Analysis

Finite and Infinite Sets
Definition. Aninitial segmentis{nT N|n£ ng}.
Definition. A finite set can be put into one-to-one correspondence with an initial segment. The empty set
is also considered finite.
Definition. An infinite set is a set with no such bijection.
Definition. An infinite set is countable if it can be put into one-to-one correspondence with the natural
numbers.
Definition. An infinite set is uncountable if no such bijections exists.
Technique. Show countability with a bijection.
Show uncountability by:
Showing a hijection onto an uncountable set.
Use contradiction.
Examples: the even natural numbers, the integers, and the rationals are all countable.
The real numbers and the irrationals are uncountable.
Theorem. A countable union of countable setsis countable.

The Real Numbers

1. Risafield.
Operations. +, *, their inverses
Abelian group under addition (closure, associativity, commutivity, zero, inverses)
Abelian group under multiplication (closure, associativity, commutivity, one, inverses)
Didtibutivity

2. Risordered.
Givena bl R,a3 borafh.
R isametric space.

3. Riscomplete.

Definition. Let ST R. ul R isan upper bound for Sif, foral sT S,s£u. ul Risalower bound of
Sif, foral sT S,s3 u.

Definition. An upper bound of Sisthe least upper bound (sup Sor l.u.b. §) if it isless than or equal to
any other upper bound of S. A lower bound of Sisagreatest lower bound (inf Sor g.l.b. §) if itis
greater than or equal to any other lower bound of S.

Remark. sup Sand inf S might not bein S.

Completeness Axiom. Every non-empty subset S of R that it bounded above has a least upper bound.
Every non-empty set that is bounded below has a greatest lower bound.

Proposition. Real Numbers may be approximated by rationals.
Lemma. Forany x1 R and positive integer N, there exists an integer n such that /N £ x £ (n+1)/N.
Lemma. If xT R and e> 0, there exists arational number r such that |x - r| < e.

The Cantor Set
Definition. A sequence of intervals, I, is nested when the chain of inclusions |, E |, E ... E |, holds.
Theorem. For al ni N, let I, be anon-empty, closed interval in R, I,, = [a,, b,]. Let{I,} be nested.
Then there exists an element common to all the intervals.
Remark. If z=sup {a,} and h =inf {b,} then [z, h] isthe intersection of these intervals.
Definition. A closed cell in R"is{X = (X1, ..., Xn) | & £ X; £ b for afixed a, b1 R}.
Theorem. Any set of nested closed cells contains at least one point in its intersection.
Definition. The Cantor Set (F) may be constructed in the following way:
1. Beginwith the unit interval. Thisis F.
2. For every interval in F., remove the open interval in the middle third. ThisisF,.
3. Fyistheunion of 2"intervals of the form [k/3", (k+1)/3", for certain k
Properties.
The Cantor Set is non-empty.



Some points are clearly the endpoints of intervals.

Others are there, too (like ¥%2). These are the endpoints of intervals only in the limit.

Can be put into 1-1 correspondence with R — uncountable.

Equivalent to the set of all numbers between 0 and 1 that can be expressed with only 0’sand 2'sin
ternary.

Sparse. Every point is a boundary point.

Metric Spaces
Definition. A metric space is a set E together with amapping d: E” E > R, which satisfies:
(1) d(p, ) 3 Ofor al p, q (positive)
(2) d(p,g) =0if and only if p=gq. (positive definite)
(3) d(p, ) = d(a, p) for &l p, g (symmetry)
(4 d(p,r)Ed(p,q) +d(qg,r) foral p,q,r1 E (triangle inequality)
Examples.
DR
(QR"
(3) Any real vector space with an inner product.
(4) The “discrete metric” where d(p, q) =0 if p=q, 1 otherwise.
(5) Lp, Ly
Definition. Ly isthe space of continuous functions on some set (ie. [0, 1]) with the metric d(f, g) =
sup{[f(x)-g(x)| : x I [0, 1]}.
Definition. L, is the space of continuous functions on some set (usualy [0, 1]) with the metric d(f, g)
= (#09-g)F )", ) )
Definition. Let (E; d) beametric space. Letpl Eandrl R. Then, the open ball centered at p with
radius r, denoted B(p; r), is defined by:
B(p, ) ={xT E|d(p,x)<r}.
Definition. The closed ball centered at p with radiusr is
B-bar(p; r) ={x1 E|d(p, x) £1}.
Definition. A subset S of ametric space (E; d) isopen if, for all pT S, there is some open ball centered at
p, contained entirely is S.
Definition. A subset S1 (E; d) is closed if its complement is open.
Proposition. For any (E; d),
(1) Ais open.
(2) Eis open.
(3) An arbitrary (possibly infinite) union of open setsis open.
(4) A finite intersection of open setsis open.
Corallary.
(1) A£isclosed.
(2) Eisclosed.
(3) Anarbitrary (possibly infinite) intersection of closed setsis closed.
(4) A finite union of closed setsis closed.
Definition. A subset S1 E is bounded if it is contained in some ball in E.
Definition. If x T E, aneighborhood of x is any set containing an open set that contains x.
Definition. Aninterior point of ST Eisapoint x T Ssuch that x has a neighborhood lying entirely in S.
(Alternately, x liesin an open ball entirely contained in S.)
Definition. An exterior point of Sisa point that has a neighborhood lying entirely outside S.
Definition. x isaboundary point of Sif every neighborhood of x intersects Sand S°.
Proposition. A non-empty closed subset of R that is bounded above has a greatest element (in the set).
Proposition. Let S1 E. Oisopenin Sif andonly if O=0" C Swhere O isopeninE.
Sequences
Definition. Let {p,} be asequence of pointsin a metric space (E; d). Thenp1 Eiscalled the limit of the
sequence if for all e> 0 there exists N such that whenever n> N, d(p,, p) <e



Remark. Some ways convergence may fail:
Oscillation (never staying within an e-ball).
Heading toward “infinity.”
The limit is not in the space.
Proposition. A sequence of points{p,} in ametric space may have at most one limit.
Definition. Let {p,} beasequencein (E; d). Let n; <n,<... beastrictly increasing sequence of positive
integers. Then {p,} is asubsequence of {pn}.
Proposition. Let {p,} be aconvergent sequence in (E; d). Then any subsequence of {p,} convergesto the
same limit.
Theorem. LetSi (E; d). Sisclosedif and only if whenever {p.} | SconvergesinE, thelimit liesin S.
Definition. A sequence of points {pn} in (E; d) is Cauchy if for any e > 0, there exists N such that for all
n, m> N, d(pn, Pm) <&
Proposition. Any convergent sequence is Cauchy.
Completeness
Definition. A metric space (E; d) is complete if every Cauchy sequence in E convergesto a point in E.
Proposition. A Cauchy sequence that has a convergent subsequence isitself convergent.
Remark. A convergent sequence is bounded.
Theorem. R with the standard metric is complete.
Definition. A sequence of numbersis monotoneiif it is either increasing or decreasing.
Proposition. A bounded monotone sequence (in R) converges. The limit is either the greatest lower
bounded or the least upper bound.
Compactness
Definition. A collection, G = {G,}, of open setsissaid to cover aset K if K1 E G,. Wecall G an open
cover of K.
Definition. K 1 (E; d) is compact if every open cover of K has afinite subcover.
Definition. Let ST (E; d). p1 Eisacluster point of Sif any open ball centered at p contains an infinite
number of points of S.
Theorem (Bolzano-Weierstrass). An infinite subset S of a compact metric space (E; d) has at |east one
cluster point in E.
Corallary. Any sequence of pointsin a compact metric space has a convergent subsequence.
Corollary. A compact metric space is complete.
Theorem. Any compact subspace of a metric space is both closed and bounded.
Remark. Compact implies complete, closed and bounded. Complete implies closed. No other
implications, though.
Theorem. If (E; d) is compact then a closed and bounded subset of E is compact.
Theorem (Heine-Borel). A subset of R" with the standard metric is compact if and only if it is closed and
bounded.
Corollary (Classical Bolzano-Weierstrass). Every bounded, infinite subset of R" has a cluster point.
Connectedness
Definition. (1) A metric space (E; d) is connected if the only subsets of E that are both open and closed
areE and £
(2) A metric space (E; d) is connected if it cannot be written as a union of open sets A and B such that
ACB=/AAEB=EA! £B! £
Theorem. Let {S} be acollection of connected subsets of a metric space. Suppose there exists i such that
S C So! /&£ ThenE S isconnected.
Theorem. A subset of R is connected if and only if it isan interval.
Theorem. R" is connected.

Some other types of spaces

Definition. A normed linear space is a vector space (V) with amapping || ||: V = R such that
1 |Ix||* 0
2. |X||=0if and only if x = 0.
3. |lcx|| = c|jx|]| wherecT R.




4. |x+y 1€ [Ix] + liyll
Remark. A good candidate for the norm in ametric space is d(0, x).
Definition. Aninner product space is a vector space, V, withamapping<,>: V"~ V 2 R, with the

following properties:

1. <x+y, 2> =<x,z> + <y, 2>

2. <cx, y> = c<x, y>

3. <X, y> =<y, x>

4, <x,x>30

5. <x,x>>0ifx?* 0.
Definition. A complete inner product space is a Hilbert space.
Definition. A Banach space is a complete normed linear space.

Continuity

Definition. Let (E; d) and (E’; d') be metric spaces. Letf: E> E'. Letp,1 E. Wesay f is continuous
at po if given any e> O there existsd > O such that if pT E and d(p, po) < d then d’ (f(p), f(po)) < e. We
say f iscontinuous on E if f iscontinuous at al po 1 E. Alternately, f is continuous at py if, given any e
> 0 there exists d > 0 such that f(B(po; d)) I B(f(po); €).

Example. Let (E; d) be ametric space. Definef: E = R by f(p) = d(p, po), where py isfixed. Then, f is
continuous.

Example. A linear function, f: R = RY, is continuous.

Theorem. Supposef: R 2> RYislinear. Then there exists A > 0 such that, for all u, v RP, || f(u) —f(v)
I£A flu—v]|.

Proposition. Let (E; d), (E'; d'),and (E'’; d’’) be metric spaces. Letf: E> E andg: E' = E’ be
continuous. Then g(f(x)) is continuous.

Definition. The pre-imageof aset, S, isf(S)={p1 E|f(p)T S}.

Theorem. Let (E; d) and (E'; d') be metric spaces, f: E > E'. Then, f is continuous if and only if for
every openset O1 E’, the pre-image of O is open.

Coroallary. fiscontinuousif and only if the pre-image of every closed set is closed.

Note. A continuous function does not necessarily map open sets to open sets.

Proposition. Let E, E' be metric spaces. f: E > E’ iscontinuous at p if and only if for every sequence of
points, {p,} that convergesto p, {f(p,)} convergesto f(p).

Theorem. Let (E; d) and (E’; d') be metric spaces and f: E-> E’ be continuous. If C1 E is compact then
f(C)1 E iscompact.

Corollary. A continuous real-valued function on a compact set attains a minimum and maximum value
on at least one point on the set.

Theorem. Let (E; d) and (E’; d') be metric spaces and f: E - E’ be continuous. If C1 E is connected
thenf(C) I E’ isconnected.

Corollary (Intermediate Value Theorem). Letf: R > R,a b1 R, a<b, f continuous on [a, b]. Then, for
any gstrictly between f(a) and f(b), there existsc1 (a, b) such that f(c) = g

Uniform Continuity

Definition. Let (E; d) and (E'; d') be metric spacesand f: E > E’. fisuniformly continuous if given any
e> Othereexistsd > 0 such that if p, qT E with d(p, q) < dthen d' (f(p), f(q)) <e.

Theorem. Let (E; d) and (E'; d’') be metric spaces, and f: E &> E’ be continuous. If E iscompact thenf is
uniformly continuous.

Sequences of Continuous Functions

Definition. Let (E; d) and (E'; d') be metric spacesand f,: E = E’ for all n. {f.} convergesat pif {f.(p)}
converges. {f,} converges pointwise on E if {f,} convergesatpforalpl E.

Definition. Let (E; d) and (E'; d’) be metric spacesand f,: E = E for all n. The sequence {f,} converges
uniformly to f if, given any e > 0 there exists N such that, for al p1 E, if n> N, d(f.(p), f(p)) < e.

Theorem. Let (E; d) and (E'; d’) be metric spaces. Let {f,} beauniformly convergent sequence of
continuous function. Then the limit of the sequence is continuous.

Definition. Letf,: E > E'. {f;} isauniformly Cauchy sequenceif, given any e > 0 there exists N such
that, for all n, m> N and for al pT E, d' (f.(p), fm(p)) < &




Theorem. Let (E; d) and (E'; d') be metric spaces. Let E' be complete. Let f,: E > E'. The sequence
{fn} converges uniformly if and only {f.} is uniformly Cauchy.

Theorem. Let (E; d) and (E'; d’) be metric spaces. Let E be compact and E' be complete. Let C(E) bethe
set of all continuous functions from E > E’. Let d (f, g) = max{d' (f(p), g(p)) |pT E} be afunction
from C(E) © C(E) 2 R. Then, (C(E); d.) is acomplete metric space. Moreover, convergence in this
metric space is equivalent to uniform convergencein E.

Corallary. The metric space (C([0, 1]); Ly) is complete.

Contraction Mapping Principle

Definition. Let (E; d) be ametric space. Letf: E > E. fisLipschitz if there exists A > 0 such that
d(f(x), f(y)) <A d(x,y) foral x,y T E. fisacontractionif A < 1.

Remark. Any Lipschitz function is uniformly continuous. (Choosed<e/A.)

Theorem (Contraction Mapping Principle). Let E be acomplete metric space. Letf: E> Ebea
contraction with contractive constant A. Then there exists a unique p such that f(p) = p. 1f po1 E then
{f(po)} convergesto p, and d(f"(po), p) £ d(p, po) A"/ (1 -A).

Differentiation

Definition. Let f be areal-valued function on an opensubset U1 R. Let xo1 U. fisdifferentiable at xo
if limy_xo (F(X) —(X0))/(X — Xo) exists. Thelimit is denoted by f'(xo). Alternatively, f is differentiable if
there exists f’ (Xo) such that, for any e >0 there exists d > 0 such that whenever [x — Xo| < d, [f(X) —f(Xo) —
f (X0)(X —Xo)| < € [X — Xo|-

Theorem. If f isdifferentiable at xq then f is continuous at Xg.

Proposition. Let f be area-valued function on U then attains a maximum or minimum at Xo1 U. Then,
if f isdifferentiable, f' (o) = 0.

RollesLemma. Leta b1 R,a<b. Letf becontinuouson [a, b] and differentiable on (a, b). Suppose
f(a) = f(b) = 0. Thenthereexistsc1 (a, b) such that f'(c) = 0.

Mean Value Theorem. Leta, bl R, a<b. Letf be continuous on [a, b] and differentiable on (a, b).
Then, thereexistsc (a, b) such that f'(c) = (f(b) —f(a)) / (b — a) [equivalently, f(b) —f(a) = ' (c)(b —
).

Cauchy Mean Value Theorem. Let f and g be continuous on [a, b] and differentiable on (a, b). Then there
existsc1 (a, b) such that f’(c) (g(bz —9g(a) =g'(c) (f(b) —f(a)).

Corallary. If f(x) <0 (> 0) for al x| (a, b) then f is decreasing (increasing).

Proposition. Let | =[a, b]. Letf be continuous on | and differentiable on (a, b). Let f(1) I |. Suppose
[Pt <a<1foraltl I. Thenf(x)=x hasaunique solution, X, given by xo = lim (n > ¥) f(x) and
x1 1.

Taylors' s Theorem. Let U1 R beanopeninterval. Let f: U = R be n+1 times differentiable. Then, for
any a, b1 U, f(b) =f(a) + f'(@(b-a)/1! + ' (@(b-a)%2! + ... + {O(&)(b-a)"n! + " (c)(b-a)"/(n+1)!,
wherec (a, b).

Sequences of Differentiable Functions

Theorem. Let {f,} be asequence of real-values functions which are continuous on [a, b] and differentiable
on(a b). Let{f,} converge pointwisetof and {f,'} converge uniformly tof. Then, {f,} converges
uniformly tof, f isdifferentiable, and f’ =f.

Integration Theory
Definition. A partition of [a, b] I R isafinite sequence of numbers Xo, X, ... , Xn, Such that a= X, < x; <
... <Xp =b. Thewidth or (mesh) of this partitionismax {x;—xi1 |1 =1, ..., n}.

Definition. The Riemann sum for f corresponding to P is S(f; P) = & f(x)(X — Xi..) where x;’ T [Xi.1, Xi].
Definition. F is Riemann integrable on [a, b] if the sequence of partial Riemann sums for any partition P
of [a, b] converges as the width of P approaches 0. Given e > 0 there existsd > 0 such that whenever

width(P) < d, |S(f; P) - @ f(x) dx| < e.
Fact. Constant and step functions are integrable.




Definition. Let f be abounded function on [a, b]. Let P be a partition of [a, b]. The upper and lower
Darboux sums are’ S(f; P) = & M; (X; —Xi.1) where M; = sup {f(X) [ X1 ExEx}and S (f;P)=a m,
(X — Xi.1) wherem; = inf {f(X) | X1 £ X £ x}.

Remark. If Pisreplaced by afiner partition, P', then S (P;f)£S (P'; f) £ S(P'; f) £ S(P; f).

Definition. The upper and lower Darboux integrals are the limits of the Darboux sums as the width of the
partitions approach 0.

Remark. Because the upper Darboux sums are decreasing and bounded from below (by the lower Darboux
sums), they must converge. Similarly, the lower Darboux sums must converge.

Remark. S_(P;f)£S(P;f) £ S(P; f) for any P.

Theorem. The Riemann integral on [a, b] existsif and only if the upper and lower Darboux integrals are
equal.

Coroallary. fisRiemann integrable on [a, b] < for every e there exists d such that whenever width P < d,
0 £ upper-S(f; P) —lower-S(f; P) £ e.

Theorem. Every continuous function on [a, b] isintegrable.

Proposition. of(x) dx + 0g(x) dx = of(x) + g(x) dx [over the same intervalsg].

Proposition. oc f(x) dx = ¢ of(x) dx [over the same intervals).

Proposition. @ f(x) dx + §° f(x) dx = &° f(x) dx. (If any two of these exist, the third must exist.)

Proposition. If f(x) 3 g(x) for all x1 [a, b] then & f(x) dx 3 &° g(x).

Fundamental Theorem of Calculus. Let f be a continuous function on an openinterval Ul R. Letal U.
Let F(x) = @ f(t) dt. Then, FisdifferentiableonU, and F =f.

Corollary. If f iscontinuous, then f is the derivative of some function which may be defined by F(x) = @"
f(t) dt.

Corollary. If Fisareal-valued function on [a, b] that has derivative f, then @° f(x) dx = F(b) — F(a).

Theorem. Let[a b] I R. Let{f,} beasequence of integrable functions on [a, b] that converges
uniformly to f. Then, f isintegrable and lim of,(x) dx = of(x) dx.

Series of Functions

Definition. Let {f,} be asequence of functions from (E; d) > R. We define S\(x) = & fi(x) =f1(x) + ...
fa(x). If {S\(X)} convergesto f(x) on E, thenwe say & fi(x) = f(x).

Definition. If & [f(x)| converges, then & f(x) converges absolutely. If {S,(X)} converges uniformly, then
a f(x) converges uniformly.

Theorem. Suppose f, is continuous for all k. If & fi(x) converges uniformly, then & f,(x) is continuous.

Theorem. Suppose fy isintegrable for all k. If & f(x) converges uniformly, then & fi(x) isintegrable.

Theorem. Suppose f, is differentiable, & f, converges pointwiseto f, and & f' converges uniformly to f.
The, & f, converges uniformly to f, and f is differentiable with derivativef.

Proposition. Let {f,} beasequence of functions. & f, isuniformly convergent < for all e> 0 there
exists M such that, for all m,n> M, m > n, [fra(X) + frea(X) + ... +f(X)| < e

Theorem (Weierstrass M Test). Let My be a sequence of non-negative numbers such that [f ()| < M for
al k, x. I1f & M, convergesthen a f is uniformly convergent.

Measure and I ntegr ability [optional]

Definition. If | isabounded interval with endpoints a and b we define the length of | by |I| = |b —al.

Definition. A subset A1 R isaset of measureQif, for al e> 0 there exists a sequence of bounded
intervals, Iy, I, ..., suchthat Al E l,and & |I|<e

Remark. No closed interval with a! b has measure O.

Remark. Any countable set of points has measure 0.

Remark. Any subset of a set of measure O has measure O.

Remark. The union of a countable number of sets of measure O has measure 0.

Remark. There are uncountable sets of measure 0. Consider the Cantor set.

Definition. A property that holds except on a set of measure O is said to hold almost everywhere.




Definition. For a sequence of real numbers, {a.}, we define the lim sup as limsuphe ¥ = limye ySUp {&, |
n> N}.

Definition. The liminf is defined by liminf, g y{a,} =limyey inf{a, | n>N}.

Remark. Because{a,|n>N}1 {a,|n>N-1}, sup{a, | n> N} isdecreasing. Therefore, it convergesif
it is bounded below. Similarly for the liminf.

Remark. {a,} convergesif and only if liminf {a,} =limsup {a&.} (and both exist).

Definition. Letf:[a b] > R,cl [a b]. We define limsupyec f(X) = limge o Sup{f(x)|xI [a, b]C[c-d,
c+d]}. We define liminf,g . f(X) = limge o iNf{f(X)|xI [a, b]C[c-d,c+d]}.

Definition. The oscillation of f at cisw(f; ¢) = limsupye ¢ f(X) - liminfyg . f(X).

Remark. If f iscontinuous ar ¢ then w(f; c) = 0.

Proposition. If w(f; ¢) <eforall ¢l [a, b] then there existsd > 0 such that if x, y T [a, b] with [x —y| <d
then [f(x) —f(y)| < e

Theorem. A bounded function is Riemann integrable if and only if it is continuous almost everywhere.



