Probability Theory

Rebecca Sela

September 28, 2005

1 Sets, Fields, Measures, and Probability Measures

Definition Let Ω be a probability space. We call $\omega \in \Omega$ a sample point and $S \subset \Omega$ an event.

Definition A class \mathcal{F} of subsets of Ω is called a *field* or *algebra* if:

- $\Omega \in \mathcal{F}$
- If $A \in \mathcal{F}$ then $A^C \in \mathcal{F}$.
- If $A, B \in \mathcal{F}$ then $A \cup B \in \mathcal{F}$. (This is called *finite additivity*.)

The class is a σ -field or a σ -algebra if the following condition holds as well:

• If $A_1, A_2, \dots \in \mathcal{F}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ as well. (This is called *countable additivity*.)

An set that is an element of \mathcal{F} is called an \mathcal{F} -set, and is said to be measurable \mathcal{F} . The σ -field generated by a class of sets, \mathcal{A} , $\sigma(\mathcal{A})$, is the intersection of all σ -fields that contain \mathcal{A} .

Definition The *extended real line* is $[-\infty, \infty]$; it includes both positive and negative infinity.

Definition Let \mathcal{R}^k be the σ -field generated by the bounded rectangles $[x = (x_1, ..., x_k) : a_i \leq x_i \leq b_i, i = 1, ..., k] \subset \mathcal{R}^k$. The elements of \mathcal{R}^k are called the *k*-dimensional *Borel sets*. Note that \mathcal{R}^k contains all the open and closed sets (among other things). \mathcal{R}^1 is sometimes written as \mathcal{B} .

Theorem 1.1 If \mathcal{A} is a class of sets in Ω and $\Omega_0 \subset \Omega$, let $\mathcal{A} \cap \Omega_0 = [\mathcal{A} \cap \Omega_0 : \mathcal{A} \in \mathcal{A}]$. If \mathcal{F} is a σ -field in Ω then $\mathcal{F} \cap \Omega_0$ is a σ -field in Ω_0 . If \mathcal{A} generates the σ -field \mathcal{F} in Ω then $\mathcal{A} \cap \Omega_0$ generates the σ -field $\mathcal{F} \cap \Omega_0$ in Ω_0 . That is, $\sigma(\mathcal{A} \cap \Omega_0) = \sigma(\mathcal{A}) \cap \Omega_0$.

Definition A class \mathcal{P} of subsets of Ω is a π -system if whenever $A, B \in \mathcal{P}$, $A \cap B \in \mathcal{P}$ as well.

Definition A class \mathcal{L} of subsets of Ω is a λ -system if:

- 1. $\Omega \in \mathcal{L}$
- 2. If $A, B \in \mathcal{L}$ and $A \subset B$, then $B A \in \mathcal{L}$.
- 3. If $A_1, A_2, \ldots \in \mathcal{L}$ and $A_n \uparrow A$ then $A \in \mathcal{L}$.

Note that any class of subsets that is both a $\pi\text{-system}$ and a $\lambda\text{-system}$ is a $\sigma\text{-field.}$

Theorem 1.2 If \mathcal{P} is a π -system and \mathcal{L} is a λ -system and $\mathcal{P} \subset \mathcal{L}$ then $\sigma(\mathcal{P}) \subset \mathcal{L}$.

Definition A set function is a real-valued function defined on a class of subsets of Ω . A set function $\mu : \mathcal{F} \to R$, where \mathcal{F} is a field in Ω , is a measure if:

- 1. $\mu(A) \in [0, \infty]$ for all $A \in \mathcal{F}$
- 2. $\mu(\emptyset) = 0$
- 3. If $A_1, A_2, \ldots \in \mathcal{F}$ are disjoint and $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$, then $\mu(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} \mu(A_k)$. (Note that this sum may be infinite.)

 μ is finite if $\mu(\Omega) < \infty$ and infinite if $\mu(\Omega) = \infty$. If $\Omega = A_1 \cup A_2 \cup ...$ (where this is either a finite or a countable sequence of \mathcal{F} -sets, which need not be disjoint) with $\mu(A_k) < \infty$ for all k, then μ is σ -finite. If $A_1, A_2, ... \in \mathcal{A}$, then we say μ is σ -finite on \mathcal{A} . If μ is a measure on a σ -field \mathcal{F} in Ω , we say that the triple, $(\Omega, \mathcal{F}, \mu)$ is a measure space. If $\mu(A^C) = 0$ for $A \in \mathcal{F}$, then A is a support of μ , and we say that μ is concentrated on A. If \mathcal{F} is a σ -field on Ω , then we say that (Ω, \mathcal{F}) is a measurable space.

Definition A measure μ on (Ω, \mathcal{F}) is *discrete* if there are countably many $\omega_i \in \Omega$ such that $\mu(A) = \sum_{\omega_i \in A} \mu(\{\omega_i\})$ for all $A \in \mathcal{F}$.

Some facts about measures:

- Monotonicity: If $A \subset B$ then $\mu(A) \leq \mu(B)$.
- Inclusion-Exclusion: $\mu(\bigcup_{k=1}^n A_k) = \sum_{i=1}^n \mu(A_i) \sum_{1 \le i < j \le n} \mu(A_i \cap A_j) + \dots + (-1)^{n+1} \mu(A_1 \cap \dots \cap A_n)$
- Finite Subadditivity: $\mu(\bigcup_{k=1}^{n} A_k) \leq \sum_{k=1}^{n} \mu(A_k)$
- If $\mu(A_n) = 0$ for all A_n then $\mu(\bigcup_n A_n) = 0$.

Definition For an infinite sequence of real numbers, $x_1, x_2, ..., \text{ in } [0, \infty]$, we say that $x_k \uparrow x$ if $x_k \leq x_{k+1} \leq x$ and $x_k \to x$ (either in the usual sense, or if $x = \infty$ and $x_k = \infty$ for some k). We say that $x_k \downarrow x$ if $x_k \geq x_{k+1} \geq x$ and $x_k \to x$.

Definition For an infinite sequence of sets, $A_1, A_2, ...$, we say that $A_n \uparrow A$ if $A_1 \subset A_2 \subset ...$ and $A = \bigcup_n A_n$. We say that $A_n \downarrow A$ if $A_1 \supset A_2 \supset ...$ and $A = \bigcap_n A_n$.

Theorem 1.3 Let μ be a measure on a field \mathcal{F} . Then it has the following properties:

- 1. Continuity from Below: If $A_n, A \in \mathcal{F}$ and $A_n \uparrow A$ then $\mu(A_n) \uparrow \mu(A)$.
- 2. Continuity from Above: If $A_n, A \in \mathcal{F}$ and $A_n \downarrow A$ and $\mu(A_1) < \infty$ then $\mu(A_n) \downarrow \mu(A)$.
- 3. If $A_1, A_2, \ldots \in \mathcal{F}$ and $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$ then $\mu(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} \mu(A_k)$.
- 4. If μ is σ -finite on \mathcal{F} , then \mathcal{F} cannot contain an uncountable, disjoint collection of sets of positive measure.

Definition Let $\lambda(a, b] = b - a$ for any $a, b \in R$. Note that λ is finitely additive and countably subadditive on the collection of finite intervals in R. The extension of this measure to the σ -field of all linear Borel sets in R^1 , \mathcal{B} , defines the *Lebesgue measure* on R. The Lebesgue measure is indeed a measure on this set, and its extension from intervals to the entire class of sets is unique.

Theorem 1.4 (Extension Theorem.) Suppose P is a measure on a field \mathcal{F}_0 of subsets of Ω . Let $\mathcal{F} = \sigma(\mathcal{F}_0)$. Then there is a unique probability measure, Q on \mathcal{F} such that Q(A) = P(A) for all $A \in \mathcal{F}_0$.

Theorem 1.5 Suppose P_1 and P_2 are probability measures on $\sigma(\mathcal{P})$, with \mathcal{P} a π -system. If P_1 and P_2 agree on \mathcal{P} then they agree on all of $\sigma(\mathcal{P})$.

Definition Let $\lambda_k [x = (x_1, ..., x_k) : a_i \leq x_i \leq b_i, i = 1, ..., k] = \prod_{i=1}^k (b_i - a_i)$ for any bounded rectangle in \mathbb{R}^k . The extension of this to the Borel subsets of \mathbb{R}^k defines the k-dimensional Lebesgue measure.

Theorem 1.6 Translation Invariance If $A \in \mathcal{R}^k$ and we define $A + x = [a + x : a \in A]$, then $A + x \in \mathcal{R}^k$ and $\lambda_k(A) = \lambda_k(A + x)$.

Theorem 1.7 If $T : \mathbb{R}^k \to \mathbb{R}^k$ is linear and nonsingular, then for all $A \in \mathbb{R}^k$, $T(A) \in \mathbb{R}^k$ and $\lambda_k(T(A)) = |det(T)|\lambda_k(A)$.

Definition A set function $P : \mathcal{F} \to R$ is a probability measure if:

- 1. $0 \leq P(A) \leq 1$ for all $A \in \mathcal{F}$
- 2. $P(\emptyset) = 0$ and $P(\Omega) = 1$
- 3. If $A_1, A_2, \dots \in \mathcal{F}$ are disjoint and $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$, then $P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k)$.

The triple, (Ω, \mathcal{F}, P) is called a *probability (measure) space*. A *support* of P is any set $A \in \mathcal{F}$ such that P(A) = 1.

Theorem 1.8 Let (Ω, \mathcal{F}, P) be a probability space. Then the following three properties hold:

- 1. Continuity from Below: Suppose $A, A_n \in \mathcal{F}$ with $A_n \uparrow A$. Then, $P(A_n) \uparrow P(A)$.
- 2. Continuity from Above: Suppose $A, A_n \in \mathcal{F}$ with $A_n \downarrow A$. Then, $P(A_n) \downarrow P(A)$.
- 3. Countable Subadditivity: If $A_k \in \mathcal{F}$ for all k and $\bigcup_{k=1}^{\infty} A_k \in \mathcal{F}$, then $P(\bigcup_{k=1}^{\infty} A_k) \leq \sum_{k=1}^{\infty} P(A_k).$
- If $P(A_n) = 1$ for all A_n , then $P(\bigcap_n A_n) = 1$.

Definition Let $\Omega = \{1, 2, ...\}$ and \mathcal{F} be the set of all subsets of Ω . If $\mu(A)$ is the number of elements in A, we call μ the *counting measure*.

Definition A property G is true almost everywhere or almost surely if $\mu[\omega : G \text{ does not hold for } \omega] = 0.$

Definition Let (X, \mathcal{X}) and (Y, \mathcal{Y}) be measurable spaces. $A \times B$ is a *measurable* rectangle if $A \in \mathcal{X}$ and $B \in \mathcal{Y}$. $\mathcal{X} \times \mathcal{Y}$ is the σ -field generated by the measurable rectangles.

Theorem 1.9 If $E \in \mathcal{X} \times \mathcal{Y}$, then for all $x \in X$, $[y : (x, y) \in E] \in \mathcal{Y}$ and for all $y \in Y$, $[x : (x, y) \in E] \in \mathcal{X}$. (These are called the sections of E determined by x or y.) If f is measurable $\mathcal{X} \times \mathcal{Y}$ then for any fixed x, f(x, .) is measurable \mathcal{Y} , and for any fixed y, f(., y) is measurable \mathcal{X} . (These are the sections of fdetermined by x and y.)

Definition Suppose (X, \mathcal{X}, μ) and (Y, \mathcal{Y}, ν) are measure spaces, with μ, ν finite. Let $E \in \mathcal{X} \times \mathcal{Y}$. Define

$$\pi_1(E) = \int_X \nu[y : (x, y) \in E] \mu(dx)$$

$$\pi_2(E) = \int_Y \nu[x : (x, y) \in E] \mu(dy)$$

In particular, for a measurable rectangle $A \times B$, $\pi_1(A \times B) = \pi_2(A \times B) = \mu(A)\nu(B)$. This measure is called the *product measure*.

Theorem 1.10 If (X, \mathcal{X}, μ) and (Y, \mathcal{Y}, ν) are σ -finite measure spaces, then $\pi_1(E) = \pi_2(E) = \pi(E)$ defines a σ -finite measure on $\mathcal{X} \times \mathcal{Y}$. It is the only measure such that $\pi(A \times B) = \mu(A)\nu(B)$.

Measurable Functions and Mappings

Definition Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable spaces. For $T : \Omega \to \Omega'$, define $T^{-1}(A') = [\omega \in \Omega : T(\omega) \in A']$ (this is the inverse image of $A' \subset \Omega'$). T is measurable \mathcal{F}/\mathcal{F}' if $T^{-1}(A') \in \mathcal{F}$ for all $A' \in \mathcal{F}'$. If $f : \mathcal{F} \to R$ is measurable \mathcal{F}/R , then we say it is measurable \mathcal{F} .

Theorem 1.11 If $T^{-1}(A') \in \mathcal{F}$ for all $A' \in \mathcal{A}'$ and \mathcal{A}' generates \mathcal{F}' , then T is measurable \mathcal{F}/\mathcal{F}' . If T is measurable \mathcal{F}/\mathcal{F}' and T' is measurable $\mathcal{F}'/\mathcal{F}''$, then $T' \circ T$ is measurable $\mathcal{F}/\mathcal{F}''$.

Definition If $f : \mathbb{R}^i \to \mathbb{R}^k$ is measurable $\mathcal{R}^i/\mathcal{R}^k$, then it is called a *Borel* function.

Theorem 1.12 If $f(\omega) = (f_1(\omega), ..., f_k(\omega))$, f is measurable \mathcal{F} if and only if each $f_j(\omega)$ is measurable \mathcal{F} .

Theorem 1.13 If $f : R^i \to R^k$ is continuous, then it is measurable. Since compositions of measurable functions are measurable, sums, products, maxima, and other continuous functions of measurable functions are also measurable.

Theorem 1.14 Suppose $f_1, f_2, ...$ are measurable \mathcal{F} . Then $\sup_n f_n$, $\inf_n f_n$, $\limsup_n f_n$, and $\liminf_n f_n$ are all measurable \mathcal{F} . If $\lim_n f_n$ exists everywhere, then it is measurable \mathcal{F} . The set where $\{f_n(\omega)\}$ converges lies in \mathcal{F} . If f is also measurable \mathcal{F} , then the set where $f_n(\omega) \to f(\omega)$ lies in \mathcal{F} .

Definition A simple real function is a real function with finite range, $\{x_1, ..., x_n\}$. Then we may write it as $f = \sum_{i=1}^n x_i I(A_i)$, where the A_i decompose Ω . This function is measurable if $A_i \in \mathcal{F}$ for i = 1, ..., n.

Theorem 1.15 If f is real and measurable \mathcal{F} , there exists a sequence $\{f_n\}$ of simple functions that are measurable \mathcal{F} such that when $f(\omega) \ge 0$ $0 \le f_n(\omega)$ and $f_n(\omega) \uparrow f(\omega)$ and when $f(\omega) \le 0$ $0 \ge f_n(\omega)$ and $f_n(\omega) \downarrow f(\omega)$.

Definition Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable with $T : \Omega \to \Omega'$ measurable \mathcal{F}/\mathcal{F}' . Given a measure μ on \mathcal{F} , define $\mu T^{-1} : \mathcal{F}' \to R$ by $\mu T^{-1}(A') = \mu(T^{-1}(A'))$ for all $A' \in \mathcal{F}'$. Note that μT^{-1} is a measure. If μ is a probability measure, so is μT^{-1} .

2 Integrals

Definition Let $f = \sum_{i=1}^{n} x_i I_{A_i}$ with $A_i \cap A_j = \emptyset$ for all $i \neq j$ and $\bigcup_{i=1}^{n} A_i = \Omega$. We define:

$$\int f d\mu = \sum_{i=1}^{n} x_i \mu(A_i)$$

If B is an \mathcal{F} -set, then we define $\int_B f d\mu = \int_{\Omega} (f) (I_B) d\mu = \sum_{i=1}^n x_i \mu(A_i \cap B).$

Definition Let f be a non-negative measurable function. Consider a sequence of simple functions, $\{f_n\}_{n=1}^{\infty}$, such that $0 \leq f_n$ and $f_n \uparrow f$. We define $\int f d\mu = \lim_{n\to\infty} \int f_n d\mu$.

Definition Let f be any measurable function. Define $f^+(\omega) = f(\omega)I(f(\omega) > 0)$ and $f^-(\omega) = -f(\omega)I(f(\omega) < 0)$. (Note that $f = f^+ - f^-$.) If $\int f^+ d\mu < \infty$ and $\int f^- d\mu < \infty$, then we say that f is *integrable* and define:

$$\int f \, d\mu = \int f^+ d\mu - \int f^- d\mu$$

Some properties of integrals:

- If $f \leq g$ almost everywhere, then $\int f d\mu \leq \int g d\mu$.
- $\left|\int f d\mu\right| \leq \int |f| d\mu$
- If f = 0 almost everywhere, then $\int f d\mu = 0$.
- If $\mu(A) = 0$ then $\int_A f d\mu = 0$.
- If $\int f d\mu < \infty$ then $f < \infty$ almost everywhere.
- If α, β are finite and f, g are integrable, then $\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta \int g d\mu$.

Theorem 2.1 Monotone Convergence Theorem If $0 \leq f_n$ and $f_n \uparrow f$ almost everywhere, then $\int f_n d\mu \uparrow \int f d\mu$.

Theorem 2.2 Fatou's Lemma If $0 \le f_n$ then

$$\int (\liminf_{n \to \infty} f_n) d\mu \le \liminf_{n \to \infty} \int f_n d\mu$$

Theorem 2.3 Lebesgue's Dominated Convergence Theorem If $|f_n| \leq g$ almost everywhere, g is integrable, and $f_n \to f$ almost everywhere, then $\{f_n\}$ and f are integrable and $\int f_n d\mu \to \int f d\mu$.

Definition A sequence of functions, f_n is uniformly bounded if there exists $K < \infty$ such that $|f_n(\omega)| < K$ for all ω and n.

Theorem 2.4 Bounded Convergence Theorem If $\mu(\Omega) < \infty$, $\{f_n\}$ is uniformly bounded, and $f_n \to f$ almost everywhere, then $\int f_n d\mu \to \int f d\mu$.

Definition A sequence $\{f_n\}$ is uniformly integrable if

$$\lim_{\alpha \to \infty} (\sup_n \int_{|f_n| \ge \alpha} |f_n| d\mu) = 0$$

Theorem 2.5 If $\sup_n \int |f_n|^{1+\epsilon} d\mu < \infty$ for some $\epsilon > 0$ then $\{f_n\}$ is uniformly integrable.

Theorem 2.6 Let $\mu(\Omega) < \infty$ and $f_n \to f$ almost everywhere. If the f_n are uniformly integrable, then f is integrable and $\int f_n d\mu \to \int f d\mu$.

Definition A real measurable function, f, is *Lebesgue integrable* if it is integrable with respect to the Lebesgue measure, λ . The integral is usually written as $\int f d\lambda = \int f(x) dx$.

Definition A real function, f, on an interval (a, b] is *Riemann integrable* with integral r if for all $\epsilon > 0$ there exists a $\delta > 0$ such that

$$|r - \sum_{j} f(x_j)\lambda(J_j)| < \epsilon$$

where $\{J_j\}$ is a finite partition of (a, b] into subintervals of length at most δ and $x_j \in J_j$.

A bounded function on a bounded interval if Riemann integrable if and only if its set of discontinuities has Lebesgue measure 0. If f is Riemann integrable, then the Riemann integral equals the Lebesgue integral.

Theorem 2.7 Suppose $\int |f| dx < \infty$. Then for all $\epsilon > 0$ there exists a step function, $g_{\epsilon} = \sum_{i=1}^{k} y_i I_{A_i}$ (where the A_i are bounded intervals) such that $\int |f - g| dx < \epsilon$. In addition, there is a continuous integrable function, h_{ϵ} , which is 0 outside a bounded interval, such that $\int |f - h| dx < \epsilon$.

Theorem 2.8 Fundamental Theorem of Calculus. Suppose F is a function with continuous derivative, F' = f. Then, $\int_a^b f(x) dx = \int_a^b F'(x) dx = F(b) - F(a)$.

Theorem 2.9 Suppose $\{x_i\}$ is a non-negative sequence. Define $f(i) = x_i$. Then $\sum_{i=1}^{\infty} x_i = \int f d\mu$, where μ is the counting measure.

Theorem 2.10 Fubini's Theorem Let (X, \mathcal{X}, μ) and (Y, \mathcal{Y}, ν) be σ -finite measure spaces. Suppose f is a non-negative function. Then, $\int_Y f(x, y)\nu(dy)$ and $\int_X f(x, y)\mu(dx)$ are measurable \mathcal{X} and \mathcal{Y} respectively, and:

$$\begin{split} \int_{X \times Y} f(x,y) \pi(d(x,y)) &= \int_X [\int_Y f(x,y) \nu(dy)] \mu(dx) \\ &= \int_Y [\int_X f(x,y) \mu(dx)] \nu(dy) \end{split}$$

Let f be an arbitrary function that is integrable with respect to π . Then, $\int_Y f(x,y)\nu(dy)$ and $\int_X f(x,y)\mu(dx)$ are measurable and finite except on sets of μ - and ν -measure 0 respectively, and the iterated integrals above continue to hold.

3 Random Variables

Definition Let (Ω, \mathcal{F}, P) be a probability space. Let $X : \Omega \to R$. X is a simple random variable if it has a finite range and $[\omega : X(\omega) = x] \in \mathcal{F}$ for all $x \in R$. Let $A_i = \{\omega : X(\omega) = x_i\}$ for each x_i in the range of X. Then we may represent X as a sum of indicator functions:

$$X = \sum_{i=1}^{n} x_i I(A_i)$$

In this case, μ has mass $p_i = P[X = x_i] = \mu\{x_i\}$ at the points in the range of X.

Definition A random variable on a probability space (Ω, \mathcal{F}, P) is a real-valued function $X = X(\omega)$ which is measurable \mathcal{F} . A random vector is a mapping $X : \Omega \to \mathbb{R}^k$ that is measurable \mathcal{F} ; this is a k-tuple of random variables.

Definition If \mathcal{G} is a sub- σ -field of \mathcal{F} then a simple random variable X is *measurable* \mathcal{G} if $[\omega : X(\omega) = x] \in \mathcal{G}$ for each $x \in R$. In general, a k-dimensional random vector, X, is *measurable* \mathcal{G} if $[\omega : X(\omega) \in H] \in \mathcal{G}$ for every measurable $H \in \mathbb{R}^k$.

Definition The σ -field, $\sigma(X)$, generated by X is the smallest σ -field that X is measurable with respect to. If X_1, X_2, \ldots is a finite or infinite sequence of random variables, then $\sigma(X_1, X_2, \ldots)$ is the smallest σ -field with respect to which each X_i is measurable.

Theorem 3.1 Let $X = (X_1, ..., X_k)$ be a random vector. Then, $\sigma(X) = \sigma(X_1, ..., X_k)$ consists exactly of the sets $[\omega : X(\omega) \in H] = [\omega : (X_1(\omega), ..., X_n(\omega)) \in H]$ for all $H \in \mathbb{R}^k$. Y is measurable $\sigma(X)$ if and only if there is some $f : \mathbb{R}^k \to \mathbb{R}$ such that $Y(\omega) = f(X_1(\omega), ..., X_k(\omega))$.

Definition Let $X : \Omega \to R$ be a random variable. The *distribution* (or law) of X is the probability measure on \mathcal{R} given by PX^{-1} . That is, $\mu(A) = P(X \in A)$ for all $A \in \mathcal{R}$. The *support* for μ is any Borel set S such $\mu(S) = 1$. A random variable (and its distribution) are *discrete* if μ has countable support.

If X has distribution μ and $g : R \to R$, then $P(g(X) \in A) = P(X \in g^{-1}(A)) = \mu(g^{-1}A)$, and g(X) has distribution μg^{-1} .

Theorem 3.2 Let $T : \Omega \to \Omega'$ be measurable \mathcal{F}/\mathcal{F}' . Given a measure μ on \mathcal{F} , define μT^{-1} on \mathcal{F}' by $\mu T^{-1}(A) = \mu(T^{-1}A)$. If f is non-negative, then $\int_{\Omega} f(T\omega)\mu(d\omega) = \int_{\Omega'} f(\omega')\mu T^{-1}(d\omega')$. A function f is integrable with respect to μT^{-1} if and only if fT is integrable with respect to μ . In that case, $\int_{T^{-1}A'} f(T\omega)\mu(d\omega) = \int_{A'} f(\omega')\mu T^{-1}(d\omega')$.

Definition Let μ be a measure on \mathcal{R}^1 that assigns a finite measure to any bounded set. Define:

$$F(x) = \begin{cases} \mu(0, x] & \text{if } x \ge 0\\ -\mu(x, 0] & \text{if } x \le 0 \end{cases}$$

If μ is a probability measure, we call F a *(cumulative) distribution function* of the random variable X with distribution μ . If μ is finite, then we may define $F(x) = \mu(-\infty, x]$ instead; in this case, $F(x) = P(X \le x)$.

Some facts about F as defined above:

- F is finite because μ is finite on bounded sets.
- F is non-decreasing.
- Right-continuous: If $x_n \downarrow x$ then $F(x_n) \downarrow F(x)$.
- $\mu(a,b] = F(b) F(a)$
- If μ is the Lebesgue measure, then F(x) = x.

Theorem 3.3 If F is a non-decreasing, right-continuous real function on R, there exists on \mathcal{R} a unique measure, μ such that $\mu(a, b] = F(b) - F(a)$ for all $a, b \in R$.

Definition The *jump* (or saltus) in a distribution function, F is given by $F(x) - \lim_{y \uparrow x} F(y) = F(x) - F(x-) = \mu(\{x\}) = P(X = x).$

Definition Let δ be a non-negative measurable function. Define a measure by $\nu(A) = \int_A \delta d\mu$ for all $A \in \mathcal{F}$. Then we say that ν has *density* δ with respect to μ .

Definition A random variable, X, and its distribution, μ , have *density* f with respect to the Lebesgue measure if $f \ge 0$ is a Borel function on R and $P(x \in A) = \mu(A) = \int_A f(x) dx$ for all $a \in \mathcal{R}$.

Theorem 3.4 Let X be a random variable. Let g be a non-negative function such that $\int_{R} g(x)dx = 1$ and $\mu_{X}(B) = \int_{B} g(x)dx$ for all measurable sets B. Then, for any function f, $\int f(x)d\mu_{x} = \int f(x)g(x)dx$, and g is the probability density function of the random variable X.

Some properties of densities:

- If $\mu(A) = 0$ then $\nu(A) = 0$.
- ν is finite if and only if δ is integrable with respect to μ .
- If $\delta = \delta'$ almost everywhere, then δ and δ' induce the same density.
- If μ is σ -finite and δ and δ' induce the same density then $\delta = \delta'$ almost everywhere.

- $\int_{R} f(x) dx = P(X \in R) = 1.$
- f is determined only up to a set of Lebesgue measure 0.
- $F(b) F(a) = \int_a^b f(x) dx.$
- Suppose f is a continuous density and $g: R \to R$ is increasing. Let $T = g^{-1}$. Then, $P(g(X) \leq x) = P(X \leq T(x)) = F(T(x))$. If T is differentiable, then $\frac{d}{dx}P(g(X) \leq x) = f(T(x))|T'(x)|$.

Theorem 3.5 If ν has density δ with respect to μ and g is a non-negative function, then $\int g d\nu = \int g \delta d\mu$. An arbitrary g is integrable with respect to ν if and only if $g\delta$ is integrable with respect to μ . In that case, $\int_A g d\nu = \int_A g \delta d\mu$ for any A.

Theorem 3.6 Suppose $\nu_n(A) = \int_A \delta_n d\mu$ for each n and $\nu(A) = \int_A \delta d\mu$. If $\nu_n(\Omega) = \nu(\Omega) < \infty$ for all n and $\delta_n \to \delta$ except on a set of μ -measure 0, then

$$\sup_{A \in \mathcal{F}} |\nu(A) - \nu_n(A)| \le \sup_{A \in \mathcal{F}} \int_A |\delta - \delta_n| d\mu \to 0$$

Definition If $X = (X_1, ..., X_k)$ is a random vector, the (joint) distribution and distribution functions are given by $\mu(A) = P((X_1, ..., X_k) \in A)$ and $F(x_1, ..., x_k) = P(X_1 \le x_1, ..., X_k \le x_k) = \mu(S_x)$.

Definition Let $X = (X_1, ..., X_k)$ be a random vector. Let $g_j(X) = X_j$. Then, $\mu_j = \mu g_j^{-1}$ is defined by $\mu_j(A) = \mu((X_1, ..., X_k) : X_j \in A) = P(X_j \in A)$. $\{\mu_j\}$ are called the *marginal distributions* of μ . If f is the density of μ , then the marginal density is given by $f_j(y) = \int_{B^{k-1}} f(x_1, ..., x_{j-1}, y, x_{j+1}, ..., x_k) dx_1 ... dx_{j-1} dx_{j+1} ... dx_k$.

Some facts about joint distributions:

- F is non-decreasing in each variable and continuous from above (that is, $\lim_{h\downarrow 0} F(x_1 + h, ..., x_k + h) = F(x_1, ..., x_k)$).
- If any $x_i \to -\infty$ then $F(x_1, ..., x_k) \to 0$.
- If all $x_i \to \infty$, then $F(x_1, ..., x_k) \to 1$.
- F is continuous at $(x_1, ..., x_k)$ if and only if $\lim_{h \downarrow 0} F(x_1 h, ..., x_k h) = F(x_1, ..., x_k)$.
- F may have uncountably many discontinuities, but the set of points at which F is continuous are dense in \mathbb{R}^k .
- If X is a random vector and $g: \mathbb{R}^k \to \mathbb{R}^i$ is a measurable function, then g(X) is an *i*-dimensional random vector with distribution μg^{-1} . (Marginal distributions are a special case of this.)
- Suppose $g: V \to U$ is a one-to-one, onto and continuously differentiable map of open sets. Let $T = g^{-1}$. Suppose that the Jacobian of T, J(x), does not vanish. If X has density f and support V, then for any $A \subset U$, $P(g(X) \in A) = P(X \in T(A)) = \int_{T(A)} f(y) dy = \int_A f(T(x)) |J(x)| dx$, and the density of g(X) is $f(T(x)) |J(x)| I(x \in U)$.

4 Independence

Definition A finite collection of events, $A_1, ..., A_n$, is *independent* if $P(A_{k_1} \cap ... \cap A_{k_j}) = P(A_{k_1}) \cdot ... \cdot P(A_{k_j})$ for all subsets of distinct indices. An infinite collection of events is independent if each finite subcollection is independent.

Definition Let $\mathcal{A}_1, ..., \mathcal{A}_n \subset \mathcal{F}$ be classes of events. These classes are *independent* if, for any choices of $A_i \in \mathcal{A}_i$ for i = 1, ..., n, the events $A_1, ..., A_n$ are independent. That is, $P(A_1 \cap ... \cap A_n) = P(A_1) \cdots P(A_n)$ whenever $A_i \in \mathcal{A}_i \cup \{\Omega\}$.

Definition The infinite collection of classes, $[\mathcal{A}_{\theta} : \theta \in \Theta]$, is *independent* if the sets $A_{\theta} \in \mathcal{A}_{\theta}$ for each $\theta \in \Theta$ are always independent. Equivalently, the infinite collection is independent if each finite subcollection of $[\mathcal{A}_{\theta} : \theta \in \Theta]$ is independent.

Theorem 4.1 If $A_1, ..., A_n$ are independent and each A_i is a π -system, then $\sigma(A_1), ..., \sigma(A_n)$ are independent. If A_θ for $\theta \in \Theta$ are independent and each A_θ is a π -system, then $\sigma(A_\theta)$ for $\theta \in \Theta$ are independent.

Definition A sequence $X_1, X_2, ...$ of random variables is *independent* if $\sigma(X_1), \sigma(X_2), ...$ are independent. Equivalently, we have $P[X_1 \in H_1, ..., X_n \in H_n] = P[X_1 \in H_1]...P[X_n \in H_n]$ for any set, $H_1, ..., H_n$. Since $[X_i = x]$ for all $x \in R$ (together with the empty set) form a π -system that generates $\sigma(X_i), P[X_{k_1} = x_1, ..., X_{k_n} = x_n] = P[X_{k_1} = x_1] \cdot ... \cdot P[X_{k_n} = x_n]$, for any subset of distinct indices, is sufficient for independence as well.

If $(X_1, ..., X_k)$ has distribution μ , distribution function F, marginal distributions μ_i , and marginal distribution functions F_i , the following are equivalent:

- The random variables $X_1, ..., X_k$ are independent.
- $\mu = \mu_1 \cdot \ldots \cdot \mu_k$
- $F(x_1, ..., x_k) = F_1(x_1) \cdot ... \cdot F_k(x_k).$

If these random variables have densities f and f_i , then $f(x) = f_1(x_1) \cdot \ldots \cdot f_k(x_k)$. In addition, if $\mathcal{G}_1, \ldots, \mathcal{G}_k$ are independent σ -fields and each X_i is measurable

 \mathcal{G}_i , then X_1, \dots, X_k are independent as well.

Theorem 4.2 Suppose an array, (A_{ij}) of events is independent. Let \mathcal{F}_i be the σ -field generated by the *i*th row. Then, $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are independent.

Theorem 4.3 Suppose X_{ij} is an independent collection of random vectors. Let \mathcal{F}_i be the σ -field generated by the *i*th row. Then, $\mathcal{F}_1, \mathcal{F}_2, \ldots$ are independent.

Theorem 4.4 If X and Y are independent random variables with distributions μ and ν in \mathbb{R}^{j} and \mathbb{R}^{k} , then, for all $B \in \mathbb{R}^{j+k}$ and $A \in \mathbb{R}^{j}$,

$$P((X,Y) \in B) = \int_{R^j} P((x,Y) \in B)\mu(dx)$$
$$P(X \in A \text{ and } (X,Y) \in B) = \int_A P((x,Y) \in B)\mu(dx)$$

Theorem 4.5 Let $\{\mu_n\}$ be a sequence of probability measures on the class of all subsets of the line, each having finite (discrete) support. There exists some probability space, (Ω, \mathcal{F}, P) , with an independent sequence of random variables $\{X_n\}$ of simple random variables all on that space such that each X_n has distribution μ_n .

Theorem 4.6 If $\{\mu_n\}$ is a finite or infinite sequence of probability measures on \mathcal{R}^1 , there exists on some probability space, (Ω, \mathcal{F}, P) , an independent sequence of random variables, $\{X_n\}$ such that X_n has distribution μ_n .

Theorem 4.7 If the random variables $X_1, ..., X_n$ are independent, and $f_1, ..., f_n$ are measurable functions, then $f_1(X_1), ..., f_n(X_n)$ are also independent.

Definition Let m, n be integers with $1 \le m < n$. Let $\Pi_{mn}(H) = \{(x_1, ..., x_n) : (x_1, ..., x_m) \in H\}$. We call this the *projection map* of \mathcal{R}^m into \mathcal{R}^n .

Theorem 4.8 For each $n \geq 1$, let μ_n be a probability measure on $(\mathbb{R}^n, \mathbb{R}^n)$ such that for all m < n, $\mu_n \circ \prod_{mn} = \mu_m$. Then there exists a probability space, (Ω, \mathcal{F}, P) and a sequence of random variables $\{X_j\}$ on it such that μ_n is the measure of $(X_1, ..., X_n)$ for all n.

5 Expected Value

Definition A simple random variable, X, has an *expected value* (mean value) given by $E(X) = E(\sum_i x_i I(A_i)) = \sum_i x_i P(A_i)$. Equivalently, we may write $E(X) = \sum_{x \in R} x P(X = x)$.

Definition Let X be a random variable on (Ω, P) . Then, the expected value of X is given by $E(X) = \int_{\Omega} X dP$.

Some facts about expected values:

- E(X) = E(Y) if P(X = Y) = 1
- E(I(A)) = P(A)
- If $X(\omega) = \alpha$ for all $\omega \in \Omega$, then $E(X) = \alpha$.
- If α and β are constants, then $E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$.
- If X and Y are independent, then E(XY) = E(X)E(Y).
- If $X(\omega) \leq Y(\omega)$ on a set of probability one, then $E(X) \leq E(Y)$.

Theorem 5.1 If $\{X_n\}$ is uniformly bounded and if $X = \lim_{n\to\infty} X_n$ on an \mathcal{F} -set of probability 1, then $E(X) = \lim_{n\to\infty} E(X_n)$.

Corollary 5.2 If $X = \sum_{n=1}^{\infty} X_n$ on an \mathcal{F} -set of probability one and the partial sums, $\sum_{n=1}^{k} X_n$, are uniformly bounded, then $E(X) = \sum_{n=1}^{\infty} E(X_n)$.

Theorem 5.3 Let X be a random variable on (Ω, \mathcal{F}, P) and f a Borel function. Let μ_X be the probability measure induced by X. Then, $E(f(X)) = \int_{\Omega} f(x)dP = \int_{R} f(x)d\mu_X$.

Theorem 5.4 For any random variable X, $\sum_{n=1}^{\infty} P(|X| \ge n) \le E(|X|) \le 1 + \sum_{n=1}^{\infty} P(|X| \ge n)$. If X is non-negative and takes only integer values, then $E(X) = \sum_{n=1}^{\infty} P(X \ge n)$.

Theorem 5.5 (Generalization.) Let X be a non-negative random variable. Let $f: R^+ \to R^+$ be measurable with f(0) = 0, such that f is absolutely continuous on [0,t] for all $t < \infty$. Then, $E(f(X)) = \int_0^\infty f'(t)P(X \ge t)dt$. In particular, $E(X) = \int_0^\infty P(X \ge t)dt$.

Definition The variance of a random variable, X is defined as $Var(X) = E((X - E(X))^2) = E(X^2) - E(X)^2$.

6 Limit Sets and Convergence

Definition Let A_1, A_2, \dots be a sequence of sets. Then,

$$\limsup_{n} A_{n} = \overline{\lim_{n \to \infty}} A_{n} = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} = [A_{n} \text{ infinitely often}]$$
$$\liminf_{n} A_{n} = \lim_{n \to \infty} A_{n} = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k} = [A_{n} \text{ almost always}]$$

That is, ω is in $\limsup_n A_n$ if and only if it lies in infinitely many of the A_n and in $\liminf_n A_n$ if and only if it lies in all but finitely many of the A_n .

Some facts:

- $\bigcap_{k=n}^{\infty} A_k \uparrow \liminf_n A_n$
- $\bigcup_{k=n}^{\infty} A_k \downarrow \limsup_n A_n$
- $\liminf A_n \subset \limsup A_n$ and the two are equal if and only if $\lim A_n$ exists (and then all three are equal).

Theorem 6.1 For any $\{A_n\}$,

$$P(\liminf A_n) \le \liminf P(A_n) \le \limsup P(A_n) \le P(\limsup A_n)$$

If $A_n \to A$ then $P(A_n) \to P(A)$.

Theorem 6.2 First Borel-Cantelli Lemma $If \sum_{n=1}^{\infty} P(A_n) < \infty$ then $P(\limsup_n A_n) = 0$.

Theorem 6.3 Second Borel-Cantelli Lemma If $\{A_n\}$ is a sequence of independent events and $\sum_{n=1}^{\infty} P(A_n) = \infty$, then $P(\limsup_n A_n) = 1$.

Definition Let $A_1, A_2, ...$ be a sequence of events in a probability space (Ω, \mathcal{F}, P) . The *tail* σ -*field* associated with $\{A_n\}$ is given by $\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(A_n, A_{n+1}, ...)$. The elements of this σ -field are called *tail events*.

Theorem 6.4 Kolgomorov's Zero-One Law If $A_1, A_2, ...$ are an independent sequence of events, then for each event, A, in the tail σ -field, \mathcal{T} , P(A) = 0 or P(A) = 1.

Definition $\{X_n\}$ converges to X with probability one (converges almost everywhere, converges almost surely or converges strongly) if $P(\lim_n X_n(\omega) = X(\omega)) =$ 1. Equivalently, $\{X_n\}$ converges almost everywhere to the random variable X if there exists a set A such that P(A) = 0 and $X_n(\omega) \to X(\omega)$ for all $\omega \in A^C$.

Theorem 6.5 $X_n \to X$ almost everywhere if and only if for all $\epsilon > 0$, $\lim_{m \to \infty} P(|X_n - X| \le \epsilon \text{ for all } n \ge m) = 1$.

Theorem 6.6 $X_n \to 0$ almost surely if and only if for all $\epsilon > 0$, $P(|X_n| > \epsilon$ infinitely often) = 0. Equivalently, $\{X_m\}$ does not converge to X with probability one if $P(\bigcup_{\epsilon} [|X_n - X| \ge \epsilon i.o.]) > 0$.

Definition Let $X_1, X_2, ...$ be a sequence of random variables on a probability space, (Ω, \mathcal{F}, P) . They are *identically distributed* if their distributions (that is, $P(X \in A)$ for any set A) are all the same. We define $S_n = X_1 + ... + X_n$ and $\overline{X}_n = \frac{S_n}{n}$.

Theorem 6.7 Borel's Strong Law of Large Numbers. Let $\{X_n\}$ be independent and identically distributed with $E(X_i) = 0$ and $E(X_i^4) < \infty$. Then $\overline{X}_n \to 0$ almost surely.

Definition Two sequences, $\{X_n\}$ and $\{Y_n\}$, are *tail-equivalent* if $\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty$.

Theorem 6.8 Kolgomorov's Three Series Criterion. Let $\{X_n\}$ be a sequence of independent random variables. $S_n = \sum_{j=1}^n X_j$ converges almost everywhere if and only if, for some a > 0,

- 1. $\sum_{n=1}^{\infty} P(|X_n| \ge a) < \infty$
- 2. $\sum_{n=1}^{\infty} E(X_n I(|X_n| \le a)) < \infty$
- 3. $\sum_{n=1}^{\infty} Var(X_n I(|X_n| \le a)) < \infty$

Theorem 6.9 If $\{X_n\}$ and $\{Y_n\}$ are tail-equivalent then $\sum_{n=1}^{\infty} (X_n - Y_n)$ converges almost everywhere, and if $a_n \uparrow \infty$ then $\frac{1}{a_n} \sum_{j=1}^n (X_j - Y_j) \to 0$ almost everywhere.

Lemma 6.10 Kronecker's Lemma. Let $\{x_k\}$ be a sequence of real numbers and $\{a_n\}$ a sequence of real numbers with $a_k \uparrow \infty$. If $\sum_{j=1}^{\infty} \frac{x_j}{a_j} < \infty$ then $\frac{1}{a_n} \sum_{j=1}^n x_j \to 0.$ **Theorem 6.11** Kolgomorov's Strong Law of Large Numbers. Let $\{X_n\}$ be independent and identically distributed, with $E(|X_i|) < \infty$ and $E(X_i) = 0$. Then, $\overline{X}_n \to 0$ almost surely.

Theorem 6.12 Marankiewicz-Lygmund Strong Law of Large Numbers. Let $\{X_j\}$ be independent and identically distributed with $E(X_1) = 0$ and $E(|X_1|^p) < \infty$ for some $1 . Let <math>S_n = \sum_{i=1}^n X_i$. Then, $\frac{S_n}{n^{1/p}} \to 0$ almost surely.

Definition A sequence of random variables, $\{X_n\}$ converges in probability to X (that is, $X_n \rightarrow_p X$) if $\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0$ for all $\epsilon > 0$. This is also called *weak convergence*.

Theorem 6.13 X_n converges to X in probability if and only if each subsequence, $\{X_{n_k}\}$ contains a further subsequence $\{X_{n_{k_i}}\}$ such that $X_{n_{k_i}} \to X$ with probability 1 as $i \to \infty$.

Theorem 6.14 If X_n converges almost everywhere to X, then X_n converges in probability to X.

Definition For $0 , <math>X_n$ converges in L^p to X if $E(|X_n|^p) < \infty$, $E(|X|^p) < \infty$, and $\lim_{n\to\infty} E(|X_n - X|^p) = 0$.

Theorem 6.15 If $X_n \to X$ in L^p then $X_n \to X$ in probability. If $X_n \to X$ in probability and there exists $Y \in L^p$ with $|X_n| \leq Y$ then $X_n \to X$ in L^p .

Let $\Omega = [0, 1]$. Then we have examples of different kinds of convergence.

- In probability (and in L^p) but not almost surely: Write $n = k + 2^v$ where $0 \le k \le 2^v$ (this representation is unique). Define $X_n = 1$ if $\omega \in [k2^{-v}, (k+1)2^{-v})$ and $X_n = 0$ otherwise. This sequence converges to 0 in probability and in L^1 , but not almost surely, since $X_n \ne 0$ infinitely often for all ω . (However, there is a subsequence that converges almost surely.)
- Almost surely but not in L^p : If the p^{th} moment does not exist, then a sequence cannot converge in L^p .

Theorem 6.16 If $X_n \to X$ almost surely, then $E(|X|^r) \leq \liminf E(|X_n|^r)$. If $X_n \to X$ in L^r , then $E(|X_n|^r) \to E(|X|^r)$.

Theorem 6.17 If $X_n \to X$ in L^p for some $0 , then <math>X_n \to X$ in L^q for all 0 < q < p.

Theorem 6.18 Let $f : R \to R$ be continuous. If $X_n \to X$ almost surely then $f(X_n) \to f(X)$ almost surely. If $X_n \to X$ in probability, then $f(X_n) \to f(X)$ in probability.

Corollary 6.19 If $X_n \to X$ in probability and $Y_n \to Y$ in probability, then $X_n + Y_n \to X + Y$ in probability and $X_n Y_n \to XY$ in probability.

Theorem 6.20 If $X_n \to X$ and $Y_n \to Y$ in L^p , then $X_n + Y_n \to X + Y$ in L^p .

Definition If F_n and F are distribution functions, F_n converges weakly to F $(F_n \Rightarrow F)$ if $\lim_{n\to\infty} F_n(x) = F(x)$ for each x at which F is continuous. The random variables, $\{X_n\}$, converge in distribution to X (that is, $X_n \to_D X$) if their distributions converge weakly to the distribution of X. Equivalently, $P(X_n \le x) \to P(X \le x)$ for all x such that P(X = x) = 0.

(The variable to which the X_n converge in distribution need not be defined on the same probability space.)

Definition Let Δ be defined by $\Delta(x) = I(x \ge 0)$. This is the distribution of the random variable $X(\omega) = 0$ for all $\omega \in \Omega$.

Definition The distribution functions, F and G, are of the same *type* if there exist constants a and b such that F(ax + b) = G(x). A distribution function is *degenerate* if it has the form $\Delta(x - b)$ for some b. Otherwise, it is called *non-degenerate*.

Theorem 6.21 Suppose $F_n(u_n x + v_n) \Rightarrow F(x)$ and $F_n(a_n x + b_n) \Rightarrow G(x)$ with $u_n, a_n > 0$ and F, G non-degenerate. Then, there exists a, b with a > 0 such that $\frac{a_n}{u_n} \to a$, $\frac{b_n - v_n}{u_n} \to b$, and F(ax + b) = G(x).

Theorem 6.22 If $X_n \rightarrow_P X$ then $X_n \rightarrow_D X$.

Theorem 6.23 Let b be a constant. $X_n \to_P b$ if and only if $X_n \to_D b$.

Theorem 6.24 If $X_n \rightarrow_D X$ and $Y_n \rightarrow_D 0$ then $X_n + Y_n \rightarrow_D X$.

Theorem 6.25 Skorohod's Device. Suppose F_n and F are distribution functions on R with $F_n \to_D F$. Then there exist random variables Y_n and Y on a common probability space, (Ω, \mathcal{F}, P) , such that each Y_n has distribution function F_n , Y has distribution F, and $Y_n \to Y$ for all $\omega \in \Omega$.

Theorem 6.26 Let $h : R \to R$ be measurable. Let $D_h = \{x : h \text{ is not continuous at } x\}$. Let $X_n \to_D X$ and $P(X \in D_h) = 0$. Then, $h(X_n) \to_D h(X)$.

Corollary 6.27 If $a_n \to a$, $b_n \to b$, and $X_n \to_D X$, then $a_n X_n + b_n \to_D aX + b$.

Theorem 6.28 $F_n \to_D F$ if and only if $\int f d\mu_{F_n} \to \int f d\mu_F$ for every bounded, continuous, real-valued f. Equivalently, $X_n \to_D X$ if and only if $E(f(X_n)) \to E(f(X))$ for all bounded, continuous, real-valued f.

Theorem 6.29 Helly's Theorem. For every sequence $\{F_n\}$ of distribution functions there exists a subsequence $\{F_{n_k}\}$ and a non-decreasing right-continuous function F such that $\lim_{k\to\infty} F_{n_k}(x) = F(x)$ wherever F is continuous. Note that F may not be a distribution function. **Definition** A sequence of distribution functions, $\{F_n\}$, if *tight* if for every $\epsilon > 0$ there exists a finite interval, [a, b] such that $F_n(b) - F_n(a) > 1 - \epsilon$ for all n.

Theorem 6.30 Let $\{F_n\}$ be a sequence of distribution functions. $\{F_n\}$ is tight if and only if for every subsequence, $\{F_{n_k}\}$, there exists a further subsequence, $\{F_{n_{k_i}}\}$, and a distribution function F such that $F_{n_{k_i}} \to_D F$ as $i \to \infty$.

Corollary 6.31 If $\{F_n\}$ is tight and any subsequence converges to the same distribution function F, then $F_n \rightarrow_D F$.

Theorem 6.32 If $X_n \to_D X$ then $E(|X|) \leq \liminf_n E(|X_n|)$.

Theorem 6.33 If $X_n \to_D X$ and $|X_n|^r$ is uniformly integrable, then $E(X_n^r) \to E(X^r)$.

Theorem 6.34 Let $\{(X_n, Y_n)\}$ be a sequence of pairs of random variables. Let c be a constant. Then,

- If $X_n \to_D X$ and $Y_n \to_P c$ then $X_n \pm Y_n \to_D X_n \pm c$.
- If $X_n \to_D X$ and $Y_n \to_P c$ then $X_n Y_n \to_D cX$ if $c \neq 0$ and $X_n Y_n \to_P 0$ if c = 0.
- If $X_n \to_D X$ and $Y_n \to_P c$ then $\frac{X_n}{Y_n} \to_D \frac{X}{c}$ if $c \neq 0$.

7 Characteristic Functions

Definition The moment-generating function for a random variable X is defined as $M_X(t) = E(e^{tX})$.

Theorem 7.1 Since $E(e^{tX}) = \sum_{k=0}^{\infty} \frac{t^k}{k!} E(X^k), \ \frac{d^k}{dt^k} M_x(0) = E(X^k).$

Definition The *characteristic function* of a random variable, X, is defined for $t \in R$ as:

$$\phi_X(t) = E(e^{itX}) = \int_{\Omega} e^{itx} dP$$

Some facts about characteristic functions:

- $\phi_X(0) = 1$
- $\phi_X(t)$ exists and $|\phi_X(t)| \le 1$ for all t.
- $\phi_X(t)$ is uniformly continuous, because $|\phi_X(t+h) \phi_X(t)| \le \int |e^{iht} 1| d\mu$.
- Using a Taylor expansion, we find that $|e^{ix} \sum_{k=0}^{n} \frac{(ix)^{k}}{k!}| \le \min\{\frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^{n}}{n!}\}$. This is useful for taking expectations and calculating moments.

Theorem 7.2 If $E(|X|^k) < \infty$, then $\frac{d^k}{dt^k}\phi_X(0) = i^k E(X^k)$.

Theorem 7.3 If $X_1, ..., X_n$ are independent, then $\phi_{\sum X_i}(t) = \prod_{i=1}^n \phi_{X_i}(t)$.

Theorem 7.4 Inversion and Uniqueness Theorem. If a probability measure, μ , has a characteristic function, ϕ , and if $\mu(\{a\}) = \mu(\{b\}) = 0$, then

$$\mu(a,b] = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{1}{it} (e^{-ita} - e^{itb}) \phi(t) dt$$

(This shows that distinct measures must have distinct characteristic functions.) Furthermore, if $\int_{-\infty}^{\infty} |\phi(t)| dt < \infty$, then $F(x) = \mu(-\infty, x]$ has a derivative given by $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt$.

Theorem 7.5 Continuity Theorem. Let μ_n, μ be probability measures with characteristic functions ϕ_n, ϕ . $\mu_n \rightarrow_D \mu$ if and only if $\phi_n(t) \rightarrow \phi(t)$ for all t.

Corollary 7.6 Suppose $\lim_{n} \phi_n(t) = g(t)$ for all $t \in R$, and g is continuous at 0. Then there exists a measure, μ such that $\mu_n \to_D \mu$ and g is the characteristic function of μ .

Corollary 7.7 Suppose $\lim_{n} \phi_n(t) = g(t)$ for all $t \in R$, and $\{\mu_n\}$ is tight. Then there exists a measure μ such that $\mu_n \to_D \mu$ and g is the characteristic function of μ .

Definition A function, f, is positive definite if for all $z_1, ..., z_n \in C$ and $t_1, ..., t_n \in R$, $\sum_{i=1}^n \sum_{j=1}^n f(t_i - t_j) z_i \overline{z_j} \ge 0$.

Theorem 7.8 Bochner's Theorem. If $\phi(t)$ is a function with

- 1. $\phi(0) = 1$,
- 2. $\phi(t)$ continuous at 0,
- 3. $\phi(t)$ positive definite,

then ϕ is a characteristic function of some probability distribution μ .

Central Limit Theorems

Definition We say that $a_n = O(b_n)$ if $|\frac{a_n}{b_n}| < M$ for all n and some $M < \infty$. We say that $a_n = o(b_n)$ if $\frac{a_n}{b_n} \to 0$. We say that f(t) = o(g(t)) as $t \to 0$ if $\frac{f(t)}{a(t)} \to 0$ as $t \to 0$.

Lemma 7.9 Let $\phi_X(t)$ be the characteristic function X, with $E(X^2) < \infty$. Then, as $t \to 0$,

$$\phi_X(t) = 1 + itE(X) - \frac{1}{2}t^2E(X^2) + o(t^2)$$

Theorem 7.10 Central Limit Theorem. Suppose $\{X_n\}$ is a sequence of independent and identically distributed random variables with $E(X_1) = \mu$ and $Var(X_1) = \sigma^2$. Let $S_n = \sum_{i=1}^n X_i$. Then,

$$\frac{1}{\sigma\sqrt{n}}(S_n - n\mu) \to_D Normal(0,1)$$

Theorem 7.11 Lindberg-Feller Theorem. For each n, assume that $X_{n,1}, X_{n,2}, ..., X_{n,r_n}$ are independent and $r_n \to \infty$. Let $S_n = \sum_{i=1}^{r_n} X_{n,i}$. Suppose $E(X_{n,k}) = 0$ and $E(X_{n,k}^2) = \sigma_{n,k}^2$. Define $s_n^2 = \sum_{k=1}^{r_n} \sigma_{n,k}^2$. Assume that the Lindberg condition holds. That is, for all $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{|X_{n,k}| \ge \epsilon s_n} X_{n,k}^2 dP = 0$$

Then, $\frac{S_n}{s_n} \rightarrow_D Normal(0,1)$.

Theorem 7.12 Suppose $X_{n,1}, X_{n,2}, ..., X_{n,r_n}$ are independent with $E(X_{n,k}) = 0$. If these variables satisfy the Lyapunov condition, that is, if for any $\delta > 0$

$$\lim_{n \to \infty} \sum_{k=1}^{r_n} \frac{1}{s_n^{2+\delta}} E(|X_{n,k}|^{2+\delta}) = 0$$

then they satisfy the Lindberg condition as well.

r

Corollary 7.13 Suppose $\{X_n\}$ is independent and identically distributed with $E(X_n) = \mu$ and $Var(X_n) = \sigma^2$. Then, $\sqrt{n} \frac{\overline{X} - \mu}{s} \to_D Normal(0, 1)$.

Theorem 7.14 Multivariate Central Limit Theorem. Suppose X_n is a k-dimensional random vector such that for any vector of constants, $(a_1, ..., a_k)^T$, $\sum_{i=1}^k a_i X_{ni} \to_D$ Normal $(0, a^T \Sigma a)$. Then, $X_n \to_D$ Normal $(0, \Sigma)$.

Theorem 7.15 Multivariate Central Limit Theorem. Let $X_n = (X_{n1}, ..., X_{nk})$ be independent random vectors all having the same distribution. Suppose that $E(X_{1u}^2) < \infty$. Let $c = E(X_1)$ and $\Sigma = E((X_1 - c)'(X_1 - c))$. Let $S_n = X_1 + ... + X_n$. Then, the distribution of the random vector $\frac{1}{\sqrt{n}}(S_n - nc)$ converges weakly to the multivariate normal distribution with mean zero and covariance matrix Σ .

8 Conditional Expectation

Definition If P(A) > 0 then the *conditional probability* of B given A is $P(B|A) = \frac{P(A \cap B)}{P(A)}$.

Definition Suppose X is a random variable on (Ω, \mathcal{F}, P) and $\mathcal{G} \subset \mathcal{F}$ is a σ -field. Then there exists a random variable, $E(X||\mathcal{G})$, called the *conditional expected* value of X given \mathcal{G} , such that:

- $E(X||\mathcal{G})$ is measurable \mathcal{G} and integrable
- $\int_G E(X \| \mathcal{G}) dP = \int_G X dP$ for all $G \in \mathcal{G}$.

Since this definition is unique except for a set of probability zero, we called each a version of $E(X \| \mathcal{G})$.

Note that $E(X||\{0,\Omega\}) = E(X)$ and $E(X||\mathcal{F}) = X$, and conditional probabilities can be defined by $P(A||\mathcal{G}) = E(I(A)||\mathcal{G})$.

Definition If $\{X_t\}_{t\in T}$ is a collection of random variables on (Ω, \mathcal{F}, P) , we define $E(X||X_t, t \in T) = E(X||\sigma(X_t, t \in T))$.

Theorem 8.1 Let \mathcal{P} be a π -system generating the σ -field \mathcal{G} . Suppose Ω is a finite or countable union of sets in \mathcal{G} . An integrable function, f, is a version of $E(X||\mathcal{G})$ if it is measurable \mathcal{G} and if $\int_{\mathcal{G}} f \, dP = \int_{\mathcal{G}} X \, dP$ for all $G \in \mathcal{G}$.

Theorem 8.2 Suppose X, Y, and X_n are integrable. Then, with probability one:

- If X = a with probability one, then $E(X \| \mathcal{G}) = a$.
- If $a, b \in R$, $E(aX + bY || \mathcal{G}) = aE(X || \mathcal{G}) + bE(Y || \mathcal{G})$.
- If $X \leq Y$ with probability one, then $E(X \| \mathcal{G}) \leq E(Y \| \mathcal{G})$.
- $|E(X||\mathcal{G})| \le E(|X|||\mathcal{G})$
- If $\lim_n X_n = X$ with probability one and $|X_n| \leq Y$ (with Y integrable), then $\lim_n E(X_n || \mathcal{G}) = E(X || \mathcal{G})$ with probability one.

Theorem 8.3 If X is measurable \mathcal{G} and if Y and XY are integrable, then $E(XY||\mathcal{G}) = XE(Y||\mathcal{G})$ with probability one.

Theorem 8.4 If X is integrable and $\mathcal{G}_1 \subset \mathcal{G}_2$ are σ -fields, then $E(E(X||\mathcal{G}_2)||\mathcal{G}_1) = E(X||\mathcal{G}_1) = E(E(X||\mathcal{G}_1)||\mathcal{G}_2)$. (This is a generalization of the law of iterated expectations.)

Theorem 8.5 Jensen's Inequality. If ϕ is a convex function on the line and if both X and $\phi(X)$ are integrable, then $\phi(E(X||\mathcal{G})) \leq E(\phi(X)||\mathcal{G})$ with probability one.

Definition Let X be a random variable on (Ω, \mathcal{F}, P) and let \mathcal{G} be a σ -field in \mathcal{F} . Then there exists a function, $\mu(H, \omega)$ for $H \in \mathcal{R}, \omega \in \Omega$, such that:

- For each $\omega \in \Omega$, $\mu(\cdot, \omega)$ is a probability measure on \mathcal{R} .
- For each $H \in \mathcal{R}$, $\mu(H, \cdot)$ is a version of $P(X \in H \| \mathcal{G})$.

Such a function is called the *conditional distribution* of X given \mathcal{G} .

Theorem 8.6 Let $\mu(\cdot, \omega)$ be a conditional distribution with respect to \mathcal{G} of a random variable X. If $\phi : R \to R$ is a Borel function and $\phi(X)$ is integrable, then $\int_R \phi(x) \mu(dx, \omega)$ is a version of $E(\phi(X) || \mathcal{G})$.

Martingales

Definition Let $X_1, X_2, ...$ be a sequence of random variables on (Ω, \mathcal{F}, P) . Let $\mathcal{F}_1, \mathcal{F}_2, ...$ be a sequence of σ -fields in \mathcal{F} . The sequence $\{(X_n, \mathcal{F}_n)\}_{n=1}^{\infty}$ is a *martingale* relative to the σ -fields $\{\mathcal{F}_n\}$ if:

- $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ (in which case, we say that $\{\mathcal{F}_n\}$ is a *filtration*),
- X_n is measurable \mathcal{F}_n (in which case, we say that $\{X_n\}$ is *adapted to* the filtration),
- $E(|X_n|) < \infty$, and
- with probability one, $E(X_{n+1} \| \mathcal{F}_n) = X_n$.

Note that the smallest filtration to which a sequence $\{X_n\}$ is adapted is $\mathcal{F}_n = \sigma(X_1, ..., X_n)$.

Definition Let $\{X_n\}$ be a martingale. Define $\Delta_n = X_n - X_{n-1}$. Then we say that $\{\Delta_n\}$ is a martingale difference.

9 Miscellaneous

9.1 Convolution

Definition Let X and Y be independent random variables with distributions μ and ν . The convolution of μ and ν is $(\mu * \nu)(H) = \int_{-\infty}^{\infty} \nu(H - x)\mu(dx)$, for $H \in \mathcal{R}$.

Some facts about convolution:

- Convolution is commutative and associative.
- If X and Y are independent with distributions μ and ν , then $P(X + Y \in H) = (\mu * \nu)(H)$.

Definition If *F* and *G* are the distributions functions corresponding to μ and ν , then the distribution function corresponding to $\mu * \nu$ is $(F * G)(y) = \int_{-\infty}^{\infty} G(y - x)dF(x)$. If *F* and *G* have densities *f* and *g*, then $(F*g)(y) = \int_{-\infty}^{\infty} g(y-x)dF(x)$ and $(f * g)(y) = \int_{-\infty}^{\infty} g(y - x)f(x)dx$.

9.2 Empirical CDF's

Definition Let $\{X_n\}$ be independent and identically distributed with a CDF F. The *empirical CDF* based on a sample $X_1, ..., X_n$ is given by

$$F_n(x) = \frac{1}{n} \sum_{i=1}^n I(x_i \le x)$$

 F_n is an estimator of $F(x) = P(X_1 \le x)$.

Since $E(F(X_1 \le x) - F(x)) = 0$ and $E(|I(X_1 \le x)|) < \infty$, we may apply a law of large numbers to find that $F_n(x) \to F(x)$ almost surely for each x.

Theorem 9.1 Glivenko-Cantelli Theorem. $\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0.$

10 Inequalities

Theorem 10.1 If $X \ge 0$, for any $\alpha > 0$, $P(X \ge \alpha) \le \frac{1}{\alpha} E(X)$.

Theorem 10.2 Markov's Inequality. $P(|X| \ge \alpha) \le \frac{1}{\alpha^k} E(|X|^k)$.

Theorem 10.3 Chebyshev's Inequality. $P(|X - E(X)| \ge \alpha) \le \frac{1}{\alpha^2} Var(X)$.

Theorem 10.4 Chebyshev's Inequality (Generalized). Let f be a strictly positive and increasing function on $(0, \infty)$ with f(u) = f(-u). Let X be a random variable with $E(f(X)) < \infty$. Then, for every u > 0, $P(|X| \ge u) \le E(f(X))/f(u)$.

Definition A function $f : R \to R$ is *convex* if for every $\lambda_1, ..., \lambda_n \ge 0$ with $\sum_{i=1}^n \lambda_i = 1$, and every $x_1, ..., x_n \in R$, $f(\sum_{i=1}^n \lambda_i x_i) \ge \sum_{i=1}^n \lambda_i f(x_i)$.

Theorem 10.5 Jensen's Inequality. If $\phi : R \to R$ is convex on the range of X, then $\phi(E(X)) \leq E(\phi(X))$.

Theorem 10.6 Holder's Inequality. Let (Ω, \mathcal{F}, p) be a probability space and X, Y random variables on Ω . If $\frac{1}{p} + \frac{1}{q} = 1$ with p, q > 1, then $E(|XY|) \leq E(|X|^p)^{1/p}E(|Y|^q)^{1/q}$.

Theorem 10.7 (Cauchy-)Schwarz Inequality. $E(|XY|) \leq \sqrt{E(X^2)E(Y^2)}$.

Theorem 10.8 Lyapounov's Inequality If $0 < \alpha \leq \beta$, then $E(|X|^{\alpha})^{1/\alpha} \leq E(|X|^{\beta})^{1/\beta}$.