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Microeconomics is based on the decisions of individual agents. Each agent
faces a choice problem, where a set of options is given and the individual chooses
one. This assumes that individuals are aware of all their options, have a goal
when they make the decision, and are rational, so that they make the best
decision given the information and the goal.

1 Preferences

Preferences are defined over a set, X.
Model 1: Suppose we observe a function, f(a, b) ∈ {a > b, I, b > a},

where a > b means that a is strictly preferred to b and I means indifferences.
(Note that these are the only options; choices like “I don’t know,” “It depends”,
“Someone else decides”, and “Strongly a > b” are not options.) We define the
preferences based on this function to be consistent if:

• f(a, b) = f(b, a)

• Transitivity holds: If f(a, b) = (a > b) and f(b, c) = (b > c) then f(a, c) =
(a > c). If f(a, b) = f(b, c) = I, then f(a, c) = I.

Proposition 1.1 If f(a, b) = (a > b) and f(b, c) = I, then f(a, c) = (a > c).

Proof Suppose f(a, c) = I. Then, f(a, c) = f(b, c) = I and we must have
f(a, b) = I. Suppose f(a, c) = (c > a). Then, f(a, b) = (a > b) and we must
have f(b, c) = (c > b). Either possibility contradicts the assumptions of the
proposition, so we must have f(a, c) = (c > a).

Note that consistency can be violated for psychological reasons (such as
saying one is indifferent between pairs that are “about the same”) or in group
decisions (suppose the three group members have a > b > c, b > c > a, and
c > a > b and that they decide on each pair by majority vote).

Model 2: Suppose we observe a binary relation, �, for any two elements of
X. We say that a � b if a is at least as good as b. For consistency, we require:

• Completeness: At least one of a � b and b � a holds.

• Transitivity : If a � b and b � c then a � c.
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In this description of preferences, we say that a � b if a � b and b 6� a. We say
that a ∼ b if a � b and b � a.

Theorem 1.2 The two models of preferences are isomorphic.

Proof Given a consistent set of function responses, we map them to a consistent
binary relation with the same meaning. To do this, we set a � a for all a ∈ X.
If a 6= b, then we know that f(a, b) = f(b, a) and it is enough to consider only
one of them. We then map (a > b) to a � b and b 6� a, I to a � b and b � a,
and b > a to a 6� b and b � a. This mapping is:

• Well-defined, because f(a, b) = f(b, a) and f(a, b) is defined for all a, b.

• Complete: Note that a � a by definition, and at least one of a � b or
b � a for any of the three possibilities for f(a, b).

• Transitivity: Suppose that X � y and y � z. Then, f(x, y) ∈ {x > y, I}.
and f(y, z) ∈ {y > z, I}. By transitivity in f , f(x, z) ∈ {x > z, I}, so
x � z.

• One-to-one: Suppose f1(a, b) 6= f2(a, b). Then at least one of the elements
of the binary relations disagrees because the mappings will differ.

• Onto: We may invert this mapping, and the results will be a consistent
set of preferences in function terms (f(a, b) = f(b, a) since both depend
on whether a � b and b � a; transitivity in one maps to transitivity to
the other).

To describe preferences, one must identify X. Preferences can be defined
either as a finite list or as a function that takes the characteristics of two options
and returns a decision based on them

Definition Suppose a utility function, U : X → R, is given. We define a
preference relation, �, on X by x � y if and only if U(x) ≥ U(y).

Note that any preferences based on a utility function satisfy completeness
and transitivity because the real numbers satisfy completeness and transitivity.

Proposition 1.3 Suppose U : X → R is a utility function representing pref-
erences, �. Let f : R → R be any strictly increasing function. Then, f ◦ U
represents the same preference relation.

Proof

f(U(x)) ≥ f(U(y)) ⇔ U(x) ≥ U(y)
⇔ x � y
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Lemma 1.4 If A is a finite set with a preference relation, �, then there exists
a∗ ∈ A such that a � a∗ for all a ∈ A. (We call a∗ a minimal element.)

Proof If A has one element, then that element is minimal. Suppose that any
set of n− 1 elements has a minimal element. Suppose A has n elements. Then,
A = {a} ∪ A′, where A′ has n − 1 elements. Let m be the minimal element of
A′. If a � m, then m is the minimal element of A. Otherwise, by completeness,
m � a. By transitivity, for any b ∈ A, b � m � a, and a is minimal.

Proposition 1.5 Suppose X is a finite set with preferences �. Then, there is
a utility function, U , that represents these preferences.

Proof Let X1 be the set of minimal elements (there may be more than one
minimal element, because of indifference). In general, let Xk be the set of
minimal elements in X − (X1 ∪ ... ∪Xk−1. This creates a finite partition of X.
For each x ∈ Xk, define U(x) = k. This is a well-defined function because we
have a partition. If a ∼ b then a and b are in the same partition (minimal at
the same time) and U(a) = U(b). If a � b, then a is removed before b, and
U(a) < U(b).

Definition We call the equivalence classes of a preference relation on X indif-
ference sets.

Proposition 1.6 If X is countable, then any preference relation on X can be
represented by a utility function on a bounded range.

Proof Since X is countable, we may write X = {a1, a2, a3, ...}. Define U(a1) =
0. Suppose we have defined U(a1), ..., U(an) such that ai � aj if and only
if U(ai) ≥ U(aj). We define U(an+1). If an+1 ∼ ai for i ≤ n, then define
U(an+1) = U(ai). Otherwise, we may define a partition {a1, ..., an} = B ∪ C,
where B = {ai : x � ai} and C = {ai : ai � x}. Then, any element of
{U(b1), ..., U(bk),−1} is strictly greater than any element of {U(c1), ..., U(cn−k), 1}.
Therefore, there is some number, r, that lies below all the numbers in the first
set and above all the numbers in the second set. Define U(an+1) = r. This
process yields a utility function with all values lying strictly between -1 and 1.

Definition Suppose we have a vector of n different preference relations, �1

, ...,�n, for an item, x. The lexicographic preferences are defined by x �L y if
there is some k such that x ∼j y for all j < k and x �k y or x ∼k y for all
k = 1, ..., n.

Proposition 1.7 The lexicographic preferences on [0, 1] × [0, 1] based on the
first coordinate and then the second coordinate cannot be represented by a utility
function.

Proof Suppose such a utility function, U , exists. Choose a ∈ [0, 1]. Then,
(a, 1) �L (a, 0) and U(a, 1) > U(a, 0). There must be some rational number,
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qa ∈ Q, in [U(a, 0), U(a, 1)]. We may find such a rational number fo every
a ∈ [0, 1]. Note that for any a 6= b, U(a, 0) < qa < U(a, 1) < U(b, 0) < qb <
u(b, a), and this is a one-to-one function, f : [0, 1] → Q. This contradicts the
countability of Q.

1.1 Preferences in Euclidean Space

When not otherwise stated, assume that X ⊂ Rn.

Definition A preference relation, �, is continuous if whenever x0 � y0 there
are ε-balls around x and y such that for all x ∈ Bε(x0) and y ∈ Bε(y0) we have
x � y.

Definition The graph of a binary relation, �, is defined by G(�) = {(x, y) :
x � y} ⊆ X ×X.

Definition A preference relation, �, is continuous if G(�) is a closed set in
X ×X. (That is, if {(xn, yn)} ⊂ G(�) is a sequence that converges in X ×X
to (x∗, y∗), then (x∗, y∗) ∈ G(�).)

Theorem 1.8 The two definitions of continuity are equivalent.

Proof (⇒) Suppose that whenever x � y, there are ε-balls around x and y with
every element of Bε(x) preferred to every element of Bε(y). Let {(xn, yn)} ⊂
G(�) converge to (x∗, y∗). Suppose x∗ ≺ y∗. Take ε-balls around x∗ and y∗

such that any element of Bε(x∗) is strictly not preferred to Bε(y∗). But, by the
definition of convergence, xn ∈ Bε(x∗) and yn ∈ Bε(y∗), so that xn ≺ yn. This
contradicts (xn, yn) ∈ G(�).

(⇐) Suppose that G(�) is closed. Suppose there exists a, b such that a ≺ b
but, for all ε > 0 not all points of Bε(b) are preferred to Bε(a). For each
n, choose (an, bn) such that an ∈ B1/n(a), bn ∈ B1/n(b), and an � bn. Then,
(an, bn) converges to (a, b) and is contained in G(�). Then, we must have a � b.
This is a contradiction.

Proposition 1.9 If a utility function, U , is continuous, then the preference
relation it describes is also continuous.

Proof Suppose U(a) > U(b). Then, there are δ-balls around a and b such that
U(x) > U(a)−U(a)−U(b)

2 for all x ∈ Bδ(a) and such that U(y) < U(b)+ U(a)−U(b)
2

for all y ∈ Bδ(b). Thus, the preferences are continuous.

Lemma 1.10 Suppose that preferences are continuous, that X is convex (or, at
least, connected), and that x � y. Then, there exists z on the line that connects
x and y such that x � z � y.

Proof Let x1 = x, y1 = y. Suppose there is no z such that x � z � y. Then,
the point halfway between x1 and y1 satisfies either z � x1 or z � y1. In the
former case, set x2 = z, y2 = y1; in the latter case, set x2 = x1, y2 = z. For
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the nth elements of the sequence, choose z halfway between xn−1 and yn−1. Set
xn = z, yn = yn−1 if z � xn−1 and xn = xn−1, yn = z if z � yn−1. Then, the
sequence {(xn, yn)} has xn � x and yn � y for all n and they converge to z∗

between x and y. By continuity, z∗ � x and z∗ � y. By transitivity, y � x.
This is a contradiction.

Theorem 1.11 Debreu. If preferences are continuous on X ⊂ Rn then there
is a continuous utility function that represents the preferences.

Proof Assume X ⊂ Rn is convex and that preferences, �, are continuous.
Assume that X contains a countable dense set, Y . Since Y is countable, the
preference relation induces preferences on Y that can be represented by a utility
function, V : Y → [−1, 1]. Suppose x ∈ X. Define U(x) = sup{V (z) : z ∈
Y, x � z}. Define U(x) = −1 if {z ∈ Y : x � z} = ∅ (this is the case in which x
must be a minimal point, since all of Y is better than x and Y is dense). Note
that U(x) ∈ [−1, 1] for all x. We show that this is a utility function representing
these preferences.

Case x ∼ y: U(x) = U(y) because z ≺ x if and only if z ≺ y and we must
be taking the supremum over the same set.

Case x � y: If x � y then there exists a such that x � a � y. Note that
a does not need to be an element of Y . However, there is a ball, Bε(a) such
that every element in the ball is better than y and worse than x. Because Y
is dense in X, we may choose a′ ∈ Y ∩ Bε(a), and then x � a′ � y. We
may repeat this process to choose b ∈ Y such that x � a′ � b � y. Then,
U(x) ≥ V (a′) > V (b) ≥ U(y), and we have strict inequality.

Note that U in this construction need not be continuous (because there may
be countably many jumps) or differentiable.

1.2 Consumer Preferences

In the case of the consumer, we take X = RK
+ , so that the consumer is choosing

among bundles with different (non-negative) amounts of K commodities.

Definition A preference relation, �, on X, satisfies monotonicity if, for all
x, y ∈ X, (1) if xk ≥ yk for all k, then x � y and (2) if xk > yk for all k, then
x � y.

Definition A preference relation, �, on X, satisfies strong monotonicity if for
all x, y ∈ X, if xk ≥ yk for all k and xk 6= yk, then x � y.

Theorem 1.12 Debreu. Any consumer preference relation satisfying monotonic-
ity and continuity can be represented by a utility function.

Proof Let x be any bundle. Then, by monotonicity, (0, ..., 0) ≺ x ≺ (max(xk), ...,max(xk)).
By continuity, there must be a bundle on the line connecting (0, ..., 0) and
(max(xk), ...,max(xk)) which is indifferent to x. Since the bundle must be on
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the main diagonal, we have x ∼ (u(x), ..., u(x)). Let u(x) be the utility function.
This must represent the preferences, since (by transitivity) x � y if any only if
(u(x), ..., u(x)) � (u(y), ..., u(y)), which, by monotonicity, happens if and only
if u(x) ≥ u(y).

Definition A preference relation, �, on X, satisfies convexity if for all x � y
and α ∈ (0, 1), αx + (1− α)y � y.

Definition A set A is convex if for all a, b ∈ A and λ ∈ [0, 1], λa+(1−λ)b ∈ A.

Definition A preference relation, �, on X, satisfies convexity if for all y ∈ X,
the set AsGood(y) = {z ∈ X|z ≥ y} is convex.

Proposition 1.13 The two definitions are equivalent.

Proof (⇒). Suppose � satisfies the first definition. Let a � y and b � y. Then,
for any λ ∈ [0, 1], λa + (1− λ)b � b � y, and λa + (1− λ)b ∈ AsGood(y).

(⇐). Suppose � satisfies the second definition. If x � y then x, y ∈
AsGood(y). Thus, αx + (1− α)y ∈ AsGood(y), and αx + (1− α)y � y.

Definition A preference relation, �, on X, satisfies strict convexity if for every
a � y and b � y, a 6= b, and λ ∈ (0, 1), λa + (1− λ)b � y.

Definition A function, u, is quasi-concave if for all y, the set {x|u(x) ≥ u(y)}
is convex.

Proposition 1.14 A preference relation is convex if and only if its correspond-
ing utility function is quasi-concave. (Note that the utility function does not
need to be concave, only quasi-concave.)

Definition A preference, �, is homothetic if x � y implies that αx � αy for
all α ≥ 0.

Definition A function, u, is homogenous of degree λ if u(αx) = αλu(x).

Proposition 1.15 Any preference relation represented by a utility function that
is homogenous of any degree λ is homothetic.

The lexicographic preferences are also homothetic.

Theorem 1.16 Any homothetic, continuous, and increasing preference relation
on the commodity bundle space can be represented by a utility function that is
homogenous of degree one.

Proof Recall that for any x ∈ X, x ∼ (u(x), ..., u(x)) for some u(x), and that
u(x) represents�. Since the preferences are homothetic, αx ∼ (αu(x), ..., αu(x)),
so that u(αx) = αu(x).
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Definition A preference is quasi-linear in commodity 1 (called the numeraire,
and sometimes allowed to be negative) if x � y implies that (x+εe1) � (y+εe1),
where e1 = (1, 0, ..., 0) and ε > 0.

The indifference curves of quasi-linear preferences are parallel (relative to
the axis of the quasi-linear commodity).

Theorem 1.17 Any continuous preference relation satisfying strong monotonic-
ity in commodity 1 and quasi-linearity in commodity 1 can be represented by a
utility function of the form x1 + v(x2, ., , , .xK).

Proof In this case, for every (x2, ..., xK) there is some number v(x2, ..., xK)
such that (v(x2, ..., xK), 0, ..., 0) ∼ (0, x2, ..., xK) (get details of proof from solu-
tions?). Then, by quasi-linearity, (x1 + v(x2, ..., xK), 0, ..., 0) ∼ (x1, x2, ..., xK).
Because the preferences are strongly monotonic in the first commodity, x1 +
v(x2, ..., xK) represents the preferences.

Definition Suppose � satisfy monotonicity and convexity. For x ∈ X, we say
that d ∈ RK is an improvement direction if there is some ε > 0 such that
x+ εd � x (note that this must also hold for any δ < ε by convexity). Let D(x)
be the set of improvement directions (which includes any positive direction, by
monotonicity). We say that � are differentiable at the bundle x if there is a
vector v(x) such that d′v(x) > 0 if and only if d ∈ D(x). v(x) is the vector
of subjective values of the commodities. The preferences � are differentiable if
they are differentiable at every bundle, x.

Proposition 1.18 Suppose u is a differentiable, quasi-concave utility function.
If all the vectors ( du

dx1
(x), ..., du

dxK
(x)) are nonzero, then the induced preference

relation is differentiable with vk(x) = du
dxk

(x).

2 Choice

Definition A choice function is a mapping from a subset, A, of a set X to an
element in that set, C(A) = a ∈ A. That is, c : D → X. The domain, D, of this
function does not include the empty set, and need not include all subsets of X.

The choice function describes the behavior of an individuals when give a
choice from the set. It need not reflect preferences directly. Under rational
behavior, with preferences �, we assume that C�(A) is the maximal element
in A. That is, C�(A) � a for all a ∈ A. With this choice function, we do not
allow for indifference between two options.

Proposition 2.1 Suppose we observe a choice function, C, on a domain, D,
of X that contains all the subsets of size 2 and 3. Suppose that for all A,B ∈ D
with A ⊆ B and C(B) ∈ A, C(B) = C(A). Then, we may attach a set of
preferences such that all choices maximize this set of preferences. (We call such
a choice function rationalizable.)
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Proof For any a, b ∈ X, consider C({a, b}). We define a � b if C({a, b}) = a.
This is complete, since one of the two options must be chosen. Furthermore,
transitivity holds: If C({a, b}) = a, C({b, c}) = b, and C({a, c}) = c, then we
consider C({a, b, c}). Since all three sets are contained in {a, b, c}, no element
can be chosen and we reach a contraction of the assumption.

Suppose that this preference relation does not map to the choice function.
Then, there exists x, X such that x ∈ A but C(A) 6� x. Then, C({x, C(A)}) 6=
C(A), which contradicts the assumption, since {x,C(A)} ⊂ A.

Definition Given a set X, a set of non-empty subsets of X, D, we define a
more general choice function by C(A) ⊆ A, C(A) 6= ∅ for all A ∈ D. That is,
this is the set of equally maximal elements in A.

Axiom 2.2 Weak Axiom. Given A,B ∈ D and a, b ∈ A ∩ B, if a ∈ C(A) and
b ∈ C(B) then a ∈ C(B).

Theorem 2.3 C satisfies the weak axiom if and only if there exist preferences,
�, such that C(A) = {x|x � a for all a ∈ A}.

Proof (⇐). Suppose a ∈ C(A) and b ∈ C(B). Then, a ∼ b and a must also be
a maximizer in the set B.

(⇒). Let a, b be given. Define a � b if a ∈ C({a, b}). We show that this is a
preference relation. First, it is complete, because C({a, b}) 6= ∅, so a � b, b � a,
or both. For transitivity, suppose a � b, b � c, but a 6� c. Then, we must have
C({a, b, c}) = ∅, which is impossible.

Suppose this is not the correct preference relation. Then, C(B) 6= C�(B).
If there is some x ∈ C(B) with x 6∈ C�(B), then there exists y ∈ C�(B) with
y � x. Then, C({x, y}) = {y}, which contradicts the weak axiom. Suppose
there is some x ∈ C�(B) and x 6∈ C(B). Choose any y ∈ C(B). By the weak
axiom, x 6∈ C({x, y}), so C({x, y}) = {y}, meaning that y � x. This contradicts
x ∈ C�(b). Thus, we must have C(B) = C�(b).

2.1 Consumer Choice

Definition A budget set, B(p, w), for p ∈ RK
+ , w ∈ R+ is defined as B(p, w) =

{x ∈ Rk|px ≤ w}. This is the set of all bundles that can be purchased if the
price of good k is pk with the wealth endowment, w.

The following are true about budget sets:

• B(p, w) is closed because it is defined by K + 1 weak inequalities, xj ≥ 0
for j = 1, ...,K and

∑K
j=1 pjxj ≤ w.

• For all p, w, B(p, w) is compact, since it is closed and bounded.

• B(p, w) is non-empty (it always contains zero).

• B(p, w) is convex: If x, y ∈ B(p, w), then λx + (1 − λ)y ∈ B(p, w) since
λpx + (1− λ)py ≤ w.
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Definition The consumer’s problem is to find a bundle that maximizes their
preferences over the budget set. That is, P (p, w∗) = maxx{u(x)|px ≤ w∗}.

Proposition 2.4 If preferences, �, are continuous, then there is at least one
point that maximizes � over B(p, w).

Proof (Non-utility proof.) Suppose there is some B(p, w) with no maximum for
�. Define Inferior(z) = {y|z � y}. No point in B(p, w) is a maximum, so for
all x ∈ B(p, w), x ∈ Inferior(z) for some z. Thus, {Inferior(z)|z ∈ B(p, w)}
is an infinite open cover for B(p, w). Since B(p, w) is compact, there is a finite
subcover, {Inferior(z1), ..., Inferior(zL)}. Thus, every element of B(p, w) is
strictly inferior to at least one of z1, ..., zL. By transitivity, z∗ = max(z1, ...., zL)
cannot be inferior to any of the other elements. This is a contradiction, so there
must be a maximum.

Proposition 2.5 If � are continuous and strictly convex, then there is a unique
maximum in the budget set, B(p, w).

Proof Suppose there are two maximizers, y, z. Then, y � z, so λy+(1−λ)z � z
for any λ ∈ (0, 1) by strict convexity. Furthermore, λy + (1 − λ)z ∈ B(p, w),
so this point is feasible and strictly preferable to the two maximizers. This is a
contradiction.

Proposition 2.6 If � are continuous, strictly convex, and monotonic, then the
solution, x∗, satisfies px∗ = w.

Proof Suppose not. Then, px∗ < w and there exists ε > 0 such that p(x∗1 +
ε, ..., x∗K + ε) ≤ w. By monotonicity, this point is strictly preferable, which is a
contradiction.

Proposition 2.7 Suppose � are monotonic, convex, and differentiable. Sup-
pose x∗ solves the consumer’s problem. Then, vk(x∗)

pk
≥ vj(x

∗)
pj

for all k such that

x∗k > 0 and for all j. (If x∗k > 0 for all k, then all of the vk(x∗)
pk

must be equal.)

Proof Suppose not. Then, there exists k, l such that x∗k > 0 but vk(x∗)
pk

< vl(x
∗)

pl
.

We define a feasible direction of improvement by dk = −1, dl = pk

pl
, di = 0

otherwise. This is feasible since x∗k > 0 and dp = 0. Furthermore, dv(x∗) =
−1(vk(x∗)) + pk

pl
vl(x∗) > 0. Thus, we have a direction of improvement.

Proposition 2.8 Suppose � are monotonic, convex, and differentiable. Suffi-
cient conditions for x∗ to be optimal are: (1) px∗ = w and (2) vk(x∗)

pk
≥ vj(x

∗)
pj

for all j, k where x∗k > 0.

Proof Suppose x∗ is not a solution. Then, there is some z such that pz ≤ px∗

and z � x. By continuity and monotonicity, there is some y 6= z with yk ≤ zk,
y � x, and py < pz ≤ px∗. By convexity, any small move in the direction y−x∗
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is an improvement. By differentiability, v(x∗)(y − x∗) > 0. Let µ = vk(x∗)
pk

for
all k with x∗k > 0. Then,

0 > p(y − x∗) =
∑

pk(y − x∗k) ≥
∑

vk(x∗)(yk − x∗k)/µ

(Either pk = vk(x∗)
µ or pk ≥ vk(x∗)

µ and x∗k = 0.) This implies that 0 ≥ v(x∗)(y−
x∗), which contradicts that y is an improvement direction.

(In the case of two goods and an interior optimum, the slope of the indiffer-
ence curve through the optimal point is always −p1

p2
.)

3 Demand Functions

Definition The demand function, x : RK
+ ×R+ → RK

+ is given by x(p, w) equal
to the choice of the consumer from B(p, w).

Some properties of the demand function:

• Homogeneity of degree 0: x(p, w) = x(λp, λw), since B(p, w) = B(λp, λw).

• Walras’s Law : If preferences are monotonic, then for all p, w, px(p, w) =
w.

Proposition 3.1 x(p, w) is continuous in p if preferences are continuous and
x(p, w) is well-defined.

Proof (Non-utility version.) Suppose not. Then, there is some sequence {pn}
that converges to p∗ such that {x(pn, w)} does not converge to x(p∗, w). Note
that each xn ∈ B(pn, w). Since the pn are bounded away from zero (because
p∗ > 0), each xnk is bounded above, and all the {xn} lie in a bounded set.
Thus, there must be a subsequence, {xnj

} that converges to some y∗. Since
pnxn ≤ w, p∗y∗ ≤ w. If x∗ 6= y∗, we must have y∗ ≺ x∗ (because the maximizer
is unique). By continuity, there must be a point z in the interior of the budget
set with y∗ ≺ z ≺ x∗. Thus, z ∈ B(pn, x) for large enough n but is preferable
to y∗ and is therefore preferable to x(pn, w). This is a contradiction.

Since the domain of budget sets does not contain sets with exactly two or
three elements, the previous version of rationalizability will not work.

Definition A demand function, x(p, w) is fully rationalizable if there is some
preference relation, �, such that x(p, w) is the unique maximizer of � over
B(p, w) for any p, w.

Definition A demand function, x(p, w), is rationalizable if there is some pref-
erence relation, �, that satisfies monotonicity, such that x(p, w) is a maximizer
of � over B(p, w) for any p, w.
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The fastest way to show that a demand function is rationalizable is usually
to find a utility function that induces that demand function.

The weak axiom is necessary but not sufficient to show rationalizability
(which makes it helpful for showing that some preferences are not rationaliz-
able). It does not always help, because the union of two budget sets is not
necessarily a budget set.

Axiom 3.2 Strong axiom of revealed preference. Suppose we have (p1, w1), ..., (pN , wN )
with x(pi, wi) 6= x(pi+1, wi+1) and pix(pi+1, wi+1) ≤ w1 for i = 1, ..., N −
1. Then, pNx(p1, w1) > wN . (That is, if one keeps choosing x(pi, wi) over
x(pi+1, wi+1), one cannot then choose x(p1, w1) over x(pN , wN ) because it will
not be feasible.)

Proposition 3.3 Suppose preferences satisfy Walras’s Law and the Weak Ax-
iom. Suppose w′ = p′x(p, w). Then, either x(p′, w′) = x(p, w) or (p′−p)(x(p′, w′)−
x(p, w)) < 0.

Proof

(x(p, w)− x(p′, w′))(p− p′) = px(p, w)− p(x′w′)− p′x(p, w) + p′x(p′, w′)
= w − px(p′, w′)− w′ + w′

= w − px(p′, w′)

This is positive if w ≥ px(p′, w′); this cannot happen under the weak axiom.
Thus, the first expression must be negative unless x(p, w) = x(p′, w′).

Corollary 3.4 If p′ increases the price of one good, then p−p′ = (0, ..., 0,−ε, 0, ..., 0).
In this case, we must have 0 > −ε(xj(p, w) − xj(p′, w′)), and xj(p, w) >
xj(p′, w′). (This is the correct form of the Law of Demand; it is a law of
compensated demand.)

The traditional Law of Demand that states that increasing pj and holding
everything else fixed necessarily leads to a decrease in xj(p, w) does not neces-
sarily hold. (For example, there may be Giffen goods.)

3.1 Indirect Preferences

Definition Suppose there is a preference relation, �, on a set X. Let D be the
domain of the choice function. We define the indirect preferences, �∗ on D, by
A �∗ B if C(A) � C(B) for any A,B ∈ D.

Definition If u represents the preferences, �, and the choice function is well-
defined, then we define the indirect utility function by v(A) = u(C(A)). The
indirect utility function represents �∗.

Consider the indirect preferences, �∗ on budget sets, defined by (p, w) �∗
(p′, w′) when x(p, w) � x(p′, w′). The following properties hold:

11



• (λp, λw) ∼∗ (p, w).

• �∗ is non-increasing in pk and increasing in w.

• If the preference relation � is continuous, then �∗ is continuous as well
(and so is its indirect utility function).

• If (p, w) �∗ (p′, w′) then (p, w) �∗ (λp + (1 − λ)p′, λw + (1 − λ)w′) for
all λ ∈ (0, 1). Equivalently, the indirect utility function is quasi-convex.
(PROOF?)

Theorem 3.5 Roy’s Inequality. Assume that the demand function satisfies
Walras’s Law. Let H = {(p, w)|px(p∗, w∗) − w = 0} for some (p∗, w∗). The
hyperplane, H, is tangent to the �∗ indifference curve through (p∗, w∗). Equiv-
alently, if v is the indirect utility function, then −( ∂v

∂pk
(p∗, w∗))/( ∂v

∂w (p∗, w∗)) =
xk(p∗, w∗).

Proof (p∗, w∗) ∈ H. For any (p, w) ∈ H, x(p∗, w∗) ∈ B(p, w), so x(p, w) �
x∗(p, w), so that (p, w) �∗ (p∗, w∗), and the hyperplane must always lie above
the indifference curve.

Suppose �∗ is represented by a differentiable v. Then,

H = {(p, w)|( ∂v

∂p1
(p∗, w∗), ...,

∂v

∂pK
(p∗, w∗),

∂v

∂w
(p∗, w∗))(p− p∗, w − w∗) = 0}

Since w∗ = p∗x(p∗, w∗),

H = {(p, w)|(x(p∗, w∗),−1)(p− p∗, w − w∗) = 0}

Thus, ( ∂v
∂p1

(p∗, w∗), ..., ∂v
∂pK

(p∗, w∗), ∂v
∂w (p∗, w∗)) is proportional to (x1(p∗, w∗), ..., xK(p∗, w∗),−1),

and −( ∂v
∂pk

(p∗, w∗))/( ∂v
∂w (p∗, w∗)) = xk(p∗, w∗).

3.2 The Dual Consumer Problem and Hicksian Demand

Definition The dual consumer problem is the problem of achieving a cer-
tain level of utility while minimizing the expenditure. That is, D(p, u∗) =
minx{px|u(x) ≥ u∗}, for a given u∗.

Proposition 3.6 If x∗ is the solution to P (p, w∗), then it is also the solution to
the dual problem, D(p, u(x∗)). If x∗ is the solution to the dual problem D(p, u∗)
then it is also the solution to the problem P (p, px∗).

Proof Suppose x∗ is not a solution to the dual problem D(p, u(x∗)) then there
exists a strictly cheaper bundle, x, for which u(x) ≥ u(x∗). Then, there is some
strictly positive vector, ε such that p(x + ε) < px∗ ≤ w. By monotonicity,
u(x + ε) > u(x) ≥ u(x∗). This contradicts the assumption that x∗ is a solution
to P (p, w∗).

Suppose x∗ is not a solution to P (p, w∗). Then there exists x such that
px ≤ px∗ and u(x) > u(x∗) ≥ u∗. By continuity, there is a non-negative vector,
ε with u(x− ε) > u∗ and p(x− ε) < px∗, which contradicts the assumption that
x∗ solves D(p, u∗).
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Definition If D(p, u) has a unique solution, we define h(p, u) as the solution.
This is called the Hicksian demand function.

Some properties of the Hicksian demand function:

• h(λp, u) = h(p, u).

• hk(p, u) is non-increasing in pk. (Because both are optimal, ph(p, u) ≤
ph(p′, u) and p′h(p′, u) ≤ p′h(p, u), so that (p− p′)(h(p, u)− h(p′, u)) ≤ 0;
we then set p−p′ = (0, ..., ε, ..., 0) and deduce that hk(p, u)−hk(p′, u) ≤ 0.)

• h(p, u) is continuous is p.

Definition We define the expenditure function by e(p, u) = ph(p, u). This is
the amount of money needed to reach a certain level of utility.

Properties of the expenditure function:

• e(λp, u) = λe(p, u).

• e(p, u) is non-decreasing in pk and strictly increasing in u.

• e(p, u) is continuous in p (since h(p, u) is continuous in p).

• e(p, u) is concave in the vector p. (Let x = h(λp1 + (1− λ)p2, u
∗). Then,

e(p1, u
∗) ≤ p1x, e(p2, u

∗) ≤ p2x. So, e(λp1 + (1− λ)p2, u
∗) = (λp1 + (1−

−λ)p2)x ≥ λe(p1, u
∗) + (1− λ)e(p2, u

∗).)

Proposition 3.7 Dual Roy’s Equality. The hyperplane, H = {(p, e)|e = ph(p∗, u∗)}
is tangent to the graph of the function e(p, u∗) at the point p∗. Equivalently,
∂e
∂pi

(p, u) = hi(p, u). (CHECK.)

Proof Since ph(p∗, u∗) ≥ ph(p, u∗) for all price vectors, p, the hyperplane must
lie on one side of the graph of e = ph(p, u∗) and it must intersect the graph at
the point, (p∗, e(p∗, u∗)).

4 Producers

Definition The technology of a producer is a Z ⊂ Rk such that

• 0 ∈ Z: The producer can do nothing.

• Z ∩RK
+ = {0}: In order to produce output, some inputs must be used.

• Free disposal: If x ∈ Z and the point y has more input and less output
(down and to the left), then y ∈ Z.

• Z is closed: There are no discontinuities in production.

• Z is convex: This is equivalent to decreasing returns to scale.
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For any point z ∈ Z, the input commodities are those with zk < 0 and the
output commodities are those with zk > 0. (We sometimes assume that output
is bounded as well.)

Definition A simpler version of the technology assumes that each good can be
used only as an input or an output. Then, Z is confined to certain quadrants,
where each good takes on the correct sign. Then, the boundary of the set is
called the production function.

Definition The producer’s problem is to maximize profits, px, subject to the
constraint that x ∈ Z.

Note that the producer’s problem is equivalent to maximizing the utility
function, u(x) = px, over the choice set, Z.

Theorem 4.1 If Z is bounded above and strictly convex, there is a unique so-
lution, z(p), to the producer’s problem. We call z(p) the supply function. (Note
that, since z(p) includes the inputs, it is really the producer’s demand function
as well.)

Definition The profit function is given by π(p) = pz(p). This is equivalent to
finding the highest hyperplane that is tangent to Z.

The solution to the producer’s problem is like the solution to the dual con-
sumer problem, so the same mathematical properties hold. (FILL THEM IN?)

Some facts about production:

• z(λp) = z(p).

• z(p) is continuous.

• The Law of Supply : (p − p′)(z(p) − z(p′) ≥ 0. Specifically, if the price of
an output goes up, then production of that output will increase. If the
price of an input goes up, then less of that input will be used (it will be
less negative).

Note that the producer’s preferences are very restricted; we do not model
any non-profit motives.

Definition Suppose a producer uses inputs 1, ..., L to produce outputs L +
1, ...,K. We define the cost function, c(p, y), to be the minimal cost associated
with the production of the output y ∈ RK−L

+ given the input prices, p ∈ RL
+.

That is, c(p, y) = mina{pa|(−a, y) ∈ Z}.

5 Decision-Making Under Uncertainty

Definition Let a finite set of prizes (or consequences), Z, be given. A lottery
is a probability measure, p, on Z, so that 0 ≤ p(z) and

∑
z∈Z p(z) = 1. We

define the set of all lotteries on Z as L(Z).
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If |Z| = K, the set of lotteries is a simplex in RK . We define preferences, �,
on L(Z).

Definition The support of a lottery, p, is the set of feasible prizes, {z ∈
Z|p(z) > 0}.

Definition For any z ∈ Z, [z] is the lottery that assigns probability 1 to z.

Definition A compound lottery is given by

K⊕
k=1

αkpk(z) =
K∑

k=1

αkpk(z)

This is a two-stage lottery, where the first lottery determines which of the lot-
teries, p1, ..., pK , will happen at the second stage.

Axiom 5.1 Independence Axiom. p � q if and only if, for any lottery, r, and
α ∈ (0, 1), αp⊕ (1− α)r � αq ⊕ (1− α)r.

Proposition 5.2 Suppose an agent has
⊕K

k=1 αkpk �
⊕K

k=1 αkqk if and only if
p1 � q1 and pk = qk for k > 1. This property is equivalent to the independence
axiom.

Proof Consider the three-stage lotteries α1p1 ⊕ (1 − α1)(
⊕K

k=2
αk

1−α1
pk) and

α1q1 ⊕ (1 − α1)(
⊕K

k=2
αk

1−α1
qk). These lotteries are equivalent to

⊕K
k=1 αkpk

and
⊕K

k=1 αkqk. By the independence axiom, it is sufficient for p1 � q1.

Axiom 5.3 Continuity Axiom. If p � q then there are open balls about p, q
such that every element of Bδ(p) is preferable to Bδ(q).

Proposition 5.4 The continuity axiom holds if and only if for any p � q � r
there exists α ∈ (0, 1) such that q ∼ αp⊕ (1− α)r.

Proof (Sketch.) Notice that 1p⊕ 0r � q � 0p⊕ 1r. Consider 1
2p⊕ 1

2r and we
may create a sequence of points that are strictly preferred and that are strictly
not preferred to q. These sequences will converge to the same point.

Proposition 5.5 The two axioms do not imply each other.

Proof Lexicographic preferences, in which p(z1) is used for the first comparison,
then p(z2) is used for the second comparison (and so on) satisfy independence
but not continuity. The preferences represented by u(p) = max(pj) are contin-
uous but do not satisfy independence.

Definition Suppose we have a mapping of values, v : Z → R (these are called
the Von Neumann-Morgenstern utilities or the Bernoulli numbers). Then, the
expected utility of a lottery is given by u(L) = E(v(z)) =

∑
z∈Z p(z)v(z). This

is the expected utility representation of preferences over lotteries.
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Proposition 5.6 The expected utility representation satisfies the independence
and continuity axioms.

Proof Since v(z) is fixed, u(p) is linear in p, so the utility function is continuous.
Notice that:

u(αp⊕ (1− α)r) =
∑
z∈Z

v(z)(αp(z) + (1− α)r(z))

= α
∑
z∈Z

v(z)p(z) + (1− α)
∑
z∈Z

v(z)r(z)

= αu(p) + (1− α)u(r)
u(αq ⊕ (1− α)r) = αu(q) + (1− α)u(r)

Then, u(αp ⊕ (1− α)r) ≥ u(αq ⊕ (1− α)r) if and only if u(p) ≥ u(q), and the
independence axiom holds.

Lemma 5.7 Suppose x, y ∈ Z and [x] � [y]. Let 1 ≥ α > β ≥ 0. Then, if the
preferences satisfy independence, α[x]⊕ (1− α)[y] � β[x]⊕ (1− β)[y].

Proof By independence, [x] � [y] implies that α[x] ⊕ (1 − α)[y] � α[y] ⊕ (1 −
α)[y] = [y]. Furthermore,

α[x]⊕ (1− α)[y] = (1− β

α
)(α[x]⊕ (1− α)[y])⊕ β

α
(α[x]⊕ (1− α)[y])

β[x]⊕ (1− β)[y] = (1− β

α
)[y]⊕ β

α
(α[x]⊕ (1− α)[y])

Thus, α[x]⊕ (1− α)[y] � β[x]⊕ (1− β)[y].

Theorem 5.8 Any preference relation that satisfies independence and continu-
ity has an expected utility representation.

Proof Given Z, we may rank [z1], ..., [zK ]. Choose M,m ∈ Z such that [M ] �
[z] � [m].

Case [m] ∼ [M ]: Let p ∈ L(z). We may write p = p(z1)[z1]⊕ ...⊕p(zK)[zK ].
By independence, since [m] ∼ [zi], p ∼ p(z1)[m] ⊕ ... ⊕ p(zk)[m] = [m]. Thus,
we are indifferent among all the lotteries. Let v(z) be a constant. Then, u(p) is
constant.

Case [M ] � [m]: Assign v(M) = 1 and v(m) = 0. For any [M ] � [z] � [m],
by continuity, there is some α such that [z] α[M ]⊕ (1−α)[m]. Define v(z) = α.
Let p be any lottery. Then, by independence,

p ∼
K⊕

k=1

p(zk)(v(zk)[M ]⊕ (1− v(zk))[m])

= (
K∑

k=1

p(zk)v(zk))[M ]⊕ (
K∑

k=1

p(zk)(1− v(zk)))[m]

Then, p � q if and only if
∑K

k=1 p(zk)v(zk) ≥
∑K

k=1 q(zk)v(zk). This is the
expected utility function with values v(zk).
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Proposition 5.9 Two value functions, v and w, represent the same preferences
if and only if one is a positive affine transformation of the other.

Proof Assuming that the preferences are not constant across all lotteries (in
which case both value functions are just constants), we must have v(M) >
v(m) and w(M) > w(m). There is a unique affine transformation such that
av(M) + b = w(M) and av(m) + b = w(m). Then, for any z ∈ Z:

w(z) = αw(M) + (1− α)w(m)
v(z) = αv(M) + (1− α)v(m)

This must satisfy w(z) = av(z) + b.

For now, we set Z = R. We set L(Z) be the set of lotteries with finite sup-
port. We also consider only value functions that are continuous and monotonic.
That is if t > s, then [t] � [s].

Definition Let p, q be lotteries. We say that p stochastically dominates q of
the first order, or pD1q, if for all expected utility preference relations satisfying
monotonicity, p � q.

This is a partial ordering on L(Z); it is not complete, but it is transitive.

Definition For a lottery, p, and x ∈ R, we define G(p, x) = P (win x or more) =
1− CDF (x).

Proposition 5.10 pD1q if and only if G(p, x) ≥ G(q, x) for all x.

Proof Let a value function, v, and two lotteries, p, q, be given. Since both lot-
teries have finite support, the union of the supports is also finite. Let x1, ..., xK

be the union of the supports, and set p(xi) = 0 if xi was not in the support of
p.

We may rewrite the expected utility as:

u(p) =
K∑

k=1

p(xk)v(xk)

= v(x0) + (v(x1)− v(x0))G(p, x1) + ... + (v(xK)− v(xK−1))G(p, xK)

=
K∑

k=1

G(p, xk)(v(xk)− v(xk−1))

Then, p � q if and only if
∑K

k=1 G(p, xk)(v(xk)−v(xk−1)) ≥
∑K

k=1 G(q, xk)(v(xk)−
v(xk−1)).

For this to hold for an arbitrary value function, we must have G(p, xk) ≥
G(q, xk) for all xk.
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5.1 Risk Aversion

Definition A preference relation, �, if risk-averse if for all p, [E(p)] � [p].

Proposition 5.11 A preference relation is risk-averse and satisfies expected
utility maximization if and only if the value function, v, is concave.

Proof Suppose not. Then, there exists a, b, λ such that v(λa + (1 − λ)b) <
λv(A) + (1 − λ)v(b). Then, λ[a] ⊕ (1 − λ)[b] � [λa + (1 − λ)b], which violates
risk aversion.

Suppose v is concave. Then, v(
∑

p(z)z) ≥
∑

v(z)p(z) by Jensen’s inequal-
ity. Thus, [E(p)] � p.

Definition Let p be any lottery. Then, there exists some number, CE(p) such
that p ∼ [CE(p)]. We call this the certainty equivalent of p.

Proposition 5.12 A preference relation is risk averse if and only if CE(p) ≤
E(p) for all p ∈ L(Z).

Definition Preference relation, �1, is more risk averse than preference relation
�2 if

• p �1 [c] implies that p �2 [c] for all p ∈ L(Z), c ∈ Z,

• for any p ∈ L(Z), CE1(p) ≤ CE2(p), or

• we have v1 = φ(v2) with φ concave.

Proposition 5.13 The three definitions of “more risk averse” are equivalent.

Proof (2 ⇒ 1). Suppose p �1 [c]. Since [p] ∼1 [CE1(p)], CE1(p) ≥ c. Since
CE2(p) ≥ CE1(p) by assumption, CE2(p) ≥ c, and [p] �2 [c].

(3 ⇒ 2). Notice that E(ui(p)) = u1(CEi(p)) for all p. Since ui is strictly
increasing, it is invertible, and CEi(p) = u−1

i (E(ui(p))). By assumption, φ =
u1(u−1

2 ) is concave, and we have:

u1(CE2(p)) = u1(u−1
2 (E(u2(p))))

= φ(E(u2(p)))
≥ E(φ(u2(p)))
= E(u1(p))
= u1(CE1(p))

Taking u−1
1 of both sides shows that CE2(p) ≥ CE1(p).

(1 ⇒ 3). Suppose u2(x) < u2(y) < u2(z). Then, we may choose λ ∈ (0, 1)
such that u2(y) = λu2(x)+(1−λ)u2(z). Taking φ of both sides of this equation
yields u1(x) = φ(λu2(x) + (1 − λ)u2(z)). This equation is equivalent to [y] ∼2

λ[x]⊕ (1− λ)[z]. Then, we must have [y] �1 λ[x]⊕ (1− λ)[z], so that u1(y) ≥
λu1(x)+ (1−λ)u1(z). Thus, φ(λu2(x)+ (1−λ)u2(z)) ≥ λu1(x)+ (1−λ)u1(z),
and φ is concave.
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Definition The coefficient of absolute risk aversion for a twice-differentiable
value function is given by:

r(x) = −u′′(x)
u′(x)

Note that this value is always positive (for a concave u) and may vary with
x.

Proposition 5.14 Preferences �1 are more risk averse than �2 if and only if
r1(x) ≥ r2(x) for all x.

Proof φ = u1(u−1
2 ) is concave if and only if d

dxu1(u−1
2 (x)) = u1′(u−1

2 (x))

u′2(u
−1
2 (x))

is

non-increasing. Since u−1
2 is increasing, this can occur if and only if u′1(x)

u′2(x) is
non-increasing. Taking the logs and then the derivative, we find that this is
equivalent to:

0 >
d

dx
(log(u′1(x))− log(u′2(x)))

=
u′1(x)
u′′1(x)

− u′1(x)
u′′1(x)

= − 1
r1(x)

+
1

r2(x)

Thus, we must have r1(x) ≥ r2(x).

In the case of lotteries of the form p[x1]⊕ (1− p)[x2], for fixed p, with risk-
averse preferences, we must have [c] � p[x1] ⊕ (1 − p)[ 1

1−p (c − px1)]. If � is
differentiable, then it must have slope − p

1−p through any point, (c, c) on the
main diagonal. If �1 is more risk averse than �2, then the indifference curve
for �1 must lie inside (up and to the right) of the indifference curve for �2. In
this case, note that φ′′(x) = r(x) p

(1−p)2 , and this yields another measure of risk
aversion.
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