
Statistics 111 
 
Probability and Statistical Theory 
The axioms of probability are: 

• P(Ω) = 1 
• P(A) ≥ 0 for all events A 
• P(A ∪ B) = P(A) + P(B) if A ∩ B = ∅ 

Other facts that follow include: 
• P(AC) = 1 – P(A) 
• P(∅) = 0 
• P(A) ≤ P(B) if A ⊆ B 
• P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

 
Conditional Probability 
Definition.  A and B are independent if P(A) = P(A|B) or, equivalently, if P(A ∩ B) = 

P(A)P(B). 
Events may also be considered as sets of random variables. 
Definition.  X and Y are independent random variables if P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y 

≤ y), that is, FXY(x, y) = FX(x)FY(y).  This is equivalent to fXY(x, y) = fX(x)fY(y) and 
fX|Y(x | y) = fX(x).  (If fXY factors, then X and Y are independent.) 

Definition.  Let X and Y be discrete random variables.  Then, we define P(Y = y | X = x) 
= P(X = x, Y = y) / P(X = x).  For continuous random variables, we define fY|X(y | x) = 
fXY(x, y) / fX(x). 

Definition.  X1, …, Xn are independent if FX1, …, Xn(x1, …, xn) = FX1(x1) … FXn(xn).  
Equivalently, fX1, …, Xn(x1, …, xn) = fX1(x1) … fXn(xn) for all x1, …, xn ∈ R. 

Proposition.  Let X, Y be continuous random variables.  Them fXY(x, y) fX(x)fY(y) if and 
only if fX|Y(x | y) = fX(x). 

 
Distributions of Functions of Random Variables 
Let X and Y be independent random variables.  Suppose S = X + Y.  Then fS(s) = ∫-∞∞ fx(s 
– y)fY(y) dy.  Suppose S = X – Y.  Then, fS(s) = ∫-∞∞ fx(s + y)fY(-y) dy 
Suppose Z = XY.  Then, h(z) = ∫-∞

∞ f(z/y) g(y) dy / |y|. 
 
Expectations of Random Variables 
E(x) = ∫-∞∞ x fx(x) dx, provided that ∫-∞∞ |x| fx(x) dx <  ∞. 
Example.  Let fx(x) = 1 / π(1 + x2).  Then, E(X) does not exist. 
Note.  E(X) = ∫0∞ (1 – F(x)) dx for a continuous variable, or E(X) = ∑x=0

∞ P(X ≥ x). 
Law of the Unconscious Statistician.  Let Y = g(X).  Then, E(Y) = ∫-∞∞ g(x) fX(x) dx or 
E(Y) = ∑all x g(x) P(X = x). 
Note.  Suppose Y = a + b1X1 + b2X2 + …, where E(Xi) = µi.  Then, E(Y) = a + b1µ1 + 
b2µ2 + … 
Definition.  The variance is given by Var(X) = E((X - µX)2) = E(X2) – E(X)2. 
Defintion.  The covariance is given by Cov(X, Y) = E((X - µX)(Y - µY)) = E(XY) - µXµY. 
Note.  If X1, …., Xn are uncorrelated, then Var(a + b1X1 + b2X2 + …) = b1σX1

2 + b2σX2
2 + 

…  More generally, Var(X + Y) = Var(X) + Var(Y) + 2 Cov(X, Y). 



Note.  Cov(X1 + X2, Y1 + Y2) = Cov(X1, Y1) + Cov(X2, Y1) + Cov(X1, Y2) + Cov(X2, 
Y2). 
Note.  Cov(X, X) = Var(X). 
Definition.  The correlation coefficient is given by ρ = Cov(X, Y) / √ Var(X) Var(Y). 
Note.  |ρ| ≤ 1.  (Proof:  Consider that Var(X/σX + Y/σY) must be positive.) 
Chebyshev’s Inequality.  P(|X - µX| > t) < σX

2/t2. 
Law of Large Numbers.  Suppose X-bar ~ [µX, σX

2/n].  Then X-bar converges to µx in 
probability. 
Note.  Since P(|X - µX| < 2 σX) ≥ 1 - σx

2/4σx
2, at least 75% of observations will lie within 

two standard deviations of the mean. 
Corollary.  If Var(X) = 0, P(X = µX) = 1. 
 
Moment Generating Functions 
Definition.  If X is a random variable, then the moment-generating function is given by 
MX(t) = E(etX). 
Proposition.  M(r)(0) = E(Xr) 
Proof.  M(r)(t) = ∫-∞∞ xr etx fX(x) dx.  When t = 0, this is precisely E(Xr). 
Theorem.  If M(t) exists in an open interval containing 0, then it uniquely determines f. 
Proposition.  Let Z = X + Y, with X and Y independent.  Then, MZ(t) = MX(t)MY(t). 
Proposition.  If Y = a + bX then MY(t) = eatMX(t). 
Example.  If X ~ N(µ, σ2), then MX(t) = eµte-(σt)^2/2. 
Central Limit Theorem.  Let X1, X2, … be  a sequence of random variables identically 
distributed with mean µ and variance σ2 and moment generating function M defined in a 
neighborhood of 0.  Then, lim nà ∞ P((∑Xi - nµ)/σ√n ≤ k) = Φ(k). 
Note.  Because Gamma(α, λ), B(n, p), and Poisson(λ) can be considered sums, they are 
approximately normal for large values of α, n, and λ respectively. 
 
Likelihood Functions 
Definition.  Suppose X is a random variable whose distribution depends on a parameter θθ.  

Then, the likelihood function of θ given x is L(θ) = fX(x | θ).  This measures how 
probable the data would be for a given value of θ. 

Definition.  The Bayes posterior density is fθ|X(θ | x).  In this, we think of the unknown θ 
as a random variable.  If we call p(θ) the prior density, fθ|X(θ|x) = fX(x|θ)p(θ)/∫-∞

∞ 

fX(x|θ)p(θ) dθ. 
Note.  Notice that the denominator is a constant (with respect to θ).  So the posterior 

density is proportional to L(θ)p(θ).  In particular, a flat prior (assuming a uniform 
distribution on possible values of θ) simply yields a posterior density of L(θ). 

 
Large Sample Theory of Maximum Likelihood Estimators 
Definition.  I(θ0) = E((∂ (ln f(x|θ0)) / ∂θ)2) = - E(∂2 (ln f(x | θ0))/∂θ2) is the information 
conveyed about the parameter of a distribution.  θ0 is the true parameter value and x ~ f(x 
| θ0).   
Theorem.  The distribution of √[nI(θ0)] (θ^ - θ0) à N(0, 1), where θ0 is the true value of 
the parameter and θ^ is the estimate. 



Definition.  Suppose Xi ~ f(X | θθ).  Let T = T(x).  T is sufficient for θθ if fX(x | T) does not 
depend on θ. 
Theorem.  T is sufficient if and only if fX(x | θ) = g(T, θθ) h(x) [the rest of the x can be 
factored out]. 
Note.  If T is sufficient for θθ, then the rest of the data is not needed to estimate. 
Theorem (Rao-Blackwell).  Let θ^ be an unbiased estimator for θ.  Then θ~ = E(θ^ | T) is 
an unbiased estimator with a smaller variance. 
Definition.  A sufficient statistic is complete if E(g(T)) = 0 if and only if g is identically 
0. 
Theorem.  The lowest possible variance is achieved when T is complete.  Then, this is 
called the unique minimum variance unbiased estimator (UMVU). 
Theorem.  An sufficient statistic from the exponential family is complete. 
Theorem.  Any two minimal sufficient statistics are functions of each other. 
 
Hypothesis Testing 
The Neyman-Pearson Testing Paradigm:   

• Specify null and alternative hypotheses. 
o A hypothesis is simple if it specifies the values of all parameters 
o We define ω0 to be the region of possible values of the parameters under 

the null hypothesis and ωa to be the region under the alternative 
hypothesis. 

• Specify a statistic of the data and the acceptance and rejection regions for the 
statistic. 

• Type I Error:  Rejecting the null hypothesis when it is true.  The probability of 
type I error is controlled and called the significance level, α. 

• Type II Error:  Failing to reject the null hypothesis when it is false.  The 
probability of not committing a type II error is called the power of the test.  The 
Neyman-Pearson lemma states that, for two simple hypotheses, the likelihood 
ratio test is the most powerful.  A test is uniformly most powerful (UMP) if it is 
most powerful in all cases covered by Ho and Ha. 

Generalized Likelihood Ratio Test:  Let Λ = max θ∈ω0 lik(θ) / max θ∈Ω lik(θ), where H0 
specifies θ∈ω0 and HA specifies θ ∈ Ω − ω0.  Reject for small values of Λ. 

• The T-test and the χ2-test are both GLRT’s, since the p-values are small if and 
only if Λ is small. 

• Theorem.  Suppose f(x | θ) is smooth as a function of θ and the mle of θ is 
consistent.  Then, under H0, the distribution of –2 log Λ approaches χk

2, where k = 
dim Ω - dim ω0.   

 
Matrix Statistics 
Suppose z = c + Ay.  Suppose y ~ [µµ, ∑yy]. Then: 

• ∑zz = A∑yyA
T. 

• µµz = c + Aµµy 
 
Definition.  U is a pivotal quantity (pivot) if U = g(Y, θ) has a density free of Y and θ. 
Example.  The t-statistic for data is a pivot. 



Definition.  If the density of Y is such that fY|θ(y-θ|θ) is free of y and θ, then θ is a pure 
location parameter and U = Y - θ is a pivot. 

Example.  If Y ~ N(µ, 1), then U = Y - µ ~ N(0, 1), and µ is a pure location parameter. 
Definition.  If the density of Y|θ is such that Y/θ is free of Y and θ, then θ is a pure scale 

parameter, and U = Y/θ is a pivot. 
Example.  Y | σ2 ~ N(0, σ2), then σ is a pure scale parameter. 
 
Statistical Distributions 
Order Statistics 
Definition.  X ~ Beta(α, β) if fX(x) = (Γ(α+β)/Γ(α)Γ(β)) xα-1(1 – x)β-1, 0 ≤ x ≤ 1. 
Note.  ∫01 xα-1xβ-1 dx = Γ(α)Γ(β) / Γ(α+β). 
Note.  If X ~ Beta(α, β) then E(X) = α / (α + β).   
Definition.  Let X1, …, Xn be identically distributed.  Let X(k) be the kth largest value (that 

is, Xi < x(k) for k – 1 Xi and Xi > x(k) for n – k Xi).  Then, X(k) is called the kth order 
statistic. 

Fact.  Suppose X1, …, Xn ~ Uniform(0, 1).  Then X(k) ~ Beta(k, n – k + 1).  Hence, 
E(X(k)) = k / (n+1). 

More generally: 
  fX(k)(x) = P(Xi = x for some i)P(Xi < x for k – 1 Xi)P(Xi > x for n – k Xi) 
   = fX(x)(FX(x))k-1(1 – FX(x))n-k(n 

k-1, 1, n-k) 
   = (Γ(n+1)/Γ(k)Γ(n-k+1)) fX(x)(FX(x))k-1(1 – FX(x))n-k 

 so the distributions may be plugged in to find the distribution of the order statistics. 
 
Bivariate Normals 
The bivariate normal distribution is given by fXY = (1/(2πσXσY√(1-ρ2)) exp(-((X - 
µX)2/σX

2 + (Y - µY)2/σY
2 - 2ρ(X - µX)(Y - µY)/σXσY)/2(1 - ρ2)) 

- Then, Y | X ~ N(µY + ρ(σY/σX)(X - µX), σY
2(1 - ρ2)).   

- Cov(X, Y) = ρσXσY 
- We may consider generating U, V ~ N(0, 1) independently.  With the proper 

choices of coefficients, we let X = aU + bV and Y = cU+dV, and these will 
generate any bivariate normal. 

(The trick for normals: Factor the exponent into (Y – A)2/2V2; A is the mean and V is the 
variance.  The leftover constants can be ignored. 
Linear Predictions:  Suppose we want to minimize E((αX + β - Y)2) by predicting Y from 
X.  We predict Y^ = µY + (σY/σX)ρ(X - µX). 
 
Multivariate Normal Distributions 
Definition.  We  say X = (X1, …, Xn) is multivariate normally distributed, X ~ Nn(µµ, Σ), 
where Σ is an n × n matrix with non-negative eigenvalues, if fX(x) = (2π)-n/2 |Σ|-1/2 exp(-
0.5 (x - µµ)TΣ-1(x - µµ)). 
Note.  If Y = AX + b, the Y ~ Nm(Aµµ + b, AΣAT) 
Definition.  X is distributed as a standard multivariate normal if µµ = 0 and Σ = I.   
Note.  Let Σ-1/2 be defined by the inverse of Σ1/2, where Σ1/2(Σ1/2)T = Σ.  For any 
multivariate normal X, Σ-1/2 (X - µµ) ~ Nn(0, I).  Note that Σ1/2 and therefore Σ-1/2 are not 
uniquely defined.  



Example.  If Σ = (1
ρ

ρ
1), µµ = (0

0), then y1 and y2 are standard normal with correlation ρ. 
Example.  If Σ can be written in block form, the variables in one block are independent of 
the variables in the other block.  Independent, identically-distributed variables have a 
covariance matrix of the form σ2I. 
. 
Statistics for Specific Situations 
Testing for Goodness of Fit 
Chi-Square Goodness of Fit Test:  Suppose X1, …, Xm are distributed according to a 
multinomial distribution.  Then ∑ (Xi – E(Xi))

2/E(Xi) approaches a χm-1
2 distribution. 

- This may be used for grouped observations as well; combining categories 
improves the approximation, because the approximation is better with large E(Xi). 

Fitting Data Visually: 
- Hanging Histogram:  Draw a histogram of expected (nj) – observed (nj

^).   
o Assuming E(nj – nj

^) = 0, Var(nj – nj
^) ≈ nj

^. 
- Hanging χ-gram: Plot χ = (nj – nj

^) / √nj
^ 

o Var(χ) ≈ 1 
- Hanging Rootgram:  Plot R = √nj - √nj

^ 
o Var(R) ≈ Var(√nj) ≈ Var(nj) / (2√nj)

2 = 1/4 
 
Testing for Normality 
Quantile Plot: Take the inverse CDF’s of the order statistics of the uniform (ie. F-1(k / 
(n+1))); these are the “expected quantiles”.  Plot these against the ordered data – the line 
should be very straight. 
Some other tests statistics:  The distributions may be found through simulation. 

- Skewness: (1/n)(∑(Xi – X-bar)3)/s3 

- Kurtosis: (1/n)(∑(Xi – X-bar)4)/s4 

- ∑ |quantile – E(quantile)| or max {|quantile – E(quantile)|} 
 
Survey sampling 
Statification:  Suppose we divide a population of size N into L strata based on some 
characteristic.  Let Nl be the population size of the lth stratum, Wl = Nl/N.  Let nl be the 
sample size from the lth stratum.   

• Estimating µ: X-bars = ∑ Wl X-barl = ∑l Wl (∑i Xil)/nl 
• Var(X-bars) = ∑ Wl

2 (σl
2 / nl) (1 – nl/Nl) 

• The proportional allocation is given by nl = Wl n.  The variance of the estimate in 
this case is ∑Wl σl

2 / n. 
• The Neyman allocation is given by nl = n Wlσl / ∑ (Wkσk).  Ignoring the finite 

population correction, this allocation minimizes variance, to be (∑ Wl σl)
2/n.  This 

is (∑ Wl (µl - µ)2)/n less than the variance of the non-stratified estimate. 
• Note that stratifying does not increase variance (assuming a good allocation).  So 

stratifying on something irrelevant to the parameter being estimated is only 
useless.  Ideally, strata have small variances within them and large variances 
between them. 

• Stratifying based on sampling method can be useful for combining them properly. 



Prior Information:  Suppose µX is known and we want to know µY.  We may take a 
random sample and find Xi, Yi for each element.  We then estimate µY as a function of 
µX, X-bar, and Y-bar. 

- Difference Estimation:  µY
^ = Y-bar – k(X-bar - µX), where k is any constant. 

o Var(µY
^) = σY

2/n + k2σX
2/n – 2kσXY/n 

- Regression Estimation:  Choose the k above by regressing yi – y-bar on xi – x-bar 
(no constant).  This asymptotically minimizes the variance. 

- Ratio Estimation:  µY
^ = Y-bar * µX / X-bar 

o This is biased: E(µY
^) - µY ≈ (1/n)(1 – (n-1)/(N-1))(σX

2µY/µX - 
ρXYσXσY)/µX. 

o Var(µY
^) ≈ (1/n)(1 – (n-1)/(N-1))((µY/µX)2σX

2 + σY
2 – 2rρσxσy) 

§ Var(µy
^) < Var(y-bar) ó |ρ| > |r σx/σy|/2, so this is useful when r is 

large relative to σx/σy. 
- This can also be useful when the xi are cheaper/easier to obtain (say, eye 

estimates).  Then, a census of the xi can be taken and a sample of the yi (say, exact 
measurement) can be used to estimate µY. 

Non-response:  Collect data from a sub-sample to non-respondents.  Let y1-bar be the 
mean for respondents and y2-bar be the mean of the non-respondents.  Then, we estimate 
y-bar as a weighted average of the respondents and the non-respondents (note that y2 is 
weighted by the total number of non-respondents, not the number who were sampled to 
find y2-bar).  This increases the variance. 
 
Categorical Data Analysis 
One factor: Suppose there are k categories with πi probability of an observation being the 
in the ith category and yi observations in each category. 

- Mode:  The category with the higheest yi 
- Concentration: a measure of spread 

o Genie Concentration: VG = ∑ πi(1 - πi) 
o Entropy:  VE = ∑ πi ln πi, where we assume 0 ln 0 = 0. 
o If all the observations are in one category, VE = VG = 0. 
o If the observations are evenly spread out:  πi = 1/k for all i, and VG = (k-

1)/k while VE = ln k.   
§ If we normalize by dividing by the maximum value, VE and VG 

will be close. 
-  Measures of Association: Let πij = P(x1 ∈ i, x2 ∈ j) and πi* = P(x ∈ i).  x1 and x2 

can have to do with different measurements in the same category.  We assume j is 
known but i is not. 

o τ = (∑∑ πij
2/ πi* - ∑ π*j

2)/(1 - ∑ π*j
2) 

o Uncertainty coefficient: U = (∑∑ πij ln(πij/πi*π*j))/ ∑ π*j ln(π*j) 
o τ = U = 0 if πij = πi*π*j (ie. i and j are independent) 
o τ = U = 1 if knowing j ensures that one knows i. 
o Cohen’s kappa:  κ = (∑ πii - ∑ πi*π*i)/(1 - ∑ πi*π*i); measures the 

probability that two are in the same category. 
Multinomial & Poisson Models:  Suppose we have N things in k categories.  Let Xn be 
the category of the nth object and Yi be the number of objects in the ith category. 



• L(ππ | x) = Πn πXn = π1
Y1π2

Y2…πk
Yk  

• P(y | N, k, π1, …, πk-1) = n! Π πi
yi / Π yi! 

• l(π1, …, πk-1) = constant + ∑yi ln πi(θ), where we may consider πi(θ) to be a 
function describing the probabilities. 

o l(θ^) = constant + ∑ yi ln yi
^ (where yi

^ is the expected value under θ^) 
• Poisson Model: Wait for a time t to observe k events. 

o P(event type i occurs in δT) = αiδT 
o Yi = # of events of type i ~ Poisson(αiT) = Poisson(µi) 
o Then, the number of events seen is a random variable. 
o L(µµ | x) = Π P(Xn is of type i) ∝ e-∑µi Π µyi/yi! 
o l(µµ | y) = constant - ∑ µi + ∑ yi ln µi 
o P(Y | θ) = P(N = n)P(y | N = n) 

§ This means that once we condition on the total number of 
observations, the Poisson model is still multinomial.  Conversely, 
we may model multinomial data as though it came from a Poisson 
process. 

- Sufficient Statistics:  {y1, …, yk}; N and k-1 of the yi. 
o µi | n = E(yi | n) = nπi, so µi = πi E(n) 

- Non-Poisson multinomial:  P(y) = P(N = n)P(y | N = n), where P(N = n) may be 
any distribution.  Note that the same results hold after we condition on n. 

Two (and more) Way Tables 
- Fisher’s Exact Test 

o We assume that marginal probabilities (in both rows and columns) and 
count are fixed.  In a 2 × 2 table, this allows exactly one parameter to vary 
(and affect the others).  Fisher’s exact test finds the distribution of this 
parameter under the constraints (which is hypergeometric, with some 
parameters), assuming that there is no interaction between the columns 
and rows.  This allows the p-value to be found. 

o To use this on a larger table, combine rows or columns to create a 2 × 2 
table.  Or the test may be used, but the distributions must be found for 
multiple parameters. 

- Pearson Goodness of Fit test 
o Expected Values:  Ei = Count * Π Marginal Probabilities 
o Then, ∑ (Oi – Ei)

2/Ei ~ χ2, with df = #cells - #parameters fixed 
 
ANOVA 
One-Way Layout:  Ji measurements of a random variable Yi are taken in each of I 
treatments (“levels”). 

- F-Test: Assume that Yi ~ N(µ + αi, σ2), with ∑ αi = 0.  Let Yij be the realizations 
of the Yi.   

o ∑∑ (Yij – Y..-bar)2 = ∑∑ (Yij – Yi.-bar)2 + ∑ Ji (Yi.
 – Y..-bar)2; we may 

write this as SSTOT = SSW + SSB.   
o If Yij ~ N(µ  + αi, σ2), then SSW/σ2 ~ χ2

I(∑Ji – 1).  If αi = 0 for all i, SSB/σ2 ~ 
χ2

I-1 and is independent of SSW. 
o If αi = 0 for all i, F = (SSB/(I–1))/(SSW/(∑Ji–I)) ~ FI-1, ∑Ji-I. 



- Kruskal-Wallis Test:  Rank all observations (averaging ranks for ties), replacing 
Yij by Rij.  We may use simulation, since we know all the values.  Alternately, K 
= 12 SSB / N(N+1) ~ χ2

I-1.  (SSB from the Rij.) 
Two-Way Layout: Suppose we classify measurements by two factors (A and B).  Assume 
Yijk = µ + αi + βj + δij + εijk, where ∑αi = ∑βj = ∑∑ δij = 0, and εijk is independent of i, j.  
Suppose Yijk ~ N(µ + αi + βj + δij, σ2). 

- SSTOT = ∑∑∑(Yijk – Y…)2; SSA = JK∑i (Yi.. – Y…)2; SSB = IK∑j (Y.j. – Y…)2; 
SSAB = K∑∑ (Yij. – Yi.. – Y.j. + Y…)2; SSE = ∑∑∑ (Yij. – Yijk)

2 
- SSE / σ2 ~ χ2

IJ(K-1).  Under their respective null hypotheses, SSA/σ2 ~ χ2
I-1, SSB/σ2 

~ χ2
J-1, SSAB/σ2 ~ χ2

(I-1)(J-1).  This leads to more F tests. 
The problem of multiple comparisons:  If we want to test pairs for individual differences 
(instead of just finding an overall difference), we must use I(I-1)/2 tests.  For a fixed α, 
the probability of making a type I error approaches 1 for large I.   

- Tukey’s Method:  Use a distribution which adjusts for this. 
- Bonferroni Method: Test all hypotheses at the α/(I(I-1)/2)) level.  This is 

conservative. 
Randomized Block Design:  Suppose there are J homogenous blocks.  Assign each of the 
I treatments to one block.  We may these assume there is no interaction.  We model Yij = 
µ + αi + βj + εij.  Our F-tests then use F = (SSA/(I-1))/(SSAB/(I-1)(J-1)) or F = (SSB/(J-
1))/(SSAB/(I-1)(J-1)).  (These statistics are conservative when there is interaction, since 
SSAB/(I-1)(J-1) > σ2 when there is interaction.) 
Interaction Plot:  Draw one line for each row category, connecting dots at each mean for 
each column category.  If the lines are not parallel, there may be an interaction. 
Random Effects Model:  Suppose Yij | èi, ói

2 ~ N(èi, ói
2), so that within group i, the 

measurements are similarly distributed but not like the measurements in other groups, 
so that Yij = èi + åij, and that èi | ì, A ~ N(ì, A) (or some random distribution).  

• More generally: èi | â, A ~ N(Xi
Tâ, A) – this allows relationships among the èi. 

• If Yij are vectors, then èi is also. 
• Simplification:  Assume ói

2 is known, so that all the Yi.-bar are sufficient for èi. 
• Treat ói

2 = V as constant over all i.  Then, Yi ~ N(ì, V + A), so that ì ^ is the 
average of all the Yi and A^ = max{0, Ó(Yi –Y-bar)2/k – V} – if A^ = 0, then èi is 
probably constant. 

 
Linear Regression 
Model: Y = β0 + β1X + ε, where ε ~ [0, σ2], independently of X. 

- To estimate β0 and β1, we minimize ∑ (Yi - β0
^ - β1

^Xi)
2.   

- This yields unbiased estimators:  
o β0

^ = (∑Xi
2 ∑Yi - ∑Xi ∑XiYi)/(n∑Xi

2 – (∑Xi)
2)  

o β1
^ = (n∑XiYi – (∑Xi)(∑Yi)) /(n∑Xi

2 – (∑Xi)
2)  

- Proving that they are unbiased includes the assumption that the Xi are fixed 
beforehand. 

- Variances: 
o Var(β0

^) = σ2∑Xi
2/(n∑Xi

2 – (∑Xi)
2) 

o Var(β1
^) = nσ2/(n∑Xi

2 – (∑Xi)
2) 

o Cov(β0
^, β1

^) = -σ2∑Xi/( n∑Xi
2 – (∑Xi)

2) 



o To estimate σ2: s2 = ∑(Yi – Yi
^)2/(n-2) [more generally, n-k] 

- This assumes homoskedasticity – if this is not true, let Y’ = f1(Y) and X’ = f2(X).  
If f1 = f2, then a straight line will stay straight, but the residuals will change, 
possibly to become homoskedastic. 

Multiple Regression:  Let Y = (Y1, …, Yn)
T.  Let X = (xij), where xoj = 1 and xij is the jth 

variable of the ith observation.  Let β = (β0, …, βp-1)T and ε = (ε1, … εn)
T.  Then, Y = Xβ 

+ ε. 
- Then, β^ = (XTX)-1XTY.  (XTX is invertible unless the xi are perfectly 

multicollinear.)  It is unbiased. 
- Var(β^) = σ2(XTX)-1. 

Comparing Nested Models:  Find the total sum of squares explained by the more 
restrictive model, the total explained by the less restrictive model, and the difference 
(error) between them.  Find the degrees of freedom for each model (and the difference 
again).  Let MS = SS/DF for restricted and error.  Let F be the ratio of the MS’s.  Under 
the null hypothesis, F ~ Ftreatment, error. 
Residuals:  Let P = X(XTX)-1XT.  Then, Y^ = PY. 

• (I – P)2 = (I – P) 
• ∑(Yi – Y^

i)
2 = ||(I – P)Y||2 = YT(I – P)Y 

• E(YT(I – P)Y) = σ2(n – p) 
• An unbiased estimator for σ2: s2 = ∑(Yi – Yi

^)2/(n-p) 
• ∑e^e^ = σ2(I – P), so that the residuals are correlated. 

o We can standardize to ej
^/ sqrt((n-1)/n – (xj – x-bar)2/∑(xi – x-bar)2)) 

• E(Y^) = β0 + β1X 
• Var(Y^) = σ2(1/n + (x – x-bar)/∑(xi- x-bar)2), so that the variance of the 

predictions gets larger as the x-value gets further from the mean.  (This yields a 
prediction interval.) 

R2: 
• R2 = SSE / SST = 1 - ∑(yi – yi

^)2/∑(yi – y-bar)2.  This is the proportion of total 
variation in y explained by the variation in x. 

• In the one variable case, r = ∑(xi – x-bar)(yi – y-bar)/√∑(xi- x-bar)2∑(yi – y-bar)2 
= √R2. 

• As we add more predictors, the residual sum of squares will always decrease, so 
R2 will always increase.  So we adjust for this: 

• R-bar2 = 1 – (n-1/n-p)(1 – R2) 
Comparing two regressions (and two parts of data): {(xi, yi)} and {(xi’, yi’)}. 

• Let s = √(∑(Yi – Yi
^)2 + ∑(Yi’ – Yi

^’)2)/(n-2 + m-2)) 
• Let t = (β1 - β1

^) / s√1/∑(xi – x-bar)2 + 1/∑(xi’ – x-bar’)2) 
• Under the null hypothesis that the slpes are equal and the errors are normally 

distributed, t ~ tn+m-4. 
• Alternately, we may run a regression on all the data and test the residuals for 

patterns (t-tests, rank tests, run tests). 
Interaction: Suppose Y depends on a variable X and an indicator (dummy) variable D.  
Then we may allow interaction if we use the regression Yi = β0 + β1Xi + β2Di + β3XiDi.  
This allows both the slope and the intercept to differ between the two groups.  (If there 
are k categories, this requires k-1 dummy variables and more care insignificance tests.) 



Inverting a Regression:  
• Regress X on Y.  (Assuming X is  also random.) 
• Calibration Interval:  Solve Y = β0

^ + β1
^X for X.  Then, the standard error is sx^ = 

StandardError(Prediction of Y | X^)/|β1
^|. 

• Find the prediction intervals for Y at each X and see which intervals contain the Y 
in question.  (This is often wider than reversing a regression.) 

Xi’s are random:  No change.  (The variance of β^ changes, but not in a way that affects 
coverage probability of confidence intervals or anything like that.) 
Measurement Error (in the Xi’s): Now, Xi ~ [µX, σX

2].  Estimates are unbiased, but 
variances of estimators are bigger. 
 
Decision Theory and Bayesian Statistics 
Terminology: An action is a choice made (from a set A).  A state of nature is the true 

value of some unknown parameter.  A decision function, d: X à A, maps an 
observation about the word to an action.  A loss function, l(è, d(X)), measures the 
losses associated with taking a certain action in a certain state of the world.  (Negative 
losses are gains…)  The risk function, R(è, d) = EX(l(è, d(X))), measures the risk 
(expected loss) associated with a certain decision function. 

Minimax Method:  Minimize the maximum possible losses. 
• Let d* = mind∈D (max θ∈Θ R(θ, d)), where D is the set of all possible decision 

functions and Θ is the set of all states of the world.   
Bayes Rule:  Assign a prior distribution to θ.  Then, the Bayes risk is B(d) = Eθ(R(θ, d)).  
Minimize this. 

• The posterior distribution is h(θ | X), so that the posterior Bayes risk is E(l(θ, 
d(X)) | X = x). 

• To find a Bayes rule: 
o h(θ|X) = f(X|θ)g(θ)/(∫ f(X|θ)g(θ)dθ) 
o E(l(Θ, a) | X=x) = ∫ l(θ, a)h(θ|X)dθ 

0-1 Loss: The loss function is 0 if one is correct and 1 otherwise, so that R(i, d) = 1 – 
P(d(X) = 1).  This is the risk of being wrong. 

Neyman-Pearson Lemma.  Let d* be a test (decision rule) that accepts if f(x|θ1)/f(x|θ2) > 
c.  Let α* be the significance level of d*.  Let d be any other test with significance level 
α ≤ α*.  Then the power of d is at most the power of d*. 

Proof.  Let c = (1 - π)/π.  Then, we accept when πf(x|θ1)/(1-π)f(x|θ2) < 1, so that this is 
actually a Bayes Rule with priors π, 1-π, and 0-1 loss.   

Theorem.  Suppose R(θ, d) = E((θ - d(X))2).  Then the Bayes estimate, d(X), is the mean 
of the posterior distribution.  However, if R(θ, d) = E(|θ - d(X)|), then d(X) is the 
median.  (In fact, all the M-estimates work this way.) 

Definition.  Let d1, d2 be two decision functions.  d1 dominates d2 if R(θ, d1) ≤ R(θ, d2) 
for all θ.  d1 strictly dominates d2 if d1 dominates d2 and the inequality is strict at any 
point.  d1 is admissible if it is not strictly dominated by an other decision function. 

Theorem.  Suppose d* is a Bayes Rule with respect to some prior, g, with g(θ) > 0 for all 
θ and R(θ, d) continuous.  The d* is admissible. 

Proof.  Use the fact that Bayes Rules minimize B(d). 
 



Hierarchical Models:  Suppose the observed variable depends on a parameter that varies 
itself (for each different observation) according to a different distribution.  (This is akin 
to having a prior on the parameter.) 

- Some distributions are conjugate, meaning that they fit well together. 
o Poisson-Gamma:  Xi | θi ~ Poisson(θi), θi ~ Gamma(α, λ).   

§ Xi | α, λ ~ NegativeBinomial(α, λ/(1+λ)). 
§ θi | Xi, α, λ ~ Gamma(Xi + α, 1 + λ) – the expected value is a 

weighted average of the old parameters and the information 
derived from Xi’s value; the weights depend on λ. 

o Beta-Binomial 
o Exposures and Covariates:   

Bayesian Procedure (for Random Effects in ANOVA):  Suppose there are k observations 
of Yi, each with its own random effect. 

o Specify priors on ì and A.  (They may be non -informative – constant over 
all values.) 

o Posterior densities: 
§ If p(ì, A) is constant, then f(ì, A | Y) is proportional to f(Y | ì, A).  
§ Let B = V/(V+A), so that E(èi | Yi, ì, A) = Bì + (1 -B)Yi.  A flat 

prior for A is not flat for B.  In fact, B | Y ~ 
ConstrainedGamma((k-3)/2, Ó(Yi – Y-bar)2/2V, 1), which is a 
density if k > 3. 

 
Stein Estimators:  Suppose Xi | θi ~ N(θi, Vi) and θi ~ N(µi, A), for i = 1, …, k.  Then θi | 

Xi ~ N((Viµi + AXi)/(Vi +A), AVi/(A + Vi)), so that we estimate θ^ = µi + (1 – 
Vi/(A+Vi))(Xi - µi).  Let dS = (1 – c/∑(Xi - µi)

2)(Xi - µi) + µi. If we assume a quadratic 
loss function, R(θ, dS) = k + (-2c(k-2) + c2)(E(1/∑(Xi - µi)

2)).  If 0 < c < k-2, then the 
risk of this estimator is lower than of simply guessing θi = Xi, even if the µi are badly 
chosen (though then 1/∑(Xi - µi)

2 is very small).  Best estimate: θ^ = (1 – c/∑(Xi - 
µi)

2)(Xi - µi) + µi.  Choosing µi = Xi removes the degrees of freedom that were helping 
– that is bad.   

 
Approximate Methods 
Let X ~ [µX, σX

2].  Let Y = g(X).  Then, using a Taylor expansion: 
 Y = g(X) ≈ g(µX) + (X - µX) g’(µX) + ½ (X - µX)2 g’’(µX) 
 E(Y) ≈ g(µX) [this comes from the first term, or from the first two: E(X - µX) = 0] 
 or, E(Y) ≈ g(µX) + ½ E((X - µX)2) g’’(µX) = g(µX) +  ½ σx

2 g’’(µX) 
 Var(g(X)) ≈ σX

2 (g’(µX))2 
These approximations are exact when g is linear or (for the mean) quadratic. 
 
Simulation 
Generating Random Variables 
Inverse CDF Method:  Suppose X is a random variable with CDF FX.  Then, the random 

variable FX(X) is distributed Uniform(0, 1).  Inverting this, we find that if U ~ 
Uniform(0, 1) then FX

-1(U) has the same distribution as X. 



Rejection Method:  Suppose fX is the density function of X.  Let [a, b] be the (possibly 
infinite) interval on which fX(x) ≠ 0. 

• Algorithm: 
o Choose a function M(x) such that M(x) ≥ f(x) on [a, b].  Let m(x) = M(x) / 

∫ab M(x) dx. 
o Generate T with density m(x). 
o Generate U ~ Uniform(0, 1), independent of T. 
o If U * M(T) ≤ f(T) then accept T.  Otherwise, return to the first step. 

• Proof of Method 
o P(x ≤ X ≤ x + dx) = P(x ≤ T ≤ x + dx | accept T) = P(accept T | x ≤ T ≤ x + 

dx) * P(x ≤ T ≤ x + dx) / P(accept T) 
o P(accept T |  x ≤ T ≤ x + dx) = P(U ≤ f(x) / M(x)) = f(x) / M(x) 
o P(x ≤ T ≤ x + dx) = m(x) 
o P(accept T) = ∫ab (f(t)/M(t)) * m(t) dt = ∫ab f(t) * (1 / ∫ab M(x) dx) dt = 1 / ∫ab 

M(x) dx 
o Combining, we find P(x ≤ X ≤ x + dx) = f(x) dx, which is the correct 

distribution. 
• We call the percentage of T’s accepted the acceptance rate.  This is exactly ∫ab f(x) 

dx / ∫ab M(x) dx = 1 / ∫ab M(x) dx. 
Another way to generate two normals: 

• Let X1, X2 ~ Uniform(-1, 1) 
• Accept x1

2 + x2
2 ≤ 1 (in the unit circle) 

• Let v = x1
2 + x2

2 
• P(V ≤ v) = P(X1

2 + X2
2 ≤ v), so V ~ Uniform(0, 1) 

• Let R = √(-2 ln v)  
• Let cos U = x2 / √v, sin U = x1 / √v. 

Bootstrapping:  A way to test without finding a distribution. 
- Simulate the experiment (under the null hypothesis or with the given estimate) 

and compute the test statistic many times.  Compare the actual test statistic to the 
ones found. 

- Find a sufficient statistic and generate new data according to the distribution 
determined by it.  This removes the dependence on the other parameters. 

- Using simulation to find the distribution of parameters given the data: (Markov 
Chain Monte Carlo – Gibbs Sampling) 

o Let ö ~ (è, ì, A) .  Generate ö* by: 
o Drawing A* ~ A | Y, ì, è 
o Drawing ì* ~ ì | Y, A*, è 
o Drawing è* ~ è | ì*, Y, A*  
o Drawing ö* ~ (è*, ì*, A*)  
o Note that ö* has the same distribution as ö, so that ö1, ö2, ö3, … is a 

Markov chain.   
§ Definition.  Y0, Y1, … is a first order Markov Chain if f(Yt | Yt-1, 

Yt-2, …, Y0) = f(Yt | Yt-1) 
§ An equilibrium distribution, f0(Y) is a distribution that holds for all 

Y after a certain point in a Markov Chain.  (If we can create a 



Markov Chain with the equilibrium distribution, we may take 
random samples from that distribution.) 

Gibbs Sampling: Let φ = (φ1, …, φp).  Generate φi
t+1 ~ f1(φi | Y, φ1, …, φi-1, φi+1, …, φp) 

for each i in order (1 to p).  These consecutive values are not independent, but they have 
the correct distribution.  (Also, knowing when it is in equilibrium is hard.) 

• Coupling:  Start two processes at different initial points and update them with the 
same random numbers.  When they agree, they had “forgotten” their starting 
points and reached equilibrium.  (Can’t start right after coupling, but close to 
then.) 

 
EM Algorithm 
Definition.  Data with one variable of importance, y, are MAR (missing at random) if 
whether they are missing is independent of y.  Data in which (x, y) are the variables of 
importance, x is always known, and y is missing are MAR if whether y is missing is 
independent of y conditional on x. 

- Note that the probability that y is missing may depend on x and the data are still 
MAR. 

The EM Algorithm: 
- E-Step:  Find the expectation of the sufficient statistics given the observed data 

and the current estimate of the parameter, θ(t). 
- M-Step:  Find the maximum likelihood estimate of the parameter given the 

expectation of the sufficient statistics. 
- The analysis: 

o f(Y | θ) = f(Yobs, Ymis | θ) = f(Ymis | Yobs, θ) f(Yobs | θ) 
o l(θ | Yobs) = l(θ | Y) – ln f(Ymis | Yobs, θ), so l(θ | Yobs) does not depend on 

Ymis. 
o Let Q(θ | θ(t)) = EYmis(l(θ | Ymis, Yobs) 
o Let H(θ | θ(t)) = EYmis(ln f(Ymis | Yobs, θ) 
o Then, l(θ | Yobs) = Q(θ | θ(t)) – H(θ | θ(t)) 
o Theorem.  Suppose (1) ∂ (Q(θ | θ(t)))/∂θ |θ = θ(t+1) = 0 for all t, (2) θ(t) 

converges to θ*, and (3) f(Ymis | Yobs, θ) is smooth as a function of θ.  
Then, ∂(l(θ | Yobs)/∂θ |θ=θ* = 0, so that θ* is a stationary point. 

o I(θ | Yobs) = -∂2 Q(θ1 | θ2)/∂θ1
2 + ∂2 H(θ1 | θ2)/∂θ1

2; the observed 
information is the complete information (reflected in Q)minus the missing 
information (reflected in H). 

Example:  Suppose Y ~ N(µ, σ2), Yobs = {y1, …, ym} and Ymis = {ym+1, …, yn}.  Recall 
that the sufficient statistics are ∑yi and ∑yi

2. 
- E Step:  

o E(∑i=1
n yi | θ(t), Yobs) = ∑i=1

m yi + (n-m) µ(t) 
o E(∑i=1

n yi
2 | θ(t), Yobs) = ∑i=1

m yi
2 + (n – m)((µ(t))2 + (σ(t))2) 

- M Step: 
o µ(t+1) = E(∑i=1

n yi | θ(t), Yobs)/n = (∑i=1
m yi + (n-m) µ(t))/n 

o (σ(t+1))2 = E(∑i=1
n yi

2 | θ(t), Yobs)/n – (µ(t))2  
- In this case, we can solve for the limiting values (when µ(t) = µ(t+1)), to find that µ^ 

= ∑i=1
m yi / m and σ^2 = ∑i=1

m yi
2 / m - µ^2. 


