
Scientific Computing Summary

Rebecca Sela

May 7, 2005

1 Analyzing General Problems

1.1 The Condition of a Problem

Let P be a problem with data d and solution s(P, d). We have a criterion
function, ∆(·, ·, ·) such that ∆(s, P, d) = 0. (Ideally, ∆(s′, P, d) is small when
the distance from s to s′ is small. This is not always true.)

Definition The condition number of a problem is a measure that reflects the
largest possible relative change in the exact solution of a problem resulting from
changes in the data. The condition number may depend on the problem and
the criterion function for the solution, but does not depend on the numerical
method used for solving it. (That is an issue of stability.)

Definition A problem is well-conditioned if small changes in the data always
lead to small changes in the exact solution. A problem is ill-conditioned if small
changes in the data may lead to large changes in the exact solution.

1.2 Error Analysis

Definition In forward error analysis, a solution is good if the computed solu-
tion is close to the exact solution.

This is hard to check, since the exact solution is generally not known. Also,
this will reject any solution method for ill-conditioned problems.

Definition In backward error analysis, one interprets the computed solution as
the exact solution of a different problem and checks how the data has changed.

In general,

forward− error ≤ backward− error × condition− number

Definition An algorithm is backward stable if the result of the algorithm is the
exact solution of a nearby problem.

1

1.3 Errors in Finite Precision

Numbers in computers must be stored in finite precision. Generally, they are
stored as a number of significant digits and a number that indicates where the
decimal goes, so that 0.43 and 43 have the same precision. Numbers are made
finite precision by rounding (to either the nearest even or the nearest odd if the
part being rounded is exactly 1/2) and truncation.

Definition Suppose x is an exact number and x′ is an approximation to it.
Then, the absolute error is |x − x′|, and the relative error is |x−x′|

x , if x 6= 0.
The mixed error is |x−x′|

1+|x| .

Definition Cancellation is the subtraction of nearly equal numbers. Cancella-
tion error is the error due to subtracting nearly equal numbers due to rounding
(since many digits of the difference may have been lost in the rounding).

“Cancellation reveals the error of rounding.”
In error analysis, for any number, x, we have fl(x) = x(1 + ξx) which is the

floating point value of x (where |ξx| ≤ εm is the relative error which is less than
machine precision). We then see how the errors combine:

fl(fl(x) + fl(y)) = (fl(x) + fl(y))(1 + δ)

fl(
fl(x)
fl(y)

) =
fl(x)

fl(y)(1 + δ)
δ ≤ εm

This gives a worst case bound on the errors (they may not actually be this bad).
The maximum achievable accuracy is the range of solutions that cannot be

distinguished from the true solution because of machine precision. (For example,
values very close to the true root of an equation may still evaluate to 0 in finite
precision.) The accuracy may depend on the condition number of the problem
and the computation method, as well as on machine precision.

1.4 Order notation

Definition Let φ(h) be a function of h > 0. Let p be fixed. If there exists a
constant, M > 0 such that |φ(h)| ≤ Mhp for all sufficiently small h, we say that
φ = O(hp).

1.5 Rates of convergence

To judge an algorithm, we consider the sequence of iterates, {xk} that it gen-
erates. The first qualification is that xk → x∗, where x∗ is the true solution to
the problem. If that holds, then we want to know how fast it converges.

Definition Suppose xk → x∗. We say that {xk} is linearly convergent if:

‖xk+1 − x∗‖ ≤ α‖xk − x∗‖

with 0 < α < 1. α is called the asymptotic error constant.

2

Definition Suppose xk → x∗. We say that {xk} is quadratically convergent if:

‖xk+1 − x∗‖ ≤ β‖xk − x∗‖2

with 0 < β. β is called the asymptotic error constant.

Definition Suppose xk → x∗. We say that {xk} is super-linearly convergent if:

‖xk+1 − x∗‖ ≤ βk‖xk − x∗‖

with βk → 0.

1.6 Richardson Extrapolation

Suppose we have an approximation method and we know the order of the error
as O(hp) for a relevant h. Then, we may calculate the approximation with two
different values of h and take a linear combination of the two approximations
so that the highest order error (approximately) cancels out. This is called
Richardson extrapolation. Continuing this with more terms to get rid of more
orders of error is called Extrapolation to the Limit.

Similar methods may be used to estimate the error at any point (to know
whether h really needs to be reduced) or to identify potential problems in the
algorithm.

2 Solving One-dimensional Non-linear Equations

Problem: Solve the equation f(x) = 0. (It is not required that we have a
closed form description of f .)

This problem has some limitations:

• Some functions have no solutions or multiple solutions.

• Some solutions occur when the function is tangent to the x-axis, which
makes them harder to find.

• The solution of an arbitrary function (even a continuous one) cannot be
found in a finite number of steps.

• Finite precision means that some functions look identical even though they
are not exactly identical.

• Infinitely many functions have exactly the same solutions, and different
methods may be more useful for different functions.

Algorithm: Bisection

• Suppose f is continuous on [a0, b0], with f(a0)f(b0) < 0.

3

• Define xk = ak−1+bk−1
2 . If f(xk) = 0, we have found the solution. If

f(ak−1)f(xk) < 0, set ak = ak−1 and bk = xk. Otherwise, we must have
f(xk)f(bk−1) < 0, and we set ak = xk and bk = bk−1.

• We terminate when either f(xk) = 0 (in the finite precision sense) or the
iterates are very close (bk − ak < εm, for example).

This algorithm is guaranteed to halve the length of the interval each time and
will therefore always find a zero. It is optimal in the worst case.

Theorem 2.1 Suppose a function, f , and its first two derivatives exist and are
continuous. Then, we may write:

f(x + δ)− f(x) = δf ′(x) +
1
2
f ′′(ξ)δ2

where ξ ∈ [x, x + δ]. This is called the Taylor expansion.

Algorithm: Newton’s Method

• Suppose we know that f is differentiable and we can evaluate the derivative
(numerically or otherwise). We also assume that we have a starting value,
x0, close enough to the solution that a Taylor series approximation is
reasonable.

• Define xk+1 = xk − f(xk)
f ′(xk) . (This solves the linear equation f(x∗) ≈

f(xk) + (x∗ − xk)f ′(xk) = 0.)

This has quadratic convergence in most cases. However, it has problems when
the second-order term of the Taylor series is large, when f ′(xk) is close to zero,
or when f has a multiple root. For certain functions, it may also oscillate. In
addition, evaluation of a derivative can be even harder numerically.

Algorithm: Secant Method

• Suppose we have any reasonably smooth function, f , and two starting
values, a0 and b0.

• Define xk+1 = xk − f(xk) xk−xk−1
f(xk)−f(xk−1)

. (This finds the zero of the line
passing through the points (xk−1, f(xk−1)) and (xk, f(xk)).)

This method converges super-linearly (‖xk+1 − x∗‖ ≤ β‖xk − x∗‖1.6180). How-
ever, this method can also get stuck in cycles or not converge. It also extrapo-
lates in some case, which makes the interval bigger.

False Position (Regula Falsi) Method: Use the Secant Method, but choose
to keep xk if f(xk)f(xk+1) < 0 and xk−1 if f(xk−1)f(xk+1) < 0. Though this
seems to be an improvement, it can slow down convergence quite dramatically.

These methods can be combined using safeguarding; a “fast” method is used,
but iterates are rejected if they fall outside a certain “interval of uncertainty”,
and forced interval reductions occur from time to time. (These are more com-
plicated, but are a way to get fast convergence in certain cases while being on
the order of bisection in worse cases.)

4

3 Solving Linear Systems

3.1 Matrix Preliminaries

Definition Given a matrix, A, of dimension m×n, the singular value decompo-
sition is A = UΣV T , where U and V are square orthogonal matrices and Σ is an
m × n diagonal matrix, with descending non-negative entries, σ1, ..., σmin(m,n).
The values σi are called the singular values of A.

Some facts about singular values:

• If A is a square non-singular matrix, all of its singular values are non-zero.
In general, rank(A) is the number of non-zero singular values of A.

• The singular values of A are the square roots of the eigenvalues of AT A
(if m ≥ n) or AAT . If A is symmetric, its singular values are the absolute
values of its eigenvalues.

• The columns of V corresponding to the zero singular values for an ortho-
normal basis for null(A). The columns of V corresponding to non-zero
singular values form an orthonormal basis of range(AT).

• The columns of U corresponding to the zero singular values for an ortho-
normal basis for null(AT). The columns of U corresponding to non-zero
singular values form an orthonormal basis of range(A).

Definition If x ∈ Rn, a vector norm, ‖x‖, is a function such that:

1. ‖x‖ > 0, if x 6= 0.

2. ‖αx‖ = |α|‖x‖.

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ (the triangle inequality).

Three common norms are:

1. The Manhattan Norm (or the One Norm): ‖x‖ =
∑n

i=1 |xi|

2. The Two Norm (the Euclidean Length): ‖x‖ =
√∑n

i=1 x2
i

3. The Infinity Norm: ‖x‖ = max1≤1≤n |xi|.

Definition If A,B are matrices, a matrix norm is a function such that:

1. ‖A‖ > 0, if A 6= 0.

2. ‖αA‖ = |α|‖A‖.

3. ‖A + B‖ ≤ ‖A‖+ ‖B‖ (the triangle inequality).

4. ‖AB‖ ≤ ‖A‖‖B‖.

5

Definition Let a vector norm be given. The subordinate induced matrix norm
is defined by:

‖A‖ = max
‖Ax‖
‖x‖

over all x 6= 0. A matrix norm is compatible with a given vector norm if

‖A‖‖x‖ ≥ ‖Ax‖

for all x and A.

The subordinate matrix norm induced by the one-norm is the maximum
absolute column sum, and the subordinate matrix norm included by the infinity
norm is the maximum absolute row sum. The subordinate matrix norm induced
by the two-norm is the maximum singular value.

Definition The Frobenius norm of a matrix, A, is defined by ‖A‖F =
√∑

i

∑
j a2

ij .

The Frobenius norm satisfies ‖A‖F ‖x‖2 ≥ ‖Ax‖2 (so this norm is compatible
with the two-norm, but is not induced by it).

Definition A square matrix, A, is non-singular if Ax 6= 0 whenever x 6= 0. A
is singular if there exists some x 6= 0 such that Ax = 0.

The problem of solving a linear system is finding x for a given non-singular
matrix, A, and a vector, b, such that Ax = b.

Definition The condition number of a matrix, A, is given by:

cond(A) = ‖A‖‖A−1‖

Note that cond(A) = ‖A‖‖A−1‖ ≥ ‖I‖ = 1, which gives a lower bound on
the condition number. If a solution, x, is found, then we may find a lower bound
of the condition number as:

cond(A) = ‖A‖‖A−1‖ ≤ ‖A‖‖x‖
‖b‖

since x = A−1b. In the two-norm, the condition of A is the ratio of its maximum
to its minimum singular values.

3.2 Solving lower triangular systems

Algorithm: Solving Lx = b

• We are given a matrix, L, with entries lij on and below the diagonal only,
and any vector, b.

• Set x1 = b1
l11

.

6

• Given x1, ..., xk−1, we compute xk = 1
lkk

(bk − lk1x1 − ...− lk,k−1xk−1.

The kth step of this process takes 1 division, k − 1 multiplications, and k − 1
additions. Thus, the total work is n divisions and n(n−1)

2 multiplications and
additions (flops), and this algorithm is O(n2).

We conduct an error analysis. First, let x and y be n-vectors. Then,

fl(xT y) = fl(x1y1 + ... + xnyn)

Let ti = fl(xiyi) = xiyi(1 + ξi). Then, the partial sums of the ti are si =
fl(si−1 + ti) = (si−1 + ti)(1 + ηi), and

fl(xT y) = x1y1(1 + ε1) + ... + xnyn(1 + εn)

where 1 + εk = (1 + ξi)(1 + ηi)(1 + ηi+1)...(1 + ηn). (The earlier terms are
subject to more error because they are subjected to more additions.) We may
write fl(xT y) as the exact inner product of the two perturbed vectors, x and
(y1(1 + ε1), ..., yn(1 + εn))T .

Applying this to Lx = b, we find that the computed solution is the exact
solution to (L + δL)x = b, with the bound,

|δLij | ≤ 1.06(i− j + 2)εm|lij |

Note that this bound does not depend on b or on the condition number of L.
(Alternatively, x is the exact solutions of Lx = b + δb as well.)

Definition A normalized triangle is a triangular matrix in which the largest
element of each row is on the diagonal. A unit triangle is a matrix in which all
the diagonal elements are one.

(Normalized unit triangles are generally but not always well-conditioned.)

3.3 General Non-singular Linear Systems

Recall that:
AB = A [b1, ..., bn] = [Ab1, ..., Abn]

where Abi is a linear combination of the rows in the ith column of B.

Definition An elementary matrix is a matrix of the form I −αuvT where α is
a scalar.

If u and v are column vectors, then uvT is an n× n matrix with

uvT = [v1u, ..., vnu] =

 u1v
T

...
unvT


An elementary matrix is non-singular if and only if αuT v 6= 1. For any x,

(I − αuvT)x = x− αu(vT x) = x− α(vT x)u

7

and multiplying x by an elementary matrix subtracts a multiple of u from x.
Suppose we want to solve Ax = b where A is non-singular.
Algorithm: Gaussian Elimination

• Step 1: Clear out all the entries in the first column of A; that is, reduce

a1 =


a11

a22

...
an1

 to


a11

0
...
0

.

– Choose u1 =


0

a21/a11

...
an1/a11

, α1 = 1,v1 = e1.

– Then, α1v
T
1 a1 = a11 and

(I − u1e
T
1)a1 = a1 − u1a11 =


a11

0
...
0


– We call a11 the pivot and mk1 = ak1/a11 the multipliers. Define

M1 = (I − u1e
T
1).

• Step 2: This leaves a square submatrix, A(2), based on all but the first
row and column, on which we repeat the process, finding M2, ...,Mn−1.

• Step 3: This eventually leads to an upper triangular matrix, U , such that
U = Mn−1...M1A = MA. Then, Mb = MAx = Ux, and we may solve for
x as before.

Variant: LU Factorization

• We may write A = M−1U = LU . M is lower triangular (because each Mi

is lower triangular), so L is lower triangular. This allows L and U to take
up only as much storage together as A.

• It turns out that the diagonal elements of L are 1 and the elements on the
lower triangle are simply the multipliers, mij = aij/aii.

• Given the LU factorization, we first solve the lower triangular system,
Ly = b, and then the upper triangular Ux = y.

The number of operations involved is O(n3/3), with k − 1 divisions (for the
multipliers) and (k − 1)2 multiplications and subtractions (for the other k − 1
elements of the kth row and the (k − 1) rows below) for each step.

LU factorization also solves systems involving AT , since AT = UT LT .

8

Definition A permutation matrix is a matrix of ones and zeroes with exactly
one 1 in each row and each column (it is the identity matrix with the order of
the rows changed).

If P is a permutation matrix, then PA interchanges the rows of A and AP
interchanges the columns of A. In Gaussian elimination, we need the pivots to
be non-zero. If A is non-singular, there is always some P such that PA = LU .

In finite precision, problems also occur if pivots are close to 0, since they
cause the multipliers to be very large.

Definition The problem of large entries caused by small pivots is growth. We
define the growth factor as:

gn = ρn =
maxk maxi,j |a(k)

ij |

maxi,j |a(1)
ij |

where a
(k)
ij is the i, j entry after the kth step.

There are three strategies to eliminate small pivots and thereby reduce
growth:

• Gaussian Elimination with Partial Pivoting (GEPP): At each step, choose
the element of largest magnitude in the current column and switch rows
so that element is the pivot. This ensures that the multipliers are always
less than one in absolute value; the additional time required for all the
comparisons is O(n2).

• Complete Pivoting: Find the largest element in magnitude in the entire
submatrix and use both column and row interchanges to make it the pivot.
This requires O(n3) comparisons.

• Threshold Pivoting (for sparse matrices): Interchange rows (as in partial
pivoting) only when the current pivot is less than some fraction of the
largest element.

In most cases, partial pivoting is good enough to keep growth minimal. In
the worst case, however, partial pivoting still leads to growth factors that are
O(2n−1).

With partial pivoting, we end up with a string of elementary and partition
matrices, Mn−1Pn−1...M1P1A = U . Because the Pi are orthogonal, we may
move them together (by interchanging the rows and columns of the Mi as well,
to keep them lower triangular), to get a factorization of the form MPA = U or
PA = LU .

Error analysis of GEPP:

• For the computed L and U , A+∆A = LU , where ‖∆A‖∞ ≤ nγagn‖A‖∞εm,
where the growth factor, gn, tends to be the big problem.

9

• The computed x based on the LU decomposition is the exact solution of
(A+E)x = b, where ‖E‖∞ ≤ n3γEgn‖A‖∞εm+O(ε2m). Again, the growth
factor is the biggest problem.

Note that we have strong bounds on the residual, rG = b− Axg = ExG. How-
ever, a small residual does not imply that x is close to the true solution, espe-
cially when A is ill-conditioned.

Computing A−1 is O(n3); the best way is to compute the LU factorization
and then solve Axi = ei, where ei are the elementary vectors, which takes three
times as long as the simple LU factorization. Even with the correctly rounded
inverse, A−1

I = A−1 + F (with ‖F‖ ≤ ‖A−1‖εm), the residual is:

rI = b−A(A−1
I b) = −AFb

‖rI‖ ≤ ‖A‖‖F‖‖b‖
‖rI‖

‖A‖‖x‖
≤ cond(A)εm

which now depends on the condition number.

Definition Suppose A is ill-conditioned. If ‖b‖ ≈ ‖A‖‖x‖, then we say that b

does not reflect the condition of A. If ‖b‖ ≈ ‖x‖
‖A−1‖ , then we say that b reflects

the condition of A.

Suppose we have A = USV T . We may write b = Uβ, since the columns of
U are an orthonormal basis. Then,

x = A−1b = V S−1UT b

= V X−1UT Uβ = V S−1β

=
∑

vi
βi

si

Since V is orthonormal as well, ‖x‖2 =
∑

(βi

si
)2. Thus, the solution of x is likely

to be large if βi is non-zero for small si and small if βi is zero for small si. That
is, b will not reflect the condition of A if it is close to a multiple of the first
column of U (or any column with a relatively large singular value). b will reflect
the condition of A if it is close to a multiple of the column of U corresponding
to the a small singular value.

Similarly, to find x such that ‖b‖ is small, one may write x = V γ and then
find that Ax =

∑
uisiγi.

3.3.1 Householder Triangularization

Definition For any non-zero vector, u, the corresponding Householder trans-
formation (elementary Hermitian matrix) is H(u) = I− 2uuT

‖u‖22
, with Householder

vector, u.

10

Householder transformations are orthogonal and depend only on the direc-
tion of u. Suppose ‖a‖2 = ‖b‖2, with a 6= b. Let u be any multiple of b − a.
Then, H(u)a = b. The application of H(u) to a vector, c, does not change the
components corresponding to the 0 components of u. In particular, if u and c
are orthogonal, then H(u)c = c.

Definition The QR factorization of a non-singular matrix, A, is Hn−1...H1A =
R, where each Hi is a Householder matrix and R is an upper triangular matrix.

Algorithm:QR factorization

• Let u1 = (a11 − r11, a21, ..., an1)T , where r11 = ‖a1‖2. Then, u1 is a
multiple of ‖a1‖2e1− a1, and maps a1 to a multiple of e1; that is, H1a1 =
r11e1. This affects the first row of A, as well as transforming the first
column.

• For the kth step, let uk = (0, ..., 0, akk − rkk, ak+1,k, ..., ank)T and Hk the
corresponding Householder transformation. Then, HkA(k−1) has every-
thing below Akk cleared out.

• Let Q = H1...Hn−1 (by orthogonality). Then, A = QR is the QR factor-
ization.

The QR factorization requires the storage of both R and the n−k+1 components
of each uk and of the βk, which take more space than the LU decomposition.
The calculation of the decomposition is O(2

3n3). Note that, since orthogonal
transformations preserve the two-norm, cond(R) = cond(A). For the computed
R, there exists an orthogonal Q̃ such that Q̃(A + ∆A) = R, with ‖∆A‖F ≤
γ(n)‖A‖F εm, γ(n) slow growing. Furthermore, Q is almost orthogonal, with
QT Q = I + ∆Q and ‖∆Q‖2 = O(εm).

To solve a system of equations, b = Ax = QRx, using the QR factorization,
we note that Rx = QT b is an upper triangular system with can be solved in
O(1

2n2) flops. Then, the computed solution satisfies (A + ∆)x = b + δb, with
‖∆‖F ≤ (3n2 + 41n)‖A‖F εm + O(ε2m) and ‖δb‖2 ≤ (3n2 + 40n)‖b‖2εm + O(ε2m).

3.3.2 Cholesky Factorization of a Positive Definite Matrix

Definition A matrix, A, is symmetric if A = AT .

To preserve symmetry, any row interchanges must be accompanied by col-
umn interchanges; that is, we must transform A into PAPT .

In some cases, we may write PAPT = LU = LDLT . However, this is not

always possible (consider
(

0 1
1 0

)
).

Definition Suppose A is a symmetric matrix such that xT Ax > 0 for all
nonzero x. Then A is positive definite.

11

If A is symmetric and positive definite, then all its eigenvalues are positive
and real. In addition, ‖A‖2 = λmax > 0. In addition, all the diagonal elements
are positive and the element of largest magnitude is on the diagonal.

Definition The Cholesky factorization of a symmetric and positive definite
matrix, A, is A = RT R, where R is upper triangular.

To calculate the Cholesky factorization, we write:
a11 a12 ... a1n

a21 a22 ... a2n

...
an1 an2 ... ann




r11 0 ... 0
r21 r22 ... 0
...
rn1 rn2 ... rnn




r11 r12 ... r1n

0 r22 ... r2n

...
0 0 ... rnn


Algorithm: Cholesky Decomposition

• a11 = r2
11, so r11 =

√
a11.

• a12 = r11r12, so that r12 = a12/r11.

• r2
22 = a22 − r2

12.

• And so on.

We may then solve the system Ax = b using the two triangular systems from
RT Rx = b. This takes 1

6n2 steps instead of 1
3n2 using the LU decomposition.

Furthermore, since r2
1k + ... + r2

kk = akk, |rik| ≥
√

akk for all i, k, which gives a
bound on the elements of R.

If A is not positive definite enough, then rounding errors may lead to negative
values for r2

kk.
In other cases, one may use Bunch-Paulette, which calculates PAPT =

LBLT , where B is block diagonal with 2× 2 blocks.

3.4 Solving Compatible Systems

Suppose A = (a1, a2, ..., an) is an m× n matrix. Then, the range of A is of the
form Ax = a1x1 + ... + anxn.

Definition A system of equations, Ax = b is compatible if b ∈ Range(A).
Otherwise, the system is incompatible.

For general systems, we must consider both whether b is in the range of A
(that is, whether a solution exists) and whether the solution is unique.

3.4.1 Pseudo-Inverses and Generalized Condition Numbers

Definition Let A = UΣV be the singular value decomposition of A. We define
the pseudo-inverse by A+ = V −1Σ+U−1, where Σ+ is of size n×m, the non-zero
diagonal elements are inverted, and the zero diagonal elements are preserved.

12

Note that the pseudo-inverse agrees with the inverse when the inverse exists.
The pseudo-inverse changes radically as the rank changes.

Definition If A is not invertible, then we define the generalized condition num-
ber by cond(A) = ‖A‖2‖A+‖2.

3.4.2 Triangular Rank-Revealing Form

Definition Let T̂ =
[

T
0

]
=

[
T11 T12

0 0

]
, where T11 is upper triangular and

non-zero (and both T12 and 0 may be empty). This is the rank-revealing form.

Only vectors of the form b =
[

b1

0

]
are compatible with T̂ .

To reduce a matrix, A, to triangular rank-revealing form, we may need to
use complete pivoting, where each pivot is the largest element in the matrix and
we apply both right and left permutations. Householder transformations may
be used as well (in this case, we only need to do column pivoting).

3.4.3 Solution Method

Algorithm: Solving a Compatible System:

• Find an LU decomposition, A = P̃T L̃ŨPT , with L̃ unit lower triangular

and Ũ =
[

U11 U12

0 0

]
(U11 non-singular) in triangular rank revealing

form, we have ŨPT x = L̃−1P̃ b.

• Solve for y = PT x =
[

yr

yn−r

]
, by back substitution in the equation

Ũy =
[

dr

dm−r

]
= L̃−1P̃ b.

– Case 1: If dm−r 6= 0 (or is not “small”) then the system is not
compatible.

– Case 2: If dm−r = 0 (or is close enough), then we must solve U11yr +
U12yn−r = dr.

∗ Suppose b 6= 0. Set yn−r = 0. Then, solve U11yr = dr and set

y =
[

U−1
11 dr

0

]
.

∗ Suppose b = 0 = d (and we want a non-zero y, since y = 0
is always a solution). In this case, we wish to solve U11yr +
U12yn−r = 0.
· If U12 = 0, then we may choose any yn−r and yr = 0 is a

solution.

13

· If U12 6= 0, then we may choose a column, uj which is
nonzero. Then, U12ej = uj . We may solve (through back

substitution) U11yr = −uj . Then, y =
[
−U−1

11 U12ej

ej

]
is a

non-zero solution.

• Finally, compute x = Py to undo the permutations.

These techniques do not necessarily product the solution, x, of minimum
length (which is only relevant when b 6= 0). The minimum length solution is
found using the triangular rank retaining form.

3.4.4 Numerical Rank

Computation of the rank of a matrix can be problematic, since it can be hard to
tell if a number is truly zero (and the rank is discrete). The smallest non-zero
singular value gives the distance of the matrix from the nearest matrix of lower
rank.

The choice of the when a singular value is “close enough” to zero affects the
solutions:

• If we consider smaller values as nonzero, then we have larger rank esti-
mates. This may lead to ill-conditioned and inaccurate matrices and larger
solutions with smaller residuals.

• If we treat small numbers as 0, then we have lower rank estimates. This
leads to smaller solutions and bugger residuals.

3.5 Least Squares Solutions to Overdetermined Linear Sys-
tems

Suppose we have the system Ax ∼= b, where the system is overdetermined. That
is, there are n equations in m unknowns with m < n. Since we cannot solve the
system exactly, we wish to solve x = arg min(‖Ax−b‖2) = arg min(

∑n
i=1((Ax−

b)i)2. We call Ax − b the residual. This is equivalent to finding the closest
point to b in the subspace spanned by A, which is the orthogonal projection
of b onto Range(A). Then, we may write b = bR + bN , with bR ∈ Range(A)
and bN ∈ Null(AT); this decomposition is unique. This gives us the normal
equations:

AT b = AT Ax

Assuming that A has a rank of m, this is a non-singular system of equations,
with AT A symmetric and positive definite, so that we may use the Cholesky
decomposition.

Algorithm: Least Squares Solution with Cholesky

• Compute AT b (in nm steps).

• Compute AT A (in nm2 steps).

14

• Compute the Cholesky factorization, AT A = RT R (in O(1
6m3) steps).

• Solve the systems RT y = AT b and then Rx = y (in O(m2) steps).

The most expensive step of this algorithm is computing AT A, since n > m.
Furthermore, cond(AT) = cond(A)2, which can lead to decreased accuracy.

Alternatively, we may compute a QR-factorization of A by applying House-
holder transformations to A, to find QT

m...QT
1 A = R or A = QR, where

R =
[

R̂
0

]
with R̂ an m×m upper triangular matrix. Then,

min ‖Ax− b‖2 = min ‖QT (QRx− b)‖2

= min ‖
[

R̂
0

]
x−

[
w1

w2

]
‖2

Then, R̂x = w1 is a triangular system which we may solve for x to set those
terms to 0. 0x is constant, so the residual will have length ‖w2‖.

Algorithm: Least Squares Solution with QR-Factorization

• Compute the QR factorization of A (in O(m2n) steps).

• Solve R̂x = w1 (in O(m2) steps).

This is the same number of steps as the previous algorithm but tends to be
more accurate.

If A is rank deficient or nearly rank deficient, then we may use the singular
value decomposition of A, A = UΣV T , where Σ is non-square with zeroes below
the diagonal containing the singular values. Then,

min ‖Ax− b‖ = min ‖ΣV T x− UT b‖

= min ‖
[

Σ̂y
0

]
−

[
w1

w2

]
‖2

where y = V T x and w = UT b. As before, we may solve Σ̂y = w1 (which is
very easy since Σ̂ is diagonal) and then solve x = V T y = V Σ̂−1UT

1 b. If Σ̂ has
very small entries, we may set them to 0 to avoid the instability from a nearly
singular matrix. However, computing the SVD is very costly.

In the least squares problems, perturbations to b that are in Range(A)
change x (proportionally to cond(A)) but do not change the residual. Pertur-
bations to b that are in Null(A) affect only the residual. (Most perturbations
are a sum of the two and do affect both x and the residuals.) Perturbations to
A that change the null space cause the biggest problems.

4 Approximating Functions

Let a function, f(x), be given. We want to create f̃(x) which approximates
f(x). We assume that f is continuous (and possibly differentiable).

15

Definition Let f be a function on [a, b]. We define the Euclidean norm as
‖f‖2 = (

∫ b

a
|f(x)|2dx)1/2. We define the maximum (Chebyshev) norm as

‖f‖∞ = max[a,b] |f(x)|.

(These norms are usually not possible to evaluate numerically, since they
depend on an infinite number of points.) If we are given a set of n + 1 points,
x0, ..., xn and f(x0), ..., f(xn), we may use a vector norm on (f(x0)−f̃(x0), ..., f(xn)−
f̃(xn))T as well.

Suppose we have a polynomial pn(x) = a0 + a1x + ... + anxn. To evaluate
this with Horner’s Method, set bn = an and bk = xbk+1 +ak. Then, pn(x) = b0.
This is faster and has better error bounds than the obvious method.

Theorem 4.1 Fundamental Theorem of Algebra. Let pn(x) = a0 + a1x + ... +
anxn, with an 6= 0. Then pn(x) has exactly n roots (some of which may be
complex or multiple).

Theorem 4.2 Weierstrass Approximation Theorem. Let f be a continuous,
real-valued function on [a, b]. For all ε > 0, there exists n(ε) ∈ Z and a polyno-
mial pn(ε) of degree at most n(ε) such that |f(x)−pn(ε)(x)| < ε for all x ∈ [a, b].

4.1 Interpolating Polynomials

Definition Let x0, ..., xn and f(x0), ..., f(xn) be given. The polynomial, pn(x)
such that pn(xi) = f(xi) for all i is called the interpolating polynomial.

Theorem 4.3 The interpolating polynomial of degree n is always unique.

Proof Suppose pn(xi) = f(xi) = qn(xi) for i = 0, ..., n. Let dn(x) = pn(x) −
qn(x). Then, dn(x0) = ... = dn(xn) = 0 and dn has n + 1 zeroes. However, it is
a polynomial of degree at most n. Thus, dn must be the zero polynomial and
pn = qn.

To compute the interpolating polynomial, we have the system of equations: f(x0)
...

f(xn)

 1 x0 ... xn
0

...
1 xn ... xn

n

 a0

...
an


(where the matrix of powers of x0, ..., xn is called the Vandermonde matrix, V).
Whenever the xi are distinct, this system of equations has a unique solution.
Note that V can be ill-conditioned. This will make the ai less accurate, but the
residual will be small as long as there is not much growth.

Definition Given x0, ..., xn, define:

φj(x) =
(x− x0)...(x− xj−1)(x− xj+1)...(x− xn)

(xj − x0)...(xj − xj−1)(xj − xj+1)...(xj − xn)

Then, φj(xi) = 1(i = j). Then, we may define the interpolating polynomial
as pn(x) =

∑n
j=0 f(xj)φj(x). This is the Lagrangian Form of the Interpolating

Polynomial.

16

Note that this form is not computationally convenient, especially for adding
additional data points.

Algorithm: Newton Interpolation

• Let Q0(x) = f(x0).

• Define Qk(x) = Qk−1(x) + qk(x), with

– qk(xi) = 0 for i < k, since we must have Qk(xi) = f(xi) = Qk−1(xi).
This means that qk(x) = ak(x− x0)...(x− xk−1).

– Since f(xk) = Q(xk) = qk(xk) + Qk−1(xk), we may solve to find
ak = f(xk)−Qk−1(xk)

(xk−x0)...(xk−xk−1)
.

This gives us Qn(x) = a0 + a1(x− x0) + ... + an(x− x0)...(x− xn), where
the ai = f [x0, ..., xi] are called the divided differences.

Note that we may also solve for all the ai at once using the triangular system
of equations:

1 0 0 ... 0
1 (x1 − x0) 0 ... 0
1 (x2 − x0) (x2 − x0)(x2 − x1) ... 0
...
1 (xn − x0) (xn − x0)(xn − x1) ... (xn − x0)...(xn − xn−1)




a0

a1

...
an

 =


f(x0)
f(x1)

...
f(xn)


This is faster and usually better conditioned.

Proposition 4.4 Suppose f has k continuous derivatives on [min(x0, ..., xk−1),max(x0, ..., xk−1)].
Then, the divided difference obeys f [x0, ..., xk−1] = f (k)(ξ)/k! for some ξ ∈
[min(x0, ..., xk−1),max(x0, ..., xk−1)].

Theorem 4.5 Given n + 1 distinct points, x0, ..., xn, a continuous f with at
least n+1 continuous derivatives and the interpolating polynomial, pn(x), for all
x, there exists ξ ∈ [min(xi),max(xi)] such that |f(x)−pn(x)| = |f (n+1)(ξ) (x−x0)...(x−xn)

(n+1)! |

Note that if f (n+1) is bounded, we may bound the error above.
Suppose we have equally spaced points, with xk = x0+kh and an interpolat-

ing polynomial, Qn, of a function, f , based on them. Then, for any x = x0 + th,

f(x)−Qn(x) = hn+1t(t−1)...(t−n)
1

(n + 1)!
f (n+1)(ξ) = hn+1πm(t)

1
(n + 1)!

f (n+1)(ξ)

where πn(t) = t(t − 1)...(t − n) is the error factor polynomial. Since πn(t) is
smallest in the middle of the interval and goes to infinity outside the interval,
we see that interpolation in the middle of the interval is most reliable, and
extrapolation can be very problematic.

Having more equally spaced points with which to interpolate is not always
good. For example, with Runge’s function, f(x) = 1

1+x2 on [−5, 5], there are
points (near the endpoints) in which the error goes to infinity as more points
are added. However, the interpolation does well in the middle of the interval.

17

4.2 Minimax Approximating Functions

Definition Given a function, f , the best approximation or the minimax approx-
imation is a function, f̃ that minimizes the Chebyshev norm, maxx∈[a,b] |f(x)−
f̃(x)|.

Theorem 4.6 Let f(x) be continuous on [a, b]. For any n, there exists a poly-
nomial, p∗n, of degree n that minimizes max |f(x)− p∗n(x)|.

Theorem 4.7 Chebyshev. A polynomial of degree at most n is a best approxi-
mation if and only if f(x)−pn(x) assumes the maximum value with alternating
signs at least n + 2 times in [a, b]. (This is called the equal ripple quality.) The
best polynomial is unique.

Suppose f(x) has n + 1 continuous derivatives. Then, the interpolating
polynomial satisfies:

f(x)− pn(x) =
f (n+1)(ξ)
(n + 1)!

(x− z0)...(x− zn)

for some ξ. In particular, if f(x) is a polynomial of degree n+1, then f (n+1)(x) =
(n+1)!an+1, and the error is an+1(x−z0)...(x−zn). Thus, well chosen zi will lead
to an interpolating polynomial that minimizes the function and gives the best
approximation. Suppose f(x) = xn+1 and we wish to approximate it on [−1, 1].
The error polynomial must attain its maximum n + 2 times. Let x = cos θ. Let
Tn+1(x) = cos((n + 1)θ). Then, Tn+1(x) has absolute maxima with alternating
signs at θ = jπ

n+1 , j = 0, ..., n + 1, which is n + 2 points. Furthermore, this is a
polynomial in x (using the trigonometric addition rules). Thus, the interpolation
points of the best approximation are the zeros of Tn+1(x), which are cos(jπ+π/2

n+1 .
These are called the Chebyshev points. Note that these points are not equally
spaced; they tend to crowd near the ends of the interval.

4.3 Interpolating Splines

Definition Let [a, b] be an interval with n + 1 distinct knots (points at which
the function is known), with a = x0 < x1 < ... < xn−1 < xn = b. A spline
function (or piecewise polynomial) of degree p with knots x0, ..., xn is a function,
s(x), such that:

• On each subinterval, [xi, xi+1], s(x) is a polynomial of degree p.

• s(x) and its first p− 1 derivatives are continuous on [a, b].

s(x) is an interpolating spline if s(xi) = f(xi) for all i.

To calculate a cubic spline (p = 3), we consider each subinterval, [xi−1, xi].
Let hi = xi − xi−1 and u = x − xi−1 for all x ∈ [xi−1, xi]. On this interval,
s(x) = si(x) = s̃i(u) = ai + biu + ciu

2 + diu
3. (This is 4n unknowns.) Then,

18

• To match the left endpoint, define ai = si(xi−1) = f(xi−1).

• By continuity at the interior knots and interpolation at the rightmost
knot, si(xi) = f(xi) for i = 1, ..., n. This means that f(xi) = si(xi) =
ai + bihi + cih

2
i + dih

3
i (which is n equations).

• By the continuity of the first derivative at the interior knots, s′i(xi) =
s′i+1(xi), and bi+1 = bi + 2cihi + 3dih

2
i , which gives another n − 1 linear

equations.

• By the continuity of the second derivative at interior points, s′′i (xi) =
si+1(xi), and 2ci+1 = 2ci + 6dihi, which is another n− 1 linear equations.

This gives us 4n− 2 linear equations in 4n unknowns. This allows us to choose
two extra conditions. For the natural spline, we assume a straight line outside
the interval, so that s′′(x0) = 2c0 = 0 and s′′(xn) = 2cn + 6dnhn = 0. This
gives a system of linear equations.

Splines can be harder to compute with that high-degree polynomials, because
a search must be done to find the correct interval for any point. Furthermore,
more storage is needed for x0, ..., xn, a1, ..., an, b1, ..., bn, c1, ...cn, d1, ..., dn.

In practice, B-splines, which can be computed recursively and are more
stable, are used. The associated linear systems are generally sparse and well-
conditioned, and recursion makes it easier to add knots in places where where
are large errors, since more knots leads to increased accuracy.

5 Numerical Quadrature

Problem: Evaluating
∫ b

a
f(x)dx.

Theorem 5.1 Let a = x1 < x2 < ... < xn+1 = b. Let Rn =
∑n

i=1(xi+1 −
xi)f(ξi) where ξi ∈ [xi, xi+1. The, under mild conditions, if |xi+1 − xi| → 0
then for any ξi ∈ [xi, xi+1], limn→∞ Rn =

∫ b

a
f(x)dx.

There is no quadrature method based on sampling f at a finite number of
points that can be correct for a general continuous f .

Error in Integration: Suppose f(x) is bounded and continuous on [a, b].
Define ‖f‖∞ = maxx∈[a,b] |f(x)|. Let f̃(x) = f(x)+δ(x) be a perturbed version.
Then,

|
∫ b

a

f̃(x)dx−
∫ b

a

f(x)dx| ≤
∫ b

a

|f̃(x)−f(x)|dx ≤ (b−a) max
x∈[a,b]

|f̃(x)−f(x)| = (b−a)‖δ(x)‖∞

is a bound on the absolute error. (Note that a small absolute error may lead to
a large relative error if

∫ b

a
f(x)dx ≈ 0.)

Definition Let a ≤ x1 < x2 < ... < xn ≤ b (where the xi are called the nodes).
An n-point quadrature rule is a rule of the form: Qn(f) =

∑n
i=1 wif(xi). If

x1 = a and xn = b, then this is a closed formula. If x1 > a and xn < b, this is
an open formula.

19

We find formulas that work exactly on polynomials up to some degree, using
interpolating polynomials. Given f at the n points, x1, ..., xn, we may find the
Lagrangian form of the interpolating polynomial, pn−1(x) =

∑n
i=1 f(xj)φj(x).

With a fixed x1, ..., xn, φj and its integral do not depend on f at all. This
means, for any f , we have:∫ b

a

f(x)dx ≈
∫ b

a

pn−1(x)dx =
n∑

i=1

f(xj)
∫ b

a

φj(x)dx

This method interpolates f exactly if f is a polynomial of degree at most n− 1.

Definition The degree or order of an interpolatory quadrature form is one
more than the highest degree polynomial that it integrates exactly.

Suppose pn−1(x) is the interpolating polynomial for f(x). Then, we have
the error:∫ b

a

f(x)dx−
∫ b

a

pn−1(x)dx =
1
n!

∫ b

a

f ′(ξ)(x− x1)...(x− xn)dx

which can be used to calculate an error bound, using the bounds on the deriv-
ative and the polynomial. In particular, if we have equally spaced points,
x1, x1 + h, ..., x1 + (n− 1)h and we write x = x1 + th, then

f(x)− pn−1(x) = t(t− 1)...(t− (n− 1))
f (n)(ξ)

n!∫ b

a

|f(x)− pn−1(x)|dx ≤ b− a

4n
hn max |f (n)(x)|

This may be reduced to 0 by increasing n or decreasing h.

Definition Interpolatory quadrature forms using low-degree polynomials and
equally-spaced points are called the Newton-Cotes Formulae.

• Midpoint Rule: We interpolate the function by a constant based at the
midpoint of the interval, so that f(x) ≈ f(m) and

∫ b

a
f(x)dx ≈ (b −

a)f(a+b
2). This is an open Newton-Cotes formula of degree 2 (it integrates

a line exactly). Using a Taylor expansion, we find the error as:

f(x) = f(m) + (x−m)f ′(m) +
1
2
f ′′(ξm,x)(x−m)2∫ b

a

f(x)dx =
∫ b

a

f(m)dx +
∫ b

a

f ′(m)dx +
1
2

∫ b

a

f ′′(ξm,x)(x−m)2dx

= f(m)(b− a) + 0 +
1
2

∫ b

a

f ′′(ξm,x)(x−m)2dx

which gives an error bound of (b−a)3

24 max |f ′′(ξ)|.

20

• Trapezoid Rule: We interpolate the function by a straight line from f(a) to
f(b). Then,

∫ b

a
f(x)dx ≈ b−a

2 (f(a)+ f(b)). This is a closed Newton-Cotes

formula of order 2. The error is approximately −f ′′(ξ) (b−a)3

12 .

• Simpson’s Rule: Use x1 = a, x2 = a+b
2 , and x3 = b

2 as the points for in
interpolating quadratic. Then,

∫ b

a
f(x)dx ≈ b−a

6 (f(a) + 4f(m) + f(b)).

The error is approximately − (b−a)5

90 f (4)(ξ). Note that Simpson’s Rule is
the sum of two-thirds of the midpoint rule and one-third of the trapezoidal
rule (which makes their highest order errors cancel as well).

For any c ∈ [a, b],
∫ c

a
f(x)dx +

∫ b

c
f(x)dx =

∫ b

a
f(x)dx. For larger intervals,

it usually preferable to split it into smaller intervals and use one of the formulas
above on each subinterval instead of using polynomials of higher degree. Using
low order interpolatory quadrature rules on sub-intervals is called composite
integration formulas. One method is Adaptive Quadrature, in which intervals
that seem to have more error (based on the error estimates of the midpoint
and trapezoidal rules, for example) are subdivided more. This can always fail,
though, and there are tradeoffs between accuracy and speed.

If data is tabular (so that one cannot choose the points), one must use the
trapezoidal rule. Alternatively, one may fit splines and integrate those.

6 Ordinary Differential Equations

Problem: Find a function, y(t), such that y′(t) = f(t, y(t)) and y(0) = y0

(because of the second condition, this is called an initial value problem).

Theorem 6.1 If f(t, y) is continuous in 0 ≤ t ≤ b and there is a constant,
L, such that, for all 0 ≤ t ≤ b and y, z, |f(t, y) − f(t, z)| ≤ L|y − z| (this is
the Lipschitz condition), then there is a unique, continuous, and differentiable
function, y, such that y′ = f(t, y(t)) and y(0) = y0.

Proposition 6.2 Let h ≤ 0, j an integer, jh ≤ b, and hL ≥ 0. Then,

1 + hL ≤ ehL

(1 + hL)j ≤ ejhL ≤ eLb

We discretize the problem by computing y(t1), ..., y(tn) for given points. For
now, we assume that the times are equally spaced, so that tj+1 = tj + h =
(j + 1)h.

Definition An ODE is well-posed if small perurbations in the problem lead to
small changes in the exact solution.

Definition A numerical method is stable if small changes in the initial values
produce bounded changes in the approximate solutions.

21

(The stability of the method may depend on the problem.)

Definition The test equation is given by y′ = λy. Note that the exact solution
is y = y0e

λt. Note that if λ = a + ib, then eλt = eat(cos(bt) + i sin(bt)), so that
we have exponential growth in the modulus if a > 0 and exponential decay in
the modulus if a < 0.

Definition A numerical method is order p if the local error is O(hp+1) (since
we must then add up all of the errors over all the intervals).

Definition A one-step method depends only on the last iterate, yj . A multi-
step method may depend on previous iterates as well.

Definition An explicit method defines yj+1 directly. An implicit method in-
cludes yj+1 on both sides of a (usually non-linear) equation.

Forward (Explicit) Euler Method : By a Taylor series, we have:

y(tj+1) = y(tj) + hf(tj , yj) +
h2

2
f ′′(ξ)

We use the approximation, yj+1 = yj + hf(tj , yj). The local truncation error
is the error in a single step. In this case, the local truncation error is O(h2).
On the test equation, we have yj = (1 + hλ)jy0. Note that this is stable when
|1 + hλ| ≤ 1; even if λ < 0 (so the true solution is stable), we must have
h ≤ −2/λ for the computed solution to be stable.

Explicit Runge-Kutta Methods: In these methods, we try to match more
terms of the Taylor series by applying the chain rule:

y′′(t) =
∂f

∂t
+

∂f

∂y
y′ =

∂f

∂t
+

∂f

∂y
f(t, y)

For example, Heun’s method uses:

yj+1 = yj +
h

2
(f(tj , yj) + f(tj+1, yj + hf(tj , yj)))

There is a family of methods with different parameters to match higher orders.
the Classical Runge-Kutta Method is:

K0 = f(tj , yj)

K1 = f(tj +
h

2
, yj + h

K0

2
)

K2 = f(tj +
h

2
, yj + h

K1

2
)

K3 = f(tj + h, yj + hK2)

yj+1
= yj +

h

6
(K0 + 2K1 + 2K2 + K3)

22

This is a fourth order method, but it requires more evaluations of f . Runge-
Kutta methods with different orders may also be combined to optimize the
stepsize (one common method is RK45).

Explicit Linear Multistep (Multivalue) Methods (LMM): In these methods,
we compute:

yj+1 =
n∑

i=1

αiyj+1−i + h
m∑

i=1

βif(tj+1−i, yj+1−i)

These methods are also called predictors. These methods do polynomial inter-
polation using both the function values and the derivatives to get to the next
point. A two-step predictor of order two is:

yj+1 = yj +
h

2
(3f(tj , yj)− f(tj−1, yj−1))

The Adams-Bashforth Method is:

yj+1 = yj +
h

24
(55f(yj , tj)− 59f(tj−1, yj−1) + 37f(tj−2, yj−2)− 9f(tj−3, yj−3))

which is of fourth order. Note that alternative methods must be used for the
first few steps, since we do not know y−1 or previous values.

Implicit (Backward) Euler : Now, we compute yj+1 from the equation yj+1 =
yj + hf(tj+1, yj+1), which is (possibly) a non-linear equation in yj+1. On the
test equation, we find that yj = y0(1 − hλ)−j ; this is stable for all h > 0 if
λ < 0. In general, as well, implicit Euler is stable for a larger set of h values
than explicit Euler.

Implicit Runge-Kutta Methods: Let K1 = f(tj , yj) and K2 = f(tj+1, yj+1).
Then, yj+1 = yj + h

2 (K1 + K2), which is akin to the trapezoid rule. (And they
get more complicated.)

Predictor-Corrector Methods (Implicit LMM): Estimate ỹj+1 using the pre-
dictor method, and use it as the initial value in a non-linear equation solved
with Newton’s method. For example, the Adams-Moulton Method is:

yj+1 = yj +
h

24
(9f(tj+1, yj+1) + 19f(yj , tj)− 5f(tj−1, yj−1) + f(tj−2, yj−2))

In higher dimensions, we have y(t) equal to a vector of functions of y and t.
We may also convert higher order ODE’s into systems of first order ODE’s.

Definition A differential equation is stiff when the solution varies slowly but
there are nearby solutions that vary rapidly, so that the numerical method
must take small steps. Alteratively, equations are stiff when components have
different time scales.

This may require implicit methods (so that there are more options for h) and
may be slower. Stiff methods are implicit methods with larger stability regions
for h.

23

7 Linear Programming

Definition In linear programming, we minimize (or maximize) a linear objective
function, l(x) = cT x =

∑
i cixi, subject to linear constraints, which may be

either equality constraints, Ax = b, or inequality constraints, Ax ≤ b. c is called
the normal vector. x is feasible if it satisfies the constraints.

Notice that for any vector, p, and positive scalar, α, we have:

l(x + αp) = cT (x + αp) = cT x + αcT p

• If cT p = 0, then the value of the function does not change as x moves
along p.

• If cT p > 0, the function increases as we move in the direction of p.

• If cT p < 0, then the function decreases in the direction of p.

Unless c = 0, the function is unbounded and there are no (finite) absolute
minima or maxima.

7.1 Equality Constraints

Suppose we have an equality constraint, Ax = b, and a feasible x0 (which
requires that the linear system Ax = b is compatible; that is, the rows of A
must be linearly independent). If we want to find a p such that x1 = x0 + αp,
then we must have αAp = 0; that is, the only vectors, p, that will allow a move
to another feasible point lie in Null(A).

The conditions for a point, x∗, to be optimal are that:

• x∗ is feasible; that is Ax∗ = b.

• There is no direction that stays feasible and decreases cT x. That is, there
is no p such that cT p < 0 and Ap = 0.

Theorem 7.1 If y ∈ Range(AT) and Ap = 0 then yT p = 0. If y 6∈ Range(AT)
then there exists p such that Ap = 0 and Y T p < 0.

This leads us to the following possible optimal solutions:

• Case 1: Suppose c = AT λ for some λ (where the λ are called the Lagrange
multipliers). Then, there is not feasible descent direction from a feasible
solution, x∗, and the optimal solution is:

cT x∗ = λT Ax∗ = λT b

Note that all feasible points lead to the same optimal solution.

• Case 2: If c 6= AT λ for all λ, then there exists p such that Ap = 0 and
cT p < 0. Then, cT (x + αp) = cT x + αcT p and there is no finite optimal
point or optimal value (since we may just descend further in the direction
of p).

24

7.2 Inequality Constraints

Suppose we have the inequality constraints, Ax ≥ b. Let a be a row of A and β
the corresponding element of b. If aT x ≥ β, then we say that x is feasible with
respect to this constraint. If aT x > β, the x is strictly feasible. If aT = β, then
the constraint is active (binding, tight). If aT x < β, the constraint is violated.

Let x0 be a feasible point. Let AA be the rows of A that are active. Then,
AAx0 = bA. We want to find a feasible direction, p, such that p 6= 0 and
there exists some γ > 0 such that aT (x0 + αp) ≥ β for all 0 ≤ α ≤ γ for all
constraints. For each constraint, if aT p ≥ 0,then movement in that direction
will always satisfy the constraint. If aT p < 0, then there is a finite γ that
determines when aT (x + γp) = β; that is, γ = aT x−β

−aT p
. γ > 0 for each strictly

feasible constraint, but γ = 0 for each active constraint. Thus, we must have
AAp ≥ 0 in order for p to be a feasible direction.

Definition A vertex, x, is a point where the matrix of active constraints,
AA(x), contains at least one subset of n linearly independent rows; that is,
rank(AA(x)) = n. A vertex is nondegenerate if there are exactly n linearly in-
dependent active constraints. Otherwise, the vertex is degenerate. Two vertices
are adjacent if the matrices of the active constraints differ by one (at least in
the case of non-degenerate matrices; it is more complicated otherwise).

Theorem 7.2 Suppose we have a constraint Ax ≥ b with A of size m× n and
at least one feasible point. A vertex exists if rank(A) = n.

Theorem 7.3 Farkas’s Lemma. cT p ≥ 0 for all p such that Y p ≥ 0 if and only
if c = Y T λ and λ ≥ 0 (that is, all the coefficients of the linear combination
equalling c are positive). Equivalently, there exists p such that cT p < 0 and
Y p ≥ 0 on if c cannot be written as c = Y T λ with all elements of λ non-
negative.

Proof (Only if, special case.) For simplicity, assume that Y has linearly in-
dependent rows. Suppose that c = Y T λ and at least one component of λ is
negative. (By linear independence, λ is unique.) Choose s to be one of the neg-
ative components. By the independence of the rows of Y , the system Y p = es

must be compatible. Then,

cT p = λT Y p = λT es = λs < 0

Thus, this p stays on all but the sth constraint; it moves in a strictly feasible
direction for that constraint.

Theorem 7.4 Suppose that rank(A) = n, that there exists a minimizer, and
that the optimal objective value is finite. Then, there is a vertex minimizer.

Proof Suppose that x0 is a minimizer and not a vertex. Then, Ax0 ≥ b and
c = AT

A0λA0 which λA0 ≥ 0. Choose p such that AA0p = 0 and moving along
p will hit an inactive constraint (this is possible since AA0 has fewer than n

25

linearly independent constraints and rank(A) = n). In this direction, cT p =
λT

A0AA0p = 0 and the value of the function is constant (and optimal). This
process may be repeated until the matrix of active constraints has rank n.

Definition Suppose we have two non-negative vectors. We say complemen-
tarity holds if it is always that case that whenever one element of a vector is
non-zero, the corresponding elements of the other vector is zero. (That is, the
dot product of the two non-negative vectors must be 0.)

If there is a solution, then we may always write c = AT λ with non-negative
λ, since we may write c = AT

Aλ and then set the λ = 0 for all the other
constraints. Define r = Ax − b. At the solution, if ri > 0 then we are not
an an active constraint, and we must have λi = 0. If λi > 0, we are on an
active constraint, and we must have ri = 0. This gives the following optimality
conditions:

c = AT λ

riλi = 0
λ ≥ 0
r ≥ 0

Algorithm: Simplex Method (Nondegenerate Case)

• Suppose we have a vertex, x0 (which can be found from “Phase One”
below).

• For each k, let Ak be the matrix of active constraints at xk. Note that,
by non-degeneracy, Ak is an n× n non-singular matrix.

• Solve AT
k λk = c for the Lagrange multipliers/dual variables, λk. If λk ≥ 0,

then we have found an optimal point.

• Otherwise, choose s such that λs < 0. Solve Akp = es for p, which is a
feasible direction.

• Move in the direction p until another constraint becomes active.

Because the value of cT xk must decrease at every step and there are a finite
(though large) number of vertices, this algorithm must terminate. However,
the numbers of steps that will be required is unknown, and there is no way to
measure the distance from the optimum or the rate of convergence.

For cases where there is more than one λs < 0, then we must specify a
constraint deletion rule. The Textbook Rule simply chooses the most negative λs.
(This is not necessarily the fastest because scales can vary, but it is reasonable.)

Note that Ak and Ak−1 differ by exactly one row. Since this is a rank
one change, there are algorithms for updating the LU decomposition instead
of computing it from scratch, which can be done in O(N2) time. (After many

26

steps, it should be recomputed from scratch, since numerical errors may have
built up.)

In the case of degeneracy, more that n constraints might be active at any
given vertex, so Ak will not be nonsingular or square. To modify the algorithm,
one keeps a working set of n linearly independent constraints and uses them (the
rest of the constraints are called the idle constraints). However, it is possible
that the chosen feasible direction based on the working constraints will violate
some of the idle constraints. In this case, one might drop the constraint on
which one is moving and replace it with the violated constraint. This is not
guaranteed to work; it may lead to cycling.

The worst case is the case in which there are 2n vertices and all of them
are visited (Klee and Minty showed that this is possible). Thus, this algorithm
is not polynomial time, though it usually works much better than the worst
case. Other methods, like interior methods (which don’t require moving from
one vertex to the next), are polynomial time.

To find an initial vertex, we use another linear programming algorithm (with
a known initial vertex).

Algorithm: Phase 1

• Given the original variables, x, and original m constraints, Ax ≥ b. Define

– y a set of artificial variables

– A∗ =
(

A Im

0 Im

)
– x∗ =

(
x
y

)
– b∗ =

(
b
0

)
• Choose an arbitrary point, x0, and let ri = min(0, aT

i x0 − bi) for each

of the original constraints. Then, Ax0 − r ≥ b and
(

x0

y

)
is a feasible

point.

• Run the linear program to optimize the objective function,
∑

yi. (This is
called minimizing the sum of infeasibilities.

7.3 Standard-Form LP

In standard form linear programming, we minimize the objective function, cT x,
subject to the constraints, Ax = b and x ≥ 0, where the rows of A are linearly
independent. The previous case can be converted to this (and vice versa) by
adding slack variables. The m equality constraints are always active, so a vertex
is determined by a place with n−m of the variables equal to 0. Everything can
be converted to this.

27

