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1 Sets, Fields, Measures, and Probability Mea-
sures

Definition Let Ω be a probability space. We call ω ∈ Ω a sample point and
S ⊂ Ω an event.

Definition A class F of subsets of Ω is called a field or algebra if:

• Ω ∈ F

• If A ∈ F then AC ∈ F .

• If A,B ∈ F then A ∪B ∈ F . (This is called finite additivity.)

The class is a σ-field or a σ-algebra if the following condition holds as well:

• If A1, A2, ... ∈ F then
⋃∞

i=1 Ai ∈ F as well. (This is called countable
additivity.)

An set that is an element of F is called an F-set, and is said to be measurable
F . The σ-field generated by a class of sets, A, σ(A), is the intersection of all
σ-fields that contain A.

Definition The extended real line is [−∞,∞]; it includes both positive and
negative infinity.

Definition Let Rk be the σ-field generated by the bounded rectangles [x =
(x1, ..., xk) : ai ≤ xi ≤ bi, i = 1, ..., k] ⊂ Rk. The elements of Rk are called the
k-dimensional Borel sets. Note that Rk contains all the open and closed sets
(among other things). R1 is sometimes written as B.

Theorem 1.1 If A is a class of sets in Ω and Ω0 ⊂ Ω, let A ∩ Ω0 = [A ∩ Ω0 :
A ∈ A]. If F is a σ-field in Ω then F ∩ Ω0 is a σ-field in Ω0. If A generates
the σ-field F in Ω then A ∩ Ω0 generates the σ-field F ∩ Ω0 in Ω0. That is,
σ(A ∩ Ω0) = σ(A) ∩ Ω0.

Definition A class P of subsets of Ω is a π-system if whenever A,B ∈ P,
A ∩B ∈ P as well.
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Definition A class L of subsets of Ω is a λ-system if:

1. Ω ∈ L

2. If A,B ∈ L and A ⊂ B, then B −A ∈ L.

3. If A1, A2, ... ∈ L and An ↑ A then A ∈ L.

Note that any class of subsets that is both a π-system and a λ-system is a
σ-field.

Theorem 1.2 If P is a π-system and L is a λ-system and P ⊂ L then σ(P) ⊂
L.

Definition A set function is a real-valued function defined on a class of subsets
of Ω. A set function µ : F → R, where F is a field in Ω, is a measure if:

1. µ(A) ∈ [0,∞] for all A ∈ F

2. µ(∅) = 0

3. If A1, A2, ... ∈ F are disjoint and
⋃∞

k=1 Ak ∈ F , then µ(
⋃∞

k=1 Ak) =∑∞
k=1 µ(Ak). (Note that this sum may be infinite.)

µ is finite if µ(Ω) < ∞ and infinite if µ(Ω) = ∞. If Ω = A1∪A2∪ ... (where this
is either a finite or a countable sequence of F-sets, which need not be disjoint)
with µ(Ak) < ∞ for all k, then µ is σ-finite. If A1, A2, ... ∈ A, then we say µ
is σ-finite on A. If µ is a measure on a σ-field F in Ω, we say that the triple,
(Ω,F , µ) is a measure space. If µ(AC) = 0 for A ∈ F , then A is a support of µ,
and we say that µ is concentrated on A. If F is a σ-field on Ω, then we say that
(Ω,F) is a measurable space.

Definition A measure µ on (Ω,F) is discrete if there are countably many
ωi ∈ Ω such that µ(A) =

∑
ωi∈A µ({ωi}) for all A ∈ F .

Some facts about measures:

• Monotonicity: If A ⊂ B then µ(A) ≤ µ(B).

• Inclusion-Exclusion: µ(
⋃n

k=1 Ak) =
∑n

i=1 µ(Ai)−
∑

1≤i<j≤n µ(Ai ∩Aj)+
... + (−1)n+1µ(A1 ∩ ... ∩An)

• Finite Subadditivity: µ(
⋃n

k=1 Ak) ≤
∑n

k=1 µ(Ak)

• If µ(An) = 0 for all An then µ(
⋃

n An) = 0.

Definition For an infinite sequence of real numbers, x1, x2, ..., in [0,∞], we say
that xk ↑ x if xk ≤ xk+1 ≤ x and xk → x (either in the usual sense, or if x = ∞
and xk = ∞ for some k). We say that xk ↓ x if xk ≥ xk+1 ≥ x and xk → x.
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Definition For an infinite sequence of sets, A1, A2, ..., we say that An ↑ A if
A1 ⊂ A2 ⊂ ... and A =

⋃
n An. We say that An ↓ A if A1 ⊃ A2 ⊃ ... and

A =
⋂

n An.

Theorem 1.3 Let µ be a measure on a field F . Then it has the following
properties:

1. Continuity from Below: If An, A ∈ F and An ↑ A then µ(An) ↑ µ(A).

2. Continuity from Above: If An, A ∈ F and An ↓ A and µ(A1) < ∞ then
µ(An) ↓ µ(A).

3. If A1, A2, ... ∈ F and
⋃∞

k=1 Ak ∈ F then µ(
⋃∞

k=1 Ak) ≤
∑∞

k=1 µ(Ak).

4. If µ is σ-finite on F , then F cannot contain an uncountable, disjoint
collection of sets of positive measure.

Definition Let λ(a, b] = b− a for any a, b ∈ R. Note that λ is finitely additive
and countably subadditive on the collection of finite intervals in R. The exten-
sion of this measure to the σ-field of all linear Borel sets in R1, B, defines the
Lebesgue measure on R. The Lebesgue measure is indeed a measure on this set,
and its extension from intervals to the entire class of sets is unique.

Theorem 1.4 (Extension Theorem.) Suppose P is a measure on a field F0 of
subsets of Ω. Let F = σ(F0). Then there is a unique probability measure, Q on
F such that Q(A) = P (A) for all A ∈ F0.

Theorem 1.5 Suppose P1 and P2 are probability measures on σ(P), with P a
π-system. If P1 and P2 agree on P then they agree on all of σ(P).

Definition Let λk[x = (x1, ..., xk) : ai ≤ xi ≤ bi, i = 1, ..., k] =
∏k

i=1(bi − ai)
for any bounded rectangle in Rk. The extension of this to the Borel subsets of
Rk defines the k-dimensional Lebesgue measure.

Theorem 1.6 Translation Invariance If A ∈ Rk and we define A+x = [a+x :
a ∈ A], then A + x ∈ Rk and λk(A) = λk(A + x).

Theorem 1.7 If T : Rk → Rk is linear and nonsingular, then for all A ∈ Rk,
T (A) ∈ Rk and λk(T (A)) = |det(T )|λk(A).

Definition A set function P : F → R is a probability measure if:

1. 0 ≤ P (A) ≤ 1 for all A ∈ F

2. P (∅) = 0 and P (Ω) = 1

3. If A1, A2, ... ∈ F are disjoint and
⋃∞

k=1 Ak ∈ F , then P (
⋃∞

k=1 Ak) =∑∞
k=1 P (Ak).

The triple, (Ω,F , P ) is called a probability (measure) space. A support of P is
any set A ∈ F such that P (A) = 1.
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Theorem 1.8 Let (Ω,F , P ) be a probability space. Then the following three
properties hold:

1. Continuity from Below: Suppose A,An ∈ F with An ↑ A. Then, P (An) ↑
P (A).

2. Continuity from Above: Suppose A,An ∈ F with An ↓ A. Then, P (An) ↓
P (A).

3. Countable Subadditivity: If Ak ∈ F for all k and
⋃∞

k=1 Ak ∈ F , then
P (

⋃∞
k=1 Ak) ≤

∑∞
k=1 P (Ak).

If P (An) = 1 for all An, then P (
⋂

n An) = 1.

Definition Let Ω = {1, 2, ...} and F be the set of all subsets of Ω. If µ(A) is
the number of elements in A, we call µ the counting measure.

Definition A property G is true almost everywhere or almost surely if µ[ω :
G does not hold for ω] = 0.

Definition Let (X,X ) and (Y,Y) be measurable spaces. A×B is a measurable
rectangle if A ∈ X and B ∈ Y. X ×Y is the σ-field generated by the measurable
rectangles.

Theorem 1.9 If E ∈ X × Y, then for all x ∈ X, [y : (x, y) ∈ E] ∈ Y and for
all y ∈ Y , [x : (x, y) ∈ E] ∈ X . (These are called the sections of E determined
by x or y.) If f is measurable X ×Y then for any fixed x, f(x, .) is measurable
Y, and for any fixed y, f(., y) is measurable X . (These are the sections of f
determined by x and y.)

Definition Suppose (X,X , µ) and (Y,Y, ν) are measure spaces, with µ, ν finite.
Let E ∈ X × Y. Define

π1(E) =
∫

X

ν[y : (x, y) ∈ E]µ(dx)

π2(E) =
∫

Y

ν[x : (x, y) ∈ E]µ(dy)

In particular, for a measurable rectangle A × B, π1(A × B) = π2(A × B) =
µ(A)ν(B). This measure is called the product measure.

Theorem 1.10 If (X,X , µ) and (Y,Y, ν) are σ-finite measure spaces, then
π1(E) = π2(E) = π(E) defines a σ-finite measure on X × Y. It is the only
measure such that π(A×B) = µ(A)ν(B).
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Measurable Functions and Mappings

Definition Let (Ω,F) and (Ω′,F ′) be measurable spaces. For T : Ω → Ω′,
define T−1(A′) = [ω ∈ Ω : T (ω) ∈ A′] (this is the inverse image of A′ ⊂ Ω′). T
is measurable F/F ′ if T−1(A′) ∈ F for all A′ ∈ F ′. If f : F → R is measurable
F/R, then we say it is measurable F .

Theorem 1.11 If T−1(A′) ∈ F for all A′ ∈ A′ and A′ generates F ′, then T is
measurable F/F ′. If T is measurable F/F ′ and T ′ is measurable F ′/F ′′, then
T ′ ◦ T is measurable F/F ′′.

Definition If f : Ri → Rk is measurable Ri/Rk, then it is called a Borel
function.

Theorem 1.12 If f(ω) = (f1(ω), ..., fk(ω)), f is measurable F if and only if
each fj(ω) is measurable F .

Theorem 1.13 If f : Ri → Rk is continuous, then it is measurable. Since
compositions of measurable functions are measurable, sums, products, maxima,
and other continuous functions of measurable functions are also measurable.

Theorem 1.14 Suppose f1, f2, ... are measurable F . Then supn fn, infn fn,
lim supn fn, and lim infn fn are all measurable F . If limn fn exists everywhere,
then it is measurable F . The set where {fn(ω)} converges lies in F . If f is also
measurable F , then the set where fn(ω) → f(ω) lies in F .

Definition A simple real function is a real function with finite range, {x1, ..., xn}.
Then we may write it as f =

∑n
i=1 xiI(Ai), where the Ai decompose Ω. This

function is measurable if Ai ∈ F for i = 1, ..., n.

Theorem 1.15 If f is real and measurable F , there exists a sequence {fn} of
simple functions that are measurable F such that when f(ω) ≥ 0 0 ≤ fn(ω) and
fn(ω) ↑ f(ω) and when f(ω) ≤ 0 0 ≥ fn(ω) and fn(ω) ↓ f(ω).

Definition Let (Ω,F) and (Ω′,F ′) be measurable with T : Ω → Ω′ measur-
able F/F ′. Given a measure µ on F , define µT−1 : F ′ → R by µT−1(A′) =
µ(T−1(A′)) for all A′ ∈ F ′. Note that µT−1 is a measure. If µ is a probability
measure, so is µT−1.

2 Integrals

Definition Let f =
∑n

i=1 xiIAi with Ai∩Aj = ∅ for all i 6= j and
⋃n

i=1 Ai = Ω.
We define: ∫

fdµ =
n∑

i=1

xiµ(Ai)

If B is an F-set, then we define
∫

B
fdµ =

∫
Ω
(f)(IB)dµ =

∑n
i=1 xiµ(Ai ∩B).
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Definition Let f be a non-negative measurable function. Consider a sequence
of simple functions, {fn}∞n=1, such that 0 ≤ fn and fn ↑ f . We define

∫
f dµ =

limn→∞
∫

fndµ.

Definition Let f be any measurable function. Define f+(ω) = f(ω)I(f(ω) >
0) and f−(ω) = −f(ω)I(f(ω) < 0). (Note that f = f+ − f−.) If

∫
f+ dµ < ∞

and
∫

f− dµ < ∞, then we say that f is integrable and define:∫
f dµ =

∫
f+dµ−

∫
f−dµ

Some properties of integrals:

• If f ≤ g almost everywhere, then
∫

fdµ ≤
∫

gdµ.

• |
∫

fdµ| ≤
∫
|f |dµ

• If f = 0 almost everywhere, then
∫

fdµ = 0.

• If µ(A) = 0 then
∫

A
fdµ = 0.

• If
∫

fdµ < ∞ then f < ∞ almost everywhere.

• If α, β are finite and f, g are integrable, then
∫

(αf + βg)dµ = α
∫

fdµ +
β

∫
gdµ.

Theorem 2.1 Monotone Convergence Theorem If 0 ≤ fn and fn ↑ f almost
everywhere, then

∫
fndµ ↑

∫
fdµ.

Theorem 2.2 Fatou’s Lemma If 0 ≤ fn then∫
(lim inf

n→∞
fn)dµ ≤ lim inf

n→∞

∫
fndµ

Theorem 2.3 Lebesgue’s Dominated Convergence Theorem If |fn| ≤ g almost
everywhere, g is integrable, and fn → f almost everywhere, then {fn} and f
are integrable and

∫
fndµ →

∫
fdµ.

Definition A sequence of functions, fn is uniformly bounded if there exists
K < ∞ such that |fn(ω)| < K for all ω and n.

Theorem 2.4 Bounded Convergence Theorem If µ(Ω) < ∞, {fn} is uniformly
bounded, and fn → f almost everywhere, then

∫
fndµ →

∫
fdµ.

Definition A sequence {fn} is uniformly integrable if

lim
α→∞

(sup
n

∫
|fn|≥α

|fn|dµ) = 0

Theorem 2.5 If supn

∫
|fn|1+εdµ < ∞ for some ε > 0 then {fn} is uniformly

integrable.
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Theorem 2.6 Let µ(Ω) < ∞ and fn → f almost everywhere. If the fn are
uniformly integrable, then f is integrable and

∫
fndµ →

∫
fdµ.

Definition A real measurable function, f , is Lebesgue integrable if it is inte-
grable with respect to the Lebesgue measure, λ. The integral is usually written
as

∫
fdλ =

∫
f(x)dx.

Definition A real function, f , on an interval (a, b] is Riemann integrable with
integral r if for all ε > 0 there exists a δ > 0 such that

|r −
∑

j

f(xj)λ(Jj)| < ε

where {Jj} is a finite partition of (a, b] into subintervals of length at most δ and
xj ∈ Jj .

A bounded function on a bounded interval if Riemann integrable if and only
if its set of discontinuities has Lebesgue measure 0. If f is Riemann integrable,
then the Riemann integral equals the Lebesgue integral.

Theorem 2.7 Suppose
∫
|f |dx < ∞. Then for all ε > 0 there exists a step

function, gε =
∑k

i=1 yiIAi
(where the Ai are bounded intervals) such that

∫
|f −

g|dx < ε. In addition, there is a continuous integrable function, hε, which is 0
outside a bounded interval, such that

∫
|f − h|dx < ε.

Theorem 2.8 Fundamental Theorem of Calculus. Suppose F is a function with
continuous derivative, F ′ = f . Then,

∫ b

a
f(x)dx =

∫ b

a
F ′(x)dx = F (b)− F (a).

Theorem 2.9 Suppose {xi} is a non-negative sequence. Define f(i) = xi.
Then

∑∞
i=1 xi =

∫
fdµ, where µ is the counting measure.

Theorem 2.10 Fubini’s Theorem Let (X,X , µ) and (Y,Y, ν) be σ-finite mea-
sure spaces. Suppose f is a non-negative function. Then,

∫
Y

f(x, y)ν(dy) and∫
X

f(x, y)µ(dx) are measurable X and Y respectively, and:∫
X×Y

f(x, y)π(d(x, y)) =
∫

X

[
∫

Y

f(x, y)ν(dy)]µ(dx)

=
∫

Y

[
∫

X

f(x, y)µ(dx)]ν(dy)

Let f be an arbitrary function that is integrable with respect to π. Then,∫
Y

f(x, y)ν(dy) and
∫

X
f(x, y)µ(dx) are measurable and finite except on sets

of µ- and ν-measure 0 respectively, and the iterated integrals above continue to
hold.

7



3 Random Variables

Definition Let (Ω,F , P ) be a probability space. Let X : Ω → R. X is a simple
random variable if it has a finite range and [ω : X(ω) = x] ∈ F for all x ∈ R.
Let Ai = {ω : X(ω) = xi} for each xi in the range of X. Then we may represent
X as a sum of indicator functions:

X =
n∑

i=1

xiI(Ai)

In this case, µ has mass pi = P [X = xi] = µ{xi} at the points in the range of
X.

Definition A random variable on a probability space (Ω,F , P ) is a real-valued
function X = X(ω) which is measurable F . A random vector is a mapping
X : Ω → Rk that is measurable F ; this is a k-tuple of random variables.

Definition If G is a sub-σ-field of F then a simple random variable X is mea-
surable G if [ω : X(ω) = x] ∈ G for each x ∈ R. In general, a k-dimensional
random vector, X, is measurable G if [ω : X(ω) ∈ H] ∈ G for every measurable
H ∈ Rk.

Definition The σ-field, σ(X), generated by X is the smallest σ-field that X is
measurable with respect to. If X1, X2, ... is a finite or infinite sequence of random
variables, then σ(X1, X2, ...) is the smallest σ-field with respect to which each
Xi is measurable.

Theorem 3.1 Let X = (X1, ..., Xk) be a random vector. Then, σ(X) = σ(X1, ..., Xk)
consists exactly of the sets [ω : X(ω) ∈ H] = [ω : (X1(ω), ..., Xn(ω)) ∈ H] for
all H ∈ Rk. Y is measurable σ(X) if and only if there is some f : Rk → R
such that Y (ω) = f(X1(ω), ..., Xk(ω)).

Definition Let X : Ω → R be a random variable. The distribution (or law) of
X is the probability measure on R given by PX−1. That is, µ(A) = P (X ∈ A)
for all A ∈ R. The support for µ is any Borel set S such µ(S) = 1. A random
variable (and its distribution) are discrete if µ has countable support.

If X has distribution µ and g : R → R, then P (g(X) ∈ A) = P (X ∈
g−1(A)) = µ(g−1A), and g(X) has distribution µg−1.

Theorem 3.2 Let T : Ω → Ω′ be measurable F/F ′. Given a measure µ on
F , define µT−1 on F ′ by µT−1(A) = µ(T−1A). If f is non-negative, then∫
Ω

f(Tω)µ(dω) =
∫
Ω′ f(ω′)µT−1(dω′). A function f is integrable with re-

spect to µT−1 if and only if fT is integrable with respect to µ. In that case,∫
T−1A′ f(Tω)µ(dω) =

∫
A′ f(ω′)µT−1(dω′).
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Definition Let µ be a measure on R1 that assigns a finite measure to any
bounded set. Define:

F (x) =
{

µ(0, x] if x ≥ 0
−µ(x, 0] if x ≤ 0

If µ is a probability measure, we call F a (cumulative) distribution function of
the random variable X with distribution µ. If µ is finite, then we may define
F (x) = µ(−∞, x] instead; in this case, F (x) = P (X ≤ x).

Some facts about F as defined above:

• F is finite because µ is finite on bounded sets.

• F is non-decreasing.

• Right-continuous: If xn ↓ x then F (xn) ↓ F (x).

• µ(a, b] = F (b)− F (a)

• If µ is the Lebesgue measure, then F (x) = x.

Theorem 3.3 If F is a non-decreasing, right-continuous real function on R,
there exists on R a unique measure, µ such that µ(a, b] = F (b) − F (a) for all
a, b ∈ R.

Definition The jump (or saltus) in a distribution function, F is given by F (x)−
limy↑x F (y) = F (x)− F (x−) = µ({x}) = P (X = x).

Definition Let δ be a non-negative measurable function. Define a measure by
ν(A) =

∫
A

δdµ for all A ∈ F . Then we say that ν has density δ with respect to
µ.

Definition A random variable, X, and its distribution, µ, have density f with
respect to the Lebesgue measure if f ≥ 0 is a Borel function on R and P (x ∈
A) = µ(A) =

∫
A

f(x)dx for all a ∈ R.

Theorem 3.4 Let X be a random variable. Let g be a non-negative function
such that

∫
R

g(x)dx = 1 and µX(B) =
∫

B
g(x)dx for all measurable sets B.

Then, for any function f ,
∫

f(x)dµx =
∫

f(x)g(x)dx, and g is the probability
density function of the random variable X.

Some properties of densities:

• If µ(A) = 0 then ν(A) = 0.

• ν is finite if and only if δ is integrable with respect to µ.

• If δ = δ′ almost everywhere, then δ and δ′ induce the same density.

• If µ is σ-finite and δ and δ′ induce the same density then δ = δ′ almost
everywhere.
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•
∫

R
f(x)dx = P (X ∈ R) = 1.

• f is determined only up to a set of Lebesgue measure 0.

• F (b)− F (a) =
∫ b

a
f(x)dx.

• Suppose f is a continuous density and g : R → R is increasing. Let
T = g−1. Then, P (g(X) ≤ x) = P (X ≤ T (x)) = F (T (x)). If T is
differentiable, then d

dxP (g(X) ≤ x) = f(T (x))|T ′(x)|.

Theorem 3.5 If ν has density δ with respect to µ and g is a non-negative
function, then

∫
gdν =

∫
gδdµ. An arbitrary g is integrable with respect to ν if

and only if gδ is integrable with respect to µ. In that case,
∫

A
g dν =

∫
A

gδ dµ
for any A.

Theorem 3.6 Suppose νn(A) =
∫

A
δndµ for each n and ν(A) =

∫
A

δdµ. If
νn(Ω) = ν(Ω) < ∞ for all n and δn → δ except on a set of µ-measure 0, then

sup
A∈F

|ν(A)− νn(A)| ≤ sup
A∈F

∫
A

|δ − δn|dµ → 0

Definition If X = (X1, ..., Xk) is a random vector, the (joint) distribution and
distribution functions are given by µ(A) = P ((X1, ..., Xk) ∈ A) and F (x1, ..., xk) =
P (X1 ≤ x1, ..., Xk ≤ xk) = µ(Sx).

Definition Let X = (X1, ..., Xk) be a random vector. Let gj(X) = Xj . Then,
µj = µg−1

j is defined by µj(A) = µ((X1, ..., Xk) : Xj ∈ A) = P (Xj ∈ A). {µj}
are called the marginal distributions of µ. If f is the density of µ, then the mar-
ginal density is given by fj(y) =

∫
Rk−1 f(x1, ..., xj−1, y, xj+1, ..., xk)dx1...dxj−1dxj+1...dxk.

Some facts about joint distributions:

• F is non-decreasing in each variable and continuous from above (that is,
limh↓0 F (x1 + h, ..., xk + h) = F (x1, ..., xk)).

• If any xi → −∞ then F (x1, ..., xk) → 0.

• If all xi →∞, then F (x1, ..., xk) → 1.

• F is continuous at (x1, ..., xk) if and only if limh↓0 F (x1 − h, ..., xk − h) =
F (x1, ..., xk).

• F may have uncountably many discontinuities, but the set of points at
which F is continuous are dense in Rk.

• If X is a random vector and g : Rk → Ri is a measurable function, then
g(X) is an i-dimensional random vector with distribution µg−1. (Marginal
distributions are a special case of this.)

• Suppose g : V → U is a one-to-one, onto and continuously differentiable
map of open sets. Let T = g−1. Suppose that the Jacobian of T , J(x),
does not vanish. If X has density f and support V , then for any A ⊂ U ,
P (g(X) ∈ A) = P (X ∈ T (A)) =

∫
T (A)

f(y)dy =
∫

A
f(T (x))|J(x)|dx, and

the density of g(X) is f(T (x))|J(x)|I(x ∈ U).

10



4 Independence

Definition A finite collection of events, A1, ..., An, is independent if P (Ak1 ∩
... ∩ Akj

) = P (Ak1) · ... · P (Akj
) for all subsets of distinct indices. An infinite

collection of events is independent if each finite subcollection is independent.

Definition Let A1, ...,An ⊂ F be classes of events. These classes are indepen-
dent if, for any choices of Ai ∈ Ai for i = 1, ..., n, the events A1, ..., An are inde-
pendent. That is, P (A1 ∩ ...∩An) = P (A1) · · ·P (An) whenever Ai ∈ Ai ∪ {Ω}.

Definition The infinite collection of classes, [Aθ : θ ∈ Θ], is independent if
the sets Aθ ∈ Aθ for each θ ∈ Θ are always independent. Equivalently, the
infinite collection is independent if each finite subcollection of [Aθ : θ ∈ Θ] is
independent.

Theorem 4.1 If A1, ...,An are independent and each Ai is a π-system, then
σ(A1), ..., σ(An) are independent. If Aθ for θ ∈ Θ are independent and each Aθ

is a π-system, then σ(Aθ) for θ ∈ Θ are independent.

Definition A sequence X1, X2, ... of random variables is independent if σ(X1), σ(X2), ...
are independent. Equivalently, we have P [X1 ∈ H1, ..., Xn ∈ Hn] = P [X1 ∈
H1]...P [Xn ∈ Hn] for any set, H1, ...,Hn. Since [Xi = x] for all x ∈ R (to-
gether with the empty set) form a π-system that generates σ(Xi), P [Xk1 =
x1, ..., Xkn

= xn] = P [Xk1 = x1] · ... · P [Xkn
= xn], for any subset of distinct

indices, is sufficient for independence as well.

If (X1, ..., Xk) has distribution µ, distribution function F , marginal distrib-
utions µi, and marginal distribution functions Fi, the following are equivalent:

• The random variables X1, ..., Xk are independent.

• µ = µ1 · ... · µk

• F (x1, ..., xk) = F1(x1) · ... · Fk(xk).

If these random variables have densities f and fi, then f(x) = f1(x1) · ...·fk(xk).
In addition, if G1, ...,Gk are independent σ-fields and each Xi is measurable

Gi, then X1, ..., Xk are independent as well.

Theorem 4.2 Suppose an array, (Aij) of events is independent. Let Fi be the
σ-field generated by the ith row. Then, F1,F2, ... are independent.

Theorem 4.3 Suppose Xij is an independent collection of random vectors. Let
Fi be the σ-field generated by the ith row. Then, F1,F2, ... are independent.

Theorem 4.4 If X and Y are independent random variables with distributions
µ and ν in Rj and Rk, then, for all B ∈ Rj+k and A ∈ Rj,

P ((X, Y ) ∈ B) =
∫

Rj

P ((x, Y ) ∈ B)µ(dx)

P (X ∈ A and (X, Y ) ∈ B) =
∫

A

P ((x, Y ) ∈ B)µ(dx)

11



Theorem 4.5 Let {µn} be a sequence of probability measures on the class of all
subsets of the line, each having finite (discrete) support. There exists some prob-
ability space, (Ω,F , P ), with an independent sequence of random variables {Xn}
of simple random variables all on that space such that each Xn has distribution
µn.

Theorem 4.6 If {µn} is a finite or infinite sequence of probability measures on
R1, there exists on some probability space, (Ω,F , P ), an independent sequence
of random variables, {Xn} such that Xn has distribution µn.

Theorem 4.7 If the random variables X1, ..., Xn are independent, and f1, ..., fn

are measurable functions, then f1(X1), ..., fn(Xn) are also independent.

Definition Let m,n be integers with 1 ≤ m < n. Let Πmn(H) = {(x1, ..., xn) :
(x1, ..., xm) ∈ H}. We call this the projection map of Rm into Rn.

Theorem 4.8 For each n ≥ 1, let µn be a probability measure on (Rn,Rn)
such that for all m < n, µn ◦Πmn = µm. Then there exists a probability space,
(Ω,F , P )and a sequence of random variables {Xj} on it such that µn is the
measure of (X1, ..., Xn) for all n.

5 Expected Value

Definition A simple random variable, X, has an expected value (mean value)
given by E(X) = E(

∑
i xiI(Ai)) =

∑
i xiP (Ai). Equivalently, we may write

E(X) =
∑

x∈R xP (X = x).

Definition Let X be a random variable on (Ω, P ). Then, the expected value
of X is given by E(X) =

∫
Ω

XdP .

Some facts about expected values:

• E(X) = E(Y ) if P (X = Y ) = 1

• E(I(A)) = P (A)

• If X(ω) = α for all ω ∈ Ω, then E(X) = α.

• If α and β are constants, then E(αX + βY ) = αE(X) + βE(Y ).

• If X and Y are independent, then E(XY ) = E(X)E(Y ).

• If X(ω) ≤ Y (ω) on a set of probability one, then E(X) ≤ E(Y ).

Theorem 5.1 If {Xn} is uniformly bounded and if X = limn→∞Xn on an
F-set of probability 1, then E(X) = limn→∞E(Xn).

Corollary 5.2 If X =
∑∞

n=1 Xn on an F-set of probability one and the partial
sums,

∑k
n=1 Xn, are uniformly bounded, then E(X) =

∑∞
n=1 E(Xn).

12



Theorem 5.3 Let X be a random variable on (Ω,F , P ) and f a Borel function.
Let µX be the probability measure induced by X. Then, E(f(X)) =

∫
Ω

f(x)dP =∫
R

f(x)dµX .

Theorem 5.4 For any random variable X,
∑∞

n=1 P (|X| ≥ n) ≤ E(|X|) ≤
1 +

∑∞
n=1 P (|X| ≥ n). If X is non-negative and takes only integer values, then

E(X) =
∑∞

n=1 P (X ≥ n).

Theorem 5.5 (Generalization.) Let X be a non-negative random variable. Let
f : R+ → R+ be measurable with f(0) = 0, such that f is absolutely continuous
on [0, t] for all t < ∞. Then, E(f(X)) =

∫∞
0

f ′(t)P (X ≥ t)dt. In particular,
E(X) =

∫∞
0

P (X ≥ t)dt.

Definition The variance of a random variable, X is defined as V ar(X) =
E((X − E(X))2) = E(X2)− E(X)2.

6 Limit Sets and Convergence

Definition Let A1, A2, ... be a sequence of sets. Then,

lim sup
n

An = lim
n→∞

An =
∞⋂

n=1

∞⋃
k=n

Ak = [An infinitely often]

lim inf
n

An = lim
n→∞

An =
∞⋃

n=1

∞⋂
k=n

Ak = [An almost always]

That is, ω is in lim supn An if and only if it lies in infinitely many of the An and
in lim infn An if and only if it lies in all but finitely many of the An.

Some facts:

•
⋂∞

k=n Ak ↑ lim infn An

•
⋃∞

k=n Ak ↓ lim supn An

• lim inf An ⊂ lim sup An and the two are equal if and only if lim An exists
(and then all three are equal).

Theorem 6.1 For any {An},

P (lim inf An) ≤ lim inf P (An) ≤ lim supP (An) ≤ P (lim sup An)

If An → A then P (An) → P (A).

Theorem 6.2 First Borel-Cantelli Lemma If
∑∞

n=1 P (An) < ∞ then P (lim supn An) =
0.

Theorem 6.3 Second Borel-Cantelli Lemma If {An} is a sequence of indepen-
dent events and

∑∞
n=1 P (An) = ∞, then P (lim supn An) = 1.
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Definition Let A1, A2, ... be a sequence of events in a probability space (Ω,F , P ).
The tail σ-field associated with {An} is given by T =

⋂∞
n=1 σ(An, An+1, ...).

The elements of this σ-field are called tail events.

Theorem 6.4 Kolgomorov’s Zero-One Law If A1, A2, ... are an independent
sequence of events, then for each event, A, in the tail σ-field, T , P (A) = 0 or
P (A) = 1.

Definition {Xn} converges to X with probability one (converges almost every-
where, converges almost surely or converges strongly) if P (limn Xn(ω) = X(ω)) =
1. Equivalently, {Xn} converges almost everywhere to the random variable X
if there exists a set A such that P (A) = 0 and Xn(ω) → X(ω) for all ω ∈ AC .

Theorem 6.5 Xn → X almost everywhere if and only if for all ε > 0, limm→∞ P (|Xn−
X| ≤ ε for all n ≥ m) = 1.

Theorem 6.6 Xn → 0 almost surely if and only if for all ε > 0, P (|Xn| >
ε infinitely often) = 0. Equivalently, {Xm} does not converge to X with proba-
bility one if P (

⋃
ε[|Xn −X| ≥ εi.o.]) > 0.

Definition Let X1, X2, ... be a sequence of random variables on a probability
space, (Ω,F , P ). They are identically distributed if their distributions (that is,
P (X ∈ A) for any set A) are all the same. We define Sn = X1 + ... + Xn and
Xn = Sn

n .

Theorem 6.7 Borel’s Strong Law of Large Numbers. Let {Xn} be independent
and identically distributed with E(Xi) = 0 and E(X4

i ) < ∞. Then Xn → 0
almost surely.

Definition Two sequences, {Xn} and {Yn}, are tail-equivalent if
∑∞

n=1 P (Xn 6=
Yn) < ∞.

Theorem 6.8 Kolgomorov’s Three Series Criterion. Let {Xn} be a sequence
of independent random variables. Sn =

∑n
j=1 Xj converges almost everywhere

if and only if, for some a > 0,

1.
∑∞

n=1 P (|Xn| ≥ a) < ∞

2.
∑∞

n=1 E(XnI(|Xn| ≤ a)) < ∞

3.
∑∞

n=1 V ar(XnI(|Xn| ≤ a)) < ∞

Theorem 6.9 If {Xn} and {Yn} are tail-equivalent then
∑∞

n=1(Xn − Yn) con-
verges almost everywhere, and if an ↑ ∞ then 1

an

∑n
j=1(Xj − Yj) → 0 almost

everywhere.

Lemma 6.10 Kronecker’s Lemma. Let {xk} be a sequence of real numbers
and {an} a sequence of real numbers with ak ↑ ∞. If

∑∞
j=1

xj

aj
< ∞ then

1
an

∑n
j=1 xj → 0.
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Theorem 6.11 Kolgomorov’s Strong Law of Large Numbers. Let {Xn} be
independent and identically distributed, with E(|Xi|) < ∞ and E(Xi) = 0.
Then, Xn → 0 almost surely.

Theorem 6.12 Marankiewicz-Lygmund Strong Law of Large Numbers. Let
{Xj} be independent and identically distributed with E(X1) = 0 and E(|X1|p) <
∞ for some 1 < p < 2. Let Sn =

∑n
i=1 Xi. Then, Sn

n1/p → 0 almost surely.

Definition A sequence of random variables, {Xn} converges in probability to
X (that is, Xn →p X) if limn→∞ P (|Xn − X| ≥ ε) = 0 for all ε > 0. This is
also called weak convergence.

Theorem 6.13 Xn converges to X in probability if and only if each subse-
quence, {Xnk

} contains a further subsequence {Xnki
} such that Xnki

→ X with
probability 1 as i →∞.

Theorem 6.14 If Xn converges almost everywhere to X, then Xn converges
in probability to X.

Definition For 0 < p < ∞, Xn converges in Lp to X if E(|Xn|p) < ∞,
E(|X|p) < ∞, and limn→∞E(|Xn −X|p) = 0.

Theorem 6.15 If Xn → X in Lp then Xn → X in probability. If Xn → X in
probability and there exists Y ∈ Lp with |Xn| ≤ Y then Xn → X in Lp.

Let Ω = [0, 1]. Then we have examples of different kinds of convergence.

• In probability (and in Lp) but not almost surely: Write n = k + 2v

where 0 ≤ k ≤ 2v (this representation is unique). Define Xn = 1 if
ω ∈ [k2−v, (k + 1)2−v) and Xn = 0 otherwise. This sequence converges to
0 in probability and in L1, but not almost surely, since Xn 6= 0 infinitely
often for all ω. (However, there is a subsequence that converges almost
surely.)

• Almost surely but not in Lp: If the pth moment does not exist, then a
sequence cannot converge in Lp.

Theorem 6.16 If Xn → X almost surely, then E(|X|r) ≤ lim inf E(|Xn|r). If
Xn → X in Lr, then E(|Xn|r) → E(|X|r).

Theorem 6.17 If Xn → X in Lp for some 0 < p < ∞, then Xn → X in Lq

for all 0 < q < p.

Theorem 6.18 Let f : R → R be continuous. If Xn → X almost surely then
f(Xn) → f(X) almost surely. If Xn → X in probability, then f(Xn) → f(X)
in probability.

Corollary 6.19 If Xn → X in probability and Yn → Y in probability, then
Xn + Yn → X + Y in probability and XnYn → XY in probability.
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Theorem 6.20 If Xn → X and Yn → Y in Lp, then Xn +Yn → X +Y in Lp.

Definition If Fn and F are distribution functions, Fn converges weakly to F
(Fn ⇒ F ) if limn→∞ Fn(x) = F (x) for each x at which F is continuous. The
random variables, {Xn}, converge in distribution to X (that is, Xn →D X)
if their distributions converge weakly to the distribution of X. Equivalently,
P (Xn ≤ x) → P (X ≤ x) for all x such that P (X = x) = 0.

(The variable to which the Xn converge in distribution need not be defined
on the same probability space.)

Definition Let ∆ be defined by ∆(x) = I(x ≥ 0). This is the distribution of
the random variable X(ω) = 0 for all ω ∈ Ω.

Definition The distribution functions, F and G, are of the same type if there
exist constants a and b such that F (ax + b) = G(x). A distribution function
is degenerate if it has the form ∆(x − b) for some b. Otherwise, it is called
non-degenerate.

Theorem 6.21 Suppose Fn(unx + vn) ⇒ F (x) and Fn(anx + bn) ⇒ G(x) with
un, an > 0 and F,G non-degenerate. Then, there exists a, b with a > 0 such
that an

un
→ a, bn−vn

un
→ b, and F (ax + b) = G(x).

Theorem 6.22 If Xn →P X then Xn →D X.

Theorem 6.23 Let b be a constant. Xn →P b if and only if Xn →D b.

Theorem 6.24 If Xn →D X and Yn →D 0 then Xn + Yn →D X.

Theorem 6.25 Skorohod’s Device. Suppose Fn and F are distribution func-
tions on R with Fn →D F . Then there exist random variables Yn and Y on a
common probability space, (Ω,F , P ), such that each Yn has distribution function
Fn, Y has distribution F , and Yn → Y for all ω ∈ Ω.

Theorem 6.26 Let h : R → R be measurable. Let Dh = {x : h is not continuous at x}.
Let Xn →D X and P (X ∈ Dh) = 0. Then, h(Xn) →D h(X).

Corollary 6.27 If an → a, bn → b, and Xn →D X, then anXn+bn →D aX+b.

Theorem 6.28 Fn →D F if and only if
∫

f dµFn
→

∫
f dµF for every bounded,

continuous, real-valued f . Equivalently, Xn →D X if and only if E(f(Xn)) →
E(f(X)) for all bounded, continuous, real-valued f .

Theorem 6.29 Helly’s Theorem. For every sequence {Fn} of distribution func-
tions there exists a subsequence {Fnk

} and a non-decreasing right-continuous
function F such that limk→∞ Fnk

(x) = F (x) wherever F is continuous. Note
that F may not be a distribution function.
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Definition A sequence of distribution functions, {Fn}, if tight if for every ε > 0
there exists a finite interval, [a, b] such that Fn(b)− Fn(a) > 1− ε for all n.

Theorem 6.30 Let {Fn} be a sequence of distribution functions. {Fn} is tight
if and only if for every subsequence, {Fnk

}, there exists a further subsequence,
{Fnki

}, and a distribution function F such that Fnki
→D F as i →∞.

Corollary 6.31 If {Fn} is tight and any subsequence converges to the same
distribution function F , then Fn →D F .

Theorem 6.32 If Xn →D X then E(|X|) ≤ lim infn E(|Xn|).

Theorem 6.33 If Xn →D X and |Xn|r is uniformly integrable, then E(Xr
n) →

E(Xr).

Theorem 6.34 Let {(Xn, Yn)} be a sequence of pairs of random variables. Let
c be a constant. Then,

• If Xn →D X and Yn →P c then Xn ± Yn →D Xn ± c.

• If Xn →D X and Yn →P c then XnYn →D cX if c 6= 0 and XnYn →P 0
if c = 0.

• If Xn →D X and Yn →P c then Xn

Yn
→D

X
c if c 6= 0.

7 Characteristic Functions

Definition The moment-generating function for a random variable X is defined
as MX(t) = E(etX).

Theorem 7.1 Since E(etX) =
∑∞

k=0
tk

k! E(Xk), dk

dtk Mx(0) = E(Xk).

Definition The characteristic function of a random variable, X, is defined for
t ∈ R as:

φX(t) = E(eitX) =
∫

Ω

eitxdP

Some facts about characteristic functions:

• φX(0) = 1

• φX(t) exists and |φX(t)| ≤ 1 for all t.

• φX(t) is uniformly continuous, because |φX(t+h)−φX(t)| ≤
∫
|eiht−1|dµ.

• Using a Taylor expansion, we find that |eix−
∑n

k=0
(ix)k

k! | ≤ min{ |x|
n+1

(n+1)! ,
2|x|n

n! }.
This is useful for taking expectations and calculating moments.

Theorem 7.2 If E(|X|k) < ∞, then dk

dtk φX(0) = ikE(Xk).
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Theorem 7.3 If X1, ..., Xn are independent, then φPXi
(t) =

∏n
i=1 φXi

(t).

Theorem 7.4 Inversion and Uniqueness Theorem. If a probability measure, µ,
has a characteristic function, φ, and if µ({a}) = µ({b}) = 0, then

µ(a, b] = lim
T→∞

1
2π

∫ T

−T

1
it

(e−ita − eitb)φ(t) dt

(This shows that distinct measures must have distinct characteristic functions.)
Furthermore, if

∫∞
−∞ |φ(t)|dt < ∞, then F (x) = µ(−∞, x] has a derivative given

by f(x) = 1
2π

∫∞
−∞ e−itxφ(t)dt.

Theorem 7.5 Continuity Theorem. Let µn, µ be probability measures with
characteristic functions φn, φ. µn →D µ if and only if φn(t) → φ(t) for all
t.

Corollary 7.6 Suppose limn φn(t) = g(t) for all t ∈ R, and g is continuous at
0. Then there exists a measure, µ such that µn →D µ and g is the characteristic
function of µ.

Corollary 7.7 Suppose limn φn(t) = g(t) for all t ∈ R, and {µn} is tight. Then
there exists a measure µ such that µn →D µ and g is the characteristic function
of µ.

Definition A function, f , is positive definite if for all z1, ..., zn ∈ C and
t1, ..., tn ∈ R,

∑n
i=1

∑n
j=1 f(ti − tj)zizj ≥ 0.

Theorem 7.8 Bochner’s Theorem. If φ(t) is a function with

1. φ(0) = 1,

2. φ(t) continuous at 0,

3. φ(t) positive definite,

then φ is a characteristic function of some probability distribution µ.

Central Limit Theorems

Definition We say that an = O(bn) if |an

bn
| < M for all n and some M < ∞.

We say that an = o(bn) if an

bn
→ 0. We say that f(t) = o(g(t)) as t → 0 if

f(t)
g(t) → 0 as t → 0.

Lemma 7.9 Let φX(t) be the characteristic function X, with E(X2) < ∞.
Then, as t → 0,

φX(t) = 1 + itE(X)− 1
2
t2E(X2) + o(t2)
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Theorem 7.10 Central Limit Theorem. Suppose {Xn} is a sequence of in-
dependent and identically distributed random variables with E(X1) = µ and
V ar(X1) = σ2. Let Sn =

∑n
i=1 Xi. Then,

1
σ
√

n
(Sn − nµ) →D Normal(0, 1)

Theorem 7.11 Lindberg-Feller Theorem. For each n, assume that Xn,1, Xn,2, ..., Xn,rn

are independent and rn → ∞. Let Sn =
∑rn

i=1 Xn,i. Suppose E(Xn,k) = 0 and
E(X2

n,k) = σ2
n,k. Define s2

n =
∑rn

k=1 σ2
n,k. Assume that the Lindberg condition

holds. That is, for all ε > 0,

lim
n→∞

1
s2

n

rn∑
k=1

∫
|Xn,k|≥εsn

X2
n,kdP = 0

Then, Sn

sn
→D Normal(0, 1).

Theorem 7.12 Suppose Xn,1, Xn,2, ..., Xn,rn
are independent with E(Xn,k) =

0. If these variables satisfy the Lyapunov condition, that is, if for any δ > 0

lim
n→∞

rn∑
k=1

1
s2+δ

n

E(|Xn,k|2+δ) = 0

then they satisfy the Lindberg condition as well.

Corollary 7.13 Suppose {Xn} is independent and identically distributed with
E(Xn) = µ and V ar(Xn) = σ2. Then,

√
nX−µ

s →D Normal(0, 1).

Theorem 7.14 Multivariate Central Limit Theorem. Suppose Xn is a k-dimensional
random vector such that for any vector of constants, (a1, ..., ak)T ,

∑k
i=1 aiXni →D

Normal(0, aT Σa). Then, Xn →D Normal(0,Σ).

Theorem 7.15 Multivariate Central Limit Theorem. Let Xn = (Xn1, ..., Xnk)
be independent random vectors all having the same distribution. Suppose that
E(X2

1u) < ∞. Let c = E(X1) and Σ = E((X1 − c)′(X1 − c)). Let Sn =
X1+...+Xn. Then, the distribution of the random vector 1√

n
(Sn−nc) converges

weakly to the multivariate normal distribution with mean zero and covariance
matrix Σ.

8 Conditional Expectation

Definition If P (A) > 0 then the conditional probability of B given A is P (B|A) =
P (A∩B)

P (A) .

Definition Suppose X is a random variable on (Ω,F , P ) and G ⊂ F is a σ-field.
Then there exists a random variable, E(X‖G), called the conditional expected
value of X given G, such that:
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• E(X‖G) is measurable G and integrable

•
∫

G
E(X‖G)dP =

∫
G

X dP for all G ∈ G.

Since this definition is unique except for a set of probability zero, we called each
a version of E(X‖G).

Note that E(X‖{0,Ω}) = E(X) and E(X‖F) = X, and conditional proba-
bilities can be defined by P (A‖G) = E(I(A)‖G).

Definition If {Xt}t∈T is a collection of random variables on (Ω,F , P ), we
define E(X‖Xt, t ∈ T ) = E(X‖σ(Xt, t ∈ T )).

Theorem 8.1 Let P be a π-system generating the σ-field G. Suppose Ω is a
finite or countable union of sets in G. An integrable function, f , is a version of
E(X‖G) if it is measurable G and if

∫
G

f dP =
∫

G
X dP for all G ∈ G.

Theorem 8.2 Suppose X, Y , and Xn are integrable. Then, with probability
one:

• If X = a with probability one, then E(X‖G) = a.

• If a, b ∈ R, E(aX + bY ‖G) = aE(X‖G) + bE(Y ‖G).

• If X ≤ Y with probability one, then E(X‖G) ≤ E(Y ‖G).

• |E(X‖G)| ≤ E(|X|‖G)

• If limn Xn = X with probability one and |Xn| ≤ Y (with Y integrable),
then limn E(Xn‖G) = E(X‖G) with probability one.

Theorem 8.3 If X is measurable G and if Y and XY are integrable, then
E(XY ‖G) = XE(Y ‖G) with probability one.

Theorem 8.4 If X is integrable and G1 ⊂ G2 are σ-fields, then E(E(X‖G2)‖G1) =
E(X‖G1) = E(E(X‖G1)‖G2). (This is a generalization of the law of iterated ex-
pectations.)

Theorem 8.5 Jensen’s Inequality. If φ is a convex function on the line and if
both X and φ(X) are integrable, then φ(E(X‖G)) ≤ E(φ(X)‖G) with probability
one.

Definition Let X be a random variable on (Ω,F , P ) and let G be a σ-field in
F . Then there exists a function, µ(H,ω) for H ∈ R, ω ∈ Ω, such that:

• For each ω ∈ Ω, µ(·, ω) is a probability measure on R.

• For each H ∈ R, µ(H, ·) is a version of P (X ∈ H‖G).

Such a function is called the conditional distribution of X given G.

Theorem 8.6 Let µ(·, ω) be a conditional distribution with respect to G of a
random variable X. If φ : R → R is a Borel function and φ(X) is integrable,
then

∫
R

φ(x)µ(dx, ω) is a version of E(φ(X)‖G).
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Martingales

Definition Let X1, X2, ... be a sequence of random variables on (Ω,F , P ). Let
F1,F2, ... be a sequence of σ-fields in F . The sequence {(Xn,Fn)}∞n=1 is a
martingale relative to the σ-fields {Fn} if:

• Fn ⊂ Fn+1 (in which case, we say that {Fn} is a filtration),

• Xn is measurable Fn (in which case, we say that {Xn} is adapted to the
filtration),

• E(|Xn|) < ∞, and

• with probability one, E(Xn+1‖Fn) = Xn.

Note that the smallest filtration to which a sequence {Xn} is adapted is
Fn = σ(X1, ..., Xn).

Definition Let {Xn} be a martingale. Define ∆n = Xn −Xn−1. Then we say
that {∆n} is a martingale difference.

9 Miscellaneous

9.1 Convolution

Definition Let X and Y be independent random variables with distributions
µ and ν. The convolution of µ and ν is (µ ∗ ν)(H) =

∫∞
−∞ ν(H − x)µ(dx), for

H ∈ R.

Some facts about convolution:

• Convolution is commutative and associative.

• If X and Y are independent with distributions µ and ν, then P (X + Y ∈
H) = (µ ∗ ν)(H).

Definition If F and G are the distributions functions corresponding to µ and ν,
then the distribution function corresponding to µ∗ν is (F ∗G)(y) =

∫∞
−∞G(y−

x)dF (x). If F and G have densities f and g, then (F ∗g)(y) =
∫∞
−∞ g(y−x)dF (x)

and (f ∗ g)(y) =
∫∞
−∞ g(y − x)f(x)dx.

9.2 Empirical CDF’s

Definition Let {Xn} be independent and identically distributed with a CDF
F . The empirical CDF based on a sample X1, ..., Xn is given by

Fn(x) =
1
n

n∑
i=1

I(xi ≤ x)

Fn is an estimator of F (x) = P (X1 ≤ x).
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Since E(F (X1 ≤ x)− F (x)) = 0 and E(|I(X1 ≤ x)|) < ∞, we may apply a
law of large numbers to find that Fn(x) → F (x) almost surely for each x.

Theorem 9.1 Glivenko-Cantelli Theorem. supx∈R |Fn(x)− F (x)| → 0.

10 Inequalities

Theorem 10.1 If X ≥ 0, for any α > 0, P (X ≥ α) ≤ 1
αE(X).

Theorem 10.2 Markov’s Inequality. P (|X| ≥ α) ≤ 1
αk E(|X|k).

Theorem 10.3 Chebyshev’s Inequality. P (|X − E(X)| ≥ α) ≤ 1
α2 V ar(X).

Theorem 10.4 Chebyshev’s Inequality (Generalized). Let f be a strictly pos-
itive and increasing function on (0,∞) with f(u) = f(−u). Let X be a ran-
dom variable with E(f(X)) < ∞. Then, for every u > 0, P (|X| ≥ u) ≤
E(f(X))/f(u).

Definition A function f : R → R is convex if for every λ1, ..., λn ≥ 0 with∑n
i=1 λi = 1, and every x1, ..., xn ∈ R, f(

∑n
i=1 λixi) ≥

∑n
i=1 λif(xi).

Theorem 10.5 Jensen’s Inequality. If φ : R → R is convex on the range of X,
then φ(E(X)) ≤ E(φ(X)).

Theorem 10.6 Holder’s Inequality. Let (Ω,F , p) be a probability space and
X, Y random variables on Ω. If 1

p + 1
q = 1 with p, q > 1, then E(|XY |) ≤

E(|X|p)1/pE(|Y |q)1/q.

Theorem 10.7 (Cauchy-)Schwarz Inequality. E(|XY |) ≤
√

E(X2)E(Y 2).

Theorem 10.8 Lyapounov’s Inequality If 0 < α ≤ β, then E(|X|α)1/α ≤
E(|X|β)1/β.
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