
Analysis 
 
Finite and Infinite Sets 
Definition.  An initial segment is {n ∈ N | n ≤ n0}. 
Definition.  A finite set can be put into one-to-one correspondence with an initial segment.  The empty set 

is also considered finite. 
Definition.  An infinite set is a set with no such bijection. 
Definition.  An infinite set is countable if it can be put into one-to-one correspondence with the natural 

numbers. 
Definition.  An infinite set is uncountable if no such bijections exists. 
Technique.  Show countability with a bijection. 
  Show uncountability by: 
   Showing a bijection onto an uncountable set. 
   Use contradiction. 
Examples: the even natural numbers, the integers, and the rationals are all countable. 
  The real numbers and the irrationals are uncountable. 
Theorem.  A countable  union of countable sets is countable. 
 
The Real Numbers 
1.  R is a field. 

• Operations:  +, *, their inverses 
• Abelian group under addition  (closure, associativity, commutivity, zero, inverses) 
• Abelian group under multiplication (closure, associativity, commutivity, one, inverses) 
• Distibutivity 

2.  R is ordered. 
• Given a, b ∈ R, a ≥ b or a ≤ b. 
• R is a metric space. 

3.  R is complete. 
 Definition.  Let S ⊂ R.  u ∈ R is an upper bound for S if, for all s ∈ S, s ≤ u.  u ∈ R is a lower bound of 

S if, for all s ∈ S, s ≥ u. 
 Definition.  An upper bound of S is the least upper bound (sup S or l.u.b. S) if it is less than or equal to 

any other upper bound of S.  A lower bound of S is a greatest lower bound (inf S or g.l.b. S) if it is 
greater than or equal to any other lower bound of S. 

 Remark.  sup S and inf S might not be in S. 
 Completeness Axiom.  Every non-empty subset S of R that it bounded above has a least upper bound.  

Every non-empty set that is bounded below has a greatest lower bound. 
Proposition.  Real Numbers may be approximated by rationals. 
 Lemma.  For any x ∈ R and positive integer N, there exists an integer n such that n/N ≤ x ≤ (n+1)/N. 
 Lemma.  If x ∈ R and ε > 0, there exists a rational number r such that |x - r| < ε. 
 
The Cantor Set 
Definition.  A sequence of intervals, In, is nested when the chain of inclusions I1 ⊃ I2 ⊃ … ⊃ In holds. 
Theorem.  For all n ∈ N, let In be a non-empty, closed interval in R, In = [an, bn].  Let {In} be nested.  

Then there exists an element common to all the intervals. 
Remark.  If ζ = sup {an} and η = inf {bn} then [ζ, η] is the intersection of these intervals. 
Definition.  A closed cell in Rn is {x = (x1, … , xn) | ai ≤ xi ≤ bi for a fixed ai, bi ∈ R}. 
Theorem.  Any set of nested closed cells contains at least one point in its intersection. 
Definition.  The Cantor Set (F) may be constructed in the following way: 
 1.  Begin with the unit interval.  This is F0. 
 2.  For every interval in Fn-1, remove the open interval in the middle third.  This is Fn. 
 3.  Fn is the union of 2n intervals of the form [k/3n, (k+1)/3n], for certain k 
Properties.   
• The Cantor Set is non-empty. 



• Some points are clearly the endpoints of intervals. 
• Others are there, too (like ¼).  These are the endpoints of intervals only in the limit. 
• Can be put into 1-1 correspondence with R – uncountable. 
• Equivalent to the set of all numbers between 0 and 1 that can be expressed with only 0’s and 2’s in 

ternary. 
• Sparse.  Every point is a boundary point. 
 
Metric Spaces 
Definition.  A metric space  is a set E together with a mapping d: E × E à R, which satisfies: 
 (1) d(p, q) ≥ 0 for all p, q (positive) 
 (2)  d(p, q) = 0 if and only if p = q.  (positive definite) 
 (3) d(p, q) = d(q, p) for all p, q (symmetry) 
 (4) d(p, r) ≤ d(p, q) + d(q, r) for all p, q, r ∈ E (triangle inequality) 
Examples. 
 (1) R  
 (2) Rn 
 (3) Any real vector space with an inner product. 
 (4) The “discrete metric” where d(p, q) = 0 if p = q, 1 otherwise. 
 (5) Lp, L∞

 

Definition.  L∞ is the space of continuous functions on some set (ie. [0, 1]) with the metric d(f, g) = 
sup{|f(x)-g(x)| : x ∈ [0, 1]}. 

Definition.  Lp is the space of continuous functions on some set (usually [0, 1]) with the metric d(f, g) 
= (∫|f(x)-g(x)|p dx)1/p. 

Definition.  Let (E; d) be a metric space.  Let p ∈ E and r ∈ R.  Then, the open ball centered at p with 
radius r, denoted B(p; r), is defined by: 

  B(p, r) = {x ∈ E | d(p, x) < r}. 
Definition.  The closed ball centered at p with radius r is 
  B-bar(p; r) = {x ∈ E | d(p, x) ≤ r}. 
Definition.  A subset S of a metric space (E; d) is open if, for all p ∈ S, there is some open ball centered at 

p, contained entirely is S. 
Definition.  A subset S ⊂ (E; d) is closed if its complement is open. 
Proposition.  For any (E; d), 
 (1) ∅ is open. 
 (2) E is open. 
 (3) An arbitrary (possibly infinite) union of open sets is open. 
 (4) A finite intersection of open sets is open. 
Corollary. 
 (1) ∅ is closed. 
 (2) E is closed. 
 (3)  An arbitrary (possibly infinite) intersection of closed sets is closed. 
 (4) A finite union of closed sets is closed. 
Definition.  A subset S ⊂ E is bounded if it is contained in some ball in E. 
Definition.  If x ∈ E, a neighborhood  of x is any set containing an open set that contains x. 
Definition.  An interior point of S ⊂ E is a point x ∈ S such that x has a neighborhood lying entirely in S.  

(Alternately, x lies in an open ball entirely contained in S.) 
Definition.  An exterior point of S is a point that has a neighborhood lying entirely outside S. 
Definition.  x is a boundary point of S if every neighborhood of x intersects S and SC. 
Proposition.  A non-empty closed subset of R that is bounded above has a greatest element (in the set). 
Proposition.  Let S ⊂E.  O is open in S if and only if O = O’ ∩ S where O’ is open in E. 
Sequences  
Definition.  Let {pn} be a sequence of points in a metric space (E; d).  Then p ∈ E is called the limit of the 

sequence if for all ε > 0 there exists N such that whenever n > N, d(pn, p) < ε. 



Remark.  Some ways convergence may fail: 
• Oscillation (never staying within an ε-ball). 
• Heading toward “infinity.” 
• The limit is not in the space. 
Proposition.  A sequence of points {pn} in a metric space may have at most one limit. 
Definition.  Let {pn} be a sequence in (E; d).  Let n1 < n2 < … be a strictly increasing sequence of positive 

integers.  Then {pni} is a subsequence of {pn}. 
Proposition.  Let {pn} be a convergent sequence in (E; d).  Then any subsequence of {pn} converges to the 

same limit. 
Theorem.   Let S ⊂ (E; d).  S is closed if and only if whenever {pn} ⊂ S converges in E, the limit lies in S. 
Definition.  A sequence of points {pn} in (E; d) is Cauchy if for any ε > 0, there exists N such that for all 

n, m > N, d(pn, pm) < ε. 
Proposition.  Any convergent sequence is Cauchy. 
Completeness 
Definition.  A metric space (E; d) is complete if every Cauchy sequence in E converges to a point in E. 
Proposition.  A Cauchy sequence that has a convergent subsequence is itself convergent. 
Remark.  A convergent sequence is bounded. 
Theorem.  R with the standard metric is complete. 
Definition.  A sequence of numbers is monotone if it is either increasing or decreasing. 
Proposition.  A bounded monotone sequence (in R) converges.  The limit is either the greatest lower 

bounded or the least upper bound. 
Compactness 
Definition.  A collection, G = {Gα}, of open sets is said to cover a set K if K ⊂ ∪ Gα.  We call G an open 

cover of K. 
Definition.  K ⊂ (E; d) is compact if every open cover of K has a finite subcover. 
Definition.  Let S ⊂ (E; d).  p ∈ E is a cluster point of S if any open ball centered at p contains an infinite 

number of points of S. 
Theorem (Bolzano-Weierstrass).  An infinite subset S of a compact metric space (E; d) has at least one 

cluster point in E. 
Corollary.  Any sequence of points in a compact metric space has a convergent subsequence. 
Corollary.  A compact metric space is complete. 
Theorem.  Any compact subspace of a metric space is both closed and bounded. 
Remark.  Compact implies complete, closed and bounded.  Complete implies closed.  No other 

implications, though. 
Theorem.  If (E; d) is compact then a closed and bounded subset of E is compact. 
Theorem (Heine-Borel).  A subset of Rn with the standard metric is compact if and only if it is closed and 

bounded. 
Corollary (Classical Bolzano-Weierstrass).  Every bounded, infinite subset  of Rn has a cluster point. 
Connectedness 
Definition.  (1) A metric space (E; d) is connected if the only subsets of E that are both open and closed 

are E and ∅. 
 (2) A metric space (E; d) is connected if it cannot be written as a union of open sets A and B such that 

A ∩ B = ∅, A ∪ B = E, A ≠ ∅, B ≠ ∅. 
Theorem.  Let {Si} be a collection of connected subsets of a metric space.  Suppose there exists i0 such that 

Si ∩ Si0 ≠ ∅.  Then ∪ Si is connected. 
Theorem.  A subset of R is connected if and only if it is an interval. 
Theorem.  Rn is connected. 
 
Some other types of spaces 
Definition.  A normed linear space is a vector space (V) with a mapping || ||: V à R such that 
 1.  ||x|| ≥ 0 
 2.  ||x|| = 0 if and only if x = 0. 
 3.  ||cx|| = c||x|| where c ∈ R. 



 4.  ||x + y || ≤ ||x|| + ||y||. 
Remark.  A good candidate for the norm in a metric space is d(0, x). 
Definition.  An inner product space is a vector space, V, with a mapping <,>: V × V à R, with the 

following properties: 
 1.  <x+y, z> = <x, z> + <y, z> 
 2.  <cx, y> = c<x, y> 
 3.  <x, y> = <y, x> 
 4.  <x, x> ≥ 0 
 5.  <x, x> > 0 if x ≠ 0. 
Definition.  A complete inner product space is a Hilbert space. 
Definition.  A Banach space is a complete normed linear space. 
 
Continuity 
Definition.  Let (E; d) and (E’; d’) be metric spaces.  Let f:  E à E’.  Let p0 ∈ E.  We say f is continuous 

at p0  if given any ε > 0 there exists δ > 0 such that if p ∈ E and d(p, p0) < δ then d’(f(p), f(p0)) < ε.  We 
say f is continuous on E if f is continuous at all p0 ∈ E.  Alternately, f is continuous at p0 if, given any ε 
> 0 there exists δ > 0 such that f(B(p0; δ)) ⊂ B(f(p0); ε).  

Example.  Let (E; d) be a metric space.  Define f: E à R by f(p) = d(p, p0), where p0 is fixed.  Then, f is 
continuous. 

Example.  A linear function, f: Rp à Rq, is continuous. 
Theorem.  Suppose f: Rp à Rq is linear.  Then there exists A > 0 such that, for all u, v ∈ Rp, || f(u) – f(v) 

|| ≤ A ||u – v||. 
Proposition.  Let (E; d), (E’; d’), and (E’’; d’’) be metric spaces.  Let f: E à E’ and g: E’ à E’’ be 

continuous.  Then g(f(x)) is continuous. 
Definition.  The pre-image of a set, S, is f-1(S) = {p ∈ E | f(p) ∈ S}. 
Theorem.  Let (E; d) and (E’; d’) be metric spaces, f: E à E’.  Then, f is continuous if and only if for 

every open set O ⊂ E’, the pre-image of O is open.  
Corollary.  f is continuous if and only if the pre-image of every closed set is closed. 
Note.  A continuous function does not necessarily map open sets to open sets. 
Proposition.  Let E, E’ be metric spaces.  f: E à E’ is continuous at p0 if and only if for every sequence of 

points, {pn} that converges to p, {f(pn)} converges to f(p). 
Theorem.  Let (E; d) and (E’; d’) be metric spaces and f: Eà E’ be continuous.  If C ⊂ E is compact then 

f(C) ⊂ E’ is compact. 
Corollary.  A continuous real-valued function on a compact set attains a minimum and maximum value 

on at least one point on the set. 
Theorem.  Let (E; d) and (E’; d’) be metric spaces and f: E à E’ be continuous.  If C ⊂ E is connected 

then f(C) ⊂ E’ is connected. 
Corollary (Intermediate Value Theorem).  Let f: R à R, a, b ∈ R, a < b, f continuous on [a, b].  Then, for 

any γ strictly between f(a) and f(b), there exists c ∈ (a, b) such that f(c) = γ. 
Uniform Continuity 
Definition.  Let (E; d) and (E’; d’) be metric spaces and f: E à E’.  f is uniformly continuous if given any 

ε > 0 there exists δ > 0 such that if p, q ∈ E with d(p, q) < δ then d’(f(p), f(q)) < ε. 
Theorem.  Let (E; d) and (E’; d’) be metric spaces, and f: E à E’ be continuous.  If E is compact then f is 

uniformly continuous. 
Sequences of Continuous Functions 
Definition.  Let (E; d) and (E’; d’) be metric spaces and fn: E à E’ for all n.  {fn} converges at p if {fn(p)} 

converges.  {fn} converges pointwise on E if {fn} converges at p for all p ∈ E. 
Definition.  Let (E; d) and (E’; d’) be metric spaces and fn: E à E’ for all n.  The sequence {fn} converges 

uniformly to f if, given any ε > 0 there exists N such that, for all p ∈ E, if n > N, d(fn(p), f(p)) < ε. 
Theorem.  Let (E; d) and (E’; d’) be metric spaces.  Let {fn} be a uniformly convergent sequence of 

continuous function.  Then the limit of the sequence is continuous. 
Definition.  Let fn: E à E’.  {fn} is a uniformly Cauchy sequence if, given any ε > 0 there exists N such 

that, for all n, m > N and for all p ∈ E, d’(fn(p), fm(p)) < ε. 



Theorem.  Let (E; d) and (E’; d’) be metric spaces.  Let E’ be complete.  Let fn: E à E’.  The sequence 
{fn} converges uniformly if and only {fn} is uniformly Cauchy. 

Theorem.  Let (E; d) and (E’; d’) be metric spaces.  Let E be compact and E’ be complete.  Let C(E) be the 
set of all continuous functions from E à E’.  Let dc(f, g) = max{d’(f(p), g(p)) | p ∈ E} be a function 
from C(E) × C(E) à R.  Then, (C(E); dc) is a complete metric space.  Moreover, convergence in this 
metric space is equivalent to uniform convergence in E. 

Corollary.  The metric space (C([0, 1]); L∞) is complete. 
 
Contraction Mapping Principle 
Definition.  Let (E; d) be a metric space.  Let f: E à E.  f is Lipschitz if there exists A > 0 such that 

d(f(x), f(y)) < A d(x, y) for all x, y ∈ E.  f is a contraction if A < 1. 
Remark.  Any Lipschitz function is uniformly continuous.  (Choose δ < ε / A.) 
Theorem (Contraction Mapping Principle).  Let E be a complete metric space.  Let f: E à E be a 

contraction with contractive constant A.  Then there exists a unique p such that f(p) = p.  If p0 ∈ E then 
{fn(p0)} converges to p, and d(fn(p0), p) ≤ d(p, p0) A

n / (1 – A). 
 
Differentiation 
Definition.  Let f be a real-valued function on an open subset U ⊂ R.  Let x0 ∈ U.  f is differentiable at x0 

if limxàx0 (f(x) – f(x0))/(x – x0) exists.  The limit is denoted by f’(x0).  Alternatively, f is differentiable if 
there exists f’(x0) such that, for any ε >0 there exists δ > 0 such that whenever |x – x0| < δ, |f(x) – f(x0) – 
f’(x0)(x – x0)| < ε |x – x0|. 

Theorem.  If f is differentiable at x0 then f is continuous at x0. 
Proposition.  Let f be a real-valued function on U then attains a maximum or minimum at x0 ∈ U.  Then, 

if f is differentiable, f’(x0) = 0. 
Rolle’s Lemma.  Let a, b ∈ R, a < b.  Let f be continuous on [a, b] and differentiable on (a, b).  Suppose 

f(a) = f(b) = 0.  Then there exists c ∈ (a, b) such that f’(c) = 0. 
Mean Value Theorem.  Let a, b ∈ R, a < b.  Let f be continuous on [a, b] and differentiable on (a, b).  

Then, there exists c ∈ (a, b) such that f’(c) = (f(b) – f(a)) / (b – a) [equivalently, f(b) – f(a) = f’(c)(b – 
a)]. 

Cauchy Mean Value Theorem.  Let f and g be continuous on [a, b] and differentiable on (a, b).  Then there 
exists c ∈ (a, b) such that f’(c) (g(b) – g(a)) = g’(c) (f(b) – f(a)). 

Corollary.  If f’(x) < 0 (> 0) for all x ∈(a, b) then f is decreasing (increasing). 
Proposition.  Let I = [a, b].  Let f be continuous on I and differentiable on (a, b).  Let f(I) ⊆ I.  Suppose 

|f’(t)| < α < 1 for all t ∈ I.  Then f(x) = x has a unique solution, x0, given by x0 = lim (n à ∞) fn(x) and 
x ∈ I. 

Taylors’s Theorem.  Let U ⊂ R be an open interval. Let f: U à R be n+1 times differentiable.  Then, for 
any a, b ∈ U, f(b) = f(a) + f’(a)(b-a)/1! + f’’(a)(b-a)2/2! + … + f(n)(a)(b-a)n/n! + fn+1(c)(b-a)n+1/(n+1)!, 
where c ∈ (a, b). 

Sequences of Differentiable Functions 
Theorem.  Let {fn} be a sequence of real-values functions which are continuous on [a, b] and differentiable 

on (a, b).  Let {fn} converge pointwise to f and {fn’} converge uniformly to φ.  Then, {fn} converges 
uniformly to f, f is differentiable, and f’ = φ. 

 
Integration Theory 
Definition.  A partition of [a, b] ⊂ R is a finite sequence of numbers x0, x1, … , xn, such that a = x0 < x1 < 

… < xn = b.  The width or (mesh) of this partition is max {xi – xi-1 | i = 1, … , n}. 
Definition.  The Riemann sum for f corresponding to P is S(f; P) = ∑ f(xi’)(xi – xi-1) where xi’ ∈ [xi-1, xi]. 
Definition.  F is Riemann integrable on [a, b] if the sequence of partial Riemann sums for any partition P 

of [a, b] converges as the width of P approaches 0.  Given ε > 0 there exists δ > 0 such that whenever 
width(P) < δ, |S(f; P) - ∫ab f(x) dx| < ε. 

Fact.  Constant and step functions are integrable. 



Definition.  Let f be a bounded function on [a, b].  Let P be a partition of [a, b].  The upper and lower 
Darboux sums areS(f; P) = ∑ Mi (xi – xi-1) where Mi = sup {f(x) | xi-1 ≤ x ≤ xi} and   S_ (f; P) = ∑ mi 
(xi – xi-1) where mi = inf {f(x) | xi-1 ≤ x ≤ xi}. 

Remark.  If P is replaced by a finer partition, P’, then S_(P; f) ≤ S_(P’; f) ≤S(P’; f) ≤S (P; f). 
Definition.  The upper and lower Darboux integrals are the limits of the Darboux sums as the width of the 

partitions approach 0. 
Remark.  Because the upper Darboux sums are decreasing and bounded from below (by the lower Darboux 

sums), they must converge.  Similarly, the lower Darboux sums must converge. 
Remark.  S_ (P; f) ≤ S (P; f) ≤ S (P; f) for any P. 
Theorem.  The Riemann integral on [a, b] exists if and only if  the upper and lower Darboux integrals are 

equal. 
Corollary.  f is Riemann integrable on [a, b] ó for every ε there exists δ such that whenever width P < δ, 

0 ≤ upper-S(f; P) – lower-S(f; P) ≤ ε. 
Theorem.  Every continuous function on [a, b] is integrable. 
Proposition.  ∫ f(x) dx + ∫ g(x) dx = ∫ f(x) + g(x) dx [over the same intervals]. 
Proposition.  ∫ c f(x) dx = c ∫ f(x) dx [over the same intervals]. 
Proposition.  ∫ab f(x) dx + ∫bc f(x) dx = ∫ac f(x) dx.  (If any two of these exist, the third must exist.) 
Proposition.  If f(x) ≥ g(x) for all x ∈ [a, b] then ∫ab f(x) dx ≥ ∫ab g(x). 
Fundamental Theorem of Calculus.  Let f be a continuous function on an open interval U ⊂ R.  Let a ∈ U.  

Let F(x) = ∫ax f(t) dt.  Then, F is differentiable on U, and F’ = f. 
Corollary.  If f is continuous, then f is the derivative of some function which may be defined by F(x) = ∫ax 

f(t) dt. 
Corollary.  If F is a real-valued function on [a, b] that has derivative f, then ∫ab f(x) dx = F(b) – F(a). 
Theorem.  Let [a, b] ⊂ R.  Let {fn} be a sequence of integrable functions on [a, b] that converges 

uniformly to f.  Then, f is integrable and lim ∫ fn(x) dx = ∫ f(x) dx. 
 
Series of Functions 
Definition.  Let {fk} be a sequence of functions from (E; d) à R.  We define Sn(x) = ∑ fk(x) = f1(x) + … 

fn(x).  If {Sn(x)} converges to f(x) on E, then we say ∑ fk(x) = f(x). 
Definition.  If ∑ |fk(x)| converges, then ∑ f(x) converges absolutely.  If {Sn(x)} converges uniformly, then 

∑ fk(x) converges uniformly. 
Theorem.  Suppose fk is continuous for all k.  If ∑ fk(x) converges uniformly, then ∑ fk(x) is continuous. 
Theorem.  Suppose fk is integrable for all k.  If ∑ fk(x) converges uniformly, then ∑ fk(x) is integrable. 
Theorem.  Suppose fk is differentiable, ∑ fk converges pointwise to f, and ∑ f’ converges uniformly to φ.  

The, ∑ fk converges uniformly to f, and f is differentiable with derivative φ. 
Proposition.  Let {fk} be a sequence of functions.  ∑ fk  is uniformly convergent ó for all ε > 0 there 

exists M such that, for all m, n > M, m > n, |fn+1(x) + fn+2(x) + … + fm(x)| < ε. 
Theorem (Weierstrass M Test).  Let Mk be a sequence of non-negative numbers such that |fk(x)| < Mk for 

all k, x.  If ∑ Mk converges then ∑ fk is uniformly convergent. 
 
 
Measure and Integrability [optional] 
Definition.  If I is a bounded interval with endpoints a and b we define the length of I by |I| = |b – a|. 
Definition.  A subset A ⊂ R is a set of measure 0 if, for all ε > 0 there exists a sequence of bounded 

intervals, I1, I2, …, such that A ⊂ ∪ In and ∑ |In| < ε. 
Remark.  No closed interval with a ≠ b has measure 0. 
Remark.  Any countable set of points has measure 0. 
Remark.  Any subset of a set of measure 0 has measure 0. 
Remark.  The union of a countable number of sets of measure 0 has measure 0. 
Remark.  There are uncountable sets of measure 0.  Consider the Cantor set. 
Definition.  A property that holds except on a set of measure 0 is said to hold almost everywhere. 



Definition.  For a sequence of real numbers, {an}, we define the lim sup as limsupn → ∞ = limN → ∞sup {an | 
n > N}. 

Definition.  The liminf is defined by liminfn →∞{an} = limN →∞ inf{an | n > N}. 
Remark.   Because {an | n > N} ⊂ {an | n > N-1}, sup{an | n > N} is decreasing.  Therefore, it converges if 

it is bounded below.  Similarly for the liminf. 
Remark.  {an} converges if and only if liminf {an} = limsup {an} (and both exist). 
Definition.  Let f: [a, b] à R, c ∈ [a, b].  We define limsupx→c f(x) = limδ→0 sup{f(x)|x∈[a, b]∩[c-δ, 

c+δ]}.  We define liminfx→c f(x) = limδ→0 inf{f(x)|x∈[a, b]∩[c-δ,c+δ]}. 
Definition.  The oscillation of f at c is ω(f; c) = limsupx→c f(x) - liminfx→c f(x). 
Remark.  If f is continuous ar c then ω(f; c) = 0. 
Proposition.  If ω(f; c) < ε for all c ∈ [a, b] then there exists δ > 0 such that if x, y ∈ [a, b] with |x – y| < δ 

then |f(x) – f(y)| < ε. 
Theorem.  A bounded function is Riemann integrable if and only if it is continuous almost everywhere. 
 


