Algebra Summary

Rings

Division Algorithm: If abl R, bt 0, then $ q,rT Z st. a=bg+r. g and r are uniqueif R isan integral domain
Intheintegers: 0£r<b
In Q[X]: r isof alower degree than b.

Irreducible: pisirreducible if pisnot O, 1, or -1, and if there is not an a st. (p) is a proper subset of (a)

which isitself a proper subset of R. (ie. Pis not divisible by anything)

Prime: pisprimeif pisnot 0, -1, or 1, and whenever bcl (p), bl (p) or ¢l (p).

Ring: A ring isaset R with 2 binary operations, + and *, st.:

1. Risclosed under + 2. +isassociative

3. +iscommutative 4. Thereisan additive identity (0,)
5. For al a, thereisasolution, b, to the equation a+b=0 6. Risclosed under *

7. * isassociative 8. the distributive property holds; a(b+c)=ab+ac

Ring With Identity. Thereisa 1 such that al=1a=afor al a.
Commutative Ring. * commutes.
Integral Domain. A nonzero commutative ring with 1 st. if ab=0, a=0 or b=0 (no zero divisors)
Field. A non-zero commutative ring with 1 in which every non-zero element is a unit.
Proposition. If Fisafield and a,bl F are nonzero, then abt 0 (ie. A field is an integral domain.)
Unit. A member of U, where U,={xl R |$y st. xy=1} (those which are invertible).
Zero Divisor. If ab=0 and &' 0 and b* O, then aand b are zero divisors.
Additive Inverse. X st. A+X=0
Lemma. If x+y=x+zinR, theny=z
Remark. If x+y=x+z=0, then y=z and this is the additive inverse.
Proposition. Og* x=0r
Proposition. -(ab)=(-a)(b)=a(-b); -(-a)=a; -(a-b)=-a-b; -(a-b)=b-a; (-a)(-b)=ab
Subring. If Risaring and SI R, Sisasubring of R if the + and * of R make Saring.
Proposition. If Si R, Sisasubring iff:
(1) Sisclosed under + (2) Sisclosed under *
(3) Scontains 0 (4)ifa S, then-al S
Proposition. If Sisanonempty subset of R, Sis a subring iff:
(1) Sisclosed under subtraction
(2) Sisclosed under multiplication
Theorem. If Risaring, &&...a, has a unique value, and association does not change it.
Lemma. If efl R st. ea=ae=1 and fa=af=1, then e=f. (Multiplicative identities are unique.)
Corallary. If there are both left and right identities, then the left identity equals the right identity.
Proposition. If Sisasubring of Rand 1xl S, then 1 is an identity for S.
Ideals. Let R be a commutative ring:
If d R, (@={ar | R}
If Al R (A={ay, &, ... &}), (A) ={&ar | il R, al A, there are afinite number of termsin the sum}
(0)={0}, (R)=R; If 15l A, then (A)=R
(A\) absorbs other elements of R (ie. If il (A) and 1l R, thenirl (A))
(A) isanideal (Definition. Anideal isasubring of R which absorbs.)
All idealsin the polynomials of fields and integers are principal (can be generated by 1 element).
Definition. | is prime < R/l isan integral domain <> whenever a*bl |, al | or bl |
Definition. | ismaximal <> R/l isafield <& there no other idealsin R that contain |
Equivalence and Ideals.
[a] = {a+i |il 1}
TFAE: bi [a], [b], C [a];* 4 [b], =[a];; a° b(mod 1)
R/l is called a quotient ring.
Operations: [a]+[b]=[atb]; [a][b]=[ab]
Special Case: Integers
Theorem. If bt 0, then $ a smallest non-negative element rl [a], and 0 £ r < b.



Theorem. If aand b are not both 0, the (a,b) has a smallest positive elementd. d|aandd |b. If c|aand
c|b, thed|c. Also, (ab) = (d)
Theorem. In the integers, prime and irreducible are equivalent.
Theorem. Every integer other than 0 and +1 can be written uniquely as a product of primes.
Special Case: Polynomials
Formal Power Series. R[[x]]=S (i=0to i=¥) ax' where i R and x is not; Polynomial is from i=0 to i=n.
Addition. a(x) + b(x) = &(i=0 to i=n) (a+h)x'
Multiplication. a(x)b(x)=4(i=0to m+n) (& (j £ i) ghb.;)) X’
Leading Coefficient. a.x" where a(x) isthe sum from i=0 to n (the term with highest power of x)
Proposition. If f(x)t 0, then deg(f(x)) is the smallest element of {deg(g(x)) | g(x)T (f(x))}
Associates. f(x) and g(x) are associates iff f(x)=u*g(x) where u is a unit.
Monic. The leading coefficient is1. (In F[x], there is always a unique monic associate.)
Every polynomial can be factored into monic irreducibles.
If p(x) isirreducible then any associate of p(x) isirreducible.
If p(x) and q(x) are irreducible and p(x)|q(x), they are associates.
If Risanintegral domain, prime => irreducible; in afield, irreducible => prime.
When f( r) = Og, risaroot of f(x) and (x-r)[f(x).
If deg(f(x))= 2 or 3, f(x) isirreducible & f(x) has no roots.
Letj o(f(X)) = &[a]X. Ifj n(f(X)) isreducible , then f(x) isirreducible. (But not the reverse.)
Gauss's Lemma
Eisenstein’s Criterion: If p does not divide a,, and p divides &, ay, .., &1, and p2 does not divide ay, then
f(x) isirreducible.
Suppose Fi G arefields, and al G. Fla] = {&fa'|fil F}
F[x] = F[a] isahomomorphism
If p(x) isapolynomial of lowest degree st. p(a)=0, F[x]/p(x) = Ha] is an isomorphism
F[X] can be extended to (F[X]/(p(x)))[y]-

Homomor phisms and | somor phisms
Homomor phism of Rings.. If f isamapping from R to S, and f(at+b)=f(a)+f(b) and f(ab)=f(a)f(b), then f is
a homomorphism of rings.
Homomor phism of Groups. A function f: G>H is a homomorphism if f(a*b)=f(a)*f(b).
Isomorphism. If f is bijective and a homomorphism, it is an isomorphism.
Automor phisms. Any isomorphism from G to itself is an automorphism. The set of al automorphisms of
Gisagroup, Aut(G).

Injective = Monomorphism = One-to-one
Surjective = Epimorphism = Onto
Bijective = Isomorphism = One-to-one and Onto
Proposition. The composition of homomorphisms is a homomorphism.
Proposition. The inverse of an isomorphism is an isomorphism.
Proposition. 1somorphism is an equivalence relation.
Proposition. In a homomorphism of rings:

1. f(Or)=0s 2. f(-a)=-f(a)

3. f(ab)=f(a)-f(b) 4. f(r) isasubring of S

5. If R has an identity, then f(1g) is an identity for f(R), but not necessarily for S

If f isan isomorphism, it is the identity.

6. If aisaunitin R then f(a) isaunitisf(R)

Proposition. If f: G=>H is a homomorphism:

1. f(eg)=eq 2. f(@h)=(f(a))*

3. f(@)=f@" 4. Imf isasubgroup of H

5. ker f isasubgroup of G 6. If f isoneto one, then G isisomorphicto Im f
Proposition. In anisomorphism (f: R 2 9):

1. a=1x U f(a)=1s 2. a=0r © f(a)=0s

3. aisaunitinR < f(a) isaunitin S 4. d=1z @ (f(@)' = 1s



5. The number of elementsin R and Sis the same (#R=#S)
6. The number of unitsin R equals the number of unitsin S
If f: R > Sisahomomorphism of rings, ker(f) isanideal. If | isanideal, thenit isthe kernel of the
homomorphism f(a)=[4],.
Pf. f(@)=0 <> [a]=[0] < a0 (mod|) < a0l | <> al |. Sod kerf < a I.
Im(f) ={sl S|$rst.f(r)=s}
fisonto < Imf =S; Imf isaways a subring and isomorphic to R (not usually an ideal, though)
Theorem. If f isahomomorphism, then ker f isnormal in G.
First Isomorphism Theorem. If f: R > Sisahomomorphism, then f: R/(ker f) > Imf st. [a] = f(a) isan
isomorphism of rings.
R = R/(ker f) is a surjective homomorphism.
f: R/(ker f) > Sisinjective (since the kernel is being reduced to 1 element)
f: R > Sisanisomorphism if it is a homomorphism, ker f={0} and Im f=S
First Homomorphism Theorem. Let f be a homomorphism. Then the map from G/ker f to Im f isan
isomorphism.
Third Homomor phism Theorem of Groups. Let K and N be normal subgroups, such that N is contained in
K. Then, K/N isanormal subgroup of G/N and (G/N)/(K/N) isisomorphic to G/K.

Groups
Group. A group isaset Swith an operation * such that:
1. foralstl S, st1 S(closure)
2. $ el Ssuchthat ste=e*s=sfor al s (identity)
3. foral sl S, thereexistsatl S such that st=ts=e. (inverses)
4. foral stul S, (s*t)*u=s*(t*u) (association)
A group is abelian if:
5. a*b=b*a(commutes)
Proposition. Identities and inverses are unique in groups. Cancellation holds (because of inverses).
Corollary. (ab)*=b'a*and (a’)*=a
Order. Theorder of g, 9], = e g, & &°, ...}|. |G| = the number of elementsin G.
Lagrange's Theorem. If gi G, then the order of g divides the order of G.
Theorem. If d G, thend =d < i=j mod |a|.
Corallary. Inan Abelian group:
&l = [al/t if t divides [al.
If ab=ba and (|al,|b])=1, then |abl=[a]|b].
If cisan element of maximum order in G and |c| is finite, then |a] divides |c| for all & G.
If (Jal, [b)=d, then [a(b")| = |a’b] = lcm(jal, [b])-
Subgroup. If Gisagroup and H isasubset of G, then H isasubgroup of G if Hisagroup under G's
operation.
Subgroups: Hi G isasubgroup if H is closed under the group operation and contains inverses (and is
non-empty.)
H is asubgroup of G (1) if H is non-empty and (2) if ab™ H when abl H.
If |H| isfinite and H is closed, then H is a subgroup.
Cyclic Subgroup. If a G, then <a>={d" | nl Z} isasubgroup. <a>isacyclic group and aisthe
generator.
Theorem. Ever subgroup of acyclic group is cyclic.
Definition. If SI G, <S> = {all possible products of all elementsin S and their inverses, with repeatsin
any order}.
Fact. <S>=C H, where Sl HEG. ie. <S> isthe intersection of all subgroups that contain S.
Lemma. The intersection of any set of subgroups is a subgroup.
Cosets. For K £Gandal G, Ka={ka|ki K}. Notethat aK is not necessarily Kaif K is not a normal
subgroup. Also, a=b (mod K) if ab™ K. G/K = {distinct Ka}
Theorem. The following are equivalent, if K is a subgroup of G:
1. KaC Kbt A&



2. bl Ka
3. Kb=Ka
4. a=b (modK)

Note. For al a G, |Kaj=|K|. Also, [K|divides|G|. So, the number of cosets of K is[G:K], always an
integer.

Normal Subgroup. K isanormal subgroup of G if, for all ki K and all a G, aka™ K.

Smple. If G has no normal subgroups, then G is simple.

Corollary. Every subgroup of an abelian group is normal.

Theorem. If [G:K]=2, then K isnormal in G.

Proposition. K isnormal in G ¢ aKa®=K for al ain G.

Theorem. G/K isagroup (with operation Ka* Kb=K (a*b)) if K isnormal.

Theorem. Suppose N isnormal in G and K is a subgroup of G which contains N, then N is normal in K.

Theorem. Suppose N and K are normal in G, and K iscontained in N. Then K isnormal in N, N/K is
normal in G/K and (G/K)/(N/K)@G/N).

Theorem. Suppose N isnormal in G. Then there is a one-to-one correspondence between subgroups of
G/N and subgroups of G containing N, which sends normal subgroups to normal subgroups.

Coroallary. Suppose G isfinite, and G; < G is a proper normal subgroup of G with largest possible order.
The, G/G, issimple. (Thisleads to decomposition...)

Theorem. If G isfinite, then any two composition series of G will have the same factors.

Conjugation and Inn. Letj (g)=cgc’. Thenj isconjugation by c. Inn(G) ={j c|c1 G} (“Inner

automorphism”)

Theorem. The center of G (ie. Z(G)) isthe kernel of the map from c to conjugation by c.

Conjugacy Class. The conjugacy class of aisall b, such that b=gag™, for some gi G.

Theorem. Conjugacy is an equivalence relation.

Note. G istheunion of al conjugacy classes. |G| =|Cyq| + |Cy| + ... = |Z(C)| + |Cy| + ...

Note. For al i, |Cj| divides |G].

Note. All elementsin Z(G) are in conjugacy classes by themselves.

Note. Just because two elements are conjugate in G doesn’t mean they’ re conjugate in a subgroup of G.

Note. A subgroup of G isnormal if and only if it isaunion of conjugacy classes. (ie., no partial ones)

Center. If Gisany group, the center of G, Z(G) = {zl G|zg=gzfor al gi G}.

Theorem. The center of G isanormal subgroup.

Theorem. If f isahomomorphism, then ker f isnormal in G.

Permutation. A rearrangement of elements. The group of all permutations on n elementsis S,.

Cayley's Theorem. Every group isisomorphic to a subgroup of A(G), where A(G) isthe map from Gto a
permutation of G.

Theorem. If tT S,, then the conjugacy class of t isall elementsin S, with the same cycle structure.

Alternating Group. The set of all permutations that can be written as the product of an even number of

transpositions. (Where atransposition is (ab)—aflip of elements.)
Theorem (of Sgns). From each n>1, there is a unique epimorphism of groups S, 2 {1, -1}. +1
corresponds to permutations which can be written as an even number of transpositions.

Theorem. The alternating group (A,) isthe kernel of sign and therefore a normal subgroup of S,.

Theorem. A, issmpleiff nt 4.

Lemma. If n3 5, all 3-cycles are conjugatein A,,.

Lemma. If n3 4, al products of 2 digoint transpositions are conjugate in A,,.

Commutator. aba'b® isacommutator.

Theorem. Suppose N isnormal in G. G/N isabelian < " abi G, aba'v™ N. (ie. al commutatorsarein
N)

Centralizer. C(a) ={gl G|ag=ga}.

Lemma. C(a) £ G (where C(a) isthe centralizer of a)

Theorem. [G:C(a)] = the number of elements conjugate to a

Lemma. Every cyclic group is Abelian and isomorphic to Z,, where n=|a|.

Proposition. If Giscyclic and G=<a>, then either G isinfinite and Z@s or G is of order k, and G@Zy.

Coroallary. Any two cyclic groups of the same order are isomorphic.



Theorem. If Gisagroup, then G issimple and abelian <& G @Z,
Theorem. Z,," Zp @Zm < (M,n)=1.
Classification Theorem for Finite Abelian Groups. If [G|=n and G is abelian, the G @4 Z, ..., where the
product of the subscriptsisn.
Note. G isfinite and |g|=p for all g <> |G|=p".
Cauchy’s Theorem. If |G|=n and p|n, then $gi G such that |g|=p.
Sylow p-Subgroup. If p|G and k is the highest power of p which divides G, then HEG such that [H|=p* is
called a Sylow p-subgroup. (it might not be normal.)
First Sylow Theorem. If p* divides |G|, then $HEG such that [H|=p*. H may not be normal.
Second Sylow Theorem. Any two Sylow p-subgroups are conjugate.
Third Sylow Theorem. The number of Sylow p-subgroupsis 1+mp (ie., 1 mod p) AND divides G.
Smple with Sylow? If there must be only 1 Sylow p-subgroup of some order, then that subgroup is
normal.
12 trick. Show that enough elements must be contained in some subgroups (and therefore have
certain orders), that there can be only one of a different subgroup.
24 trick. Let H be a Sylow p-subgroup. Consider the homomorphism G - A(G/H). Show that this
must have akernel which is proper. Thisisanormal subgroup.

I somorphism Classes (and Reasons for Non-Simplicity) for Selected Orders.
Orders of p haveonly Z,,
Orders of 2p have only Z, and D,
Corollary to Cauchy’s Theorem. If |G|=2p, then wither G @Z;, or G @D,
Orders of p* have only Zy, and Z, Z,,
Theorem. If |G| = p* then |Z(G)| > 1, and the center is non-trivial.
Lemma. If G/Z(G) iscyclic, then G is abelian.
Corollary. If |GJ=p? then G is abelian.
Orders of p" and pq (p and q primes) have no simple groups (by Third Sylow Theorem)

Examples
Rings
Rings: zero ring, My(R ) [which has an identity if R doeg]
R S={(r,9|rl Rand sl S}
Or s = (Or, Oy
1r s = (1g, 1), if both rings have identities
Thering of (r, Os) is asubring, with a different identity element.
R[[x]] and R[x]
Commutative rings with identity: Z,,, F[x]/(p(x))
Integral Domains: integers, F[x]
Fields: rationals, reals, Z,
| somor phisms
Zon2Zn~ Zn (Where (m,n)=1)
R and the constant polynomials of R[X]
FIX]/(p(x)) = Flal, where p(a)=0

Groups

A ring together with + is abelian.

The units of aring with identity isagroup. (Theorem. If Fisafinite field then U(F) (all elements except
0) iscyclic.)

the positive (or nonzero) elements of R or C with multiplication

GLy(F) = invertible n by n matrices with entriesin F

Sh An

Aut(G) [automorphisms], Inn(G) [conjugation], A(G) [permutations]

Z, Z, (cyclic groups)



Zy Zy ...
D, (dihedral groups)
H (quaternions)



Rings
Ring: A ringisaset R with 2 binary operations, + and *, st.:

1. Risclosed under + 2. +isassociative

3. +iscommutative 4. Thereisan additive identity (0
5. For dl a, thereisasolution, b, to the equation a+b=0 6. Risclosed under *

7. * isassociative 8. the distributive property holds; a(b+c)=ab+ac

Field. A non-zero commutative ring with 1 in which every non-zero element is a unit.
Integral Domain. A nonzero commutative ring with 1 st. if ab=0, a=0 or b=0
Proposition. If Si R, Sisasubring iff:
(1) Sisclosed under + (2) Sisclosed under *
(3) Scontains 0 (4)ifd S then-a S
Proposition. If Sisanonempty subset of R, Sisasubring iff:
Sisclosed under subtraction and under multiplication.
Definition. Anideal isasubring of R which absorbs. (If al R and il | then ail Randial R)
Definition. | isprime <> R/l isan integral domain <> whenever a*bl |, a | or bl |
Definition. | ismaximal <> R/l isafield < there no other idealsin R that contain |
Polynomials
Formal Power Series. R[[x]]=S (i=0toi=¥) ax' where al R and x is not; Polynomial is from i=0 to i=n.
Multiplication. a(x)b(x)=4 (i=0to m+n) (& (j £ i) abi;)) X'
Proposition. If f(x)* 0, then deg(f(x)) is the smallest element of {deg(g(x)) | g()T (F(X))}
Every polynomia can be factored into monic irreducibles.
If p(x) isirreducible then any associate of p(x) isirreducible.
If p(x) and q(x) are irreducible and p(x)|q(x), they are associates.
If Risan integral domain, prime => irreducible; in afield, irreducible => prime.
When f(r) = Og, risaroot of f(x) and (x-r)|f(x).
If deg(f(x))= 2 or 3, f(x) isirreducible < f(x) has no roots.
Letj n(f(x)) = &[a]nX. If j n(f(X)) isirreducible , then f(x) isirreducible. (But not the reverse.)
Eisenstein’s Criterion: If p does not divide &, and p divides &, ay, ..., &-1, and p2 does not divide ao, then f(x) isirreducible.
Suppose Fi G arefields, and al G. F[a] ={&fa'|fl F}
F[x] = F[a] isahomomorphism
If p(x) isa polynomial of lowest degree st. p(a)=0, F[x]/p(x) = F[a] is an isomorphism
Homomor phisms/I somor phisms
Proposition. In a homomorphism:
1. f(Or) = 0Os; f(es) = & 2. f(-a)=-(a); f(a")=f(@)™"
3. f(a-b)=f(a)-f(b); f(ab™)=f(a)f(b)™ 4. f(r) isasubring/subgroup of S
5. If R has an identity, then f(1g) is an identity for f(R), but not necessarily for S
If f isan isomorphism, f(1g) is the identity.
6. If aisaunitin R then f(a) isaunitisf(R)
Proposition. In anisomorphism (f: R > 9S):
1. a=1r U f(a)=1s 2. a=0r < f(a)=0s
3. aisaunitinR < f(a) isaunitin S 4. d=1z ® (f(@)' = 1s
5. The number of elementsin R and S is the same (#R=#S)
6. The number of unitsin R equals the number of unitsin S
Every ideal/normal subgroup isthe kernel of f: R > R/I. Every kernel is an ideal/normal subgroup.
First Isomorphism Theorem. If f: R > Sisahomomorphism, then f: R/(ker f) > Imf <. [a], = (@) is an isomorphism of
rings/groups.
Third Homomor phism Theorem of Groups. Let K and N be normal subgroups, such that N is contained in K. Then, K/N isa
normal subgroup of G/N and (G/N)/(K/N) isisomorphic to G/K.
Groups
Group. A group isaset Swith an operation * such that:
1. foralstl S st1 S(closure) 3. foral g S, thereexistsatl S such that st=ts=e. (inverses)
2. $ el Ssuchthat ste=e*s=sfor al s (identity) 4. for al st,ul S, (S*t)*u=s*(t*u) (association)
A group is abelian if: 5. a*b=b*a (commutes)
Order. Theorder of g, |gl. = e g, &% &, ...}|. |G| = the number of elementsin G.
Lagrange’s Theorem. If gi G, then the order of g divides the order of G.
Theorem. If d G, thend =d < i=j mod |al.
Coroallary. Inan Abelian group:
[&] = |alit if t divides [al.
If ab=ba and (|a,|b|)=1, then |abl=|al|b|.
If ¢ isan element of maximum order in G and |c| is finite, then [a| divides |c| for all d G.
I (Jal, [bl)=d, then [a(b")] = [eb| = Iem([a], [bl).
Subgroups: HI G isasubgroup if H is closed under the group operation and contains inverses (and is non-empty.)
H is asubgroup of G (1) if H is non-empty and (2) if ab™ H when abl H.
If |H|isfiniteand H is closed, then H is a subgroup.
Cyclic Subgroup. If a G, then <a>={d" | nl Z} isasubgroup. <a>isacyclic group and ais the generator.
Theorem. Ever subgroup of acyclic group is cyclic.




Lemma. Theintersection of any set of subgroups is a subgroup.
Cosets. ForK £ Gandal G, Ka={ka|ki K}. Notethat aK is not necessarily Kaif K is not anormal subgroup. Also, a=b
(mod K) if ab™ K. G/K = {distinct Ka}
Theorem. The following are equivaent, if K is a subgroup of G:
1. KaC Kbt £ 2. b1 Ka
3. Kb=Ka 4. a=b (mod K)
Note. For dl a G, [Kal=|K|. Also, |K|divides|G|. So, the number of cosets of K is[G:K], always an integer.
Coroallary. Every subgroup of an abelian group is normal.
Theorem. If [G:K]=2, then K isnormal in G.
Proposition. K isnormal in G < aKa'=K for all ain G.
Theorem. G/K isagroup (with operation Ka*Kb=K(a*b)) if K is normal.
Theorem. Suppose N isnormal in G and K is a subgroup of G which contains N, then N isnormal in K.
Theorem. Suppose N isnormal in G. Then there is a one-to-one correspondence between subgroups of G/N and subgroups of
G containing N, which sends normal subgroups to normal subgroups.
Corollary. Suppose G isfinite, and G1 < G isaproper normal subgroup of G with largest possible order. The, G/G; is simple.
Theorem. If Gisfinite, then any two composition series of G will have the same factors.
Conjugacy Class. The conjugacy class of aisall b, such that b=gag™, for some gl G.
Note. G isthe union of al conjugacy classes. |G| = |Cq| + |Cq| + ... = |Z(G)| + |Co| + ...
Note. For al i, |C| divides |G|
Note. Just because two elements are conjugate in G doesn’t mean they’ re conjugate in a subgroup of G.
Note. A subgroup of G isnormal if and only if it isaunion of conjugacy classes. (ie., no partial ones)
Cayley’s Theorem. Every group isisomorphic to a subgroup of A(G), where A(G) is the map from G to a permutation of G.
Theorem. If tT S, then the conjugacy class of t isall elementsin S, with the same cycle structure.
Theorem. The aternating group (An) isthe kernel of sign and therefore a normal subgroup of S..
Lemma. If n3 5, all 3-cycles are conjugatein An.
Theorem. Suppose N isnormal in G. G/N isabelian & " abi G, aba'b™ N. (ie. all commutators arein N)
Centralizer. C(a) = {gl G|ag=ga}. Thisisasubgroup of G.
Theorem. [G:C(a)] = the number of elements conjugate to a
Theorem. If Gisagroup, then Gissimpleand abelian <& G @Z,
Theorem. Zn™ Zn @Zmn <& (M,n)=1.
Classification Theoremfor Finite Abelian Groups. If |Gj=n and G isabelian, the G @4 Zy ..., where the product of the
subscriptsisn.
Cauchy’'s Theorem. If |G|=n and p|n, then $g] G such that |g|=p.
Sylow p-Subgroup. If pf|G and k is the highest power of p which divides G, then HEG such that |H|=p* is called a Sylow p-
subgroup. (it might not be normal.)
First Sylow Theorem. If p* divides |G|, then $HEG such that |H|=p*. H may not be normal.
Second Sylow Theorem. Any two Sylow p-subgroups are conjugate.
Third Sylow Theorem. The number of Sylow p-subgroupsis 1+mp (ie., 1 mod p) AND divides G.
Smple with Sylow? If there must be only 1 Sylow p-subgroup of some order, then that subgroup is normal.

12 trick. Show that enough elements must be contained in some subgroups (and therefore have certain orders), that there

can be only one of a different subgroup.

24 trick. Let H be a Sylow p-subgroup. Consider the homomorphism G > A(G/H). Show that this must have a kernel

which is proper. Thisisanormal subgroup.
Examples
Rings: zero ring, M(R ) [which has an identity if R does], R[[x]] and R[x]

R S={(r,9 |l Randsl S}
Or' s= (O, 0s); 1r s= (1w, 1y), if both rings have identities
Thering of (r, Os) is a subring, with a different identity element.

Commutative rings with identity: Zn, F[x]/(p(x))
Integral Domains: integers, F[X]
Fields: rationals, reals, Z,
Isomor phisms
Zon>Zm~ Zn (where (m,n)=1)
R and the constant polynomials of R[X]
F[X]/(p(x)) > F[a], where p(2)=0
Groups
A ring together with + is abelian.
The units of aring with identity isagroup. (Theorem. If Fisafinitefield then U(F) (all elements except 0) iscyclic.)
the positive (or nonzero) elements of R or C with multiplication
GL,(F) = invertible n by n matrices with entriesin F
Sh An
Aut(G) [automorphisms], Inn(G) [conjugation], A(G) [permutations]
Z, Zn (cyclicgroups), Za~ Zp~ ... (isomorphic to ALL abelian groups)
Dy (dihedral groups), H (quaternions)
Isomorphism Classes (and Reasons for Non-Simplicity) for Selected Orders.
Ordershaveonly Z,,



Orders of 2p have only Z, and Dy
Orders of p? have only Zyp and Z,” Z,,
Orders of p" and pq (p and g primes) have no simple groups






