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1 General Statistical Models

Throughout this, we assume that both response variables (y) and covariates (x)
are random. Therefore, most of the models we use will be defined by the mean
of the response variable conditional on the covariates, E(y|x).

Definition Suppose E(y|x) = g(x). The linear Taylor series approximation of
the model is given by:

ĝ(x) = g(x0) +
K∑

k=1

∂

∂xk
g(x)|x=x0(xk − xk0) = δ0 +

K∑
k=1

δk(xk − xk0)

where x0 is any point (usually a central value like the mean).

Definition Suppose E(y|x) = g(x). The linear projection of the model is given
by:

g∗(x) = E(y) +
K∑

k=1

Cov(y, xk)
V ar(xk)

(xk − E(xk)) = γ0 +
K∑

k=1

γk(xk − E(xk))

Note that these two linearizations are generally not the same (though they
are identical if g(x) is linear). Regression models are estimates of the linear
projection. Note that the linear projection does not exist if the second moments
do not exist.

Theorem 1.1 The Law of Iterated Expectations. EX(E(Y |X)) = E(Y ).

Theorem 1.2 The Law of Iterated Variances. V ar(Y ) = E(V ar(Y |X)) +
V ar(E(Y |X)).

Theorem 1.3 The Law of Iterated Covariances. Cov(X, Y ) = Cov(X, E(Y |X)) =
EX(X · E(Y |X))− E(X)EX(E(Y |X)).

Definition The marginal effect of a covariate is the effect of changes in that
variable on the conditional mean. In the case of continuous covariates (and a
differentiable conditional expectation), the marginal effect is given by δ(x) =
∂E(y|x)

∂x . In the case of a covariate that is a dummy variable, the marginal effect
is E(y|x, d = 1)− E(y|x, d = 0).
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There are other measures of the effects of variables on the response, such as
the elasticity (defined as ε(x) = δ(x) x

E(y|x) ). In most cases, the marginal effects
depend on x. To remedy this, we use estimated average partial effects.

Definition The average partial effect is given by:

APEx = Eq(δ(x, q)) =
∫

R

δ(x, q)f(q)dq

where f(q) is the density of all the other variables q.

Since f(x) is generally unknown, we may estimate the average partial effects
using the empirical distribution: ˆAPE = 1

N

∑N
j=1 δ̂(xj). We may also estimate

the average partial effect by finding the marginal effect at the mean: ˆAPE =
δ̂(x̄). A Taylor series shows that this approximation is close:

δ(x) = δ(µ) + δ′(µ)(x− µ) +
1
2
δ′′(µ)(x− µ)2 + O((x− µ)3)

APE = E(δ(x)) = δ(µ) +
1
2
δ′′(µ)V ar(x) + O((x− µ)3) ≈ δ(µ)

This version has a simpler standard error as well.
Sometimes, we are given structural models in which not all the parameters

can be estimated. In this case, we may convert them to reduced form models,
but the best we will be able to do is estimate some functions of the parameters.

1.1 Generalized Method of Moments

Suppose we have a model in a K-dimensional β that includes M orthogonality
conditions, E(g(β, X)) = 0. We consider their sample counterparts, g(β) =
1
N

∑N
i=1 g(β, X) = 0. If M = K, then the model is exactly identified and there

is a unique solution. If M < K, then there is not enough information to solve
the model (and more conditions are needed). If M > K, then the model is
overidentified, and we will not be able to find a solution that fulfills all of the
equations at once. Note that these conditions need not be linear.

Definition Let A be a symmetric positive definite matrix. A minimum distance
estimator of β is found by minimizing g(β)′A−1g(β).

For any positive definite A, β̂ is consistent and asymptotically normal. The
asymptotic variance is given by:

AsyV ar(β) =
(

∂g(β)
∂β

)′
A (AsyV ar(g(β)))A

(
∂g(β)
∂β

)
Definition The minimum distance estimator with weighting matrix A = (AsyV ar(g(β)))−1

is the generalized method of moments (GMM) estimator.
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This is the minimum-variance estimator in the class of minimum distance
estimators with these orthogonality conditions. To implement this:

1. Use the identity as a weighting matrix to estimate β. This is used to
estimate the residuals and the weighting matrix, AsyV ar(g(β)).

2. Use this weighting matrix with the same orthogonality conditions.

If M > K, we have over-identifying restrictions which may be used to test
the assumption that all of the restrictions hold. Under the null hypothesis that
all the restrictions are correct, that is, E(g(β)) = 0, we have the test statistic

q = g(β̂)′( ˆAsyV ar(g(β̂)))−1g(β̂) → χ2(M −K)

A rejection of the null hypothesis does not identify which restriction is being
violated.

To test restrictions on β (not on moment conditions), we have:

qR = g(β̂R)′( ˆAsyV ar(g(β̂R)))−1g(β̂R) → χ2(M −KR)

qU = g(β̂U )′( ˆAsyV ar(g(β̂U )))−1g(β̂U ) → χ2(M −KU )
qR − qU →D χ2(KU −KR)

For this test to be valid, the same weighting matrix must be used for both
estimations.

1.2 M Estimation

Definition Let q(yi, xi, θ) be any function of the data and the parameter, such
that E(q(yi, xi, θ)) is minimized by the true value of θ. The M estimator is θ̂
which minimizes q(θ) = 1

n

∑n
i=1 q(yi, Xi, θ).

Let θ0 be the true parameter value. By the weak law of large numbers,
q(θ) → E(q(y, X, θ)). Furthermore, θ̂ → θ0 if θ0 is unique. (This rules out
perfect collinearity, indeterminacy (where some parameters are irrelevant under
certain values of other parameters), and parameters that need to be normalized.)
For other results, we assume that:

• q(y, X, θ) continuous in θ for all y, X.

• ∂
∂θ q exists and its continuous.

• q is twice differentiable (though the second derivatives need not be con-
sistent).

Theorem 1.4 Under these assumptions, θ̂ is asymptotically normal.
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Proof Let ∂
∂θ q = g. Then,

0 =
∂

∂θ

1
n

n∑
i=1

q(yi, Zi, θ)

=
1
n

n∑
i=1

g(yi, Xi, θ)

= g(y, X, θ)

which is asymptotically normal by the Lindberg-Feller Central Limit Theorem.
Using a Taylor Series expansion, we find that:

0 = g(y, X, θ̂) = g(y, X, θ0) + H(θ̃)(θ̂ − θ0)

where h = 1
n

∑N
i=1

∂2

∂θ2 q(y, X, θ) and θ̃ lies between θ̂ and θ0. Then,

(θ̂ − θ0) = H(θ̃)−1g(y, X, θ0)

and
√

n(θ̂ − θ0) is asymptotically normal, with E(θ̂) = θ0 and AsyV ar(θ̂) =
H(θ0)−1V ar(g(y, X, θ0))H(θ0)−1. V ar(g(y, X, θ0)) = 1

nE(g(y, X, θ0)g(y, X, θ0)′),
which can be estimated (and works out to the White estimator in the linear least
squares case).

Note that the calculated M estimator might not converge or might converge
to the wrong value (such as a local maximum or minimum). Trying different
starting values may help.

M estimation is special case of GMM where the model is exactly identified
(and therefore the weighting matrix does not matter).

1.2.1 Hypothesis testing

Suppose we have the null hypothesis, c(θ) = 0 which has J functions (and
therefore J restrictions). Assume R(θ) = ∂

∂θ′ c(θ) has rank J . In the Wald Test,
we have the test statistic:

(c(θ̂)− c(θ))′(R(θ)V ar(θ̂)R(θ)′)−1(c(θ̂)− c(θ))′

which has a χ2(J) distribution asymptotically.
We may also calculate the criterion function, q, in the restricted and unre-

stricted cases. Under the null hypothesis, the test statistic, 2n(qR − qU ), also
has a χ2(J) distribution asymptotically. (When this is used with the maximum
likelihood estimates, this is the likelihood ratio test.)

Finally, we may use the Score Test, in which we calculate whether the deriv-
atives, g, are close to 0 when they are evaluated at the restricted estimates.
(This also leads to a χ2(J) distribution asymptotically.)
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1.2.2 Non-Linear Least Squares

In non-linear least squares, we minimize q(yi, Xi, θ) = (yi −m(Xi, θ))2, where
E(y|X) = m(x, θ0).

Gauss-Marquadt Algorithm for NLLS:

• Step 0: Choose θ̂(0). (This may come from a linear regression, where many
of the parameters are set to 0 to avoid non-linearity.)

• Step 1: Set qi = m(xi, θ).

• Step 2: Then, gi = ∂
∂θm(xi, θ) = X0

i . The x0
i are called the pseudo-

regressors.

• Step 3: Set θ̂(k+1) = θ̂(k) + ((X0
k)′X0

k)−1(X0
k)′e0

k, where e0
k are the residu-

als, yi −m(xi, θ̂k).

• Step 4: Continue until the θ̂ converge.

The conditional variance estimator for NLLS is 1
n−k

∑n
i=1(yi−m(Xi, θ̂))2((X0)′X0)−1.

1.2.3 Maximum Likelihood Estimation

Suppose the density of y given x is fully specified. Then, we may maximize the
likelihood function, which is simply the joint density of the observations as a
function of the parameters:

L(β|Y,X) =
n∏

i=1

f(yi|Xi, β)

l(β|Y,X) =
n∑

i=1

log f(yi|Xi, β)

Note that the likelihood is conditional on X. Therefore, we assume that the
distribution of X depends only on parameters that are not in f(yi|Xi, β). Then,
we have:

l(β, δ|Y,X) =
n∑

i=1

log f(yi|Xi, β) +
n∑

i=1

log g(xi|δ)

and we use only the first term.
Suppose we have two sets of parameters, α, β, and we have a closed form

solution of ∂ log L
∂α = 0 for α in terms of β. Then, the concentrated log likelihood

is given by log LC(β, α(β)). We may maximize the concentrated log likelihood
in terms of β (which may be easier) and then find the MLE of α as α̂ = α(β̂).
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Note that the MLE is an M-estimator, so all the consistency, normality, and
testing results apply. Furthermore, under certain regularity conditions,

V ar(
∂

∂θ
log L) = −E(

∂2 log L

∂θ′∂θ
)

AsyV ar(θ̂) =
(
−E

(
∂2 log L

∂θ′∂θ

))−1

V ar(
∂ log L

∂θ
)
(
−E

(
∂2 log L

∂θ′∂θ

))−1

=
(
−E

(
∂2 log L

∂θ′∂θ

))−1

This leads to three variance estimators:

• BHHH (an estimate based on the first derivatives): (
∑n

i=1
∂ log Li

∂θ
∂ log Li

∂θ

′
).

• An estimate based on the second derivatives: (−
∑n

i=1 Hi)−1.

• An estimate based on the expectations of the second derivatives (if it can
be computed): (E(−

∑n
i=1 Hi))−1

Because of the Cramer-Rao lower bound, the MLE is asymptotically efficient
among all consistent and asymptotically normal estimators for the density of
the data. Furthermore, the MLE is invariant; if g is a continuous function and
θ̂ is an MLE of θ, then the MLE of g(θ) is g(θ̂).

Does two step estimation (front of p. 36) live here?

1.3 Bayesian Methods

In Bayesian econometrics, one formulates theory and begins with priors which
assemble and form beliefs based on existing evidence. Then, evidence is collected
and posteriors combine the prior beliefs with new evidence in order to revise
beliefs about the theory. (In contrast, classical econometrics formulates the
theory, gathers evidence, and then accepts or rejects the theory.) In general,
Bayesians tend to use uninformative priors, instead of having real prior beliefs.

Bayesians see the likelihood as a function containing all the current informa-
tion about the parameters and the data. According the the likelihood principle,
any two proportional likelihoods have the same information (for example, the
binomial and the negative binomial).

Bayesians understand randomness as uncertainty about the state of the
world, instead of as a random process that governs nature.

Bayesian “estimation” studies the characteristics of the posterior distribu-
tion. The Bayesian estimator is (usually) the mean of the posterior distribu-
tion. According to a theorem by Bernstein and Von Mises, in large samples, the
posterior will be approximately normal with the mean equal to the maximum
likelihood estimator.

In linear regression with normally distributed errors, we have the likelihood:

L(β, σ2|y, x) = (2πσ2)−n/2 exp
(
− 1

2σ2
(y − xβ)′(y − xβ)

)
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We may use a uniform (improper) prior for β and a gamma prior for σ2 (which is
the conjugate prior). If we integrate σ2 out of the joint posterior, then f(β|y, x)
turns out to the be multivariate t distribution with mean β̂ and covariance
matrix N−K

N−K−2s2(X ′X)−1.
More generally, this is how one uses Bayesian estimation:

1. Parameterize the model.

2. Compute the likelihood conditional on the parameters, L(data|θ).

3. Develop a joint prior for the parameters, p(θ).

4. Compute the posterior, which is proportional to the product of the likeli-
hood and the prior: L(data|θ)p(θ).

5. Since calculation of statistics like E(β|data) =
∫

β f(data|β)p(β)
f(data) dβ in closed

form is often impossible, we generally use simulation, in which we deduce
the posterior, draw random samples from it, and compute statistics based
on the sample.

Note that both the prior and the posterior are joint distributions. For infer-
ence about individual parameters, we need to use the marginals, p(β|data) and
p(σ2|data). However, we sometimes only know p(β|data, σ2) and p(σ2|data, β).
To do this, we use the Gibbs sampler. If a posterior cannot be sampled from
directly, then we may use the Metropolis-Hastings Algorithm.

2 The Linear Model

In the linear model, we have Y = Xβ + ε, where X is a random matrix with K
variables (possibly including a constant) for each of N observations of full rank
and reasonable moment conditions. In this model, we assume that:

• E(ε|x) = E(ε) = 0 so that Cov(ε, x) = 0.

• E(Y |X) = Xβ (if we are just using a linear approximation, this is a linear
projection, not a Taylor series)

We estimate the parameters by least squares:

b = (XT X)−1XT y

s2 =
eT e

N
≈ eT e

N −K

Under some conditions,

• plim(b) = β, and the estimator is consistent.

•
√

N(b − β) →d Normal(0, σ2(plim(XT X
N ))−1), and the estimator is as-

ymptotically normal.
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• In finite samples, we may use the approximation, b →a Normal(β, σ2

N (plim(XT X
N ))−1).

• The estimated asymptotic variance of b is given by s2(XT X)−1.

Most hypothesis testing is in the context of nested models. In this case, we
have J restrictions of the form r(β, q) = 0, where ∂r(β,q)

∂β = R(β, q) is a matrix
of full rank. We have three tests of the null hypothesis that the restrictions
hold:

• Wald test : We estimate the unrestricted model and find b. Under the null
hypothesis, we must have r(b, q)T V ar(r(b, q))−1r(b, q) →d χ2(J). We use
the delta method to estimate the variance and find that V ar(r(b, q)) ≈
R(b, q)V ar(b)R(b, q)T ≈ R(b, q)s2(XT X)−1R(b, q)T .

• Likelihood Ratio Test : For each model, we have logL(β̂, σ̂2) = −N
2 (1 +

log(2π) + log(σ̂2)). Under the null hypothesis, 2(logL(β̂unrestricted) −
logL(β̂restricted)) →d χ2(J).

• Score/LM Test : We estimate the restricted model based on only X1, to
find the residuals, ũ. Under the null hypothesis, these residuals are unre-
lated to X2. Let R2

u be from the regression of ũ on X1, X2. Under the null
hypothesis, LM = NR2

u ∼ χ2
j . To make this heteroskedasticity-robust,

let r̂ be the matrix of residuals from the regression of X2 on X1. Then,
the test statistic is

LM = (
1√
N

N∑
i=1

r̂i
′ũi)′(

1
N

N∑
i=1

ũ2
i r̂
′
ir̂i)−1(

1√
N

N∑
i=1

r̂i
′ũi)

which is related to the regression of 1 on ũr̂ with no constant.

In the linear case, the Wald statistic is always the largest and the Lagrange
multiplier statistic is always the smallest.

2.1 Heteroskedasticity

Suppose we have a linear equation, Y = X ′β + ε, with V ar(εi|X) = σ2
i and no

covariances. That is, V ar(ε|X) = σ2Ω, where Ω is diagonal but not the identity.
Then, the asymptotic variance of the coefficients estimator is:

AsyV ar(b) = σ2(X ′X)−1X ′ΩX(X ′X)−1

The OLS estimator of the coefficients is consistent, but the standard errors are
wrong. Instead, we may use the White Estimator :

σ̂2X ′Ω̂X =
N∑

i=1

e2
i x
′
ixi

This estimator is heteroskedasticity robust, but the estimation is not efficient.
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2.2 Spatial Autocorrelation

Definition Spatial autocorrelation occurs when the value in one location is
correlated with the values in nearby locations. With positive spatial autocor-
relation, like values tend to cluster. With negative spatial autocorrelation, a
checkerboard-type pattern may emerge.

To test for this, we use Moran’s I Spatial Autocorrelation Statistic:

I =
N∑N

i=1

∑N
j=1 wij

∑N
i=1

∑N
j=1 wijzizj∑N
i=1 z2

i

where zi = xi − µi and wij = 1 if i and j are contiguous (but not equal).
We may also use the model:

Y − µ1 = λW (Y − µ1) + ε

where W is the contiguity matrix with the wij above. This must be specified in
advance. λ is the spatial autocorrelation parameter. Solving this, we find:

(Y − µ1) = (I − λW )−1ε

and Y ∼ [µ1, σ2
ε ((I − λW )T (I − λW ))−1].

2.3 Instrumental Variables

Definition Suppose we have a model Y = X ′β + ε. If E(εit|Xit) = 0 then we
say that X is exogenous. If the expectation is non-zero, then we say that X is
endogenous.

In the case that X is endogenous, the OLS estimate of β is biased, with
plim(b) = β + plim(X′X

N )−1(X′ε
N ).

Definition Suppose we have a model Y = Xβ + ε with E(ε|Xk) 6= 0 (so that
only that last variable is endogenous). Suppose there exists a variable, Z, such
that E(Xk|X1, ..., Xk−1, Z) 6= E(Xk|X1, ..., Xk−1) and E(ε|X1, ..., Xk−1, Z) =
0. Then, Z is an instrumental variable.

Let X = X1, ..., Xk and Z = X1, ..., Xk−1, Zk. We define the instrumental
variables estimator by β̂ = (Z ′X)−1Z ′y. Note that this does not just replace
X by Z. This estimator is consistent, with variance:

ˆAsyV ar(β̂) =
∑N

i=1(yi − x′iβ)2

N
(Z ′X)−1Z ′Z(X ′Z)−1

If Z is not very correlated with X, then Z ′X ≈ 0, and the variance is quite large.
In general, the IV estimate can be quite imprecise, and the OLS estimator may
have a smaller MSE in finite samples. In addition, if there is even a small
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covariance of Z with the error term, a small covariance between X and Z will
magnify the bias this causes, since plim(β̂K) = βK + Cov(Z,u)

Cov(Z,Xk) .
Suppose we have Y = X ′

1β1+X ′
2β2+ε, where K1 variables satisfy Cov(X1, ε) =

0 but K2 variables have Cov(X2, ε) 6= 0. Suppose there is a set of M ≥ K2 vari-
ables, W , such that W are exogenous and correlated with X2. Let Z1 = X1

and Z2 = WP , where P is any matrix that creates K2 linear combinations of
W . Then, we may use IV on these variables, so that β̂ = (Z ′X)−1Z ′Y . Then,
σ̂2

ε = 1
N (Y −Xβ̂)′(Y −Xβ̂) and ˆV ar(β̂) = σ̂2

ε (Z ′X)−1Z ′Z(X ′Z)−1. The opti-
mal P (and the optimal member of this class of estimators) is found in two-stage
least squares:

1. Regress X1 and X2 on X1 and W and compute the predicted values. Note
that

X̂1 = (X1,W )P1 = (X1,W )
(

I
0

)
= X1

X̂2 = (X1,W )P2 = Z(Z ′Z)−1Z ′X

Note that X̂2 is a linear combination of X1 and W .

2. Regress Y on X̂ = (X̂1, X̂2) to estimate β. That is β̂ = (X̂ ′X)−1X̂ ′Y .

Note that:

X̂ ′X̂ = (Z(Z ′Z)−1Z ′X)′(Z(Z ′Z)−1Z ′X)
= X ′Z(Z ′Z)−1Z ′Z(Z ′Z)−1Z ′X

= X ′Z(Z ′Z)−1Z ′X

= X̂ ′X

The variance of the residuals is σ̂2
ε = 1

N (Y − Xβ̂)′(Y − Xβ̂), and ˆV ar(β̂) =
σ̂2

ε (X̂ ′X̂)−1.
The Wald test can still be used (provided that the correct standard error is

used). However, the F statistic must be calculated differently:

SSU = (Y −Xβ̂U )′(Y −Xβ̂U )

SSR = (Y − X̂β̂R)′(Y − X̂β̂R)
ˆSSU = (Y − X̂β̂U )′(Y − X̂β̂U )

F =
( ˆSSR− ˆSSU)/J

SSU/(N −K)
∼ F (J,N −K)

The White estimator for heteroskedasticity is:

ˆAsyV ar(β̂) = (X̂ ′X̂)−1(
N∑

i=1

(yi − x′iβ̂)2x̂′ix̂i)(X̂ ′X̂)−1

OLS is inconsistent but may have a smaller MSE. In addition, 2SLS or IV may
be biased in finite samples.
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We may also test for endogeneity (to avoid IV/2SLS is we can). If X2 is
endogenous, then the coefficient β3 in this regression is non-zero: Y = β′1X1 +
β′2X2 + β3X̂2 + ε.

2.3.1 Instrumental Variables and GMM

The orthogonality conditions to use GMM with IV are E(Z(Y − X ′β)) = 0.
In this case, we have ∂g(β)

∂β = Z ′X. Note that this leads to AsyV ar(β̂GMM ) =

AsyV ar(β̂2SLS), and 2SLS is asymptotically equivalent to GMM under ho-
moskedasticity. In the case of heteroskedasticity, AsyV ar(g(β)) = 1

N2

∑N
i=1 σ2

i ZiZ
′
i,

which gives us a weighting matrix of 1
N2

∑N
i=1 e2

i ZiZ
′
i.

2.4 Systems of Equations and Seemingly Unrelated Re-
gressions

Consider the M -equation system:

yi1 = β′1xi1 + εi1

...

yiM = β′MxiM + εiM

If the covariances of the error terms across equations are non-zero, then running
equation-by-equation OLS is inefficient. Instead, we use the seemingly unrelated
regressions (SUR) procedure:

1. Estimate β1, ..., βM using OLS for each equation.

2. Estimate the cross-equation covariances by σ̂jk = 1
M e′jek.

3. Use the estimated covariances for FGLS (Zellner’s method).

4. The residuals from the FGLS can be used to re-estimate the covariance
matrix for another round of FGLS. The iterations of this will converge to
the MLE.

Suppose we have a system of equations,

Y1 = X ′
1β1 + ε1

...

YG = X ′
GβG + εG

where each equation holds for N observations and the Xg may be endogenous.
As with SUR’s, the equations can be fit separately, but this may be inefficient if
the errors are correlated or if the βm have elements in common (and inconsistent
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if there is endogeneity). Suppose each equation has Lg ≥ Kg instruments, Zg,
with E(εigzig) = 0. Then, we may write:

Yi =


yi1

yi2

...
yiG



Xi =


x′i1 0 ... 0
0 x′i2 ... 0
... ... ... ...
0 0 ... x′iG



β =


βi1

βi2

...
βiG



Zi =


z′i1 0 ... 0
0 z′i2 ... 0
... ... ... ...
0 0 ... z′iG


Note that Xi has K1 + ... + KG columns, and Zi has L1 + ... + LG columns.
This gives us the orthogonality conditions:

0 = E(
1
N

N∑
i=1

Ziεi) = E

 1
N

N∑
i=1

 z′i1εi1

...
ziGεiG


As before, we use a weighting matrix. If the disturbances across equations are
uncorrelated, then the weighting matrix is block-diagonal (with one block per
equation). If there is correlation across equations, then the weighting matrix
becomes:

Ŵ =

 1
N2

 ∑N
i=1 ε̂2i1zi1z

′
i1 ...

∑N
i=1 ε̂i1ε̂iGzi1z

′
iG

... ...∑N
i=1 ε̂iGε̂i1ziGz′i1 ...

∑N
i=1 ε̂2iGziGz′iG

−1

This gives us the quadratic form:

q =
G∑

g=1

G∑
h=1

(
1
N

N∑
i=1

zig(yig − x′igβg)

)
ŵgh

(
1
N

N∑
i=1

zih(yih − x′ihβh)

)

As before, we may use 2SLS to estimate W and then minimize the quadratic
form. We may also use this framework to impose constraints on β or include
non-linear functions of β.
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3 Models with Individual Effects

Suppose we have a model yit = x′itβ + ci + εit, for i = 1, ..., N and t = 1, ..., Ti

(if Ti = T for all i, then this is called a balanced panel). In this model, ci is an
unobservable individual effect. We are interested in estimating E(yit|xit, ci).

Definition We define the group and time means for a variable in a panel by:

Zi. =
1
Ti

Ti∑
t=1

Zit

Z.t =
1
Nt

Nt∑
i=1

Zit

We assume that the full data vector, X has full column rank, and we assume
strict exogeneity, in which Cov(εit, xs) = 0 for all t, s. (This excludes the case
of lagged dependent variables.)

Throughout this, we use “fixed T” asymptotics, in which we hold Ti fixed
and let N →∞.

3.1 Pooled Regression

We may simply regress Y on X without considering the panel structure. Then,
our estimated slope coefficients are:

b = (X ′X)−1X ′Y

= (X ′X)−1X ′(Xβ + C + ε)

= β + (
1
N

N∑
i=1

X ′
iXi)−1(

1
N

N∑
i=1

X ′
ici) + (

1
N

N∑
i=1

X ′
iXi)−1(

1
N

N∑
i=1

X ′
iεi)

plim(b) = β + plim((
1
N

n∑
i=1

X ′
iXi)−1)Cov(Xi, ci)

if we assume that the εit do not depend on X. The coefficients of the pooled
OLS regression are biased if the individual effects are related to the regressors.
If there is no relationship, then the pooled OLS estimates are consistent, but
not efficient. Furthermore, the group effects will cause serial correlation, and a
robust variance estimator, the cluster estimator, must be used:

(
N∑

i=1

Z ′
iZi)−1(

N∑
i=1

Z ′
iŵiŵ

′
iZi)(

N∑
i=1

Z ′
iZi)−1

3.2 First Differences

If yit = x′itβ+ci+εit, then ∆yit = (∆x′it)β+(εit−εi,t−1). In this case, the errors
are autocorrelated, but the OLS estimators would be consistent, and FGLS or
Newey-West could be used to correct autocorrelation.

13



In first differences, any time trend will become a constant, and any time
dummy variables will become sequences of +1, -1, and 0.

Difference in Differences

Suppose Ti = 2 for all observations, and a subsample is in a “treatment” in
the second period. Then, we have the model ∆yi = δ0 + (∆xi)′β + δDi + ui,
where Di is the treatment dummy. If there are no other regressors, then d1 =
∆ytreatment −∆ycontrol is the difference in differences estimator.

Note that sometimes one should control for “regression to the mean” by
adding X to the regression.

3.3 Fixed Effects Estimators

In the fixed effects model, ci is allowed to be arbitrarily correlated with the
regressors (but we still require that E(εit|xit, ci) = 0). Let d1, ..., dN be dummy
variables for each group. Then we use OLS to estimate the equation

yi = xiβ +
N∑

i=1

αidi + εi

With so many variables, the estimation may take up too much memory. There-
fore, we use an equivalent method that avoids estimating the dummy variable
coefficients.

Theorem 3.1 Frisch-Waugh. To estimate only β in the equation,

y = [X, D]
[

β
α

]
+ ε

we use the estimate b = (X ′MDX)−1(X ′MDy), where

MD =


IT1 − 1

T1
d1d

′
1 0 ... 0

0 IT2 − 1
T2

d2d
′
2 ... 0

... ... ... ...
0 0 ... IT1 − 1

TN
dNd′N


Definition The within transformation of panel data subtracts the group means
from each observation. That is, we have ÿit = yit − yi.. The between transfor-
mation is just the group mean.

Note that the total variation is the sum of the within-group variation and
the between-group variation:

N∑
i=1

Ti∑
t=1

(zit − z..)2 =
N∑

i=1

Ti∑
t=1

(zit − zi.)2 +
N∑

i=1

Ti(zi. − z..)2

14



The matrix, MD, is just the within transformation (and is idempotent), so
we may estimate β by running the OLS regression of ÿ on ẍ. This is called
the least squares dummy variables (LSDV) estimator. We then back out αi =
1
Ti

∑Ti

t=1(yit − x′itb) = ei.
The asymptotic variance and estimate of the variance are:

AsyV ar(b) =
σ2

ε∑N
i=1 Ti

plim(
1∑N

i=1 Ti

N∑
i=1

X ′
iMDiXi)−1

σ̂2
ε =

∑N
i=1

∑Ti

t=1(yit − ai − x′itb)
2∑N

i=1 Ti −N −K

Note that the estimates of αi are unbiased but not consistent; they have an as-
ymptotic variance on the order of 1

Ti
, since future observations are for different

groups and therefore will not give more information about previously sampled
groups. For a similar reason, the degrees of freedom correction in the denomina-
tor of the variance must include the −N , or the variance will be asymptotically
biased. (In fact, the MLE of the variance is asymptotically biased; this is a case
of the Incidental Parameters Problem.)

Under the Gauss-Markov and fixed effects assumptions, the LSDV estimator
is consistent and efficient. If V ar(εi) = Ωi 6= σ2

ε ITi
, then the slope estimator

is consistent but not efficient, and we must estimate the asymptotic variance
using a generalization of the White estimator (by Arellano) that deals with both
heteroskedasticity and serial correlation:

ˆAsyV ar(b) = (
N∑

i=1

X ′MDiXi)−1(
N∑

i=1

(X ′
iMDi)eie

′
i(MDiXi))(

N∑
i=1

X ′MDiXi)−1

To test the null hypothesis of pooled OLS versus the alternative of fixed
effects, one may use an F test.

Note that time invariant regressors are perfectly collinear with the dummy
variables, and therefore their impact cannot be estimated. We could run a two
stage regression, in which the fixed effects are estimated and are then regressed
on the time-invariant variables. This assumes that the classical assumptions
hold in the second regression (and that we correct the variance of ĉi, since it is
inversely proportional to Ti).

We may also use two-way fixed effects, in which there are both group-specific
and time-specific effects. This may be estimated by demeaning the data with
respect to both effects:

ÿit = yit − yi. − y.t + y..

If the panel is balanced and T is relatively small, it is sometimes easier to just
add the T − 1 time dummies directly. If only the coefficients on the other
covariates are estimated, then the fixed effects and means are:

µ̂ = y.. − x..
′b

α̂i = (yi. − y..)− (xi. − x..)′b
γ̂i = (y.t − y..)− (x.t − x..)′b

15



In addition, there can be a nested effects model, such as:

yijkt = x′ijktβ + uijk + vij + wi + εijkt

where there is a fixed effect for each layer. (Estimation of this is more tractable
with maximum likelihood, but carefully constructed dummy variables can also
be used.)

Definition The between groups estimator is estimated from the regression yi =
xi
′β +(ci + εi), where both ci and εi are in the error term. (Note that the error

term may be correlated with x under the fixed effects assumptions, in which
case this estimator is inconsistent.)

3.4 Random Effects Model

In the random effects model, we have:

yit = x′itβ + ci + εit

E(ci|Xi) = 0
E(εit|Xi, ci) = 0

Under these assumptions, the pooled OLS regression of Y on X is unbiased
and consistent, because the group effects in the error are uncorrelated with the
regressors. However, because the errors within groups are autocorrelated, a
robust estimator for the covariance matrix should be used, and the regression
is not efficient.

In terms of the regression model orthogonality conditions, we may let fi =
TiPN

j=1 Tj
, to find that:

plim
1∑N

i=1 Ti

X ′w = plim
1∑N

i=1 Ti

N∑
i=1

X ′
iwi

= plim
1∑N

i=1 Ti

N∑
i=1

X ′
i(εi + ui1)

= plim(
N∑

i=1

fi
X ′

iεi

Ti
+

N∑
i=1

fi
x′i1
Ti

ui)

= plim(
N∑

i=1

fi
X ′

iεi

Ti
+

N∑
i=1

fiXiui)

= 0

(The two terms correspond to the two different types of errors and the as-
sumptions about their covariances.) In addition, X′XPN

i=1 Ti
=
∑N

i=1 fi
X′

iXi

Ti
. The
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covariance matrix of the errors in the ith group is of the form:

Ωi = V ar(εi+ui1) =


σ2

ε + σ2
u σ2

u ... σ2
u

σ2
u σ2

ε + σ2
u ... σ2

u

... ... ... ...
σ2

u σ2
u ... σ2

ε + σ2
u

 = σ2
ε ITi

+σ2
u1Ti

1′Ti

The covariance matrix, Ω, of the entire regression is a block diagonal matrix
with blocks having the form above (in an unbalanced panel, the blocks will have
different sizes). We may also write

X ′ΩX∑N
i=1 Ti

=
N∑

i=1

fi
X ′

iΩiXi

Ti
= σ2

ε

N∑
i=1

fi
X ′

iXi

Ti
+ σ2

u

N∑
i=1

fixi.xi.
′

This allows us to estimate the OLS variance correctly using the cluster estima-
tor :

ˆX ′ΩX∑N
i=1 Ti

=
N∑

i=1

fi
Xiŵiŵi

′Xi

Ti

where the ŵi are the estimated residuals.
The inverse of each block is of the form

Ω−1
i =

1
σ2

ε

(ITi
− σ2

ε

σ2
ε + Tiσ2

u

1Ti
1′Ti

)

We may also calculate the “square root” of the inverse as:

Ω−1/2
i =

1
σε

(I − θi(1Ti(1
′
Ti

1Ti)
−11′Ti

))

where θi = 1− σε√
σ2

ε+Tiσ2
u

.

This form can be used in GLS:

β̂ = (X ′Ω−1X)−1(X ′Ω−1y)

= (
N∑

i=1

X ′
iΩ

−1
i Xi)−1(

N∑
i=1

X ′
iΩ

−1
i yi)

= (
N∑

i=1

(Ω−1/2
i Xi)′(Ω

−1/2
i Xi))−1(

N∑
i=1

(Ω−1/2
i Xi)′(Ω

−1/2
i yi))

This is a form of autocorrelation; however, the autocorrelation does not fade over
time (equicorrelation). Note that we may write y∗it = Ω−1/2

i yi = 1
σu

(yi − θiyi1),
and the GLS regression is equivalent to the OLS regression of y∗it on x∗it. If
θi = 1, then this is the fixed effects specification; if θi = 0, this is the pooled
specification.

For feasible GLS, we must estimate σ2
ε and σ2

u. Note that the variance of
the residuals from pooled OLS is σ2

ε + σ2
u while the variance of the residuals
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from LSDV is σ2
ε . Thus, we may estimate the two and take their difference to

estimate σ2
u. This difference may be negative in some cases; this suggests that

there may be autocorrelation in the residuals or some other problem with the
model. (We may also estimate σ2

u by taking the estimated covariance between
residuals from the same group in different periods, as suggested by Wooldridge.)

We may use a Lagrange Multiplier test to test the null hypothesis of pooled
OLS versus the alternative of random effects. The test statistic is:

LM =
NT

2(T − 1)

( ∑N
i=1(Tei.)2∑N

i=1

∑T
t=1 e2

it

− 1

)2

We may also use maximum likelihood on the random effects model. To do
this, we assume that εit ∼ Normal(0, σ2

ε ) and ui ∼ Normal(0, σ2
u). Then, the

total error for the ith group, wi = εi + ui1, has a Normal(0,Ωi) distribution.
We use this to construct the likelihood function:

log L =
N∑

i=1

log Li

log Li(β, σ2
ε , σ2

u) = −1
2
(
Ti log(2π) + log |Ωi|+ (yi − xiβ)′Ω−1

i (yi − xiβ)
)

If this is maximized symbolically, then the result will be FGLS, with some
estimates of σ2

ε and σ2
u. Alternatively, it can be maximized iteratively, according

to the following algorithm:

1. Start with the FGLS estimates of β, σ2
ε , σ2

u.

2. Compute β̂k+1 using FGLS, holding σ̂2
ε,k and σ̂2

u,k fixed.

3. Compute σ̂2
ε,k+1 = 1PN

i=1(Ti−1)

∑N
i=1 ε̂′i,k+1M

i
D ε̂i,k+1 and σ̂2

u,k+1 = 1
N

∑N
i=1 εi,k+1

2.

4. Iterate until these estimates converge.

We may also transform the parameters to simplify the maximization:

θ =
1
σ2

ε

τ =
σ2

u

σ2
ε

Ri = Tiτ + 1

Qi =
τ

Ri

log Li =
1
2
(θ(ε′iεi −Qi(Tiεi)2) + log Ri + Ti log θ + Ti log(2π))

After optimization with these transformed variables, we must use the delta
method to estimate the variance of the original parameter estimates.
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Mundlak’s Estimator

Suppose ci = xi
′δ + ui, where the ui are uncorrelated with the group means.

Then, we have the regression model yit = x′itβ +xi
′δ +ui + εit, which is just the

random effects model. Thus, adding in the group means reduces a fixed effects
model to random effects, under these assumptions.

We may also add proxy variables for the unobserved effects. If the remaining
unobserved effects are uncorrelated with the other variables, then we may again
reduce the problem to random effects.

3.5 Fixed Effects versus Random Effects

Since fixed effects must estimate one parameter for each group, it is inefficient
relative to random effects. Furthermore, time-invariant variables cannot be used
with fixed effects. However, the assumption of random effects is quite strong,
and random effects will be biased and inconsistent if it is violated.

Hausman’s Test is used to test the null hypothesis that the group effects are
uncorrelated with the regressors. Under the null hypotheses, both estimators
are consistent, but only the FGLS estimator is efficient. Under the alternative
hypothesis, LSDV is consistent but FGLS is inconsistent. To test this, we check
whether the test statistic, q̂ = β̂FE − β̂RE = 0, is close to 0.

Lemma 3.2 Under the hypothesis of random effects,
√

NT (β̂RE − β) →D Normal(0, VRE)
√

NT (β̂FE − β) →D Normal(0, VFE)

and these two estimators have an asymptotic covariance of 0.

This allows us to calculate ˆV ar(q̂) = V̂FE − V̂RE . (For this difference to
be guaranteed to be positive definite, we must use the same value of σ2

ε ; the
estimate from LSDV is preferable.) We then have a Wald test, W = q̂ ˆV ar(q̂)−1q̂,
which is distributed χ2(k), where k is the number of time-varying variables in
the regression.

Alternatively, we can use the variable addition test. Under the null hypothe-
sis of random effects, Cov(xi., ui) = 0. Therefore, we may fit the original model
plus the group means of all the (time-varying) variables with FGLS and test
the restriction that the coefficients on all the group means are zero.

3.6 Violations of the Assumptions

Let Zi be the regressors (including the dummy variables in the fixed effects case),
wi be the errors, and θ be the parameters (in either fixed or random effects).
Then the robust covariance matrix is (

∑N
i=1 Z ′

iZi)−1(
∑N

i=1 Z ′
iŵiŵ

′
iZi)(

∑N
i=1 Z ′

iZi)−1

(this is the cluster estimator that is used with pooled OLS).
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3.6.1 Heteroskedasticity

Note that the worst cases of heteroskedasticity in the two models are E(ε2it|Zi) =
σ2

ε,it (where each error has its own variance) for fixed effects and E(ε2it|Zi) = σ2
ε,it

and E(u2
i |Zi) = σ2

u,i for random effects. Notice that, in both cases, heteroskedas-
ticity is detectable only if it is related to the variables in the model, which may
include the group identifiers.

For the fixed effects model, options include:

• Using the robust covariance matrix with usual LSDV. This does not take
advantage of the possible relationship of heteroskedasticity to groups or
other variables.

• Assume that E(ε2it|Xi) = σ2
ε,i. Then, we have the robust variance estima-

tor,

ˆV ar(b|X) =

(
N∑

i=1

X ′
iM

i
DXi

)−1( N∑
i=1

∑N
t=1 e2

it

T
X ′

iM
i
DXi

)(
N∑

i=1

X ′
iM

i
DXi

)−1

• We may also do FGLS under the assumption of group-specific heteroskedas-
ticity. Then, the GLS estimate of β is

β̂ =

(
N∑

i=1

1
σ2

ε,i

(X ′
iM

i
DXi)

)−1( N∑
i=1

1
σ2

ε,i

X ′
iM

i
Dyi

)

We do FGLS using σ̂2
ε,i = 1

Ti

∑Ti

i=1 e2
it, where the residuals are from regular

LSDV. (Note that this weighting does not affect the estimates of the group-
specific intercepts.)

• We may also run FGLS using other models for the residuals, such as
σ2

ε,it = σ2
ε f(z′δ). We then use regress the initial estimates of the residuals

on the independent variables, and run FGLS with the estimated variances.

• We may run standard FGLS on the demeaned variables (after dropping
one period of each, to avoid serial correlation in the error terms caused by
demeaning).

For the random effects model, there are two different variances that may be
heteroskedastic. Options include:

• Using the cluster estimator (from above) is valid:

ˆV ar(b|X) = (X ′X)−1(
N∑

i=1

(
T∑

t=1

X ′
iteit)′(

T∑
t=1

X ′
iteit))(X ′X)−1

(Using just the White estimator is incorrect because it ignores the cross-
observation correlation from the random effects.)
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• The matrix estimated above could be used for FGLS as well, but it involves
many more parameter estimates, which will lead to bad finite sample prop-
erties.

• We cannot use GLS if σ2
u,i depends only on i, since there is only one

observation of each ui. Its variance could be modeled as a function of the
regressors, though.

• We may also model σ2
u,i and σ2

ε,i jointly as a function of the regressors.

In both of these cases, robust OLS or simple FGLS are probably close
enough.

3.6.2 Autocorrelation

If there is autoregressive autocorrelation of size ρ in the εit (beyond the equicor-
relation induced by random effects), then we may run fixed effects or random
effects on yit − ρyi,t−1 and xit − ρxi,t−1. However, the errors induced by this
often outweigh the benefit if ρ̂ < 0.3.

3.6.3 Measurement Error

Suppose we have a model in which we can only measure the regressor with error:

yit = x∗iyβ + ci + εiy

xit = x∗it + hit

Then, the OLS (non-LSDV) estimate of β based on a regression of yit on xit is
biased, with:

plim(β̂) = β

(
V ar(x∗it)

V ar(x∗it) + V ar(hit)

)
+

Cov(x∗it, ci)
V ar(x∗it) + V ar(hit)

If this is a random effects model, β̂ is always biased toward zero, called atten-
uation error. An estimate of this bias is the reliability ratio, which is based on
an estimate of σ2

x∗
σ2

x∗+σ2
u
. If there are additional variables or a violation of the

random effects assumption, then all the coefficients are biased in unpredictable
ways (this is known as smearing).

Instrumental variables can be useful in dealing with measurement error.

3.7 Modeling Panel Data with Multiple Equations

3.7.1 Chamberlain’s Estimator

We may treat a panel of data as a set of seemingly unrelated set of regressions,
with one for each time period. In this, we assume that the X are strictly
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exogenous, conditional on the group effects. Assuming we have a balanced
panel, and no time-invariant X, we have the model:

yit = αi + x′itβ + εit

for each t = 1, ..., T . Suppose αi = α0 +
∑T

t=1 X ′
itδt +wi, so that Cov(wi, Xi) =

0. Then we may rewrite the equations above as:

yit = α0 +
T∑

s=1

x′isδt + x′itβ + εit + wi

= α0 + x′iπt + vit

πt =


δ1

...
δt + β

...
δT


E(vitvis|xi) = σ2

w + Cov(εit, εis)

We may run seemingly unrelated regressions on the set of equations:

yi1 = α0 + x′iπ1 + vi1

...

yiT = α0 + x′iπT + viY

where the covariance matrix of the errors is unrestricted, but the relationship
among the coefficients in π1, ..., πT are restricted. We estimate the covariances
by:

σ̂ts =
1
N

N∑
i=1

(yit − x′iπ̂t)(yis − x′iπ̂is)

Σ̂ =
1
N

(Y −XΠ̂)′(Y −XΠ̂)

To estimate this system of equations, we may use OLS (which gives T (T − 1)
different estimates of β and T −1 estimates for each δt by using all the different
estimates; this is consistent but inefficient) or FGLS. We may also use the
minimum distance estimator, in which we choose (α0, β, δ1, ..., δT ) to minimize
the distance from the Π based on them to the OLS estimates, based on some
weighting matrix, as in GMM; by the strict exogeneity of X, the X from all the
time periods are used as instruments.

We may also use maximum likelihood, if we are willing to assume normally
distributed errors. In this case, we write v′i = y′i−x′iΠ, and the log likelihood is
log L− NT

2 (log(2π)+log |Σ|+ trace(Σ−1Σ)). We may minimize this function by
setting Σ̂ equal to the matrix of estimated covariances of the residuals. We may
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then write the log likelihood in terms of β, δ1, ..., δT only (this is called concen-
trating the likelihood), and maximize this. The MLE has the same asymptotic
properties as the minimum distance estimator.

3.7.2 Covariance Structures

Suppose we have a balanced panel. Then, we may run seemingly unrelated
regressions, with one for each period, and with E(εitεjs|X) = σijI(t = s) (this
is covariance across individuals, because of individual effects). Then we may
use robust OLS with:

sij = σ̂ij =
1
T

T∑
t=1

eitejt

ˆV ar(b|X) = (
N∑

i=1

X ′
iXi)−1(

N∑
i=1

N∑
j=1

sijX
′
iXj)(

N∑
i=1

X ′
iXi)−1

FGLS can also be based on the sij , but the matrix, S = [sij ] = 1
T

∑T
t=1 ete

′
t

has rank(S) ≤ min(N,T ), which means that FGLS in this form requires that
T ≥ N . Furthermore, FGLS requires N(N+1)

2 estimated parameters which may
also inflate the variance.

3.8 IV, GMM and Panel Data

If we write the equations in panel data as a system of T equations, each with
L instrumental variables, then we have T ×L moment equations. Furthermore,
under the assumption that E(εitZis) = 0 for all t, s, we have T 2L moment equa-
tions. With this many moment equations, we often reject the null hypothesis
that all the conditions hold.

3.8.1 Hausman and Taylor Method

Suppose we have the model:

yit = x1′itβ1 + x2′itβ2 + z1′iα1 + z2′iα2 + ui + εit

E(ui|x1it, z1i) = 0
E(ui|x2it, z2i) 6= 0

E(εit|x1it, x2it, z1i, z2i) = 0
V ar(ui|x1, x2, z1, z2) = σ2

u

V ar(εi|x1, x2, z1, z2) = σ2
ε

We may use LSDV to consistently estimate β1 and β2. This means that ẍ1it

and ẍ2it are valid instruments. By assumption, z1i is a valid instrument and
x1i. are valid instruments as well. This provides a set of instruments for x2 and
z2, if there are more variables in x1 than in z2 (and if there is some partial
correlation between the variables in z2 and the means of x1).
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Extending this method, we have Hausman and Talyor’s FGLS (or General-
ized IV ) estimator:

1. Find the LSDV estimates of β1, β2, and σ2
ε .

2. Let

Z∗
i = [Z ′

i1, Z
′
i2]1T

Wi =

 z1′i x1′i1
... ...
z1′i x1iTi


e∗i = (ei., ..., ei.)

Run an IV regression of e∗ on Z∗ with instruments W to consistently
estimate α1, α2.

3. Calculate the residual variance, to compute θ̂i = 1−
√

σ̂2
ε

σ̂2
ε+Tiσ̂2

u
.

4. Create new instruments, w∗
i = (x1it, x2it, z1i, z2i)−θ̂i(x1i., x2i2., z1i, z2i),

and run a 2SLS regression of y∗it = yit − θ̂iyi. on them, using the instru-
ments from above (ẍ1, ẍ2, z1, x1).

This combines random effects FGLS with an IV estimate.

3.8.2 Arellano, Bond and Bover Formulation

In the set-up above, we may also run GMM using the same instruments, W =
[(x1−x1i.)′, (x2−x2i.), z1′i, x1i.

′]. We may estimate this in a single step, using:

δ̂ = [(
∑

X ′
iH

′
iZi)(

∑
Z ′

iHiΩ̂iH
′
iZi)−1(

∑
Z ′

iHiXi)]−1(
∑

X ′
iH

′
iZi)(

∑
Z ′

iHiΩ̂iH
′
iZi)−1(

∑
Z ′

iHiyi)

where Hi is M i
d with the last column replaced by a column of 1

Ti
. As before, we

may estimate Ω̂i based on a preliminary estimate that uses the identity matrix.

3.9 Dynamic Linear Panel Data Models

Definition If E(εit|Xi1, ..., XiT ) = 0, then X is strictly exogenous. If E(εit|Xi1, ..., Xit) =
0, then we say that X is sequentially exogenous.

Suppose we have the model:

yit = x′itβ + δyi,t−1 + ci + εit

E(εit|xit, ci) = 0
E(ε2it|xit, ci) = σ2

ε

E(εitεis|xit, ci) = 0
E(ci|Xi) = g(Xi)
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The regressors are no longer exogenous, because Cov(yi,t−1, ci) = σ2
c

1−δ 6= 0. This

makes LSDV inconsistent, since Cov(yi,t−1 − yi., εit − εi.) ≈ σ2
ε (T−1−Tδ+δ′)

T (1−δ)2

The Anderson-Hsaio IV Estimator notes that the first differences are of the
form:

yit − yi,t−1 = (xit − xi,t−1)′β + δ(yi,t−1 − yi,t−2) + (εit − εi,t−1)

Notice that (yi,t−1−yi,t−2) is correlated with yi,t−2 but (εit− εi,t−1) is not (this
trick may be used for variables in X as well). This suggests that yi,t−2 is a
possible IV. In this case, note that the residuals are MA(1), and we must use
GLS, but the matrix is of a known form (2 along the main diagonal, -1 along
the two second diagonals).

In the Arellano and Bond Estimator, we assume that the X are predeter-
mined at period t, so that yi,t−2, ..., yi1, xi,t−1, ..., xi1 are all valid instruments
for the equation at period t. Furthermore, if the X are strictly exogenous, then
we may use all the periods of X as instruments, and yi,t−2, ..., yi1, xiT , ..., xi1 are
valid instruments at period t. Note that the number of instruments increases
each period. Estimation can be done with a robust error matrix or GLS (to
correct for the autocorrelation in the residuals). GMM can also be used.

We may also use the Hausman and Taylor method and treat yi,t−1 as part
of the set of time-varying, endogenous variables.

Ahn and Schmidt propose an estimator of the model

yit = δyi,t−1 + x1′itβ1 + x2′itβ2 + z1′iα1 + z2′iα2 + ui + εit

which uses moment conditions including:

• An initial condition of yi0 = x′i0λ + εi0, with E(yi0εit) = 0.

• E(yis(εit − εi,t−1)) = 0 for t = 2, ..., T and s = 0, ..., T − 2.

• E(εiT (εit − εi,t−1)) = 0 for t = 2, ..., T − 2.

As before, this leads to a very large number of moment conditions (which can
lead to bad finite sample properties).

Panel data with long time series can exhibit the problems of non-stationary
time series data. To fix these, first differences or the removal of common trends
may be helpful.

3.10 Linear Models with Parameter Heterogeneity

Individual heterogeneity can be caused by:

• Observable differences across individuals.

• Choice strategy, where people have different underlying frames.

• Structural differences, where models differ across individuals
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• Parameter differences, where the model is same and the parameters differ
across individuals.

Heterogeneity can be discrete (where the population is a mixture of a finite
number of types) or continuous (where a random process assigns a parameter
vector).

3.10.1 The Random Parameters Model

Suppose we have the model:

yit = x′itβi + εit

βi = β + ui

E(ui|Xi) = 0
V ar(ui|Xi) = Γ

(If E(ui|Xi) 6= 0, then pooled OLS will not be consistent.) Notice that, if we
use pooled OLS, we find consistent but inefficient estimators:

Yi = Xiβi + εi = Xiβ + (Xiui + εi)
E(Xiui + εi|Xi) = 0

V ar(Xiui + εi|Xi) = XiΓX ′
i + σ2

ε,iI

b = β + (
N∑

i=1

X ′
iXi)−1(

N∑
i=1

X ′
i(Xiui + εi))

V ar(b|X) = (
N∑

i=1

X ′
iXi)−1V ar(Xiui + εi|Xi)(

N∑
i=1

X ′
iXi)−1

= σ2
ε (

N∑
i=1

X ′
iXi)−1 + (

N∑
i=1

X ′
iXi)−1(

N∑
i=1

(X ′
iXi)Γ(X ′

iXi))(
N∑

i=1

X ′
iXi)−1

We estimate the variance of this estimator by (
∑N

i=1 X ′
iXi)−1(

∑N
i=1 Xiŵiŵ

′
iXi)(

∑N
i=1 X ′

iXi)−1,
and use robust standard errors.

Alternatively, we may use GLS, using the matrix V ar(Xiui + εi|Xi) =
Ωi = (XiΓX ′

i + σ2
ε ). We use equation-by-equation estimation to estimate

σ̂2
ε,i = 1

Ti−K

∑Ti

t=1(yit − x′itbi)2, which is unbiased. We then estimate Γ:

V ar(bi) = V arX(E(bi|Xi)) + EX(V ar(bi|Xi))
= 0 + EX(Γ + σ2

ε,i(X
′
iXi)−1)

= Γ + EX(σ2
ε,i(X

′
iXi)−1)

Then, we may estimate ˆV ar(bi) = 1
N

∑N
i=1(bi − b)′(bi − b) and subtract off the

estimate σ̂2
ε,i. However, the difference may not be positive definite, in which

case we may use just ˆV ar(bi), or another method (like Bayesian shrinkage or
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ML). It turns out that the GLS estimate of β is a weighted average of the OLS
slope estimates:

β̂GLS =
N∑

i=1

Wibi,OLS =
N∑

i=1

(
N∑

j=1

(Γ + σ2
ε,j(X

′
jXj)))

−1

(γ+σ2
ε,i(X

′
iX

′
I)
−1)bi,OLS

Given the GLS estimates, we estimate βi as a weighted average of β̂ and bi,OLS :

β̂i = Aiβ̂GLS + (I −Ai)bi,OLS

where Ai = (Γ−1 + σ2
ε,i(X

′
iXi)−1)−1Γ−1.

We may also think of nested models, in which the βi are functions of other
variables, just as we may regress estimated fixed effects on time-invariant vari-
ables.

More generally (for non-linear models), we may write the random parameters
model as:

f(yit|xit, βit) = g(yit|xit, βi, θ)
f(βi|zi) = h(βi, zi,Ω)

f(yit|xit, zi, θ,Ω) =
∫

βi

f(yit|xitβi, θ)h(βi, zi,Ω)dβi

A simpler form might specify βi = β+ξzi+ui. There might also be heterogeneity
in the variance of the parameters:

V ar(uik|zi) = φik = φk exp(z′iδk)
V ar(ui|zi) = Φi = diag(φik)

where k ranges over the different parameters. We may also choose to model
correlation among the parameters.

We may use maximum simulated likelihood to find the likelihood:

log L(θ, ω) =
N∑

i=1

log
∫

βi

f(yit|xitβi, θ)h(βi, zi,Ω)dβi

by integrating out the unobserved parameters, βi.
Alternatively, if Ti > K for all i, and we have a linear projection of E(ui|Xi)

on Xi, then running OLS or GLS for each observation individually is unbiased,
and β̂ = 1

N

∑N
i=1 β̂i is consistent for β, even though β̂i is not consistent (since

T is fixed).
For Partial Fixed Effects, we allow only some parameters to vary across

individuals. Then, we may estimate:

yi = Ziαi + Xiβ + εi

β̂ = (
N∑

i=1

X ′
iM

i
ZXi)−1(

N∑
i=1

X ′
iM

i
Zyi)

M i
Z = I − Zi(Z ′

iZi)−1Z ′
i

α̂ = (Z ′
iZi)−1Z ′

i(yi −X ′
iβ̂)
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We may also think about running regressions involving group means (be-
tween estimators) or time means. These require some tricks to make them
consistent, if they work at all.

3.10.2 Latent Class Variation

Discrete parameter variation may occur...

• when there is mixing in the population (for example, “zero inflation”,
where one part of the population is always zero, and everyone else is
drawn from some distribution),

• as a discrete approximation to a continuous distribution, or

• when a mixture of normals is used to approximate a non-normal distrib-
ution.

Then the population is a mixture of J groups, but group membership is not
observed. Within each group, we have the parameters (βj , σj). Before we
observe anything, each individual has a probability πj of being in group j (these
are called the mixing probabilities). Note that πj may be constant or may be a
function of covariates, in the form:

P (class = q|zi) = πiq =
exp(z′iδq)∑
s exp(z′iδs)

(this assumes a logistic model for class membership).
Then, we have conditional and unconditional densities:

f(yi1, ..., yiTi
|Xi, βj , σj) =

Ti∏
t=1

f(yit|xit, βj , σj)

f(yi1, ..., yiTi |Xi) =
N∑

j=1

πj

Ti∏
t=1

f(yit|xit, βj , σj)

We may then use maximum likelihood to estimate the parameters π1, ..., πJ , β1, ..., βJ , σ1, ..., σJ .
Once we have estimated the parameters, we have posterior probabilities for each
individual’s group membership:

P (j|datai) =
πj

∏Ti

t=1 f(yit|Xit, βj , σj)∑N
k=1 πk

∏Ti

t=1 f(yit|xit, βk, σk)

In a latent class regression, the likelihoods are of the form:

f(yit|j) =
1
σj

φ

(
yit − x′itβj

σj

)
This is more of a problem when the classes are “close together”. Further-

more, we may need to choose the number of classes. Using an information
criterion may be the best option for this.
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3.10.3 Bayesian random parameters

Bayesians don’t need to distinguish between fixed effects and random effects
(and similarly for random parameters).

Suppose that parameters vary across individuals. Then, we may use a hier-
archical Bayes model to estimate the parameters. This may take the form:

βi Normal(β, Vβ)
β Normal(β∗, aVβ)

V −1
β Wishart(ν0, V0)

where the Wishart distribution is a multivariate generalization of the Gamma
distribution. Note that the first distribution is true of the population, while the
latter two are prior distributions. If a and V0 are large, then the priors are less
informative. (In contrast, classical random parameters only includes the first
distribution.)

We then use Gibbs sampling for one parameter at a time (the order does
not matter).

Bayesian methods can also be used to estimate fixed effects models (though
the incidental parameters problem means that the priors for the effects must be
informative).

3.11 Non-Linear Models with Panel Data

Many non-linear models are of the form E(y|x) = m(x, θ), with θ ∈ Θ (the
parameter space). We estimate θ based on the observed y, x. For these pur-
poses, we define a non-linear model as a model in which we can only define the
estimator implicitly. However, we have h(y, X, θ̂) = 0, for some function h.

In panels, there may be relationships among the observations of a single
individual in different periods. Then, the correct likelihood for the ith individual
is:

log Li = log f(yi1, ..., yiTi |Xi, θ)

which is the joint likelihood for all Ti periods. In many cases, we may use the
pseudo-likelihood based on the marginal densities, f(yit|xitθ). Though this will
(usually) give a consistent estimate of θ̂, the standard errors will be incorrect.
Robust standard errors are:

ˆV ar(g) =
n∑

i=1

(
T∑

t=1

git)(
T∑

t=1

git)′

Dynamic Models

If there is a lagged response variable as a predictor, then we have state depen-
dence. As before, if there is also an individual-specific intercept, then there is a
correlation between the individual effect and the lagged variable. In addition,
there is the initial conditions problem, where the starting point might affect
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future outcomes (especially if there is a strong tendency to stay at one’s current
state).

One method of dealing with this is:

• Step 1: Write the joint likelihood, conditioning on individual effects, as
well as the initial condition and the other predictors.

• Step 2: Assume that ui depends on the initial state and choose a distribu-
tion. For example, h(ui|yi0, zi) Normal(α+ θyi0 + z′iδ, σ

2
u). (The zi might

be group means, for example.)

• Step 3: Integrate out the individual effects. This can be converted into a
reduced form for all the other parameters.

4 Limited Dependent Variables Models

In a general limited dependent variable mode1, we begin with a latent regression,
y∗ = x′β + ε. Then, we observe the transformed variable, y = T (y∗). This
may include censoring (top-coding or bottom-coding certain values), truncation
(omitting certain values), or sample selection (choosing only some of the data).
In all of these cases, OLS based on y tends to be biased.

4.1 Binary Choice Models

Suppose we have a utility model, U = α + β′x + ε, and we observe a choice Y ,
which is either 0 or 1. Then, we model Y = I(U > 0) = P (ε > α + β′x). This
is a binary choice model. The probability function depends on the assumed
distribution for ε; it is a probit model if ε ∼ Normal and a logit model if
ε has a logistic distribution. (It may also be Gompertz, semiparametric, or
something else.) This choice will affect the results (at least slightly). The
coefficients of the logit model are generally 1.6 times the coefficients for the
probit model (because the logistic density evaluated at 0 is about 1.6 times the
normal density evaluated at 0). However, the marginal effects are approximately
the same (usually). The likelihood is derived as:

P (yi = 1|Xi) = F (X ′
iβ)

f(yi|xi) = (1− F (X ′
iβ))1−yiF (x′iβ)yi

∂

∂β
log L =

N∑
i=1

(
yi

F (X ′
iβ)

− 1− yi

1− F (X ′
iβ)

)
If the density is symmetric about 0, we may simplify these expressions by noting
that 1 − F (x′β) = F (−x′β). Note that the Hessian is negative definite at all
points for the probit and logit models, so that the model is globally concave in
the parameters and there is a global maximum.

The marginal effect of a dummy variable in this model is:

δ̂ = P (yi = 1|xi, di = 1)− P (yi = 1|xi, di = 0)
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The marginal effect of a continuous variable is:

δ̂ =
∂

∂x
F (α + β′x) = f(α + β′x)β

Note that both of these depend on the location. Partial effects are usually com-
puted at the means (which is simple and has well-defined inference) or is the
average of the partial effects over all observations (which has only asymptotic
standard errors). Note that the marginal effects tend to have large standard er-
rors, since they include the standard errors of all the parameters; this means that
coefficients might be significant while the corresponding partial effects are not.
To find the standard errors for marginal effects, we may use the delta method,

ˆAsyV ar(δ̂) = G(β̂, x)V̂ G(β̂, x)′. We may also use the method of Krinsky and
Robb, which uses simulation.

The mean of the predicted probabilities is always equal to the proportion of
successes in the data:

F̂ =
1
N

N∑
j=1

F (β̂′xj) =
1
N

N∑
j=1

yj

4.1.1 Model Fits and Hypothesis Testing

Definition The Likelihood Ratio Index (LRI) by McFadden or Pseudo-R-Squared,
is defined as 1− log L0

log L , where L0 is the likelihood of the model with all the slopes
set to 0, and L is the likelihood of the model of interest.

We may also measure the fit of a model by checking how many outcomes
would have been correctly predicted. One method, by Cramer, sets:

λ̂ = mean(F̂ |y = 1)−mean(F̂ |y = 0)

This is the difference in the estimated probabilities for the successes and fail-
ures. Alternatively, we may compute the proportion of observations correctly
predicted using a prediction rule (such as predicting a success when F̂ > 1

2 ,
or equivalently when β̂′x > 0). These measures also show the usefulness of
additional variables. Note that probit and logit do not try to maximize the
number of correct predictions; an estimator which does this is called an m-score
estimator, and it converges as 3

√
n.

To test nested hypotheses, we may use likelihood ratio tests, Lagrange mul-
tiplier tests, and Wald tests, and everything is only asymptotic now. (Also, the
order from the linear case, with Wald > LR > LM , might not hold anymore.)

4.1.2 Heteroskedasticity

Suppose V ar(εi) = exp(γ′zi)2. Then, the probit model is given by:

P (yi = 1|xi, zi) = Φ
(

β′xi

exp(γ′zi)

)
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This changes the functional form of the model and makes the partial effects
more complicated. It is not enough to fix the standard errors, since estimating
the model without the denominator would be inconsistent.

4.1.3 Endogenous Regressors

Suppose we have y∗ = β′x + γz + ε, with E(ε|z) 6= 0. Then, we may write
z = w′δ + u = x′δ + h′δ + u, where Cov(h, ε) = 0. Then, the reduced form is:

y∗ = x′β + γ(w′δ + u) + ε

= x′(β + γδ1) + h′γδ2 + (γu + ε)

Using probit, we estimate: β+γδ1√
1+γ2σ2

u+2γρσu

, γδ2√
1+γ2σ2

u+2γρσu

, where ρ = Corr(u, ε).

Though we can estimate δ1, δ2, σ
2
u from the OLS regression of z on w, we cannot

estimate ρ.
As a specific case, we may have an endogenous binary variable, with the

model:

y = 1(x′β + γz + ε > 0)
z = 1(x′δ + u > 0)

Cov(ε, u) = ρ

Then, we may analyze y and z jointly, since P (y = 1, z = 1) = P (y = 1|z =
1)P (z = 1) is a bivariate probit model.

4.1.4 Effects Models in Binary Choice

Suppose utility is of the form y∗it = α + β′xit + γ′zi + ui + εit, where xit are the
attributes of a particular decision, and zi are individual characteristics. Since
the scale is not observed, we set V ar(εit) = 1. In binary choice, one option is
chosen if y∗it > 0 (and the other if the utility is less than 0). This leads to the
probability model:

P (yit = 1) = P (y∗it > 0)
= P (εit > −(α + β′xit + γ′Zi + ui))

In the case where we have strict exogeneity and unobserved effects which
are uncorrelated with the right-hand-side variables, we may estimate a pooled
model:

P (yit = 1) = P (εit > −(α + β′xit + γ′Zi + ui))
= P (εit + ui > −(α + β′xit + γ′Zi))

= F (
x′itβ√
1 + σ2

u

)

= F (x′itδ)
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Note that the coefficient estimates are attenuated and no longer consistent.
However, the partial effects are less attentuated, because f(x′itδ) > f(x′itβ).
Thus, we worry less about the partial effects (which are what we care about
anyway).

In pooled estimation, we are now using a partial pseudo-log-likelihood for
estimation:

“ log L” =
∑

i

∑
t

= (1− yit) log(1− F (x′itβ)) + yit log(F (x′itβ))

This will work if the marginals for yit are correct; however, we should be con-
sidering joint likelihoods of yi1, ..., yiT instead. This is an M-estimator, so it is
consistent, even if it isn’t efficient. A “panel probit model” can be estimated
using methods like SUR:

y∗it = x′itβ + εit

yit = 1(y∗it > 0) εi1

...
εiT

 Normal

0,


1 ρ12 ... ρ1T

ρ12 1 ... ρ2T

... ... ... ...
ρ1T ρ2T ... 1




(We assume that the variance is 1 because only the sign matters.)
Full information maximum likelihood would be written as:

log L =
n∑

i=1

log Prob(yi1, ..., yiT )

Estimation with this method is hard.
We may also use GMM. The obvious set of orthogonality conditions is:

E((yit − Φ(x′itβ))xit) = 0

Under strict exogeneity, we have TK orthogonality conditions for β, since we
may use all periods as orthogonality conditions:

E((yit − Φ(x′itβ))xis) = 0

(This is probably overkill.)
To implement GMM:

1. Pool the data and estimate β̂ to get the initial weighting matrix:

W =
1
n2

n∑
i=1

 (yi1 − Φ(x′i1β))xi1

...
(yiT − Φ(x′iT β))xiT

( (yi1 − Φ(x′i1β))xi1 ... (yiT − Φ(x′iT β))xiT

)

2. Minimize the GMM criterion, q = g(β)′W−1g(β), where g(β) = 1
n

∑n
i=1

 (yi1 − Φ(x′i1β))xi1

...
(yiT − Φ(x′iT β))xiT

.
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Using a random effects type of model may be inaccurate when Cov(xit, ui) 6=
0, but it is easier to compute and does not suffer from the incidental parameters
problem. In this case, we have the model:

Uit = α + β′xit + (εit + σvvi)

where V ar(vi) = 1. This leads to a likelihood of:

f(yi|vi) =
T∏

t=1

F (α + β′xit + σvvi)

L =
N∏

i=1

(∫ ∞

−∞

T∏
t=1

F (α + β′xit + σvvi)

)
g(vt)dvi

log L =
N∑

i=1

log

(∫ ∞

−∞

T∏
t=1

F (α + β′xit + σvvi)

)
g(vt)dvi

To evaluate this likelihood, we must assume a distribution, g, for the effects
(usually, the standard normal distribution). We then must maximize this with
respect to α, β, σv. Since there is no closed form for the integral (in realistic
cases), we replace the integral by a sum using Hermite quadrature or simulation.
In this model, ρ = σ2

v

1+σ2
v

is the off-diagonal correlation.
Using a fixed effects type of model, we will always have inconsistent estimates

because of the incidental parameters problem. (In general, people assume β is
biased upward in this case, with a bigger bias when T is small.) Note that
differencing the data will not remove this problem.

To estimate the model anyway, we may do conditional estimation based on
sufficient statistics. In this case, we assume that f(yi1, ..., yiT |g(Y )) does not
depend on the fixed effects. This leads to a conditional logit:

P (Yi1, ..., YiT |
T∑

t=1

yit = Si, X) =
exp(

∑
t yitx

′
itβ)∑

P
dit=Si

exp(
∑

t ditx′itβ)

That is, we condition on the sum and see which values of the parameters make
the order of the results most likely. In this estimation method, only individuals
that have both successes and failures contribute to the estimates (otherwise, the
conditional probability is 1). Once β has been estimated, we estimate the fixed
effects from:

0 =
T∑

t=1

(yit − pit) =
T∑

t=1

(
yit −

exp(αi + β̂′xit)

1 + exp(αi + β̂′xit)

)
However, the estimates of the fixed effects are not consistent (and do not even
exist when yit is constant for all t). Values of the fixed effects may be necessary
to calculate the partial effects.

To estimate standard errors, we may use the diagonal elements of (−H)−1,
which ignores the problem, or use the cluster estimator.
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In multinomial (panel) logit, we have the model:

P (choice = j|xitj) =
exp(αj + β′jxitj)∑Jit

j=1 exp(αj + βjxitj)

In this model, we have independence from irrelevant altervatives, where Pijt/Pikt

depends only on j, k. (This may not hold in some cases, like the red bus/blue
bus example.) In applications of this model, we may be interested in elasticities,
which are the effect of an increase in the price of one brand on the probability
of choice of each other brand. This is given by:

∂ log Pijt

∂ log xk,imt
= βk(I(j = m)− Pj)

Note that the relative elasticities of the brands with no price increase does not
change (because of the independence from irrelevant alternatives).

4.2 Ordered Probability and Interval Censored Data

In the ordered probability model, we have the latent variable, y∗it = x′itβ + εit,
and we then observe:

yit =


0 if y∗it ≤ 0
1 if 0 ≤ y∗it ≤ µ1

... ...
J − 1 if µJ−1 ≤ y∗it ≤ µJ

J if µJ ≤ y∗it

(The constant term takes care of the normalization to 0.) We must estimate
the µj ; they are not observed. Thus model assumes that µj is constant across
all individuals. However, the distance between the cutoffs need not be constant.
Then,

P (yit = j) = P (µj−1 ≤ y∗it ≤ µj)
= P (µj−1 ≤ x′itβ + εit ≤ µj)
= P (εit ≤ µj − x′itβ)− P (εit ≤ µj−1 − x′itβ)

After we assume a particular distribution for ε, we find a likelihood function:

log L =
N∑

i=1

J∑
j=0

1(yit = j) log(P (yit = j))

We must normalize this by setting V ar(εit) = 1. Then we estimate β and the
J − 1 cutoffs.

The coefficients are not easy to interpret, but we can compute the marginal
effects on the probabilities, find predictions, and find measures of fit. The
marginal effect is given by:

∂

∂x
P (yit = j) = β(f(µj − x′itβ)− f(µj−1 − x′itβ))
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If βk is positive, then the marginal effect of xk on the probability of the smallest
outcome is always negative and on the probability of the largest outcome is
always positive. However, the effect on the intermediate probabilities is inde-
terminate; it depends on f(µj − x′itβ) − f(µj−1 − x′itβ). The marginal effects
always sum to zero (to keep the total probability equal to 1), and they switch
sign exactly once. For prediction, we may choose the cell with the highest
probability.

To add individual heterogeneity, we may allow µ1, ..., µJ to depend on the
variables. However, µij cannot depend linearly on the same variables, since we
cannot identify effects if we have P (z′iδj − x′iβ ≤ ε). We must also ensure that
µj ≤ µj+1 for all individuals; one way to do this is to have µij = exp(θj + z′iδ).
This also allows variables to overlap, since the relationship is nonlinear.

If there is omitted heterogeneity, there is attenuation bias in the coefficients:

y∗it = x′itβ + ui + εit

P (yit = j) = P

(
εit ≤

µj − x′itβ√
1 + σ2

u

)
− P

(
εit ≤

µj−1 − x′itβ√
1 + σ2

u

)

There is likely to be a smaller impact on the marginal effects.

4.2.1 Zero inflated ordered probit

Suppose “non-participants” always report zero, while “participants” report 0, ..., J .
Then, we may wish to combine a probit model for participation, pit, with an
ordered probit model for the participants, yit. Then,

P (yit = 0) = P (pit = 0) + P (pit = 1)P (yit = 0|pit = 1)
P (yit = j) = P (pit = 1)P (yit = j|pit = 1)

The two models may have some variables in common.

4.2.2 Interval censored data

For the interval censored data model, the cutoffs between the groups are known
to be a0, ..., aJ . In this case, the model is:

y∗it = x′itβ + εit

yit = j if aj−1 ≤ y∗it ≤ aj

P (yit = j) = P (
aj − x′itβ

σ
> εit)− P (

aj−1 − x′itβ

σ
> εit)

Maximum likelihood estimation basically runs a regression based on E(y∗it|yit =
j) instead of y∗it directly. This changes the estimation procedure and allows us
to estimate the scale of ε.
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4.3 Censoring and Truncation

In the censoring model, we observe the transformation of the latent variable:

T (y∗) =
{

0 if y∗ ≤ 0
y∗ otherwise

There are other forms of censoring, where there is a maximum value or a different
minimum, in which case we may transform the observed variable to return to this
model. There may also be censoring at both ends or person-specific censoring,
which are more complicated. This is similar to a corner solution (where some
people choose a value and other just choose zero) but the underlying theory is
different.

In the Tobit model, we have Y ∗ = X ′β+ε and we assume that ε Normal(0, σ2).
In this case, we have the conditional means:

E(Y ∗|X) = X ′β

E(Y |Y > 0, X) = X ′β + σ
φ(X ′β/σ)
Φ(X ′β/σ)

E(Y |X) = P (Y = 0|X) ∗ 0 + P (Y > 0|X)E(Y |Y > 0, X)

= Φ(
X ′β

σ
)(X ′β + σ

φ(X ′β/σ)
Φ(X ′β/σ)

)

= Φ(X ′β/σ)X ′β + σφ(X ′β/σ)

This shows why OLS is biased: the coefficients are attenuated. In general, the
slopes in OLS approximate the derivatives:

∂

∂x
E(Y |X) = βΦ(x′β/σ)

Predicting y∗ is irrelevant, though either E(Y |X) or E(Y |Y > 0, X) may
be useful. In addition, we consider generalized residuals (Cheshire and Irish)
around zero:

gri =
∂ log Li

∂β0
=
{

yi − xiβ yi > 0
g(xi, β, σ) yi = 0

As a form of R2, we may generate predictions from the model and then find the
squared correlation between the predictions and the true values.

For estimation, we have the log likelihood:

log L =
n∑

i=1

(
1(yi = 0) log Φ(−x′iβ/σ) + 1(yi > 0) log

(
1
σ

φ

(
yi − x′iβ

σ

)))
To simplify estimation, we may use the Olsen transformation of the variables,
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θ = 1/σ and γ = β/σ. This yields the likelihood and derivative:

log L =
n∑

i=1

(1(yi = 0) log Φ(−x′iγ) + 1(yi > 0) log(θφ(θyi + x′iγ)))

∂

∂γ
log L =

n∑
i=1

(1(yi = 0)φ(x′iγ)/Φ(x′iγ)− 1(yi > 0)ei)xi

∂

∂θ
log L =

n∑
i=1

1(y1 > 0)(
1
θ
− eiyi)

This simplifies the Hessian; we may then use the delta method to work out the
standard errors for the original coefficients.

The marginal effects are given by:

∂

∂x
E(y|x) = βΦ(x′β/σ)

∂

∂x
E(y|x, y > 0) = β(1− λ(a)a + λ(a)2)

where λ(a) = φ(x′β/σ)
Φ(x′β/σ) . Note that the coefficient is attenuated in both cases.

This means that discarding the limit data (the zero observations) will not pro-
duce a consistent estimate of β.

The McDonald and Moffit marginal effects are given by:

∂

∂x
E(y|x) = P (y > 0|x)

∂

∂x
E(y|x, y > 0) + E(y|x, y > 0)

∂

∂x
P (y > 0|x)

We may estimate β/σ using the probit model of whether y is non-zero. This
also provides a specification test for the model. Another specification test is
a truncated regression, omitting the zero values. One may specify this more
generally as a two part model, where a probit is first fit, and then a truncated
regression is fit to the remaining data. The Tobit model is a restriction of this
two-part model that forces certain coefficients to agree; this provides another
specification test.

If we have individual-specific effects that are orthogonal to X, then the
estimates of β are attenuated, but the marginal effects, β

σ2
ε+σ2

c
Φ( x′β

σ2
ε+σ2

c
) are

consistently estimated. Thus, pooling will work, but cluster estimators will be
necessary for standard errors.

Random effects including the group means (in an extension of the Mundlak
method to probit models) can allow for a more general model.

5 Count Data

The Poisson model for count data is:

P (yi = j|x) =
1
j!

exp(−λi)λ
j
i

λi = E(yi|xi) = exp(x′iβ)
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If the counts are observed over intervals of different lengths, then the log of the
length of time should be added, with a coefficient of 1. In this case, the partial
effects are ∂

∂xi
= λiβ.

In the Poisson model, we must have the variance equal to the mean. Suppose
V ar(y|x) 6= E(y|x). Then, we have overdispersion. This may occur because of
misspecification or because of omitted heterogeneity. If we actually have λ =
exp(x′β + u) where eu Gamma, then y|x has a negative binomial distribution.
The dispersion parameter is 1

α , where f(eu) = αα

Γ(α) exp(−αu)uα−1 (this is a
Gamma distribution with mean 1).

To test for overdispersion, we may regress (yi − λi)2 on λi and the other
variables and test that (1) the coefficient on λi is 1, and (2) the coefficients on
all the other variables are insignificant. We may also test against the specific
hypothesis of the negative binomial model, which has V ar(y|x) = E(y|x) +
σ2E(y|x)2 by inserting the sample moments and testing whether σ2 = 0. (This
is more powerful against the alternative of the Negative Binomial.)

Poisson data has consistent pseudo-likelihoods. That is, we may estimate
using the likelihood function f(yit) = exp(−λit)λ

yit

it /yit!, with λit = exp(β′xit),
even though we should really have λit = exp(β′xit + εit) with exp(εit) Γ(1, θ).
In this case, the true likelihood is negative binomial, but β̂ is consistent (though
inefficient). In this case, we should use a sandwich estimator for the standard
errors, since the information matrix will be wrong.

5.1 Zero Inflation Poisson Model

In the Zero Inflation Poisson (ZIP) model, we have:

P (pi = 1) =
exp(z′iα)

1 + exp(z′iα)

yi

{
0 if pi = 0
Poisson(λi) if pi = 1

Note that the Poisson model is not nested in the ZIP model, since that would
require α = ±∞. To choose between the two models, we use the Vuong Statistic.
To do this, we find the log likelihoods of the two models for each individual (???)
and compute:

ai = log Li0 − log Li1 = log(f0(yi|xi, θ0)/f1(yi|xi, θ1))

V =
a

sa/
√

n

Under some conditions, V is normally distributed. Therefore, if V > 1.96, we
choose model 0, if V < −1.96, we choose model 1, and otherwise the models are
not significantly different.

5.2 Panel Data

The conditional Poisson, based on
∑

Yi, is identical to the unconditional (brute
force) Poisson, so there is no incidental parameters problem using fixed effects.

39



For random effects, using heterogeneity with a gamma distribution allows for
estimation with the negative binomial. One can also use normally distributed
heterogeneity, but estimation is more complicated.

6 Duration/Survival Models

Suppose we observe either the time until an event occurred, T , or that an event
has not happened yet. In this case T is the random variable, with density f(t),
cdf F (t), and a survival function, S(t) = 1− F (t). For small ∆ > 0, define:

h(t) = P (T ∈ [t, t + ∆]|T > t)

=
F (t + ∆)− F (t)

1− F (t)

lim
∆→0

h(t) = λ(t) =
f(t)
S(t)

We called λ(t) the hazard function. Then

λ(t) =
f(t)
S(t)

= − d

dt
log(S(t))

F (t) = 1− exp(−
∫ t

0

λ(s)ds)

dF

dt
= λ(t) exp(−

∫ t

0

λ(s)ds)

for any F ().
If λ(t) = λ is constant, then duration does not matter, and we have the

exponential model :

S(t) = exp(−λt)
F (t) = 1− exp(−λt)
f(t) = λ exp(−λt)

Otherwise, we have duration dependence in survival (for example, negative du-
ration dependence means that the longer that it has been before the event has
happened, the longer we expect to wait). One model with duration dependence
is the Weibull distribution, where λ(t) = λp(λt)p−1 (the exponential is a special
case with p = 1). Other distributions include the log-logistic, the log-normal,
and the Gompertz distributions.

If the event has not occurred yet, then we have censoring. We may transform
this into an analog of the Tobit model.

In a split population model, the event (usually failure, in this case) may never
occur; this is a latent class model.

In an accelerated failure model, a set of covariates modeifes the hazard func-
tion. In the Weibull case, we have:

λ(t|x) = exp(x′β)p(exp(x′β)t)p−1
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More generally, in the proportional hazards model, we have λ(t|x) = g(x)λ(t),
so all the hazard functions are proportional to some baseline. We estimate this
with maximum likelihood:

g(t|x) = (
f(t|x)
S(t|x)

)1(not censored)S(t|x) = (λ(t|x))1(not censored)S(t|x)

log L =
n∑

i=1

1(not censored) log λ(ti|xi) + log S(ti|xi)

It is possible that x is observed multiple times between the starting time and
the event (so that a different number might be observed for each individual).
To use such data, one might create an observation for each time x is observed
and make the new observations censored if failure did not occur before x was
observed again.

If there is unobserved heterogeneity, then we may have λ(t|x, u) = uλ(t|x).
In the case of Weibull proportional hazards, we have λ(t|x, ε) = exp(x′β) exp(ε)λ(t).
If exp(ε) Gamma, then there is a closed form for f(t|x). In other cases, hetero-
geneity may be estimated numerically.

7 Sample Selection

7.1 Linear Models

Suppose we have a regression model, y∗ = X ′β + ε, and d∗ = Z ′γ + u, where
y = y∗ is observed if d∗ > 0 and y is not observed otherwise. We assume that
we observe X, Z for all individuals. Then,

E(y∗|X, d = 1) = X ′β + E(ε|X, d = 1) = X ′β + E(ε|X, u > −Z ′γ)

This shows that sample selection is a problem if the error term in the regression
equation is correlated with the error term in the selection model. Note that
X and Z may contain some or all of the same variables. Assuming that the
probability of sample selection is non-linear, everything is still identified, even
if the two sets of variables are identical. This selection is not based on the value
of y and is therefore called incidental truncation.

A special case is Heckman’s Model, where (εi, ui) ∼ Normal(0,

(
σ2 0
0 1

)(
1 ρ
ρ 1

)
).

In this case, E(y∗i |xi, di = 1) = x′iβ + ρσ
φ(z′iγ)
Φ(z′iγ) , and the second term would be

an omitted variable in the original model, unless ρ = 0.
We may estimate Heckman’s Model using two-step-least-squares:

• Estimate the probit model, d∗i = z′iγ + ui, di = 1(d∗i > 0). Based on the
estimates, create λ̂i = φ(z′iγ̂)/Φ(z′iγ̂). This is called Heckman’s λ.

• Regress Y on X, λ̂.

• Fix the standard errors to account for the fact that λ̂ had to be estimated.
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• One may also estimate ρ and σ based on the coefficient λ̂ in the second
step and on the residual variance.

Though this method is easy to understand, the two-step nature makes it ineffi-
cient. As before, X and Z may overlap, since λ is a non-linear function of Z.
However, if they are identical, λ̂i and X will be highly correlated.

Full information maximum likelihood (FIML) is the efficient method of es-
timating sample selection models. For this, we compute:

log L =
∑
d=0

log Φ(−z′iγ)+
∑
d=1

log

(
1

σ
√

2π
exp

(
(yi − x′iβ)2

2σ2

)
Φ

(
z′iγ + ρ(yi − x′iβ)/σ√

1− ρ2

))

This is an efficient estimator. To simplify this expression, we may use the Olsen
reparameterization:

θ =
1
σ

δ = −β

σ

τ =
ρ√

1− ρ2

In this case, the inverse Mills ratio is irrelevant (only the conditional mean, not
the likelihood, depends on it).

To extend this to panel data, we may run a random effects probit (with effect
variance η) combined with a fixed effects regression. In this case, the marginal
likelihood is:

log L =
∫ ∞

−∞

∫ ∞

−∞

Ti∏
t=1

Φ

(2dit − 1)
z′itγ + ∆it + ui1 + diui2√

σ2
η(1− ditρ2)

 f(ui1, ui2)dui1dui2

where ui1, ui2 are the error terms in the two equations and ∆it = ρ
σε

dit((yit −
yi)+(xit−xi)′β). We may also use the Mundlak method to fix the assumptions
of the random effects probit, use a similar method to add random parameters,
or use two-step methods.

This may also be used for a treatment effects model, where individual are
assigned to treatment groups based on d∗i = z′iγ + ui and we then observe
y∗i = x′iβ + δdi + εi, but di is endogenous. In this case, we have:

E(y∗i |xi, di = 1) = x′iβ + ρσ
φ(z′iγ)
Φ(z′iγ)

E(y∗i |xi, di = 0) = x′iβ + ρσ
−φ(z′iγ)
Φ(z′iγ)

and a similar procedure (but where everyone is observed) can be used.
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This may also be used for binary data, where we observe pairs of decisions.
In this case, we have the model:

d∗i = z′iγ + ui

di = 1(d∗i > 0)
y∗i = x′iβ + εi

yi = 1(y∗i > 0)

7.2 Survival Analysis

Suppose we have the proportional hazard function, λ(t, x|d = 1) = h(t)f(x′β +
ε), with the sample selection model d∗ = z′γ + u with selection if d∗ > 0.
Suppose (u, ε) Normal with correlation ρ. We only observe T if d∗ > 0.

In general, we need not assume normality. However, we must know the
distribution of ui|εi.

Because of the relationship between the random component in the selection
model and the random component in the hazard function, the hazard function
differs depending on whether an individual was selected or not. This is an
omitted variable problem.

This model of sample selection will not allow selection to change the sign of
the Weibull model’s duration dependence.

8 Stochastic Frontiers Models

Suppose that production of Y depends on two inputs, X1 and X2. The producer
might not be efficient (based on the isoquant); production might be require only
θ(X1, X2) for the same amount. Alternatively, the ratio of the inputs might not
be efficient either (since the production should be at the tangent of an isocost
curve and an isoquant). So the cost might only need to be αXA. This is
allocative inefficiency.

Definition The technical efficiency of an amount of output and inputs is given
by:

TE(y, x) = min{θ : θx ∈ L(y)}

where L(y) is the isoquant of y. Note that TE(y, x) ≤ 1.

We model production in the ith firm by:

yi = f(xi, β)TEi

ln yi = ln f(xi, β)− ui

Because technical efficiency is constrained to be less than one, we must have
ui > 0. Thus, this is not a regression. We could add a constant term (equal to
E(ui)) so that we may assume a disturbance with a zero mean. Alternatively,
we could model one-sided residuals using either a specific distribution (such as

43



gamma or half-normal) or using Data Envelopment Analysis (which uses linear
programming to find a hull that encompasses all the points).

In a stochastic frontier model, the frontier is also randomly determined; it is
not just determined by efficiency. (For example, mismeasurement of quality or
human capital may cause some randomness.) That is,

yi = f(xi)TEi exp(vi)

where the frontier is f(xi) exp(vi). We have vi Normal and ui ≥ 0 as before.
Thus, vi − ui is non-normal and has a non-zero mean. Assuming a symmetric
distribution for vi, then the skewness shows the importance of ui in determining
production.

OLS estimation will be unbiased and consistent for the slope parameters,
but the constant will be biased.

For maximum likelihood estimation, we have

log L = −N lnσ − constant +
N∑

i=1

lnΦ(−εiλ

σ
+

1
2
(
εi

σ
)2)

εt = α + β′xt − ln yi

λ =
σu

σv

If λ > 1, then the inefficiency is a more important factor than the noise. Then,

E(ui|εi, data) = (
σλ

1 + λ2
)

zi = −εiλ

σ

We may also think in terms of a cost function:

C(y, w) = min(w′x : f(x) ≥ y)

Then, we have Ci = 1
TEi

e−vic(wi).
To apply this to panel data, we must consider whether ui is a fixed or random

effect and whether it depends on t.

9 Computational Methods

Sometimes, one wants to impose restrictions on the parameters in a likelihood
equation. One method is to ignore the restriction and optimize, and then move
any parameters back to the boundary if needed. Alternatively, one may repara-
meterize in a way so that the new parameter is unrestricted. For example, if we
must have −1 < ρ < 1, then θ = ln( 1+ρ

1−ρ ) may take on any value while keeping
ρ in the correct interval. We then use the chain rule for derivatives to find the
first order conditions.
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9.1 Generating Random Numbers

Suppose a random variable X has CDF F . If U is a random variable with
a Uniform(0, 1) distribution, then X = F−1(U) has the desired distribution.
Thus, it is sufficient to be able to generate uniform random numbers.

Computer-generated uniform random numbers are a Markov chain, which
means that they can be replicated. Basically, they begin with a large odd
number and then use modular arithmetic on the unit interval.

In quasi-Monte Carlo integration, we take advantage of the fact that it is
more important to cover the interval of interest than the have true randomness.
In this case, the draws are not random (or are less random), so we need fewer
of them.

9.2 Method of Krinsky and Robb

Suppose we have β̂ Normal(β, Σ) (we might use an estimate, Σ̂, instead). Sup-
pose we wish to compute the mean and variance of g(β̂). We may then take a
sample of size R from this distribution, compute g(β̂r) for each r = 1, ..., R, and
compute the mean and variance of these.

To take this sample:

1. Compute the Cholesky decomposition of Σ̂: Σ̂ = QQ′.

2. Draw standard normal random numbers, vr.

3. Set β̂r = β̂ + Qv.

This also allows a more detailed look at the distribution of g(β̂). (By the
Slutsky Theorem, it is approximately normal.)

9.3 Metropolis-Hastings Algorithm

• Suppose we wish to sample from p(βi|b, Γ) ∝ L(data|βi)g(βi|b, Γ).

• Let βi0 be the previous draw, Γ the diagonal matrix of standard devia-
tions, and σ the tuning constant that controls the acceptance rate. Draw
vr Normal(0, Ik) and set dr = σΓvr.

• Compute the new trial value, β̃i1 = βi0+dr. Compute R = p(β̃i1|b, Γ)/p(βi0|b, Γ).

• Draw a U Uniform(0, 1). If U < R, then set βi1 = β̃i1. Otherwise, set
βi1 = βi0.

9.4 Gibbs sampling algorithm

• Suppose we wish to sample from f(x1, x2), and we know f(x1|x2) and
f(x2|x1).

• Choose any x10 in the range of X1.
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• Draw x2,n f(x2|x1,n).

• Draw x1,n+1 f(x1|x2,n).

The initial draws should be thrown out, because they depend on the initial
choice. These are called the “burn-in” period.

9.5 Optimization Algorithms

Most optimization algorithms are iterative, with θ(k+1) = θ(k) + Update(k).
In derivative-based methods, the update is a function of the gradient of the
function, g(k), which points in the direction of a better solution; often, the
Hessian, H(k), is also required. Some particular methods include:

• Steepest Ascent: Update(k) = − g(k)T g(k)

g(k)T H(k)g(k) g
(k). This is a slow method.

• Newton-Raphson Method: Update(k) = −(H(k))−1g(k).

• Method of Scoring: Update(k) = −(E(H(k)))−1g(k). (May be computa-
tionally easier than Newton-Raphson, but may also be slower.)

• BHHH Method for the MLE: Update(k) = −(
∑n

i=1 g
(k)
i g

(k)T
i )−1g(k).

• Line Search Methods: Multiply each step by some scalar λ(k) (called the
step size) to get larger improvements (by moving a different length in the
same direction). Particular methods include:

– Squeezing: Set λ(k) equal to decreasing powers of 2 until the improve-
ments stop growing.

– Golden Section: Use λ(k−1) and interpolate to find the next step size.

• Quasi-Newton Methods: We may multiply the gradient by other weight-
ing matrices. For example, in the Davidon-Fletcher-Powell method, we
multiply by W (k) = W (k−1) + a(k−1)a(k−1)T . (WHAT IS a?)

We must also decide when the iterations have converged. Two common stopping
criteria are (1) testing how close the derivatives are to zero and (2) testing the
absolute change in the parameters. Both of these methods depend on the scales
of the variables, which can cause problems (if estimates are very large or very
small). A scale-free test can be based on ∆ = g(k)T (H(k))−1g(k).

9.6 Maximum Simulated Likelihood

Often, it is easier to write a likelihood conditional on unknown variables (such
as group effects). However, we wish to maximize the unconditional likelihood.
To do this, we must integrate over all possible values of the unknown vari-
ables, assuming they are normally distributed; that is, we calculate log L(β) =
E(log L(β|v)) =

∫∞
−∞ log L(β|v)e−v2

dv. In most cases, this must be done nu-
merically.
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9.6.1 Gauss-Hermite Quadrature

We estimate
∫∞
−∞ e−v2

g(v)dv ≈
∑H

h=1 whg(ah), where the wh are the Hermite
weights and the ah are the Hermite nodes; H determines how good the approx-
imation is. We then maximize this sum.

For panel data econometrics, we wish to evaluate:

log L =
1√
π

N∑
i=1

log
∫ ∞

−∞
g(
√

2u) exp(−u2)du

Then, we may use Hermite quadrature, to estimate:

log L ≈ 1√
π

N∑
i=1

log
H∑

h=1

whg(
√

2zh)

. This reduces the integral to a sum, which is possible to maximize numerically.

9.6.2 Integration by Simulation (Monte Carlo Integration)

We may estimate E(g(v)) by sampling from the distribution of v, so that
E(g(v)) ≈ 1

R

∑R
i=1 g(vi). The same v1, ..., vR can be used to maximize over

all the parameters and must also be used to compute the derivatives, so that
the standard errors are correct. Note that non-random but properly chosen
v1, ..., vR may make the estimates converge faster.

More generally, suppose we wish to evaluate:

log L =
N∑

i=1

log
∫ ∞

−∞
f(v)g(v)dv

where v has density g(v). Then, we may draw R independent random numbers
from the distribution of v, compute f(v) for each draw, and then take the
average. This gives:

log L ≈
N∑

i=1

log
1
R

R∑
j=1

f(vr)

We may then maximize the sum with respect to the parameters, holding the
draws fixed. (Note that we need a few hundred draws for each individual, but
fewer if the draws are not random but chosen properly.) The same draws must
be used to calculate standard errors and anything else as well.

9.7 EM Algorithm

The EM algorithm is applied in cases where there is missing data (which includes
unknown intermediate parameters, like class membership). It has two steps
which alternate:
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• Expectation: Compute an expected log likelihood (across the missing
data) given the data and the previous estimates for the parameters.

• Maximization: Maximize the expected log likelihood by adjusting the pa-
rameter values.
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