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1 Sets, Fields, Measures, and Probability Mea-
sures

Definition Let Q be a probability space. We call w €  a sample point and
S C Q an event.

Definition A class F of subsets of 2 is called a field or algebra if:
e Qe F
o If Ac F then A® € F.
o If A, B e Fthen AUB € F. (This is called finite additivity.)
The class is a o-field or a o-algebra if the following condition holds as well:

o If A1, As,... € F then Ufil A; € F as well. (This is called countable
additivity.)

An set that is an element of F is called an F-set, and is said to be measurable
F. The o-field generated by a class of sets, A, o(A), is the intersection of all
o-fields that contain A.

Definition The extended real line is [—o0o,o0]; it includes both positive and
negative infinity.

Definition Let R¥ be the o-field generated by the bounded rectangles [z =
(@1, xp) s a; < xy < bgyi=1,...,k] C R¥. The elements of R¥ are called the
k-dimensional Borel sets. Note that RF contains all the open and closed sets
(among other things). R! is sometimes written as B.

Theorem 1.1 If A is a class of sets in Q and Qo C Q, let ANQy=[ANQ :
A e Al. If Fis a o-field in Q then F N Qg is a o-field in Q. If A generates
the o-field F in Q) then AN Qg generates the o-field F N Qq in Qy. That is,
O'(.AQQ()) = O'(A)QQ()

Definition A class P of subsets of Q is a w-system if whenever A, B € P,
ANB e P as well.



Definition A class £ of subsets of Q is a A-system if:
1. el
2. f A, BeLand AC B, then B— A € L.
3. If A1, As,...€ Land A, T A then A € L.

Note that any class of subsets that is both a w-system and a A-system is a
o-field.

Theorem 1.2 If P is a w-system and L is a A-system and P C L then o(P) C
L.

Definition A set function is a real-valued function defined on a class of subsets
of Q. A set function p : F — R, where F is a field in €, is a measure if:

1. u(A) € [0,00] for all A € F
2. u(@ =0

3. If Ay, As,... € F are disjoint and (=, Ay € F, then u(Upe, Ax) =
> re; 1(Ag). (Note that this sum may be infinite. )

wis finite if p(Q2) < oo and infinite if () = oo. If @ = A3 UA,U... (where this
is either a finite or a countable sequence of F-sets, which need not be disjoint)
with p(Ag) < oo for all k, then p is o-finite. If Ay, As,... € A, then we say p
is o-finite on A. If u is a measure on a o-field F in €2, we say that the triple,
(Q, F, ) is a measure space. If u(A°) =0 for A € F, then A is a support of p,
and we say that u is concentrated on A. If F is a o-field on 2, then we say that
(Q,F) is a measurable space.

Definition A measure p on (Q,F) is discrete if there are countably many
w; € Q such that u(A) =3 4 p({wi}) for all A € F.

Some facts about measures:
e Monotonicity: If A C B then p(A) < u(B).

e Inclusion-Exclusion: p(Up_; Ax) = > q p(A;) — Di<icion WA NAG) +
et (D) u(Ar NN Ay)

e Finite Subadditivity: p(Ujr_; Ar) < > peq #(Ak)
o If u(Ay,) =0 for all A, then u(lJ,, 4n) =0.

Definition For an infinite sequence of real numbers, x1, z,, ..., in [0, 00|, we say
that xp 1 = if 2, < zp41 < z and z — x (either in the usual sense, or if z = oo
and xy = oo for some k). We say that x, | « if 2 > x541 > © and z — z.



Definition For an infinite sequence of sets, A1, Ao, ..., we say that A, T A if
A C Ay C ...and A = J,, A,. We say that A, | Aif A; D A, D ... and
A=, A,

Theorem 1.3 Let p be a measure on a field F. Then it has the following
properties:

1. Continuity from Below: If A,, A € F and A, 1 A then u(A,) T p(4).

2. Continuity from Above: If A, A € F and A, | A and u(A;r) < oo then
1(An) | p(A).

3. If A1, Agy ... € F and \Jg— ) Ak € F then p(Upey Ar) < > peq #(Ak).

4. If p is o-finite on F, then F cannot contain an uncountable, disjoint
collection of sets of positive measure.

Definition Let A(a,b] = b— a for any a,b € R. Note that A is finitely additive
and countably subadditive on the collection of finite intervals in R. The exten-
sion of this measure to the o-field of all linear Borel sets in R', B, defines the
Lebesgue measure on R. The Lebesgue measure is indeed a measure on this set,
and its extension from intervals to the entire class of sets is unique.

Theorem 1.4 (Extension Theorem.) Suppose P is a measure on a field Fy of
subsets of Q. Let F = o(Fy). Then there is a unique probability measure, Q on
F such that Q(A) = P(A) for all A € Fy.

Theorem 1.5 Suppose Py and P, are probability measures on o(P), with P a
mw-system. If Py and Py agree on P then they agree on all of o(P).

Definition Let )\k[a: = (3?1, ...,Lll‘k) L a; < ZT; < bi,’i = 1, ,k] = 1_[714621(17z — ai)
for any bounded rectangle in R¥. The extension of this to the Borel subsets of
RF defines the k-dimensional Lebesgue measure.

Theorem 1.6 Translation Invariance If A € R¥ and we define A+x = [a+x :
a € A, then A+x € RF and A\, (A) = A\p(A + ).

Theorem 1.7 If T : R* — RF is linear and nonsingular, then for all A € R,
T(A) € RF and \p(T(A)) = |det(T)|\p(A).

Definition A set function P : F — R is a probability measure if:
1.0<PA)<lforall AeF
2. P(0)=0and P(Q) =1

3. If Ay, Ay, ... € F are disjoint and |JJ—, Ay € F, then P({J,o, Ax) =
Z;i“;l P(Ay).

The triple, (Q,F, P) is called a probability (measure) space. A support of P is
any set A € F such that P(A) = 1.



Theorem 1.8 Let (Q, F, P) be a probability space. Then the following three
properties hold:

1. Continuity from Below: Suppose A, A,, € F with A, T A. Then, P(A,) 1
P(A).

2. Continuity from Above: Suppose A, A, € F with A, | A. Then, P(A,) |
P(A).

3. Countable Subadditivity: If Ay, € F for all k and J;—, Ax € F, then
P(U?:l Ag) < 2211 P(Ag).

If P(A,) =1 for all A,, then P(, A,) = 1.

Definition Let Q = {1,2,...} and F be the set of all subsets of . If u(A) is
the number of elements in A, we call u the counting measure.

Definition A property G is true almost everywhere or almost surely if plw :
G does not hold for w] = 0.

Definition Let (X, X) and (Y,)) be measurable spaces. A x B is a measurable
rectangle if A € X and B € ). X x ) is the o-field generated by the measurable
rectangles.

Theorem 1.9 If E € X x )Y, then for allz € X, [y: (z,y) € E] € Y and for
alyeY, [x: (z,y) € E] € X. (These are called the sections of E determined
by x ory.) If f is measurable X x Y then for any fized x, f(x,.) is measurable
Y, and for any fized y, f(.,y) is measurable X. (These are the sections of f
determined by x and y.)

Definition Suppose (X, X, u) and (Y, Y, v) are measure spaces, with u, v finite.
Let £ € X x Y. Define
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In particular, for a measurable rectangle A x B, m1(A x B) = m(A X B) =
w(A)v(B). This measure is called the product measure.

Theorem 1.10 If (X, X,un) and (Y,Y,v) are o-finite measure spaces, then
m1(E) = m(E) = w(E) defines a o-finite measure on X x Y. It is the only
measure such that m(A x B) = u(A)v(B).



Measurable Functions and Mappings

Definition Let (Q,F) and (€', F’) be measurable spaces. For T : Q — (/|
define T71(A’) = [w € Q : T(w) € A’] (this is the inverse image of A’ C Q). T
is measurable F/F' if T71(A') € F for all A’ € F'. If f : F — R is measurable
F/R, then we say it is measurable F.

Theorem 1.11 If T~Y(A") € F for all A’ € A" and A’ generates F', then T is
measurable F/F'. If T is measurable F/F' and T’ is measurable F'/F", then
T' o T is measurable F/F".

Definition If f : R® — RF is measurable R?/R¥*, then it is called a Borel
function.

Theorem 1.12 If f(w) = (fi(w), ..., fx(w)), [ is measurable F if and only if
each f;(w) is measurable F.

Theorem 1.13 If f : R® — RF is continuous, then it is measurable. Since
compositions of measurable functions are measurable, sums, products, maxima,
and other continuous functions of measurable functions are also measurable.

Theorem 1.14 Suppose fi, fa,... are measurable F. Then sup,, fn, inf, fn,
limsup,, fn, and liminf, f, are all measurable F. If lim,, f, exists everywhere,
then it is measurable F. The set where {fn(w)} converges lies in F. If f is also
measurable F, then the set where fp(w) — f(w) lies in F.

Definition A simple real function is a real function with finite range, {z1, ..., z, }.
Then we may write it as f = >, @;1(4;), where the A; decompose €. This
function is measurable if A; € F fori=1,...,n.

Theorem 1.15 If f is real and measurable F, there exists a sequence {fn} of
simple functions that are measurable F such that when f(w) > 00 < f,(w) and

fa(w) 1 f(w) and when f(w) <00 > fo(w) and fr(w) | f(w).

Definition Let (2, F) and (€', F') be measurable with 7' : Q@ — Q' measur-
able F/F'. Given a measure p on F, define uT~' : F/ — R by uT-1(A") =
u(T=1(A")) for all A’ € F'. Note that uT~! is a measure. If y is a probability
measure, so is uT 1.

2 Integrals

Definition Let f = Y"1 | z;14, with A;NA; =0 foralli # j and [JI-; 4; = Q.

We define: .
/ Fdn =" wip(Ay)
=1

If B is an F-set, then we define [, fdu = [,(f)(Ip)dp =", xiu(A; N B).



Definition Let f be a non-negative measurable function. Consider a sequence
of simple functions, {f,}22,, such that 0 < f,, and f, T f. We define [ fdu =
limn—>oc ffndﬂ'

Definition Let f be any measurable function. Define f*(w) = f(w)I(f(w) >

0) and f~(w) = —f(w)I(f(w) < 0). (Note that f = f*—f~) If [ fTdu < oo
and [ f~ dp < oo, then we say that f is integrable and define:

[tan= [ sran- [ £au

Some properties of integrals:
e If f < g almost everywhere, then [ fdu < [ gdu.

| [ fdul < [1fldu
If f =0 almost everywhere, then [ fdu = 0.

If 1(A) = 0 then [, fdu = 0.

If [ fdu < oo then f < oo almost everywhere.

If o, 3 are finite and f, g are integrable, then [(af + Bg)dp =« [ fdu +
B [ gdu.

Theorem 2.1 Monotone Convergence Theorem If 0 < f, and f, T f almost
everywhere, then [ fo,du 1 [ fdu.

Theorem 2.2 Fatou’s Lemma If 0 < f,, then

/(hm inf f,)du < hm mf/fndu

n—oo

Theorem 2.3 Lebesgue’s Dominated Convergence Theorem If | f,,| < g almost

everywhere, g is integrable, and f, — f almost everywhere, then {f,} and f
are integrable and ffndu — ffdu.

Definition A sequence of functions, f, is wniformly bounded if there exists
K < oo such that |f,(w)| < K for all w and n.

Theorem 2.4 Bounded Convergence Theorem If () < oo, {fn} is uniformly
bounded, and f, — f almost everywhere, then [ fo,du — [ fdp.

Definition A sequence {f,} is uniformly integrable if

fim (sup [ | fuld) =0
|er|>0‘

a— 00 n

Theorem 2.5 If sup,, [ |fn|'T¢du < oo for some € > 0 then {f,} is uniformly
integrable.



Theorem 2.6 Let u(Q2) < oo and f, — f almost everywhere. If the f, are
uniformly integrable, then f is integrable and [ fnodp — [ fdu.

Definition A real measurable function, f, is Lebesgue integrable if it is inte-
grable with respect to the Lebesgue measure, A. The integral is usually written

as [ fd\ = [ f(z)dx

Definition A real function, f, on an interval (a,b] is Riemann integrable with
integral r if for all € > 0 there exists a § > 0 such that

|7"—fo] Ji)| < e

where {J;} is a finite partition of (a, b] into subintervals of length at most § and
x; € Jj.

A bounded function on a bounded interval if Riemann integrable if and only
if its set of discontinuities has Lebesgue measure 0. If f is Riemann integrable,
then the Riemann integral equals the Lebesgue integral.

Theorem 2.7 Suppose [ |f|dz < oo. Then for all € > 0 there exists a step

function, g, = Zle yila, (where the A; are bounded intervals) such that [ |f —
gldr < e. In addition, there is a continuous integrable function, he, which is 0
outside a bounded interval, such that [ |f — hldz < e.

Theorem 2.8 Fundamental Theorem of Calculus. Suppose Fis a function with
continuous derivative, F' = f. Then, f; flx)dz = f F'(x)dx = F(b) — F(a).

Theorem 2.9 Suppose {z;} is a non-negative sequence. Define f(i) =
Then .2, x; = [ fdu, where p is the counting measure.

Theorem 2.10 Fubini’s Theorem Let (X, X, u) and (Y,Y,v) be o-finite mea-
sure spaces Suppose [ is a non-negative function. Then, [, f(z,y)v(dy) and
fX wu(dz) are measurable X and Y respectively, and:

/X @) - /X [ /Y £ (@ y)v(dy) ] u(de)

1] s autazivian

Let f be an arbitrary function that s integrable with respect to w. Then,
Iy ( v(dy) and [y f(z,y)p(dz) are measurable and finite except on sets
of - and v-measure 0 respectwely, and the iterated integrals above continue to
hold.



3 Random Variables

Definition Let (2, F, P) be a probability space. Let X : Q — R. X is a simple
random variable if it has a finite range and [w : X (w) = z] € F for all z € R.
Let A; = {w: X(w) = x;} for each x; in the range of X. Then we may represent
X as a sum of indicator functions:

i=1

In this case, p has mass p; = P[X = x;] = p{x;} at the points in the range of
X.

Definition A random variable on a probability space (2, F, P) is a real-valued
function X = X (w) which is measurable F. A random vector is a mapping
X : Q — R" that is measurable F; this is a k-tuple of random variables.

Definition If G is a sub-o-field of F then a simple random variable X is mea-
surable G if [w : X(w) = z] € G for each z € R. In general, a k-dimensional
random vector, X, is measurable G if [w : X(w) € H| € G for every measurable
H € RF.

Definition The o-field, o(X), generated by X is the smallest o-field that X is
measurable with respect to. If X7, Xo, ... is a finite or infinite sequence of random
variables, then o(X7, Xs,...) is the smallest o-field with respect to which each
X, is measurable.

Theorem 3.1 Let X = (Xq, ..., X) be a random vector. Then, o(X) = o(Xq, ...

consists exactly of the sets [w: X(w) € H] = [w: (X1(w), ..., Xpn(w)) € H] for
all H € R*. Y is measurable o(X) if and only if there is some f : R¥ — R
such that Y (w) = f(X1(w), ..., Xp(w)).

Definition Let X : ) — R be a random variable. The distribution (or law) of
X is the probability measure on R given by PX 1. That is, u(A4) = P(X € A)
for all A € R. The support for u is any Borel set S such p(S) = 1. A random
variable (and its distribution) are discrete if p has countable support.

If X has distribution 4 and g : R — R, then P(g(X) € A) = P(X €
g 1(A)) = u(g7tA), and g(X) has distribution pug=1.

Theorem 3.2 Let T : Q — Q' be measurable F/F'. Given a measure p on
F, define uT=t on F' by uT~—*(A) = w(T~YA). If f is non-negative, then
Jo fTw)p(dw) = [o f(W )T (dw'). A function f is integrable with re-
spect to pT'~' if and only if fT is integrable with respect to p. In that case,
Jrgr FT) () = [y Fw )T~ (do):



Definition Let p be a measure on R! that assigns a finite measure to any
bounded set. Define:

_ (0, ] ifz >0
F(z) = { ﬁu(x,()] ifx <0

If 11 is a probability measure, we call F' a (cumulative) distribution function of
the random variable X with distribution p. If p is finite, then we may define
F(z) = p(—o0, 2] instead; in this case, F(z) = P(X < z).

Some facts about F' as defined above:

e F is finite because p is finite on bounded sets.
e F' is non-decreasing.

e Right-continuous: If x,, | x then F(x,) | F(x).
pu(a, b = F(b) — F(a)

If p is the Lebesgue measure, then F(x) = x.

Theorem 3.3 If F' is a non-decreasing, right-continuous real function on R,
there exists on R a unique measure, |t such that u(a,b] = F(b) — F(a) for all
a,b € R.

Definition The jump (or saltus) in a distribution function, F is given by F(z)—
limy, F(y) = F(z) — F(z—) = p({z}) = P(X = z).

Definition Let § be a non-negative measurable function. Define a measure by
v(A) = [, ddp for all A € F. Then we say that v has density § with respect to

73
Definition A random variable, X, and its distribution, u, have density f with

respect to the Lebesgue measure if f > 0 is a Borel function on R and P(z €
A) = p(A) = [, f(z)dx for all a € R.

Theorem 3.4 Let X be a random variable. Let g be a mon-negative function
such that [, g(x)de = 1 and px(B) = [ g(z)dz for all measurable sets B.
Then, for any function f, [ f(x)du, = [ f(z)g(x)dz, and g is the probability
density function of the random variable X .

Some properties of densities:

If u(A) =0 then v(A) = 0.

e v is finite if and only if § is integrable with respect to p.
e If 6 = ¢’ almost everywhere, then § and ¢’ induce the same density.

e If y is o-finite and § and ¢’ induce the same density then 6 = ¢’ almost
everywhere.



o [ f(x)de=P(X €R)=1.

e f is determined only up to a set of Lebesgue measure 0.

o F(b) = J2 f(=)

e Suppose f is a continuous density and g : R — R is increasing. Let
T = g7'. Then, P(g(X) < x) = P(X < T(z)) = F(T'(z)). If T is
differentiable, then - P(g(X) < z) = f(T())|T"(z)|.

Theorem 3.5 If v has density & with respect to u and g is a non-negative
function, then fgdl/ = fgédu. An arbitrary g is integrable with respect to v if
and only if g is integrable with respect to p. In that case, ngdz/ = fA godu
for any A.

Theorem 3.6 Suppose v, (A) = [, d,dp for each n and v(A) = [, édp. If
vn () =v(Q) < oo for alln and Op, — 0 except on a set of,u measure 0, then

sup [V(A) — v, (4)| < sup/ [0 — Op|dp — 0
AeF

Definition If X = (X1, ..., Xj) is a random vector, the (joint) distribution and
distribution functions are given by u(A) = P((X1, ..., Xx) € A) and F(x1,...,x) =
P(Xy <z, X <ap) = p(Se).

Definition Let X = (X3, ..., X}) be a random vector. Let g;(X) = X;. Then,
pi = ug;l is defined by p;(A) = p((X1,...,Xk) : X; € A) = P(X; € A ). {ws}
are called the marginal distributions of u. If f is the density of u, then the mar-

ginal density is given by f;(y ka V(@ o, Y Tty e, T ) ATy dr 1 dX g dag.

Some facts about joint distributions:

e F is non-decreasing in each variable and continuous from above (that is,
limp o F(x1 + hy ooy + h) = F(x1, ..., x8)).

e If any z; — —oo then F(x1,...,x;) — 0.

o If all x; — oo, then F(zq,...,zx) — 1.

e Fis continuous at (21, ..., zx) if and only if limy, g F(z1 — h, ...,z — h) =
F(xy,...,xp).

e F may have uncountably many discontinuities, but the set of points at
which F is continuous are dense in RF.

e If X is a random vector and g : R*¥ — R’ is a measurable function, then
g(X) is an i-dimensional random vector with distribution ug=!. (Marginal
distributions are a special case of this.)

e Suppose g : V — U is a one-to-one, onto and continuously differentiable
map of open sets. Let T'= g~!. Suppose that the Jacobian of T, J(z),
does not vanish. If X has density f and support Vv, then for any A C U,
P(g(X) € A) = P(X € T(A) = [y 4 fW)dy = [, f(T(2))|J(x)|da, and
the density of g(X) is f(T(x))|J(z)|I(x € U).

10



4 Independence

Definition A finite collection of events, Ay, ..., A,, is independent if P(Ag, N
M Ay;) = P(Ayg,) - ... - P(Ay;) for all subsets of distinct indices. An infinite
collection of events is independent if each finite subcollection is independent.

Definition Let A, ..., A, C F be classes of events. These classes are indepen-
dent if, for any choices of A; € A; for i =1, ...,n, the events Ay, ..., A, are inde-
pendent. That is, P(A1N...NA,) = P(A;)--- P(A,) whenever A; € A; U{Q}.

Definition The infinite collection of classes, [Ay : 0 € O], is independent if
the sets Ay € Ay for each 0 € © are always independent. Equivalently, the
infinite collection is independent if each finite subcollection of [Ay : § € O] is
independent.

Theorem 4.1 If Ay,..., A, are independent and each A; is a w-system, then
(A1), ...,0(Ay) are independent. If Ag for 6 € © are independent and each Ay
is a w-system, then o(Ap) for 8 € © are independent.

Definition A sequence X1, Xs, ... of random variables is independent if o(X1), 0(X3), ...
are independent. Equivalently, we have P[X; € Hy,.., X, € H,] = P[X; €
H,]...P[X,, € H,] for any set, Hy,...,H,. Since [X; = z] for all z € R (to-

gether with the empty set) form a m-system that generates o(X;), P[Xk, =

X1y, X, = Tp] = P[Xg, = x1] - ... - P[ Xy, = x,], for any subset of distinct
indices, is sufficient for independence as well.

If (X1, ..., X&) has distribution u, distribution function F', marginal distrib-
utions p;, and marginal distribution functions F;, the following are equivalent:

e The random variables X1, ..., X are independent.
& M= M1 Mk
[ ] F(:l?l, ...,xk) = Fl(.’)Sl) t e Fk(xk)

If these random variables have densities f and f;, then f(z) = fi(x1)-...- fr(ag).
In addition, if Gy, ..., Gy are independent o-fields and each X; is measurable
G;, then X1, ..., X} are independent as well.

Theorem 4.2 Suppose an array, (A;;) of events is independent. Let F; be the
o-field generated by the it" row. Then, Fi, F, ... are independent.

Theorem 4.3 Suppose X;; is an independent collection of random vectors. Let
F; be the o-field generated by the it" row. Then, Fi,Fa, ... are independent.

Theorem 4.4 If X and Y are independent random variables with distributions
pand v in R and RF, then, for all B € R7tF and A € R,

P(XY)eB) = [ PwY)eBpu(d)

/ P((,Y) € B)(dz)
A

P(X € A and (X,Y) € B)

11



Theorem 4.5 Let {u,} be a sequence of probability measures on the class of all
subsets of the line, each having finite (discrete) support. There exists some prob-
ability space, (Q, F, P), with an independent sequence of random variables { X, }
of simple random variables all on that space such that each X,, has distribution

Mo -

Theorem 4.6 If {i,,} is a finite or infinite sequence of probability measures on
RY, there exists on some probability space, (2, F, P), an independent sequence
of random wvariables, {X,,} such that X,, has distribution p,.

Theorem 4.7 If the random variables X1, ..., X,, are independent, and f1, ..., fn
are measurable functions, then f1(X1),..., fn(Xn) are also independent.

Definition Let m,n be integers with 1 < m < n. Let I, (H) = {(z1, ..., ) :
(x1,...,xm) € H}. We call this the projection map of R™ into R™.

Theorem 4.8 For each n > 1, let w, be a probability measure on (R™, R™)
such that for all m < n, py, o Iy = - Then there exists a probability space,
(Q,F,P)and a sequence of random variables {X;} on it such that p, is the
measure of (X1, ..., X,) for all n.

5 Expected Value

Definition A simple random variable, X, has an expected value (mean value)
given by E(X) = E(}_, z:I(4;)) = >, x;P(A;). Equivalently, we may write
E(X)=>,cprzP(X =2x).

Definition Let X be a random variable on (€2, P). Then, the expected value
of X is given by E(X) = [, XdP.

Some facts about expected values:

e E(X)=E(Y)ifP(X=Y)=1

E(I(A)) = P(A)
o If X(w) =« for all w € Q, then E(X) = a.
If @ and (3 are constants, then E(aX + 8Y) = aE(X) + SE(Y).

e If X and Y are independent, then F(XY) = E(X)E(Y).
e If X(w) <Y (w) on a set of probability one, then E(X) < E(Y).

Theorem 5.1 If {X,,} is uniformly bounded and if X = lim,,_, X,, on an
F-set of probability 1, then E(X) = lim, o E(X,).

Corollary 5.2 If X = > >, X,, on an F-set of probability one and the partial
sums, 22:1 X, are uniformly bounded, then E(X) =Y., E(X,).

n=1
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Theorem 5.3 Let X be a random variable on (Q, F, P) and f a Borel function.
Let pux be the probability measure induced by X. Then, E(f(X)) = [, f(x)dP =
fR f(z)dpx.

Theorem 5.4 For any random variable X, Y - P(|X| > n) < E(|X]|) <
14> 22, P(IX| > n). If X is non-negative and takes only integer values, then
E(X)=Y7",P(X >n).

Theorem 5.5 (Generalization.) Let X be a non-negative random variable. Let
f: Rt — R be measurable with f(0) = 0, such that f is absolutely continuous
on [0,t] for all t < co. Then, E(f(X)) = [;° f/(t)P(X > t)dt. In particular,
E(X) = [, P(X >t)dt.

Definition The wariance of a random variable, X is defined as Var(X) =

E((X - E(X))?) = BE(X?) - E(X)?.

6 Limit Sets and Convergence

Definition Let A;, As, ... be a sequence of sets. Then,

limsupA4, = lim A, = ﬂ U Ay, = [A, infinitely often]
" e n=1k=n

liminf A, = lim A4, = U ﬂ Ay, = [A,, almost always]
— n=1k=n

That is, w is in lim sup,, 4,, if and only if it lies in infinitely many of the A,, and
in liminf,, A, if and only if it lies in all but finitely many of the A,,.

Some facts:
° ﬂzozn Ap 7 liminf, A,
o Ur—, Ag | limsup, A4,

e liminf A, C limsup A,, and the two are equal if and only if lim A4,, exists
(and then all three are equal).

Theorem 6.1 For any {A,},
P(liminf A,,) < liminf P(A,) < limsup P(4,,) < P(limsup A,)
If A, — A then P(A,) — P(A).

Theorem 6.2 First Borel-Cantelli Lemma If Y>> | P(A,) < oo then P(limsup,, A,) =
0.

Theorem 6.3 Second Borel-Cantelli Lemma If {A,} is a sequence of indepen-
dent events and Y > | P(A,) = oo, then P(limsup,, A,) = 1.

13



Definition Let A;, A,, ... be a sequence of events in a probability space (2, F, P).
The tail o-field associated with {A,,} is given by T = (7, 0(A4,, Apiq,...).
The elements of this o-field are called tail events.

Theorem 6.4 Kolgomorov’s Zero-One Law If Ay, Az, ... are an independent
sequence of events, then for each event, A, in the tail o-field, T, P(A) =0 or
P(A)=1.

Definition {X,} converges to X with probability one (converges almost every-
where, converges almost surely or converges strongly) if P(lim,, X, (w) = X (w)) =
1. Equivalently, {X,,} converges almost everywhere to the random variable X
if there exists a set A such that P(A) =0 and X, (w) — X (w) for all w € A“.

Theorem 6.5 X,, — X almost everywhere if and only if for all e > 0, lim,, o P(| X, —
X| <eforalln>m)=1.

Theorem 6.6 X, — 0 almost surely if and only if for all e > 0, P(|X,| >

€ infinitely often) = 0. Equivalently, {X,} does not converge to X with proba-
bility one if P(J.[|Xn — X| > €i.0.]) > 0.

Definition Let X, X5, ... be a sequence of random variables on a probability
space, (Q, F, P). They are identically distributed if their distributions (that is,
P(X € A) for any set A) are all the same. We define S,, = X; + ... + X,, and
X, = .

n

Theorem 6.7 Borel’s Strong Law of Large Numbers. Let {X,,} be independent
and identically distributed with E(X;) = 0 and E(X}) < co. Then X, — 0
almost surely.

Definition Two sequences, {X,,} and {Y,,}, are tail-equivalent if 3~ | P(X,, #
Y,) < .

Theorem 6.8 Kolgomorov’s Three Series Criterion. Let {X,,} be a sequence
of independent random variables. S, = E?Zl X converges almost everywhere
if and only if, for some a > 0,

1. Y% P(|Xn] > a) < oo
2. ZZO:I E(an(|Xn| < a)) < o0
3. ZZO:I Var(XnI(|Xn| S a)) < o0

Theorem 6.9 If {X,} and {Y,} are tail-equivalent then Y .~ (X, —Y,) con-
verges almost everywhere, and if a, T oo then ai Z;L:1(Xj —Y;) — 0 almost
everywhere.

Lemma 6.10 Kronecker’s Lemma. Let {z} be a sequence of real numbers

and {a,} a sequence of real numbers with aj, 1 oo. If 3772, % < oo then
J

1

an 2?21 z; — 0.

14



Theorem 6.11 Kolgomorov’s Strong Law of Large Numbers. Let {
independent and identically distributed, with E(|X;]) < oo and E(X;
Then, X,, — 0 almost surely.

Xn} b
) =0

Theorem 6.12 Marankiewicz-Lygmund Strong Law of Large Numbers. Let
{X,} be independent and identically distributed with E(X,) =0 and E(|X1|P) <
oo for some 1 <p<2. Let S, =3 ., X;. Then, 715177 — 0 almost surely.

p

Definition A sequence of random variables, {X,,} converges in probability to
X (that is, X, —, X) if lim, oo P(| X, — X| > €) = 0 for all € > 0. This is
also called weak convergence.

Theorem 6.13 X,, converges to X in probability if and only if each subse-
quence, {X,, } contains a further subsequence {Xnkq} such that Xy, — X with
probability 1 as i — oo.

Theorem 6.14 If X,, converges almost everywhere to X, then X, converges
i probability to X.

Definition For 0 < p < oo, X,, converges in LP to X if E(]X,|P) < oo,
E(|XP) < o0, and lim,_,o E(|X,, — X|P) = 0.

Theorem 6.15 If X,, — X in LP then X,, — X in probability. If X,, — X in
probability and there exists Y € LP with | X,| <Y then X,, — X in LP.

Let = [0, 1]. Then we have examples of different kinds of convergence.

e In probability (and in LP) but not almost surely: Write n = k + 2V

where 0 < k < 2V (this representation is unique). Define X,, = 1 if

€ [k27%,(k+1)277) and X,, = 0 otherwise. This sequence converges to

0 in probability and in L', but not almost surely, since X,, # 0 infinitely

often for all w. (However, there is a subsequence that converges almost
surely.)

e Almost surely but not in LP: If the p!* moment does not exist, then a
sequence cannot converge in LP.

Theorem 6.16 If X,, — X almost surely, then E(|X|") < liminf E(|X,|"). If
X, — X in L", then E(|X,,|") — E(|X]|").

Theorem 6.17 If X;,, — X in LP for some 0 < p < oo, then X,, — X in L9
for all0 < g < p.

Theorem 6.18 Let f : R — R be continuous. If X,, — X almost surely then
f(Xyn) — f(X) almost surely. If X, — X in probability, then f(X,) — f(X)
i probability.

Corollary 6.19 If X,, — X in probability and Y,, — Y in probability, then
X, +Y, — X +Y in probability and X,Y,, — XY in probability.

15



Theorem 6.20 If X,, — X and Y,, — Y in LP, then X, +Y, —» X +Y in LP.

Definition If F,, and F' are distribution functions, F,, converges weakly to F
(F, = F) if lim,, o Fy(z) = F(z) for each x at which F' is continuous. The
random variables, {X,}, converge in distribution to X (that is, X,, —p X)
if their distributions converge weakly to the distribution of X. Equivalently,
P(X, <z)— P(X < z) for all  such that P(X =z) =0.

(The variable to which the X,, converge in distribution need not be defined
on the same probability space.)

Definition Let A be defined by A(xz) = I(z > 0). This is the distribution of
the random variable X (w) = 0 for all w € Q.

Definition The distribution functions, F' and G, are of the same type if there
exist constants a and b such that F(ax + b) = G(x). A distribution function
is degenerate if it has the form A(z — b) for some b. Otherwise, it is called
non-degenerate.

Theorem 6.21 Suppose F,,(upx +v,) = F(z) and F,(anx + b,) = G(z) with
Up,an, > 0 and F,G non-degenerate. Then, there exists a,b with a > 0 such
that 3> — a, b"%”" — b, and F(ax +b) = G(x).

Un

Theorem 6.22 If X,, —p X then X,, —p X.
Theorem 6.23 Let b be a constant. X, —p b if and only if X,, —p b.
Theorem 6.24 If X,, —p X and Y, —p 0 then X, +Y,, —p X.

Theorem 6.25 Skorohod’s Device. Suppose F,, and F are distribution func-
tions on R with F,, —p F. Then there exist random variables Y,, and Y on a
common probability space, (0, F, P), such that each'Y,, has distribution function
F,, Y has distribution F, and Y,, — Y for all w € .

Theorem 6.26 Leth : R — R be measurable. Let Dy, = {x : h is not continuous at x}.
Let X, —p X and P(X € Dp,) =0. Then, h(X,,) —p h(X).

Corollary 6.27 Ifa, — a, b, — b, and X,, —p X, then a, X, +b, —p aX+b.

Theorem 6.28 F,, —p F if and only if [ f dpr, — [ fdupr for every bounded,
continuous, real-valued f. Equivalently, X, —p X if and only if E(f(X,)) —
E(f(X)) for all bounded, continuous, real-valued f.

Theorem 6.29 Helly’s Theorem. For every sequence {F,,} of distribution func-
tions there exists a subsequence {F,,} and a non-decreasing right-continuous
function F such that limy_. Fp, (z) = F(x) wherever F is continuous. Note
that F' may not be a distribution function.
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Definition A sequence of distribution functions, { F},}, if tight if for every e > 0
there exists a finite interval, [a, b] such that F,,(b) — F,(a) > 1 — € for all n.

Theorem 6.30 Let {F,} be a sequence of distribution functions. {F,} is tight
if and only if for every subsequence, {F,, }, there exists a further subsequence,
{Fnki }, and a distribution function F such that Fr,, —p F asi— oo.

Corollary 6.31 If {F,} is tight and any subsequence converges to the same
distribution function F, then F,, —p F.

Theorem 6.32 If X,, —»p X then E(|X|) < liminf, E(|X,|).

Theorem 6.33 If X,, —p X and |X,,|" is uniformly integrable, then E(X") —
E(X7).

Theorem 6.34 Let {(X,,,Y,)} be a sequence of pairs of random variables. Let
c be a constant. Then,

e If X, - p X andY, —pcthen X, Y, —p X,, £c.

o If X, »p X and Y,, —p ¢ then X,,)Y,, —=p cX ifc #0 and X,,Y,, —»p 0
if c=0.

o If X, »p X andY,, —p c then

o —p X ife#0.

n

7 Characteristic Functions

Definition The moment-generating function for a random variable X is defined
as Mx(t) = E(etX).

Theorem 7.1 Since E(e!X) = Y252 ) L E(X*), 25 M, (0) = E(X").

7 dtk

Definition The characteristic function of a random variable, X, is defined for
t € R as:

bx(t) = B(e™X) = / et dp
Q
Some facts about characteristic functions:
* ¢x(0) =1
o ¢x(t) exists and |px(t)] < 1 for all ¢.

e ¢x(t) is uniformly continuous, because |¢x (t+h)—¢x (t)| < [ |e?t —1|dp.

. S\ k
e Using a Taylor expansion, we find that |e*=Y"}'_ (lz!) | < min{

2"t 22|
(n+1)17 n! }
This is useful for taking expectations and calculating moments.

Theorem 7.2 If E(|X|¥) < oo, then 22 x(0) = i* E(X*).

17



Theorem 7.3 If X1,...,X,, are independent, then ¢s x,(t) = [[i_; ¢x, (1)

Theorem 7.4 Inversion and Uniqueness Theorem. If a probability measure, u,
has a characteristic function, ¢, and if u({a}) = p({b}) =0, then

T

lim — (e~ — Yo (t) dt

b = =
,LL((I, } T—oo 27 -T it

(This shows that distinct measures must have distinct characteristic functions.)
Furthermore, if [%_|¢(t)|dt < oo, then F(x) = p(—o0, x| has a derivative given

by f(z) = 57 [T e " o(t)dt.

Theorem 7.5 Continuity Theorem. Let p,,u be probability measures with
characteristic functions ¢n,d. p, —p p if and only if ¢,(t) — &(t) for all
t.

Corollary 7.6 Suppose lim, ¢, (t) = g(t) for allt € R, and g is continuous at
0. Then there exists a measure,  such that p, —p p and g is the characteristic
function of .

Corollary 7.7 Suppose lim,, ¢, (t) = g(t) for allt € R, and {p,} is tight. Then
there exists a measure p such that p, —p p and g is the characteristic function

of .

Definition A function, f, is positive definite if for all zq,...,z, € C and
t1,...,tn € R, Z;L:l Z?:l f(tl — t])ZZZ > 0.

Theorem 7.8 Bochner’s Theorem. If ¢(t) is a function with
1 g0) =1,
2. ¢(t) continuous at 0,
3. @(t) positive definite,

then ¢ is a characteristic function of some probability distribution L.

Central Limit Theorems

Definition We say that a, = O(by) if [§*| < M for all n and some M < oco.
We say that a,, = o(by,) if §= — 0. We say that f(t) = o(g(t)) as t — 0 if

%HO&S)&HO.

Lemma 7.9 Let ¢x(t) be the characteristic function X, with E(X?) < oo.
Then, ast — 0,

x(t) =1+ itE(X) — %tQE(Xz) + o(t?)

18



Theorem 7.10 Central Limit Theorem. Suppose {X,} is a sequence of in-
dependent and identically distributed random wvariables with E(X1) = p and
Var(Xy) =o?. Let S, =Y., X;. Then,

1

m(é’” —nu) —p Normal(0,1)

Theorem 7.11 Lindberg-Feller Theorem. For eachn, assume that X, 1, Xy 2, ...,

are independent and r, — oco. Let Sn = Z;;l Xn,i. Suppose E(X, ) =0 and
E(be)k) = U?L,k Define s2 = >\, O’n x- Assume that the Lindberg condition
holds. That is, for all € > 0

lim — / i dP =0
n—o0 57 Z X k|>e€sn .

Then, f—" —p Normal(0,1).
Theorem 7.12 Suppose X, 1, Xn 2, .., Xn,r, are independent with E(X, ;) =
0. If these variables satisfy the Lyapunov condition, that is, if for any § > 0

Tn

. 1
Jim > =5 B(X,
k= 1

)=0

then they satisfy the Lindberg condition as well.

Corollary 7.13 Suppose {X,} is independent and identically distributed with
E(X,) = u and Var(X,) = o2. Then, \/ﬁ% —p Normal(0,1).

Xna'f'n

Theorem 7.14 Multivariate Central Limit Theorem. Suppose X,, is a k-dimensional

random vector such that for any vector of constants, (ay, ..., ak)T, Zle a;iXni —D
Normal(0,a”a). Then, X,, —p Normal(0,%).

Theorem 7.15 Multivariate Central Limit Theorem. Let X,, = (Xp1, ..., Xnk)
be independent random vectors all having the same distribution. Suppose that
E(X%,) < 00. Letc = E(X1) and ¥ = E((X1 —¢) (X1 —¢)). Let S, =
Xi+...4+X,,. Then, the distribution of the random vector ﬁ(Sn—nc) converges
weakly to the multivariate normal distribution with mean zero and covariance
matriz 2.

8 Conditional Expectation

Definition If P(A) > 0 then the conditional probability of B given A is P(B|A) =

P(ANB)
P(A)

Definition Suppose X is a random variable on (2, F, P) and G C F is a o-field.
Then there exists a random variable, F(X||G), called the conditional expected
value of X given G, such that:
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e FE(X]||G) is measurable G and integrable
o [, E(X||G)dP = [ X dP for all G € G.

Since this definition is unique except for a set of probability zero, we called each
a version of E(X||G).

Note that F(X]|{0,9Q}) = E(X) and E(X|F) = X, and conditional proba-
bilities can be defined by P(A||G) = E(I(A)||G).

Definition If {X;}:c7 is a collection of random variables on (Q,F, P), we
define F(X|| X, t € T) = E(X||o(Xy,t € T)).

Theorem 8.1 Let P be a w-system generating the o-field G. Suppose ) is a
finite or countable union of sets in G. An integrable function, f, is a version of
E(X||G) if it is measurable G and if [, fdP = [, X dP for all G € G.

Theorem 8.2 Suppose X, Y, and X,, are integrable. Then, with probability
one:

o If X — a with probability one, then E(X||G) = a.
[fa,be R, B(aX +bY(|G) = aB(X||G) + bE(Y|G).

If X <Y with probability one, then E(X||G) < E(Y||3).
[EX19) < E(1X]9)

If lim, X,, = X with probability one and | X,| <Y (with Y integrable),
then lim,, E(X,||G) = E(X||G) with probability one.

Theorem 8.3 If X is measurable G and if Y and XY are integrable, then
E(XY|G) = XE(Y||G) with probability one.

Theorem 8.4 If X is integrable and G1 C Ga are o-fields, then E(E(X]|G2)||G1) =
E(X||G1) = E(E(X||G1)||G2). (This is a generalization of the law of iterated ex-
pectations.)

Theorem 8.5 Jensen’s Inequality. If ¢ is a convex function on the line and if
both X and ¢(X) are integrable, then ¢(E(X||G)) < E(¢(X)||G) with probability
one.

Definition Let X be a random variable on (2, F, P) and let G be a o-field in
F. Then there exists a function, u(H,w) for H € R, w € Q, such that:

e For each w € Q, u(-,w) is a probability measure on R.
e For each H € R, u(H,-) is a version of P(X € H||G).
Such a function is called the conditional distribution of X given G.

Theorem 8.6 Let u(-,w) be a conditional distribution with respect to G of a
random variable X. If ¢ : R — R is a Borel function and ¢(X) is integrable,
then [p ¢(x)pu(dz,w) is a version of E($(X)||G).
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Martingales

Definition Let X, X5, ... be a sequence of random variables on (2, F, P). Let
Fi1,Fa,... be a sequence of o-fields in F. The sequence {(X,,Fn)}2, is a
martingale relative to the o-fields {F,} if:

o 7, C Fns1 (in which case, we say that {F,} is a filtration),

e X, is measurable F,, (in which case, we say that {X,} is adapted to the
filtration),

e E(|X,]) < 0o, and
e with probability one, F(X,,4+1|Fn) = Xa.

Note that the smallest filtration to which a sequence {X,} is adapted is
fn = O'(Xl, ,Xn)

Definition Let {X,} be a martingale. Define A,, = X, — X,,_1. Then we say
that {A,} is a martingale difference.

9 Miscellaneous

9.1 Convolution

Definition Let X and Y be independent random variables with distributions
p and v. The convolution of y and v is (u*v)(H) = [*_ v(H — z)u(dz), for
HeR.

Some facts about convolution:
e Convolution is commutative and associative.

e If X and Y are independent with distributions p and v, then P(X +Y €
H) = (u+v)(H).

Definition If F' and G are the distributions functions corresponding to x4 and v,
then the distribution function corresponding to p* v is (F*G)(y) = [~ G(y—

z)dF (z). If F and G have densities f and g, then (Fxg)(y) = [~ g(y—=z)dF(z)
and (f* 9)(y) = [75, 9(y — ) f(x)dz.

9.2 Empirical CDF’s

Definition Let {X,,} be independent and identically distributed with a CDF
F. The empirical CDF based on a sample X1, ..., X,, is given by

F, is an estimator of F(z) = P(X; <=z
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Since E(F (X1 <z)— F(z)) =0 and E(|I(X; < z)|) < 0o, we may apply a
law of large numbers to find that F,,(x) — F(x) almost surely for each x.

Theorem 9.1 Glivenko-Cantelli Theorem. sup,cp |Fn(z) — F(z)| — 0.

10 Inequalities

Theorem 10.1 If X >0, for any « >0, P(X > a) < %E(X)

Theorem 10.2 Markov’s Inequality. P(|X|> a) < L E(|X]|*).

Theorem 10.3 Chebyshev’s Inequality. P(|X — E(X)| > a) < L Var(X).

Theorem 10.4 Chebyshev’s Inequality (Generalized). Let f be a strictly pos-
itive and increasing function on (0,00) with f(u) = f(—u). Let X be a ran-
dom wvariable with E(f(X)) < oco. Then, for every u > 0, P(|X| > u) <

E(f(X))/f(u).

Definition A function f : R — R is convez if for every A1,..., A, > 0 with
Yo A =1, and every z1, ...,z € R, (O Nizi) > Do Nif ().

Theorem 10.5 Jensen’s Inequality. If ¢ : R — R is convex on the range of X,
then $(E(X)) < E(3(X)).

Theorem 10.6 Holder’s Inequality. Let (2, F,p) be a probability space and
X, Y random wvariables on Q. If % +% = 1 with p,q > 1, then E(|XY]) <

E(XP)MPE(Y |0,
Theorem 10.7 (Cauchy-)Schwarz Inequality. E(|XY]) < /E(X2)E(Y?2).

Theorem 10.8 Lyapounov’s Inequality If 0 < o < 3, then E(|X|*)Y/* <
B(IX|7)Y/5.
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