_-bar)’ we may
write this as SSror = SSy + SSe.
0 If Yi~N(m + a;, s%), then SSw/s® ~ c% 5 _1). If ai=0forali, SSp/s® ~
c?.1 and is independent of SSy.
o Ifa;=0forali, F=(SSs/(1-1))/(SSw/(a3-)) ~ Fi1 a3



- Kruskal-Wallis Test: Rank all observations (averaging ranks for ties), replacing
Y;; by Rj. We may use simulation, since we know all the values. Alternately, K
=12 SSg / N(N+1) ~ c%. (SSg fromtheR;.)

Two-Way Layout: Suppose we classify measurements by two factors (A and B). Assume

Yijk =m+a;+ bj + dij + €k, whereé’lai = glbj =aa dij =0, and €jk isindependent of i, j

Suppose Yijk ~ N(m+ a + bj + dij, Sz).

- SSror=4&384(Yik—Y.)% SSa= K& (Yi.—Y )% SSs = IK&; (Y, -Y )5
SSae =K&& (Vi —Yi. =Y +Y. )% SS=844 (Y - Y’

- SSe/s%~cPykay. Under their respective null hypotheses, SSa/s® ~ ¢ .1, SSg/s?
~ C23.1, SSAB/82 ~ Cz(|-1)(3.1). This leads to more F tests.

The problem of multiple comparisons. If we want to test pairs for individua differences

(instead of just finding an overall difference), we must use I(1-1)/2 tests. For afixed a,

the probability of making atype | error approaches 1 for large I.

- Tukey’'sMethod: Use adistribution which adjusts for this.
- Bonferroni Method: Test al hypotheses at the a/(1(1-1)/2)) level. Thisis
conservative.

Randomized Block Design: Suppose there are J homogenous blocks. Assign each of the

| treatments to one block. We may these assume there is no interaction. We model Y;; =

m+ a; + b; + g;. Our F-teststhen use F = (SSa/(1-1))/(SSas/(1-1)(3-1)) or F = (SSa/(F
1))/(SSas/(1-1)(F1)). (These statistics are conservative when there is interaction, since

SSag/(1-1)(F1) > s® when thereis interaction.)

Interaction Plot: Draw one line for each row category, connecting dots at each mean for

each column category. If the lines are not parallel, there may be an interaction.

Random Effects Model: Suppose Y | &, 6> ~ N(&, &%), so that within group i, the
measurements are similarly distributed but not like the measurements in other groups,
sothat Yi; =& + &, and that & | i, A ~ N(i, A) (or some random distribution).

More generally: & | 8, A ~ N(X;'&, A) —this allows relationships among the &.

If Yij are vectors, then & is also.

Simplification: Assume 6% is known, so that all the Y;.-bar are sufficient for §.
Treat 6° = V asconstant over al i. Then, Y; ~N(, V + A), sothati " isthe
average of al the Y; and A" = max{0, O(Y; —Y -bar)?’k =V} —if A" =0, then & is
probably constant.

Linear Regression
Model: Y = bg + b1X + € where e ~ [0, 5], independently of X.
- Toestimate by and by, we minimize & (Y - bg - by Xi)2.
- Thisyields unbiased estimators:
0 bo =(@X?4&Y;-&X; dXY)/(ndXi? = (@X)?
0 by =(M&XYi-@X)AY))) /(& X* = (&X)?
- Proving that they are unbiased includes the assumption that the X; are fixed
beforehand.
- Variances:
o Var(by) = s?&X%(n& X% = (& X))
o Var(by) =ns%(n& X - @X)?
0 Cov(bo, bi) =-s2&Xi/( n& X% = (& X)?)




0 Toestimates?® s =A&(Yi-Y)%(n-2) [more generdly, n-k]
- This assumes homoskedasticity — if thisis not true, let Y’ =f1(Y) and X’ = f(X).
If f1 = f,, then a straight line will stay straight, but the residuals will change,
possibly to become homoskedastic.
Multiple Regression: LetY = (Y, ..., Yo)'. Let X = (Xij), where Xq; = 1 and X;; isthej™
variable of the i" observation. Letb = (b, ..., by1)  ande= (e, ... &)". Then, Y =Xb
+te
- Then,b" = (X™X)*XTY. (X"X isinvertible unless the x; are perfectly
multicollinear.) It isunbiased.
- Var(b") =s*X™X)™
Comparing Nested Models: Find the total sum of squares explained by the more
restrictive model, the total explained by the less restrictive model, and the difference
(error) between them. Find the degrees of freedom for each model (and the difference
again). Let MS = SS/DF for restricted and error. Let F be theratio of the MS's. Under
the null hypothesis, F ~ Fieatment, error-
Residuds Let P= X(X"™X)X". Then, Y" = PY.
(1 -P)*= (I -P)
a(Yi-Y)? =0 -P)Y|*=YT(1 -P)Y
E(Y'(I-P)Y) =s*n-p)
An unbiased estimator for s% & = &(Yi - Y:)%(n-p)
& ever = 541 —P), s0 that the residuals are correl ated.
0 We can standardize to g/ sgrt((n-1)/n — (x; — x-bar)%/& (x; — x-bar)?))
E(Y") = b + byX
Var(Y") = s?(Un + (x — x-bar)/& (x;- x-bar)?), so that the variance of the
predictions gets larger as the x-value gets further from the mean. (Thisyieldsa
prediction interval.)

=SSE/SST =1-4a(yi—Vi )a(y; —y-bar)®>. Thisisthe proportion of total
variation in y explained by the variation in x.
In th(g one variable case, r = & (X; — x-bar)(y; — y-bar)/C (xi- x-bar)?a (y; — y-bar)?
=R
Aswe add more predictors, the residual sum of squares will always decrease, so
R? will alwaysincrease. So we adjust for this:
R-bar’ = 1 — (n-1/n-p)(1 - R?)
Compan ng two regressions (and two parts of data) {0, vy} and { (X", vi')}.
Lets=QA(Yi-Y)?+a&(Y: =Y{")?/(n-2+m-2))
Lett=(by- b1/ sOL/A (xi —x-bar)? + /& (x’ —x-bar')?)
Under the null hypothesis that the sIpes are equal and the errors are normally
distributed, t ~ thim-a.
Alternately, we may run aregression on all the data and test the residuals for
patterns (t-tests, rank tests, run tests).
Interaction: Suppose Y depends on avariable X and an indicator (dummy) variable D.
Then we may allow interaction if we use the regression Y; = by + b1X; + boD; + b3XiD;.
This allows both the slope and the intercept to differ between the two groups. (If there
are k categories, this requires k-1 dummy variables and more care insignificance tests.)



Inverting a Regression:
- RegressX onY. (Assuming X is aso random.)
Calibration Interval: SolveY =bg + by X for X. Then, the standard error is s,» =
StandardError(Prediction of Y | X")/|b1.
Find the prediction intervalsfor Y at each X and see which intervals contain the Y
in question. (Thisis often wider than reversing a regression.)
Xi’sarerandom: No change. (The variance of b" changes, but not in away that affects
coverage probability of confidence intervals or anything like that.)
Measurement Error (in the X;'s): Now, X; ~ [k, Sx?]. Estimates are unbiased, but
variances of estimators are bigger.

Decision Theory and Bayesian Statistics

Terminology: An action is a choice made (from aset A). A state of nature is the true
value of some unknown parameter. A decision function, d: X = A, maps an
observation about the word to an action. A loss function, 1(&, d(X)), measures the
losses associated with taking a certain action in a certain state of the world. (Negative
losses are gains...) Therisk function, R(€, d) = Ex(I(&, d(X))), measures the risk
(expected loss) associated with a certain decision function.

Minimax Method: Minimize the maximum possible |osses.

Let d* = mingi p (MaX 4 o R(Q, d)), where D is the set of all possible decision
functions and Q isthe set of all states of the world.

Bayes Rule: Assign aprior distribution to g. Then, the Bayesrisk is B(d) = Eq(R(q, d)).

Minimize this.

The posterior distribution is h(q | X), so that the posterior Bayes risk is E(I(q,
d(X)) | X =x).
To find aBayesrule:
o h(gX) = f(X|a)g(a)/(6f(X|a)g(a)da)
o E((Q, d) | X=x) = al(q, a)h(q|X)dq
0-1Loss. ThelossfunctionisOif oneis correct and 1 otherwise, so that R(i, d) =1 —
P(d(X) = 1). Thisistherisk of being wrong.

Neyman-Pearson Lemma. Let d* be atest (decision rule) that acceptsif f(x|g:)/f(x|qz) >
c. Let a* bethe significance level of d*. Let d be any other test with significance level
a £ a*. Then the power of disat most the power of d*.

Proof. Let c=(1- p)/p. Then, we accept when pf(x|q.)/(1-p)f(x|g2) < 1, so that thisis
actually a Bayes Rule with priors p, 1-p, and O-1 loss.

Theorem. Suppose R(q, d) = E((q - d(X))?). Then the Bayes estimate, d(X), is the mean
of the posterior distribution. However, if R(q, d) = E(|q - d(X)|), then d(X) isthe
median. (Infact, all the M-estimates work this way.)

Definition. Let d;, do be two decision functions. d; dominates d, if R(q, di1) £ R(q, d)
for al g. d; strictly dominates d; if d; dominates d, and the inequality is strict at any
point. d; isadmissibleif it is not strictly dominated by an other decision function.

Theorem. Suppose d* is a Bayes Rule with respect to some prior, g, with g(q) > O for all
g and R(q, d) continuous. The d* isadmissible.

Proof. Use the fact that Bayes Rules minimize B(d).




Hierarchical Models: Suppose the observed variable depends on a parameter that varies
itself (for each different observation) according to a different distribution. (Thisisakin
to having a prior on the parameter.)
- Some distributions are conjugate, meaning that they fit well together.
0 Poisson-Gamma: X | g ~ Poisson(q), gi ~ Gamma(a, | ).
= Xi|a,| ~NegativeBinomia(a, | /(1+l)).
= g |Xi,a,| ~Gamma(X; +a,1+1|)—theexpected vaueisa
weighted average of the old parameters and the information
derived from X;’s value; the weights depend on | .
0 BetaBinomiad
0 Exposuresand Covariates:
Bayesian Procedure (for Random Effectsin ANOVA): Suppose there are k observations
of Y, each with its own random effect.
o Specify priorsoni and A. (They may be non-informative — constant over
all vaues.)
0 Posterior densities:
= If p(i, A) is constant, then f(i, A | Y) is proportional to f(Y |1, A).
» LetB=V/(V+A),sothat E(& |Yi,1,A)=Bi+ (1-B)Y;. Aflat
prior for A isnot flat for B. Infact,B|Y ~
ConstrainedGamma((k-3)/2, O(Y; — Y-bar)%2V, 1), whichisa
density if k > 3.

Stein Egtimators: Suppose X; | g ~ N(q, Vi) and g ~ N(m, A), fori =1, ..., k. Thenq |
Xi ~ N((Vim + AX)/(Vi +A), AVi/(A +V))), so that we estimate g = m + (1 —
Vil(A+V))(Xi - m). Letds= (1—c/d(Xi- m)?)(X;- m) + m. If we assume a quadratic
loss function, R(q, ds) = k + (-2c(k-2) + A)(E(V& (X; - m)?). If 0<c<k-2, thenthe
risk of this estimator is lower than of simply guessing g; = X, even if the m are badly
chosen (though then 1/& (X; - m)?is very small). Best estimate: g = (1 —c/&(X; -
m)?)(Xi - m) + m. Choosing m = X; removes the degrees of freedom that were helping
—that is bad.

Approximate M ethods
Let X ~[mx, sx?]. LetY =g(X). Then, using a Taylor expansion:
Y = g(X) » g(mq) + (X - m) g'(mx) + %2 (X- m)® g'" (k)
E(Y) » g(nmx) [this comes from the first term, or from the first two: E(X - k) = 0]
or, E(Y) » g(mx) + %2 E((X- m)?) g (M) = g(m) + %57 g (my)
Var(g(X)) » sx* (g (k)
These approximations are exact when g islinear or (for the mean) quadratic.

Simulation

Generating Random Variables

Inverse CDF Method: Suppose X is arandom variable with CDF Fx. Then, the random
variable Fx(X) isdistributed Uniform(0, 1). Inverting this, we find that if U ~
Uniform(0, 1) then Fx™(U) has the same distribution as X.




Rejection Method: Suppose fx is the density function of X. Let [a, b] be the (possibly
infinite) interval on which fx(x) * O.

Algorithm:
0 Choose afunction M(x) such that M(x) 3 f(x) on[a, b]. Let m(x) = M(x) /
& M(x) dx.
0 Generate T with density m(x).
0 Generate U ~ Uniform(0, 1), independent of T.
o IfU* M(T)Ef(T) then accept T. Otherwise, return to the first step.
Proof of Method
0 PXEXEx+dX)=PXETEXx+dx|acceptT)=P(accept T |[XET E£x+
dx) * PXET £ x + dx) / P(accept T)
0 Placcept T| XxE£TE X+ dx) =P(U £ f(x) / M(x)) =f(x) / M(X)
0 PXETEX+dx)=m(x)
o P(accept T) = &° (F()/M(D)) * m(t) dt = @ () * (1/ A M(X) dx) dt =1/ &°
M(x) dx
o Combining, wefind P(x £ X £ x + dx) = f(x) dx, which is the correct
distribution.
We call the percentage of T’'s accepted the acceptance rate. Thisis exactly @° f(x)
dx / &” M(x) dx = 1/ &” M(x) dx.

Another way to generate two normals:

Let X, Xz Unlform( 1,1)

Accept x1° + x2% £ 1 (in the unit circle)

Letv = X% + Xo°

PV £ V) = P(X1? + X22 £ V), s0 V ~ Uniform(0, 1)
Let R=Q-2Inv)

LetcosU =x,/ Ov, sinU =x; / Ov.

Bootstrappl ng: A way to test without finding a distribution.

Simul ate the experiment (under the null hypothesis or with the given estimate)
and compute the test statistic many times. Compare the actual test statistic to the
ones found.
Find a sufficient statistic and generate new data according to the distribution
determined by it. Thisremoves the dependence on the other parameters.
Using simulation to find the distribution of parameters given the data: (Markov
Chain Monte Carlo — Gibbs Sampling)
Let 6~ (&1, A). Generate 6* by:
Drawing A* ~A|Y,1, é
Drawing i* ~1|Y, A*, e
Drawing € ~é|i*, Y, A*
Drawing 6* ~ (&, i*, A*)
Note that 6* has the same distribution as 0, so that 01, 0z, 03, ... iIsa
Markov chain.
= Definition. Yo, Yy, ... isafirst order Markov Chain if f(Y¢ | Y,
Yt-2, ceey Yo) = f(Yt | Yt-]_)
= An equilibrium distribution, fo(Y) is adistribution that holds for all
Y after acertain point in aMarkov Chain. (If we can create a
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Markov Chain with the equilibrium distribution, we may take
random samples from that distribution.)
Gibbs Sampling: Let f = (f4, ..., f). Generatef "™ ~fy(fi | Y, f1, ..., fig, Fiva, ..., Tp)
for eachi in order (1to p). These consecutive values are not independent, but they have
the correct distribution. (Also, knowing when it isin equilibrium is hard.)
Coupling: Start two processes at different initial points and update them with the
same random numbers. When they agree, they had “forgotten” their starting
points and reached equilibrium. (Can’t start right after coupling, but close to
then.)

EM Algorithm
Definition. Data with one variable of importance, y, are MAR (missing at random) if
whether they are missing is independent of y. Datain which (x, y) are the variables of
importance, x is always known, and y is missing are MAR if whether y is missing is
independent of y conditional on x.
- Note that the probability that y is missing may depend on x and the data are still
MAR.
The EM Algorithm:
- E-Step: Find the expectation of the sufficient statistics given the observed data
and the current estimate of the parameter, q©.
- M-Step: Find the maximum likelihood estimate of the parameter given the
expectation of the sufficient statistics.
- Theanadyss
0 f(Y [d)=f(Yobs, Ymis| ) = f(Ymis | Yobs 0) f(Yos | Q)
0 1| Yons) =1A|Y)=INT(Ymis| Yobs 9), SO1(q] Y ons) does not depend on
Ymis-
Let Q(q| q(t)) = Evmis(1(Q | Ymis, Yobs)
Let H(q | q(t)) = Evmis(In f(Y mis | Y abs, 9)
Then, I(q | Yo) = Q(a19“) —H(q | ¢“)
Theorem. Suppose (1) 1(Q(d | 4))/Mld 4= gy = Ofor all t, (2) g°
convergesto g, and (3) f(Ymis | Yobs, §) iSSMooth as afunction of g.
Then, 1(1(Q | Y obs)/919 |g=¢+ = O, S0 that g* is a stationary point.
0 1(q] Yabs) = -1 Q(0l1 | G)/Ticu® + T° H(al2 | 62)/c®; the observed
information is the complete information (reflected in Q)minus the missing
information (reflected in H).
Example: Suppose Y ~N(M s?), Yoos = {Y1, ..., Ym} ad Y mis = {Yms1, ..., Yn}. Recall
that the sufficient statisticsare &y; and & yi°.
- E Step:
0 E@iz1"Yi|9Y, Yope) = &ict™yi + (n-m) mY
0 E@i"y’19Y, Yon) = 8= yi® + (n—m)((n")? + (s©)?)
- M Step:
o nM™=E@i1"vi|9Y, Yo/n= @™ yi + (n-m) mY)/n
o (S(t+1))2 — E(éizln yi2 | q(t), Yobs)/n _ (n{t))Z
- Inthis case, we can solve for the limiting values (when ni” = n{"*?), to find that m
= é.i:lm Yi / mand SA2 = é.i:lm yi2 / m - I’ﬁ\z.

o O O O



