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Summary (answers to his potential exam questions)
By Rebecca Sela

1 Sufficient statistic theorem (1)
Let X1, ...,Xn be a sample from the distribution f(x, θ). Let T (X1, ...,Xn) be
a sufficient statistic for θ with continuous factor function F (T (X1, ...,Xn), θ).
Then,

P ( �X ∈ A|T ( �X) = t) = lim
h→0

P ( �X ∈ A|
¯̄̄
(T ( �X)− t

¯̄̄
≤ h)

= lim
h→0

P ( �X ∈ A,
¯̄̄
(T ( �X)− t

¯̄̄
≤ h)/h

P (
¯̄̄
T ( �X)− t

¯̄̄
≤ h)/h

=
d
dtP (

�X ∈ A, T ( �X) ≤ t)
d
dtP (T (

�X) ≤ t)

Consider first the numerator:

d

dt
P ( �X ∈ A,T ( �X) ≤ t) =

d

dt

Z
A∩{�x:T (�x)=t}

f(x1, θ)...f(xn, θ)dx1...dxn

=
d

dt

Z
A∩{�x:T (�x)=t}

F (T (�x), θ), h(�x)dx1...dxn

= lim
h→0

1

h

Z
A∩{�x:|T (�x)−t|≤h}

F (T (�x), θ), h(�x)dx1...dxn

Since mins∈[t,t+h] F (s, θ) ≤ F (t, θ) ≤ maxs∈[t,t+h] on the interval [t, t + h],
we find:

lim
h→0

( min
s∈[t,t+h]

F (s, θ))
1

h

Z
A∩{�x:kT (�x)−tk≤h}

h(�x)d�x ≤ lim
h→0

1

h

Z
A∩{�x:kT (�x)−tk≤h}

F (T (�x), θ)h(�x)d�x

≤ lim
h→0

( max
s∈[t,t+h]

F (s, θ))
1

h

Z
A∩{�x:kT (�x)−tk≤h}

h(�x)d�x

By the continuity of F (t, θ), limh→0(mins∈[t,t+h] F (s, θ)) 1h
R
A∩{�x:kT (�x)−tk≤h} h(�x)d�x =

limh→0(maxs∈[t,t+h] F (s, θ)) 1h
R
A∩{�x:kT (�x)−tk≤h} h(�x)d�x = F (t, θ). Thus,

lim
h→0

1

h

Z
A∩{�x:|T (�x)−t|≤h}

F (T (�x), θ), h(�x)dx1...dxn = F (t, θ) lim
h→0

1

h

Z
A∩{�x:|T (�x)−t|≤h}

h(�x)d�x

= F (t, θ)
d

dt

Z
A∩{�x:T (�x)≤t}

h(�x)d�x
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If we let A be all of Rn, then we have the case of the denominator. Thus,
we find:

P ( �X ∈ A|T ( �X) = t) =
F (t, θ) ddt

R
A∩{�x:T (�x)≤t} h(�x)d�x

F (t, θ) ddt
R
{�x:T (�x)≤t} h(�x)d�x

=

d
dt

R
A∩{�x:T (�x)≤t} h(�x)d�x

d
dt

R
{�x:T (�x)≤t} h(�x)d�x

which is not a function of θ.
Thus, P ( �X ∈ A|T ( �X) = t) does not depend on θ when T ( �X) is a sufficient

statistic.

2 Examples of sufficient statistics (2)

2.1 Uniform

Suppose f(x, θ) = 1
θ I(0,θ)(x). Then,

Y
f(xi, θ) =

1

θn
Y

I(0,θ)(Xi)

=
1

θn
I(−∞,θ)(maxXi)I(0,∞)(minXi)

Let F (maxXi, θ) =
1
θn I(−∞,θ)(maxXi) and h(X1, ...,Xn) = I(0,∞)(minXi).

This is a factorization of
Y

f(xi, θ), so maxXi is a sufficient statistic for the
uniform distribution.

2.2 Binomial

Suppose f(x, θ) = θxi(1 − θ)1−xi , x = 0, 1. Then,
Y

f(xi, θ) = θ
P

xi(1 −
θ)n−

P
xi . Let T (x1, ..., xn) =

X
Xi, F (t, θ) = θt(1−θ)n−t, and h(x1, ..., xn) =

1. This is a factorization of
Y

f(xi, θ), which shows that T (x1, ..., xn) =
X

Xi

is a sufficient statistic.

2.3 Normal

Suppose f(x, µ, σ2) = 1√
2πσ2

e−
1

2σ2
(x−µ)2 . Then,

Y
f(xi, µ, σ

2) = (2πσ2)−n/2e−
1

2σ2

P
(xi−µ)2

= (2πσ2)−n/2e−
1

2σ2

P
(xi−x̄)2e−

1
2σ2

n(x̄−µ)2
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since

X
(xi − x̄)2 + n(x̄− µ) =

X
(xi − 2xix̄+ x̄2) + n(x̄2 − 2µx̄+ µ2)

=
X

x2i − 2x̄(nx̄) + nx̄2 + nx̄2 − 2nµx̄+ nµ2

=
X

x2i − 2µ
X

xi + nµ2

=
X
(x2i − 2µxi + µ2)

=
X
(xi − µ)2

Case 1: σ2 unknown, µ known.
Let T (x1, ..., xn) =

P
(xi−µ)2, F (t, σ2) = (2πσ2)−n/2e− 1

2σ2
t, and h(x1, ..., xn) =

1. This is a factorization of
Q

f(xi, σ
2).

Case 2: σ2 known, µ unknown.
Let T (x1, ...xn) = x̄, F (t, µ) = e−

1
2σ2

n(x̄−µ)2 , and h(x1, ...xn) = (2πσ2)−n/2e−
1

2σ2

P
(xi−x̄)2 .

This is a factorization of
Q

f(xi, µ).
Case 3: µ unknown, σ2 unknown.
Let T1(x1, ...xn) = x̄, T2(x1, ...xn) =

P
(xi−x̄)2, F (t1, t2, µ, σ2) = (2πσ2)−n/2e−

1
2σ2

t2e−
1

2σ2
n(t1−µ)2 ,

and h(x1, ..., xn) = 1. This is a factorization.

3 Rao-Blackwell Theorem (3)
LetX1, ...,Xn be a sample from the distribution f(x, θ). Let Y = Y (X1, ...,Xn)
be an unbiased estimator of θ. Let T = T (X1, ...,Xn) be a sufficient statistics
for θ. Let ϕ(t) = E(Y |T = t).

Lemma 1 E(E(g(Y )|T )) = E(g(Y )), for all functions g.

Proof.

E(E(g(Y )|T )) =

Z ∞
−∞

E(g(Y )|T )f(t)dt

=

Z ∞
−∞
(

Z ∞
−∞

g(y)f(y|t)dy)f(t)dt

=

Z ∞
−∞

Z ∞
−∞

g(y)f(y, t)dydt

=

Z ∞
−∞

g(y)(

Z ∞
−∞

f(y, t)dt)dy

=

Z ∞
−∞

g(y)f(y)dy

= E(g(y))
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Step 1: ϕ(t) does not depend on θ.

ϕ(t) =

Z
Rn

y(x1, ..., xn)f(x1, ..., xn|T (x1, ..., xn) = t)dx1...dxn.

Since T (x1, ..., xn) is a sufficient statistic, f(x1, ..., xn|T (x1, ..., xn) does not
depend on θ. Since y(x1, ..., xn) is an estimator, it is not a function of θ. Thus,
the integral of their product over Rn does not depend on θ.
Step 2: ϕ(t) is unbiased.

E(ϕ(t)) = E(E(Y |T ))
= E(Y )

= θ (1)

by the lemma above.
Step 3: V ar(ϕ(t)) ≤ V ar(Y )

V ar(ϕ(T )) = E(E(Y |T )2)−E(E(Y |T ))2
≤ E(E(Y 2|T ))−E(Y )2

= E(Y 2)−E(Y )2

= V ar(Y )

Thus, conditioning an unbiased estimator on the sufficient statistic gives a
new unbiased estimator with variance at most that of the old estimator.

4 Some properties of the derivative of the log
(4)

Let X have the distribution function f(x, θ0). Let Y = ∂
∂θ log f(X, θ)|θ=θ0 .

Notice that, by the chain rule, ∂
∂θ log f(x, θ) =

1
f(x,θ) (

∂
∂θf(x, θ)). Using this
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fact, we find:

E(Y ) = E(
∂

∂θ
log f(X, θ)|θ=θ0)

=

Z ∞
−∞

∂

∂θ
log f(X, θ)|θ=θ0f(X, θ0)dX

=

Z ∞
−∞

1

f(x, θ0)
(
∂

∂θ
f(x, θ)|θ=θ0)f(X, θ0)dX

=

Z ∞
−∞

∂

∂θ
f(x, θ)|θ=θ0dX

=
∂

∂θ
(

Z ∞
−∞

f(x, θ)dX)|θ=θ0

=
∂

∂θ
(1)|θ=θ0

= 0

∂2

∂θ2
log f(x, θ) =

∂

∂θ
(

1

f(x, θ)
(
∂

∂θ
f(x, θ)))

=
1

f(x, θ)2
(f(x, θ)

∂2

∂θ2
f(x, θ)− ( ∂

∂θ
f(x, θ))2)

=
1

f(x, θ)

∂2

∂θ2
f(x, θ)− ( 1

f(x, θ)

∂

∂θ
f(x, θ))2

=
1

f(x, θ)

∂2

∂θ2
f(x, θ)− ( ∂

∂θ
log f(x, θ))2

E(
∂2

∂θ2
log f(x, θ)|θ=θ0) =

Z ∞
−∞

1

f(x, θ)

∂2

∂θ2
f(x, θ)|θ=θ0 − (

∂

∂θ
log f(x, θ)|θ=θ0)2dx

=

Z ∞
−∞

1

f(x, θ)

∂2

∂θ2
f(x, θ)|θ=θ0dx−

Z ∞
−∞
(
∂

∂θ
log f(x, θ)|θ=θ0)2dx

=
∂2

∂θ2
(

Z ∞
−∞

1

f(x, θ)
f(x, θ)dx)|θ=θ0 −E((

∂

∂θ
log f(x, θ)|θ=θ0)2)

=
∂2

∂θ2
(1)|θ=θ0 −E((

∂

∂θ
log f(x, θ)|θ=θ0)2)

= −E(( ∂
∂θ
log f(x, θ)|θ=θ0)2)

Thus, the expected value of Y is zero, and the variance of Y is−E( ∂2
∂θ2

log f(x, θ)|θ=θ0),
which is defined as the information function, I(θ).
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5 The Cramer-Rao lower bound (5)

Let T be an unbiased estimator based on a sample �X, from the distribution
f(x, θ). Then, E(T ) = θ. We take the derivative of this equation to find:

1 =
∂

∂θ
E(T ) (2)

=
∂

∂θ

Z
Rn

T (�x)f(�x, θ)d�x (3)

=

Z
Rn

T (�x)
∂

∂θ
f(�x, θ)d�x (4)

=

Z
Rn

T (�x)(
∂

∂θ
log f(�x, θ))f(�x, θ)d�x (5)

= E(T ( �X)
∂

∂θ
log f( �X, θ)) (6)

= E(T ( �X)
∂

∂θ
log f( �X, θ))− cE(

∂

∂θ
log f( �X, θ)) (7)

= E((T ( �X)− c)
∂

∂θ
log f( �X, θ)) (8)

= E((T ( �X)− θ)
∂

∂θ
log f( �X, θ)) (9)

By the Cauchy-Schwartz Inequality, E(AB)2 ≤ E(A2)E(B2). Squaring
both sides of the equation above and applying this, we find:

1 = E((T ( �X)− θ)
∂

∂θ
log f( �X, θ))2

≤ E((T ( �X)− θ)2)E((
∂

∂θ
log f( �X, θ))2)

= V ar(T )E((
∂

∂θ
log f( �X, θ))2)

Since the sample is independent and identically distributed,

(
∂

∂θ
log(f( �X, θ)))2 = (

∂

∂θ
log(

nY
i=1

f(xi, θ)))
2

= (
∂

∂θ

nX
i=1

log f(xi, θ))
2

= (
nX
i=1

∂

∂θ
log f(xi, θ))

2

6



E((
nX
i=1

∂

∂θ
log f(xi, θ))

2) = V ar(
nX
i=1

∂

∂θ
log f(xi, θ))

=
nX
i=1

V ar(
∂

∂θ
log f(xi, θ))

= n · V ar( ∂
∂θ
log f(xi, θ))

= n ·E(( ∂
∂θ
log f(xi, θ))

2)

= nI(θ)

Thus, 1 ≤ V ar(T )(nI(θ)) and the variance of an unbiased estimator is at
least 1

nI(θ) .

6 Where the Cramer-Rao lower bound fails to
hold (6)

Let X be distributed uniform on (0, θ). That is, f(x, θ) = 1
θ I(0,θ)(x). Let

Y = maxXi. Then,

P (Y ≤ y) = P (X1, ...Xn ≤ y)I(0,θ)(y)

= (
Y

P (Xi ≤ y))I(0,θ)(y) (10)

= (
Y y

θ
)I(0,θ)(y) (11)

=
yn

θn
I(0,θ)(y) (12)

f(y) =
d

dy
P (Y ≤ y)

= n
yn−1

θn
I(0,θ)(y)

E(Y ) =

Z ∞
−∞

yf(y)dy

=

Z θ

0

n
yn

θn
dy

=
n

n+ 1
θ
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E(Y 2) =

Z ∞
−∞

y2f(y)dy

=

Z θ

0

n
yn+1

θn
dy

=
n

n+ 2
θ2

V ar(Y ) = E(Y 2)−E(Y )2

=
n

n+ 2
θ2 − ( n

n+ 1
θ)2

= θ2
n3 + 2n2 + n− n3 − 2n2

(n+ 2)(n+ 1)2

= θ2
n

(n+ 2)(n+ 1)2

Since E(Y ) = n
n+1θ, E(

n+1
n Y ) = θ, and n+1

n maxXi is an unbiased estimator
of θ. The variance of this estimator is given by

V ar(
n+ 1

n
Y ) = θ2

n

(n+ 2)(n+ 1)2
(
n+ 1

n
)2

= θ2
1

n(n+ 2)

which is of order 1
n2 (and would therefore violate the Cramer-Rao lower bound

if it applied).

7 Maximum likelihood estimators for various dis-
tributions (7)

7.1 Normal
nY
i=1

f(xi, µ, σ
2) = (

1

2πσ2
)n/2e−

1
2σ2

Pn
i=1(xi−µ)2

log f(x1, ..., xn, µ, σ
2) = −n

2
log(2πσ2)− 1

2σ2

nX
i=1

(xi − µ)2

∂

∂µ
log f(x1, ..., xn, µ, σ

2) = − 1
σ2

nX
i=1

(xi − µ)

= − n

σ2
(x̄− µ)
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∂

∂σ2
log f(x1, ..., xn, µ, σ

2) = − n

2σ2
+

1

2(σ2)2

nX
i=1

(xi − µ)2

= − 1

2(σ2)2
(
nX
i=1

(xi − µ)2 − nσ2)

If µ is unknown, then we set ∂
∂µ log f(x1, ..., xn, µ, σ

2) = 0 to find that x̄ is
the maximum likelihood estimator of µ.
If σ2 is unknown and µ is known, then we set ∂

∂σ2 log f(x1, ..., xn, µ, σ
2) = 0

and solve to find that the maximum likelihood estimator of σ2 is 1n
Pn

i=1(xi−µ)2.
If both µ and σ2 are unknown, then we estimate µ using its maximum

likelihood estimator x̄ (which does not depend on σ2). We use this estimate
of µ to maximize with respect to σ2 and find that the maximum likelihood
estimator of σ2 is 1

n

Pn
i=1(xi − x̄)2.

7.2 Bernoulli

f(x, θ) = θx(1− θ)1−x, x = 0, 1

f(x1, ..., xn, θ) = θ
P

xi(1− θ)n−
P

xi

log f(x1, ..., xn, θ) = (
X

xi) log θ + (n−
X

xi) log(1− θ)

∂

∂θ
log f(x1, ..., xn, θ) =

P
xi
θ
− n−Pxi

1− θ

=
(1− θ)

P
xi − θ(n−Pxi)

θ(1− θ)

=
θ − x̄

nθ(1− θ)

Setting the derivative equal to zero, we find that the maximum likelihood
estimator of θ is X̄.

7.3 Poisson

f(x, θ) =
1

x!
θxe−θ, x = 0, 1, 2, ...

f(x1, ..., xn, θ) = e−nθθ
P

xi(
Y 1

xi!
)

log f(x1, ..., xn, θ) = −nθ +
X

xi log θ −
X

log(xi!)
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∂

∂θ
log f(x1, ..., xn, θ) = −n+ 1

θ

X
xi

=
n

θ
(x̄− θ)

Thus, the maximum likelihood estimator of θ is x̄.

7.4 Uniform

f(x, θ) =
1

θ
I(0,θ)(x)

f(x1, ..., xn, θ) =
1

θn

nY
i=1

I(0,θ)(xi)

=
1

θn
I(0,θ)(maxxi)

Since 1
θn is strictly decreasing, we maximize it by choosing the smallest θ

such that maxXi ≤ θ. That is, the maximum likelihood estimator of θ is
maxXi.

7.5 Gamma (with β unknown)

f(x, α, β) =
1

βαΓ(α)
xα−1e−x/β

f(x1, ..., xn, α, β) = (
1

βαΓ(α)
)n(

nY
i=1

xi)
α−1e−

1
β

P
xi

log f(x1, ..., xn, θ) = −nα log β − n logΓ(α) + (α− 1)
X

log xi −
P

xi
β

∂

∂θ
log f(x1, ..., xn, θ) = −nα

β
+
1

β2

X
xi

=
1

β2
(
X

xi − nαβ)

The derivative is 0 for β = x̄
α . Thus, x̄/α is the maximum likelihood

estimator.
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8 The likelihood equation will have a solution
(8)

Let x1, ..., xn be a sample from the distribution f(x, θ0). By the Law of
Large Numbers, the sequence { 1n

Pn
i=1 Yi} converges to E(Y i) with proba-

bility 1. In particular, the sequence { 1n
Pn

i=1
∂
∂θ log f(xi, θ)|θ=θ0} converges

to E( ∂∂θ log f(x, θ)|θ=θ0) = 0, and the sequence { 1n
Pn

i=1
∂2

∂θ2
log f(xi, θ)|θ=θ0}

converges to E( ∂
2

∂θ2
log f(x, θ)|θ=θ0) = −I(θ), with probability 1. Let gn(θ) =

1
n

Pn
i=1

∂
∂θ log f(xi, θ). Then, limn−→∞ gn(θ0) = 0 and limn→∞ g0n(θ0) = −I(θ0) 6=

0.
Let ε > 0 be given. By the Taylor expansion,

gn(θ) ≈ gn(θ0) + g0n(θ0)(θ − θ0), |θ − θ0| < ε

For sufficiently large n, then,

gn(θ) = −I(θ0)(θ − θ0)

1

θ − θ0
g0n(θ0) = −I(θ0)

Since −I(θ0) < 0 in the interval (θ0− ε, θ0+ ε) while θ− θ0 is both positive
and negative in that interval, gn(θ) must change sign in this interval as well.
Since gn(θ) is continuous, this means 1

n

Pn
i=1

∂
∂θ log f(xi, θ) = gn(θ) = 0 in

this interval, and the likelihood equation has a solution in (θ − ε, θ + ε) with
probability one for large n.

9 The limiting distribution of the maximum like-
lihood estimators (9)

Let x1, ..., xn be a sample from the distribution f(x, θ0). Recall thatE( ∂∂θ log f(x, θ)|θ=θ0 =
0) and that V ar( ∂∂θ log f(x, θ)|θ=θ0) = E(( ∂∂θ log f(xi, θ)|θ=θ0)2) = I(θ0). Thus,
by the Central Limit Theorem, 1√

n

Pn
i=1

∂
∂θ log f(xi, θ)|θ=θ0 has a normal limit-

ing distribution with mean 0 and variance I(θ0). By the Law of Large Numbers,
since E( ∂

2

∂θ2
log f(x, θ)|θ=θ0) = −I(θ0), limn→∞ 1

n

Pn
i−1

∂2

∂θ2
log f(x, θ)|θ=θ0 =

−I(θ0) with probability one.
Consider 1√

n

Pn
i=1

∂
∂θ log f(xi, θ). Using the Taylor expansion about θ0, we

find:

1√
n

nX
i=1

∂

∂θ
log f(xi, θ) ≈ 1√

n

nX
i=1

∂

∂θ
log f(xi, θ)|θ=θ0+

1√
n

nX
i=1

∂2

∂θ2
log f(xi, θ)|θ=θ0(θ−θ0)
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in a neighborhood of θ0. For large n, there is a solution to the likelihood
equation in this neighborhood with probability one. Let θ̂n be this solution.
Then, we have:

0 =
1√
n

nX
i=1

∂

∂θ
log f(xi, θ)|θ=θ̂n

≈ 1√
n

nX
i=1

∂

∂θ
log f(xi, θ)|θ=θ0 +

√
n(θ̂n − θ0)(

1

n

nX
i=1

∂2

∂θ2
log f(xi, θ)|θ=θ0)

Substituting in the limit, for limn→∞ 1
n

Pn
i−1

∂2

∂θ2
log f(x, θ)|θ=θ0 = −I(θ0)

and solving for
√
n(θ̂n − θ0), we find:

√
n(θ̂n − θ0) ≈ 1

I(θ0)
(
1√
n

nX
i=1

∂

∂θ
log f(xi, θ)|θ=θ0)

The right hand side is the product of 1
I(θ0)

and a normal variable with mean
0 and variance I(θ0); that is, a normal variable with mean 0 and variance
1

I(θ0)2
I(θ0) =

1
I(θ0)2

. Thus,
√
n(θ̂n − θ0)˜N(0,

1
I(θ0)

).

10 Confidence Intervals for Various Distributions
(10)

10.1 Normal, σ2 known:

Let X˜Normal(µ, σ2), with σ2 known. Let α < 1 be given (this is the confi-
dence level). Set Z = X−µ

σ . Then, Z˜Normal(0, 1). Choose zα/2 such that
Φ(zα/2) =

R zα/2
−∞ φ(z)dz = 1− α

2 . Then, by symmetry:

1− α = P (−zα/2 ≤ Z ≤ zα/2)

= P (−zα/2 ≤ X − µ

σ
≤ zα/2)

= P (−σzα/2 ≤ X − µ ≤ σzα/2)

= P (X − zα/2σ ≤ µ ≤ X + zα/2σ)

and (X − zα/2σ,X + zα/2σ) is a 1− α confidence interval for µ.

If we choose a sample of size n, then X̄˜Normal(µ, σ
2

n ), and then

1− α = P (−zα/2 ≤ X − µ

σ/
√
n
≤ zα/2)

= P (X − zα/2
σ√
n
≤ µ ≤ X + zα/2

σ√
n
)

so that (X̄ − zα/2
σ√
n
, X̄ + zα/2

σ√
n
) is a 1− α confidence interval for µ.

12



10.2 Normal, σ2 unknown:

LetX1, ...,Xn be a sample from the distributionNormal(µ, σ2). Then, X̄˜Normal(µ, σ
2

n )
and s2 = 1

n−1
Pn

i=1(Xi − X̄)2 is distributed χ2 with n− 1 degrees of freedom,
so that T =

X̄−µ
σ/
√
nq

((n−1) s2
σ2
)/(n−1)

= X̄−µ
s/
√
n
has a t-distribution with n − 1 degrees

of freedom. Choose tα/2,n−1 such that P (T ≤ tα/2,n−1) = 1 − α
2 . Then, by

symmetry,

1− α = P (−tα/2,n−1 ≤ X̄ − µ

s/
√
n
≤ tα/2,n−1)

= P (X̄ − tα/2,n−1
s√
n
≤ µ ≤ X̄ + tα/2,n−1

s√
n
)

and (X̄ − tα/2,n−1 s√
n
, X̄ + tα/2,n−1 s√

n
) is a 1− α confidence interval for µ.

If n is sufficiently large, then the t-distribution with n−1 degrees of freedom
is approximately the standard normal distribution, and tα/2,n−1 ≈ zα/2.

10.3 Binomial:

If X is a Bernoulli random variable (with probability θ of success) then, by the
Central Limit Theorem, X̄ is distributed approximately normal with mean θ
and variance θ(1− θ). Since θ is unknown, we must approximate the variance.
Note that θ(1 − θ) ≤ 0.5(1 − 0.5) = 0.25 for all values of θ. Thus, 0.25 is a
conservative estimate of the variance and we may use normal confidence intervals
with this estimate of the variance.

10.4 Non-normal, large sample:

We may use the Central Limit Theorem and the fact that the maximum likeli-
hood estimator is approximately normally distributed with mean θ and variance
I(θ) to construct an approximate confidence interval using the methods above.
(We should estimate I(θ) by I(θ̂) or by some upper bound, as in the binomial
case.)

11 The sum of normals squared is chi-squared
(11)

Let X1, ...,Xn be a sample from a standard normal distribution. Consider the
cumulative distribution function of

Pn
i=1X

2
i :

13



P (
nX
i=1

X2
i ≤ y) =

Z
{x1,...xn:

P
x2i≤y}

f(x1, ..., xn, θ)dx1...dxn

=

Z
{x1,...xn:

P
x2i≤y}

(2π)−n/2e−
P

x2i dx1...dxn

Taking the derivative with respect to y, we find:

f(y) =
d

dy
P (

nX
i=1

X2
i ≤ y)

=
d

dy

Z
{x1,...xn:

P
x2i≤y}

(2π)−n/2e−
P

x2i dx1...dxn

Recall that d
dt

R
{x1,...,xn|T (x1,...,xn)=t} F (T (x1, ..., xn), θ)h(x1, ..., xn)dx1...dxn =

F (t, θ) ddt
R
{x1,...,xn|T (x1,...,xn)=t} h(x1, ..., xn)dx1...dxn. Thus, we find:

f(y) = (2π)−n/2e−y
d

dy

Z
{x1,...xn:

P
x2i≤y}

dx1...dxn

Notice that
R
{x1,...xn:

P
x2i≤y} dx1...dxn is the volume of an n-ball of radius

y, which is proportional to yn/2. Thus, d
dy

R
{x1,...xn:

P
x2i≤y} dx1...dxn is pro-

portional to n
2 y

n
2−1. Thus, f(y) is proportional to e−yy

n
2−1, which is the

Gamma(n2 , 1) = χ2n distribution. Thus,
Pn

i=1X
2
i has a chi-squared distribu-

tion with n degrees of freedom.

12 Independence of the estimated mean and stan-
dard deviation (12)

Let X1, ...Xn be a sample from a Normal(µ, σ2) distribution. Set Zi =
Xi−µ
σ .

Then, Z1, ..., Zn are distributed Normal(0, 1). Let U =
√
nZ̄ and V = (n −

1)s2 =
P
(Zi − Z̄)2. The joint distribution function of these two variables is

given by:

F (u, v) =

Z
{Zi,...Zn:√nZ̄≤u,(n−1)s2≤v}

(2π)−n/2e−
P

Z2
i dZ1...dZn

Let P be any real orthonormal matrix with first row ( 1√
n
, ..., 1√

n
); such a

matrix exists because this vector is of length one and we may apply the Gram-
Schmidt orthogonalization. Set �Y = P �Z. Then, Y1 = 1√

n

Pn
i=1 Zi = U . Since

orthogonal matrices preserve inner products,
Pn

i=1 Y
2
i =

Pn
i=1 Z

2
i , and V =Pn

i=1(Zi − Z̄)2 =
Pn

i=1 Z
2
i − nZ̄2 =

Pn
i=1 Y

2
i − Y 2

1 =
Pn

i=2 Y
2
i . Substituting

Y1, ..., Yn for Z1, ..., Zn in the joint distribution function above, we find:

14



F (u, v) =

Z
{Y1,...,Yn:Y1≤u,

Pn
i=2 Y

2
i ≤v}

(2π)−n/2e
Pn

i=1 Y
2
i dY1...dYn

= (2π)−n/2(
Z u

−∞
eY

2
1 dY1)(

Z
{Y2,...,Yn:

Pn
i=2 Y

2
i ≤v}

e
Pn

i=2 Y
2
i dY2...dYn)

Thus, we see that the density function factors, meaning that U and V are
independent. Furthermore, the factor containing U =

√
nZ is of the form of

a standard normal random variable, and the factor containing V = (n − 1)s2
is of the form of a χ2 random variable with n − 1 degrees of freedom. Since
U =

√
nZ̄ =

√
n x̄−µ

σ and V = (n − 1)s2 = P
(Xi−µ

σ − X̄−µ
σ )2 =

P
(Xi−X̄)2
σ2 =

s2x(n−1)
σ2 , we have shown that

√
n x̄−µ

σ and s2x(n−1)
σ2 are independent, with the

former normally distributed and the latter distributed chi-square.

13 The t-distribution (13)
Let X be a standard normal random variable and Y an independently distrib-
uted chi-square variable with n degrees of freedom. Let T = X√

y/n
. The T is

distributed with a t-distribution with n degrees of freedom.
If X1, ...,Xn are independently distributed normal random variables, then

X̄−µ
σ/
√
n
and (n−1)s2

σ2 are independently distributed standard normal and chi-square
with n− 1 degrees of freedom random variables respectively. Thus,

T =

X̄−µ
σ/
√
nq

1
n−1(

(n−1)s2
σ2 )

=
x̄− µ

σ/
√
n
· σ
s

r
n− 1
n− 1

=
X̄ − µ

s/
√
n

has a t-distribution with n− 1 degrees of freedom.

14 Some facts about hypothesis tests, levels of
significance, and power (14)

Let the paramter space be the disjoint union of H0 and H1. A hypothesis test
is a mapping from a sample X1, ...,Xn to the set {H0,H1}. The inverse image
of H1 is called the critical region, C. Pθ(C) = P (C|θ) is the probability of
rejecting H0 if θ is the true parameter value; this is called the power function.
The level of significance, which is the maximum probability of a false rejection,
is supθ∈H0

Pθ(C).
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14.1 A simple normal hypothesis test

Suppose X is distributed Normal(µ, σ2), with σ2 known. Let H0 = {µ : µ ≤
µ0} and H1 = {µ : µ > µ0}. Let C1 = {x : x > µ}. Then,

Pµ(C1) = Pµ(X > µ0)

= Pµ(
X − µ

σ
>

µ0 − µ

σ
)

= 1− Φ(µ0 − µ

σ
)

Since Φ is an increasing function, the function above is maximized by choos-
ing the largest possible µ is H0. Therefore, the level of significance is:

sup
µ≤µ0

Pµ(C1) = 1− Φ(µ0 − µ0
σ

)

= 1− 1
2
=
1

2

Consider a second critical region: C2 = {X̄ : X̄ > µ0 + zα
σ√
n
}. Then,

Pµ(C2) = Pµ(X̄ > µ0 + zα
σ√
n
)

= Pµ(
X̄ − µ

σ/
√
n
≥

µ0 + zα
σ√
n
− µ

σ/
√
n

)

= 1− Φ(µ0 − µ

σ/
√
n
+ zα)

Then the level of significance is:

sup
µ≤µ0

Pµ(C2) = sup
µ≤µ0

1− Φ(µ0 − µ

σ/
√
n
+ zα)

= 1− Φ(zα)
= 1− α

15 The Neyman-Pearson Lemma (15)

Theorem 2 Let �X be a sample from the distribution f(x; θ). Let H0 and H1 be

the simple hypotheses H0 : θ = θ0 and H1 : θ = θ1. Define R( �X) =

nQ
i=1

f(xi,θ1)

nQ
i=1

f(xi,θ0)
.

Define a critical region C ⊂ Rn for a given λ ∈ R by C = {�x ∈ Rn : R(�x) > λ};
that is, reject when R(�x) > λ. If D is the critical region for any test such that

16



Pθ0(D) ≤ Pθ0(C) then Pθ1(D) ≤ Pθ1(C). (The test based on the likelihood
ration is the most powerful for a given level of significance.)

Proof. For any A ⊂ Rn, define P0(A) =
R
A

nQ
i=1

f(xi, θ0)dx1...dxn and P1(A) =R
A

nQ
i=1

f(xi, θ1)dx1...dxn. Thus, we want to show that P0(D) ≤ P0(C) implies

that P1(D) ≤ P1(C). Let D be given. Then:

P1(D ∩ CC) =

Z
D∩{�x:R(�x)≤λ}

nY
i=1

f(xi, θ1)dx1...dxn

=

Z
D∩{�x:R(�x)≤λ}

R(�x)
nY
i=1

f(xi, θ0)dx1...dxn

≤
Z
D∩{�x:R(�x)≤λ}

λ
nY
i=1

f(xi, θ0)dx1...dxn

= λP0(D ∩ CC)

P1(D
C ∩ C) =

Z
DC∩{�x:R(�x)≥λ}

nY
i=1

f(xi, θ1)dx1...dxn

=

Z
DC∩{�x:R(�x)≥λ}

R(�x)
nY
i=1

f(xi, θ0)dx1...dxn

≥
Z
DC∩{�x:R(�x)≥λ}

λ
nY
i=1

f(xi, θ0)dx1...dxn

= λP0(D
C ∩C)

Combining these facts, we find:

P1(D) = P1(D ∩C) + P1(D ∩ CC)

≤ P1(D ∩C) + λP0(D ∩CC)

= P1(D ∩C) + λ(P0(D)− P0(D ∩C))
≤ P1(D ∩C) + λ(P0(C)− P0(D ∩ C))
= P1(D ∩C) + λ(P0(C ∩DC))

≤ P1(D ∩C) + P1(C ∩DC)

= P1(C)

16 The likelihood ratio test for the normal dis-
tribution (16)

Suppose �X is a sample from the distribution Normal(µ, σ2). Let the null
hypothesis be H0 : µ = µ0, σ

2 unknown. Let the alternative hypothesis be

17



H1 : µ 6= µ0, σ
2 unknown. The likelihood function of this distribution is:

L(µ, σ2, �X) =
nY
i=1

(
1

2πσ2
)e−

1
2σ2

(Xi−µ)2

= (2πσ2)−n/2e−
1

2σ2

P
(Xi−µ)2

Under the null hypothesis, ˆ̂µ = µ0, so we maximize the likelihood function
with respect to σ2:

logL(µ, σ2, �X) = −n
2
log(2πσ2)− 1

2σ2

X
(Xi − µ0)

2

∂

∂σ2
logL(µ, σ2, �X) = − n

σ2
+

1

2(σ2)2

X
(Xi − µ0)

2

= 0

ˆ̂σ2 =
1

n

X
(Xi − µ0)

2

Under the alternative hypothesis, we have the maximum likelihood esti-
mates: µ̂ = X̄ and σ̂2 = 1

n

P
(Xi − X̄)2.

Then, the likelihood ratio of the null and alternative hypotheses is:

λ =
L(ˆ̂µ, ˆ̂σ2)

L(µ̂, σ̂2)

=
(2π ˆ̂σ2)−n/2e−

1
2ˆ̂σ2

P
(Xi−ˆ̂µ)2

(2πσ̂2)−n/2e−
1

2σ2

P
(Xi−µ̂)2

= (
σ̂2

ˆ̂σ2
)e−

1
2ˆ̂σ2

P
(Xi−ˆ̂µ)2+ 1

2σ̂2

P
(Xi−µ̂)2

= (

P
(Xi − X̄)2P
(Xi − µ0)

2
)n/2e−

n
2+

n
2

= (

P
(Xi − X̄)2P
(Xi − µ0)

2
)n/2

Recall that
P
(Xi − µ0)

2 =
P
(Xi − X̄)2 + n(X̄ − µ0)

2, so

λ = (

P
(Xi − X̄)2P

(Xi − X̄)2 + n(X̄ − µ0)
2
)
n
2

= (
1

1 + n (X̄−µ0)2P
(Xi−X̄)2

)
n
2

is a decreasing function of n (X̄−µ0)2P
(Xi−X̄)2 = (

|X̄−µ0|√
n−1s/√n)

2 = ( t√
n−1)

2, which is
an increasing function of the t-statistic. Thus, λ is minimized if and only if the
t-statistic is large, and a t-test is a likelihood ratio test.
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17 Linear combinations of multivariate normals
(and MGF’s) (17)

17.1 Case 1: Standard Normal

The moment generating function for a standard normal variable, �Z, is given by:

E(e
�t0 �Z) = E(e

P
tjzj )

=
mY
j=1

E(etjzj )

=
mY
j=1

e
1
2 t

2
j

= e
1
2

P
t2j

= e
1
2k�tk2

17.2 Case 2: General normal

Let �X be a multivariate normal random vector with distributionNormalm(�µ,Σ).
Then, we may write �X = Σ1/2 �Z + �µ, where �µ is distributed Normalm(�0, I).
Then, the moment generating function is:

E(e
�t0 �X) = E(e

�t0(Σ1/2 �Z+�µ))

= E(e
�t0Σ1/2 �Ze

�t0�µ)

= e
�t0�µE(e

�t0Σ1/2 �Z)

= e
�t0�µE(e(Σ

1/2�t)0 �Z)

= e
�t0�µe

1
2k0Σ1/2�tk2

= e
�t0�µe

1
2 (
�t0Σ�t)

= e
�t0�µ+ 1

2
�t0Σ�t

17.3 Case 3: Linear combinations of normal variables

Let �Y = B �X, where B is not necessarily symmetric, invertible, or square. Then,
�Y = B �X = BΣ1/2 �Z +B�µ, and its moment generating function is:

E(e
�t0�Y ) = E(e

�t0(BΣ1/2 �Z+B�µ))

= e
�t0B�µE(e

�t0BΣ1/2 �Z)

= e
�t0B�µe

1
2k0Σ1/2B0�tk2

= e
�t0B�µe

1
2 (

0Σ1/2B0�t)0(0Σ1/2B0�t)

= e
�t0B�µ+ 1

2
�t0BΣB0�t
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Thus, �Y = B �X is also multivariate normal, with mean Bµ and covariance
matrix BΣB0.

18 The estimated regression coefficients mini-
mize the estimated errors (18)

Let �X be a vector of length n and A be an n × k matrix of rank k. Let
�̂θ = (A0A)−1A0 �X. Then,°°° �X −A�θ

°°°2 =
°°° �X −A�θ +A�̂θ −A�̂θ

°°°2
=

°°° �X −A�̂θ
°°°2 + °°°A�̂θ −A�θ

°°°2 + 2( �X −A�̂θ)0(A�̂θ −A�θ)

The last term is zero:

( �X −A�̂θ)0(A�̂θ −A�θ) = �X 0A�̂θ − �X 0A�θ − �̂θ0A0A�̂θ + �̂θA0A�θ

= �X 0A(A0A)−1A0 �X − �X 0A�θ − �X 0A(A0A)−1A0A(A0A)−1A0 �X + �X 0A(A0A)−1A0A�θ

= �X 0A(A0A)−1A0 �X − �X 0A�θ − �X 0A(A0A)−1A0 �X + �X 0A�θ
= 0

Thus, °°° �X −A�θ
°°°2 = °°° �X −A�̂θ

°°°2 + °°°A�̂θ −A�θ
°°°2

Since �X, A, and therefore �̂θ are all fixed, we minimize the expression above

by choosing �θ in the second term. Since
°°°A�̂θ −A�θ

°°°2 ≥ 0 for all values of �θ, we
choose �θ = �̂θ, so that

°°°A�̂θ −A�θ
°°°2 = 0 and °°° �X −A�θ

°°°2 is minimized.
19 The properties of the least squares coeffi-

cients (19)

Suppose �X is a random vector with mean A�θ and covariance matrix σ2I. Let
�̂θ = (A0A)−1A0 �X. Then,

E(�̂θ) = E((A0A)−1A0 �X)

= (A0A)−1A0E( �X)

= (A0A)−1A0A�θ

= �θ
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Cov(�̂θ) = Cov((A0A)−1A0 �X)
= (A0A)−1A0(σ2I)A(A0A)−1

= σ2(A0A)−1

If �X is normally distributed, then �̂θ is a linear transformation of �X and thus
is normally distributed as well.

20 Estimating the variance of the least squares
coefficients (20)

Suppose �X is a multivariate normal random vector with mean A�θ and covariance

matrix σ2I. Let �̂θ = (A0A)−1A0 �X.
Let V ∈ Rk be any vector. Then,°°°( �X +A�V )−A(A0A)−1A0( �X +A�V )

°°°2
=

°°° �X +A�V −A(A0A)−1A0 �X −A(A0A)−1A0A�V
°°°2

=
°°° �X +A�V −A�̂θ −A�V

°°°2
=

°°° �X −A�̂θ
°°°2

Thus, we may replace �X be �X + A�V and re-estimate �̂θ for this new vector
without changing the difference between the observed vector and its distance

from the predicted vector, A�̂θ. In particular, we may choose �V = −�θ and set
�Y = �X − A�θ, so that E(�Y ) = E( �X − A�θ) = E( �X) − A�θ = 0. Since we are
adding a fixed number to �X to give �Y , the covariance matrix does not change,
and Cov(�Y ) = σ2I.
Let �e1, ..., �ek be an orthonormal basis for the column space of A (such a basis

exists by the Gram-Schmidt algorithm and the rank of A). Choose �ek+1, ..., �en
such that {�e1, ..., �en} is an orthonormal basis for Rn. Since �Y ∈ Rn, we may
write �Y =

Pn
i=1(

�Y 0�ej)�ej . This is a linear combination of fixed basis vectors
with random coefficients, {�Y 0�e1, ..., �Y 0�en}. The moments of these coefficients
are:

E(�Y 0�ej) = E(�e0j �Y )

= �e0jE(�Y )

= �e0j(�0)
= 0
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Cov(�Y 0�ej , �Y 0eh) = Cov(�e0j �Y , �Y
0eh)

= E(�e0j �Y �Y 0�eh)−E(�e0j �Y )E(�Y
0eh)

= �e0jE(�Y �Y 0)�eh
= �e0j(σ

2I)�eh

= σ2(�e0j�eh)

= σ2 if j = h, 0 otherwise

Thus, the coefficients {�Y 0�e1, ..., �Y 0�en} have mean zero and covariance matrix
σ2I. Since A�̂θ is the projection of �Y onto the column space of A, that is, the

span of {�e1, ..., �ek}, A�̂θ =
Pk

i=1(
�Y 0�ej)�ej , so that Y −A�̂θ =

Pn
i=k+1(

�Y 0�ej)�ej , and°°°�Y −A�̂θ
°°°2 = Pn

i=k+1(
�Y 0�ej)2. Then, E(

°°°�Y −A�̂θ
°°°2) = E(

Pn
i=k+1(

�Y 0�ej)2) =Pn
i=k+1E((

�Y 0�ej)2) =
Pn

i=k+1 σ
2 = (n−k)σ2, since there is zero mean and zero

covariance.

21 The joint distribution of the least squares es-
timates (21)

Suppose �X is a multivariate normal random vector with mean A�θ and covariance

matrix σ2I. Let �̂θ = (A0A)−1A0 �X.

In this case, recall that �̂θ is normally distributed with mean �θ and covariance
matrix σ2(A0A)−1.
In the previous theorem, we showed that we may normalize �X by subtracting

its expected value; thus, we assume that �X has zero mean. Then, we may write

�X =
Pn

i=1(
�X 0�ej)�ej , A�̂θ =

Pk
i=1(

�X 0�ej)�ej , and
°°° �X −A�̂θ

°°°2 = Pn
i=k+1(

�X 0�ej)2,

where the coefficients { �X 0�e1, ..., �X 0�en} have mean zero and covariance matrix
σ2I. Then,

°°° �X−A�̂θ°°°2
σ2 =

Pn
i=k+1(

�X0�ej
σ2 )

2 is the sum of n−k independent standard
normal random variables, which has a chi-squared distribution with n−k degrees
of freedom.
Since �̂θ = (A0A)−1A0(

Pn
i=1(

�X 0�ej)�ej) =
Pn

i=1(
�X 0�ej)(A0A)−1A0�ej andA0�ej =

0 when j > k (since �ej is orthogonal to the column space of A in this case), �̂θ de-

pends only on {( �X 0�e1), ..., ( �X 0�ek)}.
°°° �X−A�̂θ°°°2

σ2 depends only on {( �X 0�ek+1), ..., ( �X 0�en)}.
Since all the ( �X 0�ej) are independent, these two sets are independent, �̂θ and°°° �X−A�̂θ°°°2

σ2 are independent.
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22 Prediction error (22)

Suppose �X is a multivariate normal random vector with mean A�θ and covariance

matrix σ2I. Let �̂θ = (A0A)−1A0 �X. Let s2 = 1
n−k

°°° �X −A�̂θ
°°°2. Let Xn+1 be a

new observation with associated inputs �α, which is independent of all previous

observations. Then, the predicted value of Xn+1 is X̂n+1 = �α0�̂θ, and the error

of prediction is �α0�̂θ −Xn+1 = �α0(A0A)−1A0 �X −Xn+1. The distribution of the
error of prediction is:

E(�α0(A0A)−1A0 �X −Xn+1) = E(Xn+1)− �α0(A0A)−1A0E( �X)

= �α0�θ − �α0(A0A)−1A0A�θ

= �α0�θ − �α0�θ
= 0

V ar(�α0�̂θ −Xn+1) = V ar(�α0�̂θ) + V ar(Xn+1)

= �α0(σ2(A0A)−1)�α+ σ2

= σ2(1 + �α0(A0A)−1�α)

The estimated standard deviation of the error of prediction is found by re-
placing σ2 by s2, which gives an estimated error of

p
s2(1 + �α0(A0A)−1�α). No-

tice that Xn+1 is independent of both s2 and X̂n+1 because they depend only on

X1, ...,Xn. In addition, s2 is independent of X̂n+1 because s2 and �̂θ are inde-
pendent. Thus, we may consider the following ratio which has a t-distribution
with n−k degrees of freedom, since the numerator is a standard normal random
variable and the denominator is an independent chi-square random variable with
n− k degrees of freedom:

X̂n+1−Xn+1

σ
√
1+�α0(A0A)−1�αq
(n−k)s2/σ2

n−k
=

X̂n+1 −Xn+1

s
p
1 + �α0(A0A)−1�α

23 Form of the ANOVA Test (23)
Let Xij˜Normal(µi, σ

2), for j = 1, ..., n, i = 1, ..., k, with all the Xij indepen-
dent. Let the null hypothesis be H0 : µ1 = ... = µk = µ. Let the alternative
hypothesis be H1 : µi 6= µi0 for some i 6= i0. We find the likelihood ratio test
statistic.
Under the null hypothesis, Xij˜Normal(µ, σ2), and this is a sample of size

nk from the population Normal(µ, σ2). The maximum likelihood estimators
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for µ and σ2 are then:

ˆ̂µ =
1

nk

kX
i=1

nX
j=1

Xij = X̄

ˆ̂σ2 =
1

nk

kX
i=1

nX
j=1

(Xij − X̄)2

Substituting these estimators into the likelihood function gives the restricted
maximum likelihood:

max
θ∈H0

L( �X,�θ) = (2π ˆ̂σ2)−nk/2e−
1

2ˆ̂σ2

Pk
i=1

Pn
j=1(Xij−X̄)2

= (2π ˆ̂σ2)−nk/2e−
1

2ˆ̂σ2
(nk ˆ̂σ2)

= (2π ˆ̂σ2e)nk/2

Without this restriction, we instead have k samples of size n with a common
variance. Since the means are unrelated, we have

µ̂i =
1

n

nX
j=1

Xij = X̄i

We find the maximum likelihood estimator for σ2 by looking at the log-
likelihood:

logL(µ1, ..., µn, σ
2) = log((2πσ2)−nk/2e−

1
2σ2

Pk
i=1

Pn
j=1(Xij−µi)2

= −nk
2
log(2πσ2)− 1

2σ2

kX
i=1

nX
j=1

(Xij − µi)
2

∂

∂σ2
logL(µ1, ..., µn, σ

2) = − nk

2σ2
+

1

2(σ2)2

kX
i=1

nX
j=1

(Xij − µi)
2

= (σ2 − 1

nk

kX
i=1

nX
j=1

(Xij − µi)
2)(− nk

2(σ2)2
)

Solving for σ2 and substituting the maximum likelihood estimators for the
µi, we find:

σ̂2 =
1

nk

kX
i=1

nX
j=1

(Xij − X̄i)
2

Substituting these estimators gives the unrestricted maximum likelihood:

max
θ∈H

L( �X,�θ) = (2πσ̂2)−nk./2e−
1

2σ̂2
(
Pk

i=1

Pn
j=1(Xij−X̄i)

2)

= (2πσ̂2)−nk./2e−
1

2σ̂2
(nkσ̂2)

= (2πσ̂2e)−nk/2

24



We find the likelihood ratio test statistic by looking at the ratio of the
restricted and unrestricted maximum likelihoods:

λ( �X) =
(2π ˆ̂σ2e)nk/2

(2πσ̂2e)−nk/2
= (

σ̂2

ˆ̂σ2
)nk/2 = (

Pk
i=1

Pn
j=1(Xij − X̄i)

2Pk
i=1

Pn
j=1(Xij − X̄)2

)nk/2

Notice that

kX
i=1

nX
j=1

(Xij − X̄)2 =
kX
i=1

nX
j=1

(Xij − X̄i + X̄i − X̄)2

=
kX
i=1

(
nX
j=1

(Xij − X̄i)
2 + n(X̄i − X̄)2)

=
kX
i=1

nX
j=1

(Xij − X̄i)
2 + n

kX
i=1

(X̄i − X̄)2

The first term in this equation is defined as the sum of squares within (SSW);
the second term is defined as the sum of squares between (SSB). Using these
definition, we may rewrite the likelihood ratio as:

λ( �X) = (

Pk
i=1

Pn
j=1(Xij − X̄i)

2Pk
i=1

Pn
j=1(Xij − X̄)2

)nk/2

= (
SSW

SSW + SSB
)nk/2

= (
1

1 + SSB
SSW

)nk/2

Thus, we see that λ( �X) is a decreasing function of SSB
SSW .

24 The ANOVA test statistic has an F-distribution
(24)

Recall that SSB = n
Pk

i=1(X̄i−X̄)2. Since we may write X̄ = 1
k

Pk
i=1(

1
n

Pn
i=1Xij) =

1
k

Pk
i=1 X̄i, SSB can be written as a function of only X̄1, ..., X̄k. Since X̄1, ..., X̄k

are the means of disjoint independent samples of size n from Normal(µ, σ2),
X̄1, ..., X̄k are independent and distributed Normal(µ, σ

2

n ). Thus,
Pk

i=1(X̄i −
X̄)2 is the sum of squares about the average of a sample of size k from a distribu-

tion with variance σ2

n , which means that
Pk

i=1(X̄i−X̄)2
σ2/n = SSB

σ2 has a chi-squared
distribution with k − 1 degrees of freedom.
Recall that SSW =

Pk
i=1

Pn
j=1(Xij−X̄i)

2. Let s2i =
1

n−1
Pn

j=1(Xij−X̄i)
2
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for each i = 1, ...k. Then we may rewrite

SSW =
kX
i=1

nX
j=1

(Xij − X̄i)
2

=
kX
i=1

(n− 1)s2i

Because s21, ..., s
2
k are the sample variances of samples of size n from normal pop-

ulations with variance σ2, (n−1)s
2
1

σ2 , ...,
(n−1)s2k

σ2 are each distributed chi-squared
with n− 1 degrees of freedom. Since s21, ..., s2k depend on disjoint independent
samples, they are independent. Thus,

Pk
i=1(n−1)s2i

σ2 = SSW
σ2 is the sum of k inde-

pendent chi-squared variables with n− 1 degrees of freedom. By the Addition
Theorem for Chi-Squares, this sum has a chi-squared distribution with k(n−1)
degrees of freedom.
Consider X̄i and s2i0 . If i = i0, then these are the mean and sample variance

from a sample from a normal population. These two statistics are independent.
If i 6= i0, then these two statistics depend on different independent samples, and
are therefore independent. Thus, {X̄1, ..., X̄k} and {s21, ..., s2k} are independent
sets. Since SSB and SSW depend on these two sets, SSB and SSW are
independent. Therefore, the following expression is the ratio of independent chi-
square random variables with k−1 and k(n−1) degrees of freedom respectively,
divided by their degrees of freedom:

F =
SSB
σ2 /(k − 1)

SSW
σ2 /k(n− 1) =

SSB/(k − 1)
SSW/k(n− 1)

Hence, the test statistic for ANOVA, SSB/(k−1)
SSW/k(n−1) has an F-distribution with

k − 1 and k(n− 1) degrees of freedom.

25 Multivariate Central Limit Theorem (25)

Theorem 3 Let �X1, ..., �Xn be a sample of independent identically distributed
random vectors in Rm. Let E( �Xi) = �µ and Cov( �Xi) = Σ. Then, as n→∞,
1√
n

Pn
j=1(

�Xj − �µ) has the limiting distribution Normalm(�0,Σ).

Proof. Let �t ∈ Rm be any fixed vector. Define ξn = �t0( 1√
n

Pn
j=1(

�Xj − �µ)) =
1√
n

Pn
j=1

�t0( �Xj −�µ). Each �t0( �Xj −�µ) is an independent, identically distributed
random variable with:

E(�t0( �Xj − �µ)) = �t0E( �Xj − �µ)

= �t0E( �Xj)− �t0�µ
= �t0�µ− �t0�µ
= 0
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V ar(�t0( �Xj − �µ)) = �t0Cov( �Xj − �µ)�t

= �t0Cov( �Xj)�t

= �t0Σ�t

By the one-variable central limit theorem, 1√
n

Pn
j=1

�t0( �Xj − �µ) has a limiting

distribution with mean 0 and variance �t0Σ�t.
By a theorem on the convergence of characteristic functions, the convergence

of this distribution to a normal distribution implies the convergence of its char-
acteristic function to the characteristic function of the same normal distribution.
That is,

lim
n→∞E(e

i u√
n

Pn
j=1

�t0( �Xj−�µ)) = e−
1
2u

2�t0Σ�t

for all u ∈ R. This is true for all �t ∈ Rm. In particular, set u = 1. Then, we
find

lim
n→∞E(e

i�t0( 1√
n

Pn
j=1(

�Xj−�µ))) = e−
1
2
�t0Σ�t

for all �t ∈ Rm, and every linear combination of the elements of 1√
n

Pn
j=1(

�Xj−�µ)
converges to a normal distribution. By the Multivariate Continuity Theorem,
the convergence of every linear combination elements of a random vector to a
normal distribution implies the convergence of the random vector to a multivari-
ate normal distribution. Thus, 1√

n

Pn
j=1(

�Xj −�µ) converges to a Normal(�0,Σ)

distribution.

26 Random vectors describing multinomial dis-
tributions (26)

Let �Z = (Z1, ..., Zk)
0 be a random vector with P (Zi = 1) = pi,

Pk
i=1 Zi =Pk

i=1 pi = 1. Because each Zi is a binomial random variable with probability
pi of success, E(Zi) = pi and V ar(Zi) = pi(1 − pi). Because exactly one of
Z1, ..., Zk is one, ZiZj = 0 when i 6= j. Therefore, we find that Cov(Zi, Zj) =
E(ZiZj) − E(Zi)E(Zj) = 0 − pipj = −pipj . This means that the covariance
matrix of �Z is:

Cov(�Z) =

p1(1− p1) ... −pipj
... ... ...
−pipj ... pk(1− pk)


=

p1 ... 0
.. ... ...
0 ... pk

−
 ...
... −pipj ...

...


=

p1 ... 0
.. ... ...
0 ... pk

−
p1...
pk

 £p1 ... pk
¤
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Let P be the first matrix in this expansion; P is a diagonal matrix with the
ith diagonal entry equal to pi. Then, P−

1
2 is a diagonal matrix with entries

1√
pi
along the diagonal, and:

Cov(P−
1
2 �Z) = P−

1
2Cov(�Z)P−

1
2

= P−
1
2 (P −

p1...
pk

 £p1 ... pk
¤
)P−

1
2

= I −
√p1...√

pk

 £√p1 ...
√
pk
¤

27 The limiting distribution of the chi-square
test statistic (27)

Consider a sample of size n in which each observation falls into exactly one of
k classes, with probability pi of being in class i,

Pk
i=1 pi = 1. Let fi be the

sample frequency of class i, so that
Pk

i=1 fi = n. Define Ξ =
Pk

i=1(
fi−npi√

npi
)2.

Let P be the diagonal matrix with diagonal entries pi. Let �Zj be a vec-
tor with ith entry equal to 1 if the jth observation falls into the ith category

and 0 otherwise. Then,
Pn

j=1
�Zj =

f1...
fk

 and E(
Pn

j=1
�Zj) =

Pn
j=1E(

�Zj) =
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Pn
j=1

p1...
pk

 =
np1...
npk

. Then, we find:
Ξ =

kX
i=1

(
fi − npi√

npi
)2

=

°°°°°°°

f1−np1√

np1

...
fk−npk√

npk


°°°°°°°
2

=

°°°°°°°
1√
n


f1−np1√

p1

...
fk−npk√

pk


°°°°°°°
2

=

°°°°°° 1√
n
P−

1
2

f1 − np1
...

fk − npk

°°°°°°
2

=

°°°°°° 1√
n
P−

1
2 (

f1...
fk

−
np1...
npk

)
°°°°°°
2

=

°°°°°° 1√
n
P−

1
2 (

nX
j=1

�Zj −
nX
j=1

E(�Zj))

°°°°°°
2

=

°°°°°° 1√
n
P−

1
2

nX
j=1

(�Zj −E(�Zj))

°°°°°°
2

By the multivariate central limit theorem, 1√
n

Pn
j=1(

�Zj −E(�Zj)) has a lim-

iting normal distribution with mean �0 and covariance matrix Cov(�Z). Thus,
1√
n
P−

1
2
Pn

j=1(
�Zj−E(�Zj)) has the limiting distributionNormal(�0, P−

1
2Cov(�Z)P−

1
2 ) =

Normal(�0, I −
√p1...√

pk

 £√p1 ...
√
pk
¤
). Let �Y = 1√

n
P−

1
2
Pn

j=1(
�Zj −E(�Zj)).

Let Q be an orthogonal matrix with first row
£√

p1 ...
√
pk
¤
. Since the

norm is invariant under orthogonal transformations,
°°°�Y °°°2 = °°°Q�Y

°°°2. Also, Q�Y

is distributed approximately Normal(�0, QCov(�Y )Q0), so that the covariance
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matrix is:

QCov(�Y )Q0 = Q(I −
√p1...√

pk

 £√p1 ...
√
pk
¤
)Q0

= QQ0 − (Q
√p1...√

pk

)(Q
√p1...√

pk

)0

= I −


1
0
...
0

 £1 0 ... 0
¤

=

·
0 �0
�0 Ik−1

¸

Thus, we see that Q�Y can be written


0
X2

...
Xk

; where the Xi are independent,

approximately standard normal variables. Thus,
°°°�Y °°°2 = °°°Q�Y

°°°2 =Pk
i=2X

2
i is

(approximately) the sum of k−1 independent standard normal random variables
and therefore is (approximately) χ2 with k − 1 degrees of freedom. Thus, the
chi-square statistic has a limiting χ2 distribution with k− 1 degrees of freedom.

28 The limiting normal distribution of quantile
statistics. (28)

Let F (x) be a cumulative density function. Let F 0(x) exist. Let ξp be the pth

quantile of F (x) (that is, F (ξp) = p). Assume F 0(ξp) > 0. Let r = r(n) be an

index of an order statistic, X(r), such that limn→∞
√
n( r(n)n − p) = 0. We will

show that
√
n(X(r)− ξp) has a limiting distribution which is normal with mean

0 and variance p(1−p)
(F 0 (ξp))2

.

Consider the cumulative distribution of
√
n(X(r) − ξp):

P (
√
n(X(r) − ξp) ≤ y) = P (X(r) ≤ y√

n
+ ξp)

=
nX
j=r

µ
n

j

¶
(F (

y√
n
+ ξp))

j(1− F (
y√
n
+ ξp))

n−j

= P (at least r successes of n | probability F ( y√
n
+ ξp) of success)

= 1− P (less than r successes)
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According to the normal approximation to the binomial distribution, a bi-
nomial distribution with n trials and probability θ of success is approximately
normal with mean nθ and variance 1

nθ(1−θ) . In this case, θ = F ( y√
n
+ ξp) and

we find:

lim
n→∞P (

√
n(X(r) − ξp) ≤ y) = 1− Φ( lim

n→∞

r − nF ( y√
n
+ ξp)q

nF ( y√
n
+ ξp)(1− F ( y√

n
+ ξp))

)

However, we must show that limn→∞
r−nF ( y√

n
+ξp)q

nF ( y√
n
+ξp)(1−F ( y√

n
+ξp))

exists.

Case 1: Uniform distribution.
In the case of the uniform distribution:

F (x) = x, x ∈ [0, 1]
ξp = p

F (ξp +
y√
n
) = ξp +

y√
n
= p+

y√
n

F 0(ξp) = 1

Substituting these values into the limit, we find:

lim
n→∞

r − nF ( y√
n
+ ξp)q

nF ( y√
n
+ ξp)(1− F ( y√

n
+ ξp))

= lim
n→∞

r − n(p+ y√
n
)q

n(p+ y√
n
)(1− p− y√

n
)

= lim
n→∞

r − np− y
√
np

np(1− p)

=
1p

p(1− p)
lim
n→∞(

r − np√
n
− y)

=
1p

p(1− p)
lim
n→∞(

√
n(

r

n
− p)− y)

= − yp
p(1− p)

(Note:
q
p+ y√

n
converges to

√
p faster than p+ y√

n
converges to p.)

Applying the normal approximation, we find:

P (
√
n(X(r) − ξp) ≤ y) = 1− Φ(− yp

p(1− p)
)

= Φ(
yp

p(1− p)
)
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Case 2: The general case.
By the Probability Integral Transformation, if F (x) is a continuous cumula-

tive distribution function and U is a random variable uniformly distributed on
[0, 1], then the cumulative distribution function of the random variable F (U)
is F (x). Conversely, if X is a random variable with cumulative distribution
function F (x), then the random variable F (X) is randomly distributed uniform
on [0, 1].
Since F (x) is a non-decreasing function (and is increasing in a neighborhood

of ξp),

P (X(r) ≤ ξp +
y√
n
) = P (F (X(r)) ≤ F (ξp +

y√
n
))

Applying a Taylor expansion about ξp, we find:

P (F (X(r)) ≤ F (ξp +
y√
n
)) = P (F (X(r)) ≤ F (ξp) + F 0(ξp)

y√
n
+ ε(y))

= P (
√
n(F (X(r))− F (ξp)) ≤ F 0(ξp)y + ε(y)

√
n)

(ε(y) is a smaller order function containing the rest of the terms in the Taylor
expansion; it is negligible.) Notice that F (X(r)) = U(r), where U(r) is the rth

order statistic of a sample of n uniform random variables on [0, 1]. Also, recall
that F (ξp) = p. Substituting these facts, applying Case 1, and taking the limit,
we find:

P (X(r) ≤ ξp +
y√
n
) = P (

√
n(U(r) − p) ≤ F 0(ξp)y + ε(y)

√
n)

= Φ(
1p

p(1− p)
F 0(ξp)y)

Thus,

P (
√
n(X(r) − ξp) ≤ y) = P (X(r) ≤ ξp +

y√
n
)

= Φ(
1p

p(1− p)
F 0(ξp)y)

which is equivalent to
√
n(X(r) − ξp)˜Normal(0, p(1−p)

(F 0 (ξp))2
).

29 Propogation of Errors (29)
Theorem 4 Let {Xn} be a sequence of random variables. Let {an} be a se-
quence of constants such that an > 0 for all n and limn→∞ an = 0. Let
µ be fixed. If Xn−µ

an
has a limiting Normal(0, σ2) distribution, then for any

continuously differentiable function f : R → R, f(Xn)−f(µ)
an

has a limiting
Normal(0, σ2(f 0(µ))2) distribution.
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Proof. For every ε > 0, P (|Xn − µ| > ε) = P (
¯̄̄
Xn−µ
an

¯̄̄
> ε

an
). Since ε is fixed,

limn→∞ ε
an

= ∞, so that limn→∞ P (|Xn − µ| > ε) = limn→∞ P (
¯̄̄
Xn−µ
an

¯̄̄
>

ε
an
) = 0, since ε

an
diverges while Xn and µ are finite. Thus, Xn converges in

probability to µ. By the Taylor expansion, (f(Xn) − f(µ)) ≈ f 0(µ)(Xn −
µ) within ε of µ. Since Xn−µ

an
has a limiting Normal(0, σ2) distribution,

f 0(µ)Xn−µ
an

= f(Xn)−f(µ)
an

has a normal limiting distribution with mean f 0(µ)0 =
0 and variance (f 0(µ))2σ2.

Theorem 5 Let { �Xn} be a sequence of random vectors. Let {an} be a sequence
of constants such that an > 0 for all n and limn→∞ an = 0. Let �µ be a fixed
vector. If 1

an
( �Xn − �µ) has a limiting Normal(�0,Σ) distribution, then for any

smooth function f : Rk → R, 1
an
(f( �Xn) − f(�µ)) has the limiting distribution

Normal(�0, ((∇f)(µ))0Σ((∇f)(µ)))

Proof. Because 1
an
( �Xn − �µ) has a limiting distribution, �Xn converges in prob-

ability to �µ. By the vector form of Taylor”s expansion, f( �Xn) − f(�µ) ≈
((∇f)(µ))0( �Xn−µ). Since 1

an
( �Xn−�µ) has a limiting Normal(�0,Σ) distribution,

1
an
((∇f)(µ))0( �Xn − µ) = 1

an
(f( �Xn) − f(�µ)) has a limiting normal distribution

with mean ((∇f)(µ))0�0 = 0 and variance ((∇f)(µ))0Σ((∇f)(µ)).

30 Distribution of the sample correlation coef-
ficient (30)

Definition 6 Let X and Y be bivariate normal random variables with corre-
lation coefficient ρ. Let (X1, Y1), ..., (Xn, Yn) be a sample of pairs from this

distribution. Let r =
Pn

i=1(Xi−X̄)(Yi−Ȳ )√
(
Pn

i=1(Xi−X̄)2)(
Pn

i=1(Yi−Ȳ )2)
. We call r the sample

correlation coefficient.

Lemma 7 ρ and r are invariant under positive linear transformations, U =
aX + b and V = cY + d, with a > 0, c > 0.

Proof. Let ρ(U, V ) be the correlation coefficient of U and V and ρ(X,Y ) be
the correlation coefficient of X and Y . Then,

ρ(X,Y ) = E(
X −E(X)p
V ar(X)

· Y −E(Y )p
V ar(Y )

)

E(U) = aE(X) + b

E(V ) = cE(Y ) + d

V ar(U) = a2V ar(X)

V ar(V ) = c2V ar(Y )
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ρ(U, V ) = E(
U −E(U)p
V ar(U)

· V −E(V )p
V ar(V )

)

= E(
aX + b− (aE(X) + b)p

a2V ar(X)
· cY + d− (cE(Y ) + d)p

c2V ar(Y )
)

= E(
X −E(X)p
V ar(X)

· Y −E(Y )p
V ar(Y )

)

= ρ(X,Y )

We do the same for r(X,Y ) and r(U, V ):

r(X,Y ) =

Pn
i=1(Xi − X̄)(Yi − Ȳ )q

(
Pn

i=1(Xi − X̄)2)(
Pn

i=1(Yi − Ȳ )2)

Ū = aX̄ + b

V̄ = cȲ + d
nX
i=1

(Ui − Ū)2 =
nX
i=1

(aXi + b− (aX̄ + b))2 =
nX
i=1

a2(Xi − X̄)2

nX
i=1

(Vi − V̄ )2 =
nX
i=1

(cYi + d− (cȲ + d))2 =
nX
i=1

c2(Yi − Ȳ )2

nX
i=1

(Ui − Ū)(Vi − V̄ ) =
nX
i=1

(aXi + b− (aX̄ + b))(cYi + d− (cȲ + d))

=
nX
i=1

ac(Xi − X̄)(Yi − Ȳ )

r(U, V ) =

Pn
i=1(Ui − Ū)(Vi − V̄ )q

(
Pn

i=1(Ui − Ū)2)(
Pn

i=1(Vi − V̄ )2)

=

Pn
i=1 ac(Xi − X̄)(Yi − Ȳ )q

(
Pn

i=1 a
2(Xi − X̄)2)(

Pn
i=1 c

2(Yi − Ȳ )2)

=

Pn
i=1(Xi − X̄)(Yi − Ȳ )q

(
Pn

i=1(Xi − X̄)2)(
Pn

i=1(Yi − Ȳ )2)

= r(X,Y )

Theorem 8 As n→∞, √n(r− ρ) has a limiting Normal(0, (1− ρ2)2) distri-
bution.
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Proof.

Lemma 9 Proof. Because ρ and the distribution of r are invariant under
positive linear transformations, given any bivariate normal random variables, we
may subtract their means and divide by their standard deviations without affect
ρ or r. Thus, without loss of generality, we may prove this theorem for standard
bivariate normal random variables, X and Y , with correlation coefficient, ρ.

Lemma 10 For standard bivariate normals, r has the same sampling distrib-
ution as

Pn
i=2 ViWi√

(
Pn

i=2 V
2
i )(

Pn
i=2W

2
i )
, where �V and �W are standard bivariate normals

with the same correlation coefficient.

Proof. Let Q be the orthonormal transformation with first row
h
1√
n

... 1√
n

i
.

Then, the first elements of �V = Q �X and �W = Q�Y are
√
nX̄ and

√
nȲ respec-

tively. Because orthonormal transformations preserve inner products,

nX
i=1

(Xi − X̄)2 =
nX
i=1

X2
i − nX̄2

=
°°°�V °°°2 − V 2

1

=
nX
i=1

V 2
i

nX
i=1

(Yi − Ȳ )2 =
nX
i=1

W 2
i

nX
i=1

(Xi − X̄)(Yi − Ȳ ) =
nX
i=1

XiYi − nX̄Ȳ

= < �V , �W > −V1W1

=
nX
i=2

ViWi

Because Q is an orthogonal transformation, it is a rotation of Rn. Therefore,
�V and �W have the same correlation as �X and �Y .
Define f(u1, u2, u3) =

u3√
u1u2

. Then, r = f(
Pn

i=1(Xi − X̄)2,
Pn

i=1(Yi −
Ȳ )2,

Pn
i=1(Xi − X̄)(Yi − Ȳ )) = f(

Pn
i=1 V

2
i ,
Pn

i=1W
2
i ,
Pn

i=2 ViWi). Define in-

dependent random vectors �Zi =

 V 2
1

W 2
i

ViWi

. Since Vi and Wi are standard bivari-

ate normal, E(V 2
i ) = E(W 2

i ) = 1 and E(ViWi) = ρ. Thus, E(�Zi) =

11
ρ

.
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It can be shown that Cov(�Zi) = 2

 1 ρ2 ρ
ρ2 1 ρ

ρ ρ 1+ρ2

2

. Thus, by the Mul-

tivariate Central Limit Theorem, 1√
n−1

Pn
i=2(

 V 2
1

W 2
i

ViWi

 −
11
ρ

) has a limiting
Normal(�0, 2

 1 ρ2 ρ
ρ2 1 ρ

ρ ρ 1+ρ2

2

) distribution. By the Propogation of Error The-
orem,

√
n− 1(f( 1

n−1
Pn

i=2 V
2
i ,

1
n−1

Pn
i=2W

2
i ,

1
n−1

Pn
i=2 ViWi) − f(1, 1, ρ)) has

a limiting Normal(�0, ((∇f)(µ))0Cov(�Zi)((∇f)(µ)) distribution. We calculate:

∇f(u1, u2, u3) =


u3√
u2
(−12)(u1)−

3
2

u3√
u1
(−12)(u2)−

3
2

1√
u1u2



(∇f)(1, 1, ρ) =
−12ρ−12ρ
1



((∇f)(1, 1, ρ))0Cov(�Zi)((∇f)(1, 1, ρ)) = 2
£−12ρ −12ρ 1

¤ 1 ρ2 ρ
ρ2 1 ρ

ρ ρ 1+ρ2

2

−12ρ−12ρ
1


= 2

£−12ρ −12ρ 1
¤−12ρ3 + 1

2ρ−12ρ3 + 1
2ρ

1
2 − 1

2ρ
2


= ρ4 − 2ρ2 + 1
= (1− ρ2)2

Thus,
√
n(r − ρ) =

√
n− 1(f( 1

n−1
Pn

i=2 V
2
i ,

1
n−1

Pn
i=2W

2
i ,

1
n−1

Pn
i=2 ViWi) −

f(1, 1, ρ)) has a limiting distribution which is Normal(0, (1− ρ2)2).

31 A variance-stabilizing transformation (31)
Recall that

√
n(r − ρ) has a limiting Normal(0, (1− ρ2)2) distribution.

Consider tanh(x) = ex−e−x
ex+e−x . Then, tanh

−1(x) = 1
2 ln(

1+x
1−x) =

1
2(ln(1 + x)−

ln(1 − x)). Set f(x) = tanh−1(x). Then, f 0(x) = 1
2 (

1
1+x +

1
1−x) =

1
1−x2 .

Applying the Propogation of Errors Theorem, we find that
√
n(f(r)−f(ρ)) has

a limiting normal distribution with mean �0 and variance (1− ρ2)2( 1
1−ρ2 )

2 = 1.

Thus,
√
n(tanh−1(r)− tanh−1(ρ)) has a limiting standard normal distribution.

(This allows us to construct confidence intervals for tanh−1(ρ) and then take
the hyperbolic tangent of the endpoint to find confidence intervals for ρ.)
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