Analysis

Finite and Infinite Sets

Definition. An <u>initial segment</u> is $\{n \in \mathbf{N} \mid n \leq n_0\}$.

Definition. A <u>finite set</u> can be put into one-to-one correspondence with an initial segment. The empty set is also considered finite.

Definition. An infinite set is a set with no such bijection.

Definition. An infinite set is <u>countable</u> if it can be put into one-to-one correspondence with the natural numbers.

Definition. An infinite set is <u>uncountable</u> if no such bijections exists.

Technique. Show countability with a bijection.

Show uncountability by:

Showing a bijection onto an uncountable set.

Use contradiction.

Examples: the even natural numbers, the integers, and the rationals are all countable.

The real numbers and the irrationals are uncountable.

Theorem. A countable union of countable sets is countable.

The Real Numbers

1. **R** is a field.

- Operations: +, *, their inverses
- Abelian group under addition (closure, associativity, commutivity, zero, inverses)
- Abelian group under multiplication (closure, associativity, commutivity, one, inverses)
- Distibutivity
- 2. **R** is ordered.
 - Given $a, b \in \mathbf{R}$, $a \ge b$ or $a \le b$.
- **R** is a metric space.

3. **R** is complete.

Definition. Let $S \subset \mathbf{R}$. $u \in \mathbf{R}$ is an <u>upper bound</u> for S if, for all $s \in S$, $s \le u$. $u \in \mathbf{R}$ is a <u>lower bound</u> of S if, for all $s \in S$, $s \ge u$.

Definition. An upper bound of S is the <u>least upper bound</u> (sup S or l.u.b. S) if it is less than or equal to any other upper bound of S. A lower bound of S is a <u>greatest lower bound</u> (inf S or g.l.b. S) if it is greater than or equal to any other lower bound of S.

Remark. sup S and inf S might not be in S.

Completeness Axiom. Every non-empty subset S of \mathbf{R} that it bounded above has a least upper bound. Every non-empty set that is bounded below has a greatest lower bound.

Proposition. Real Numbers may be approximated by rationals.

Lemma. For any $x \in \mathbf{R}$ and positive integer N, there exists an integer n such that $n/N \le x \le (n+1)/N$. *Lemma.* If $x \in \mathbf{R}$ and $\varepsilon > 0$, there exists a rational number r such that $|x - r| < \varepsilon$.

The Cantor Set

Definition. A sequence of intervals, I_n , is <u>nested</u> when the chain of inclusions $I_1 \supset I_2 \supset ... \supset I_n$ holds. *Theorem.* For all $n \in \mathbf{N}$, let I_n be a non-empty, closed interval in \mathbf{R} , $I_n = [a_n, b_n]$. Let $\{I_n\}$ be nested. Then there exists an element common to all the intervals.

Remark. If $\zeta = \sup \{a_n\}$ and $\eta = \inf \{b_n\}$ then $[\zeta, \eta]$ is the intersection of these intervals.

Definition. A <u>closed cell</u> in \mathbf{R}^n is $\{x = (x_1, ..., x_n) \mid a_i \le x_i \le b_i \text{ for a fixed } a_i, b_i \in \mathbf{R}\}$.

Theorem. Any set of nested closed cells contains at least one point in its intersection.

Definition. The Cantor Set (*F*) may be constructed in the following way:

1. Begin with the unit interval. This is F_0 .

- 2. For every interval in F_{n-1}, remove the open interval in the middle third. This is F_n.
- 3. F_n is the union of 2^n intervals of the form $[k/3^n, (k+1)/3^n]$, for certain k

Properties.

• The Cantor Set is non-empty.

- Some points are clearly the endpoints of intervals.
- Others are there, too (like ¹/₄). These are the endpoints of intervals only in the limit.
- Can be put into 1-1 correspondence with \mathbf{R} uncountable.
- Equivalent to the set of all numbers between 0 and 1 that can be expressed with only 0's and 2's in ternary.
- Sparse. Every point is a boundary point.

Metric Spaces

Definition. A metric space is a set E together with a mapping d: $E \times E \rightarrow R$, which satisfies:

(1) $d(p, q) \ge 0$ for all p, q (positive)

(2) d(p, q) = 0 if and only if p = q. (positive definite)

(3) d(p, q) = d(q, p) for all p, q (symmetry)

(4) $d(p, r) \le d(p, q) + d(q, r)$ for all $p, q, r \in E$ (triangle inequality)

Examples.

(1) **R**

(2) **R** n

(3) Any real vector space with an inner product.

- (4) The "discrete metric" where d(p, q) = 0 if p = q, 1 otherwise.
- (5) L_p , L_∞

Definition. L_{∞} is the space of continuous functions on some set (ie. [0, 1]) with the metric d(f, g) = $\sup\{|f(x)-g(x)| : x \in [0, 1]\}.$

Definition. L_p is the space of continuous functions on some set (usually [0, 1]) with the metric d(f, g) = $(\int |f(x)-g(x)|^p dx)^{1/p}$.

Definition. Let (E; d) be a metric space. Let $p \in E$ and $r \in \mathbf{R}$. Then, the <u>open ball</u> centered at p with radius r, denoted B(p; r), is defined by:

 $B(p, r) = \{ x \in E \mid d(p, x) < r \}.$

Definition. The closed ball centered at p with radius r is

B-bar(p; r) = $\{x \in E \mid d(p, x) \le r\}$.

Definition. A subset S of a metric space (E; d) is <u>open</u> if, for all $p \in S$, there is some open ball centered at p, contained entirely is S.

Definition. A subset $S \subset (E; d)$ is <u>closed</u> if its complement is open.

Proposition. For any (E; d),

(1) \emptyset is open.

(2) E is open.

(3) An arbitrary (possibly infinite) union of open sets is open.

(4) A finite intersection of open sets is open.

Corollary.

(1) \emptyset is closed.

(2) E is closed.

(3) An arbitrary (possibly infinite) intersection of closed sets is closed.

(4) A finite union of closed sets is closed.

Definition. A subset $S \subset E$ is <u>bounded</u> if it is contained in some ball in E.

Definition. If $x \in E$, a <u>neighborhood</u> of x is any set containing an open set that contains x.

Definition. An <u>interior point</u> of $S \subset E$ is a point $x \in S$ such that x has a neighborhood lying entirely in S. (Alternately, x lies in an open ball entirely contained in S.)

Definition. An exterior point of S is a point that has a neighborhood lying entirely outside S.

Definition. x is a <u>boundary point</u> of S if *every* neighborhood of x intersects S and S^{C} .

Proposition. A non-empty closed subset of **R** that is bounded above has a greatest element (in the set).

Proposition. Let $S \subset E$. O is open in S if and only if $O = O' \cap S$ where O' is open in E.

Sequences

Definition. Let $\{p_n\}$ be a sequence of points in a metric space (E; d). Then $p \in E$ is called the <u>limit</u> of the sequence if for all $\varepsilon > 0$ there exists N such that whenever n > N, $d(p_n, p) < \varepsilon$.

Remark. Some ways convergence may fail:

- Oscillation (never staying within an ε-ball).
- Heading toward "infinity."
- The limit is not in the space.

Proposition. A sequence of points $\{p_n\}$ in a metric space may have at most one limit.

Definition. Let $\{p_n\}$ be a sequence in (E; d). Let $n_1 < n_2 < ...$ be a strictly increasing sequence of positive integers. Then $\{p_{ni}\}$ is a <u>subsequence</u> of $\{p_n\}$.

Proposition. Let $\{p_n\}$ be a convergent sequence in (E; d). Then any subsequence of $\{p_n\}$ converges to the same limit.

Theorem. Let $S \subset (E; d)$. S is closed if and only if whenever $\{p_n\} \subset S$ converges in E, the limit lies in S.

Definition. A sequence of points $\{p_n\}$ in (E; d) is <u>Cauchy</u> if for any $\varepsilon > 0$, there exists N such that for all $n, m > N, d(p_n, p_m) < \varepsilon$.

Proposition. Any convergent sequence is Cauchy.

Completeness

Definition. A metric space (E; d) is <u>complete</u> if every Cauchy sequence in E converges to a point in E. *Proposition.* A Cauchy sequence that has a convergent subsequence is itself convergent.

Remark. A convergent sequence is bounded.

Theorem. **R** with the standard metric is complete.

Definition. A sequence of numbers is monotone if it is either increasing or decreasing.

Proposition. A bounded monotone sequence (in \mathbf{R}) converges. The limit is either the greatest lower bounded or the least upper bound.

Compactness

Definition. A collection, $G = \{G_{\alpha}\}$, of open sets is said to <u>cover</u> a set K if $K \subset \bigcup G_{\alpha}$. We call G an <u>open</u> <u>cover</u> of K.

Definition. $K \subset (E; d)$ is <u>compact</u> if every open cover of K has a finite subcover.

Definition. Let $S \subset (E; d)$. $p \in E$ is a <u>cluster point</u> of S if any open ball centered at p contains an infinite number of points of S.

Theorem (Bolzano-Weierstrass). An infinite subset S of a compact metric space (E; d) has at least one cluster point in E.

Corollary. Any sequence of points in a compact metric space has a convergent subsequence.

Corollary. A compact metric space is complete.

Theorem. Any compact subspace of a metric space is both closed and bounded.

Remark. Compact implies complete, closed and bounded. Complete implies closed. No other implications, though.

Theorem. If (E; d) is compact then a closed and bounded subset of E is compact.

Theorem (Heine-Borel). A subset of \mathbf{R}^n with the standard metric is compact if and only if it is closed and bounded.

Corollary (Classical Bolzano-Weierstrass). Every bounded, infinite subset of \mathbf{R}^n has a cluster point. Connectedness

Definition. (1) A metric space (E; d) is <u>connected</u> if the only subsets of E that are both open and closed are E and \emptyset .

(2) A metric space (E; d) is <u>connected</u> if it cannot be written as a union of open sets A and B such that $A \cap B = \emptyset$, $A \cup B = E$, $A \neq \emptyset$, $B \neq \emptyset$.

Theorem. Let $\{S_i\}$ be a collection of connected subsets of a metric space. Suppose there exists i_0 such that $S_i \cap S_{i0} \neq \emptyset$. Then $\cup S_i$ is connected.

Theorem. A subset of **R** is connected if and only if it is an interval.

Theorem. \mathbf{R}^{n} is connected.

Some other types of spaces

Definition. A <u>normed linear space</u> is a vector space (V) with a mapping $|| ||: V \rightarrow \mathbf{R}$ such that

1. $||\mathbf{x}|| \ge 0$

2. ||x|| = 0 if and only if x = 0.

3. ||cx|| = c||x|| where $c \in \mathbf{R}$.

4. $||x + y|| \le ||x|| + ||y||$.

Remark. A good candidate for the norm in a metric space is d(0, x).

Definition. An <u>inner product space</u> is a vector space, V, with a mapping \langle , \rangle : V × V \rightarrow **R**, with the following properties:

- 1. <x+y, z> = <x, z> + <y, z>
- 2. < cx, y > = c < x, y >
- 3. <x, y> = <y, x>
- 4. $<x, x \ge 0$
- 5. <x, x > > 0 if $x \neq 0$.

Definition. A complete inner product space is a Hilbert space.

Definition. A Banach space is a complete normed linear space.

Continuity

- Definition. Let (E; d) and (E'; d') be metric spaces. Let f: $E \rightarrow E'$. Let $p_0 \in E$. We say f is <u>continuous</u> at p_0 if given any $\varepsilon > 0$ there exists $\delta > 0$ such that if $p \in E$ and $d(p, p_0) < \delta$ then $d'(f(p), f(p_0)) < \varepsilon$. We say f is continuous on E if f is continuous at all $p_0 \in E$. Alternately, f is continuous at p_0 if, given any $\varepsilon > 0$ there exists $\delta > 0$ such that $f(B(p_0; \delta)) \subset B(f(p_0); \varepsilon)$.
- *Example.* Let (E; d) be a metric space. Define f: $\mathbf{E} \rightarrow \mathbf{R}$ by $f(p) = d(p, p_0)$, where p_0 is fixed. Then, f is continuous.
- *Example.* A linear function, f: $\mathbf{R}^{p} \rightarrow \mathbf{R}^{q}$, is continuous.
- *Theorem.* Suppose f: $\mathbb{R}^p \rightarrow \mathbb{R}^q$ is linear. Then there exists A > 0 such that, for all $u, v \in \mathbb{R}^p$, $|| f(u) f(v) || \le A ||u v||$.
- *Proposition.* Let (E; d), (E'; d'), and (E''; d'') be metric spaces. Let $f: E \rightarrow E'$ and $g: E' \rightarrow E''$ be continuous. Then g(f(x)) is continuous.

Definition. The pre-image of a set, S, is $f^{-1}(S) = \{p \in E \mid f(p) \in S\}.$

- *Theorem.* Let (E; d) and (E'; d') be metric spaces, f: $E \rightarrow E'$. Then, f is continuous if and only if for every open set $O \subset E'$, the pre-image of O is open.
- Corollary. f is continuous if and only if the pre-image of every closed set is closed.

Note. A continuous function does not necessarily map open sets to open sets.

- *Proposition.* Let E, E' be metric spaces. f: $E \rightarrow E'$ is continuous at p_0 if and only if for every sequence of points, $\{p_n\}$ that converges to p, $\{f(p_n)\}$ converges to f(p).
- *Theorem.* Let (E; d) and (E'; d') be metric spaces and f: $E \rightarrow E'$ be continuous. If $C \subset E$ is compact then $f(C) \subset E'$ is compact.
- *Corollary.* A continuous real-valued function on a compact set attains a minimum and maximum value on at least one point on the set.
- *Theorem.* Let (E; d) and (E'; d') be metric spaces and f: $E \rightarrow E'$ be continuous. If $C \subset E$ is connected then $f(C) \subset E'$ is connected.
- *Corollary (Intermediate Value Theorem).* Let f: $\mathbf{R} \rightarrow \mathbf{R}$, a, b $\in \mathbf{R}$, a < b, f continuous on [a, b]. Then, for any γ strictly between f(a) and f(b), there exists $c \in (a, b)$ such that f(c) = γ .

Uniform Continuity

- *Definition.* Let (E; d) and (E'; d') be metric spaces and f: $E \rightarrow E'$. f is <u>uniformly continuous</u> if given any $\varepsilon > 0$ there exists $\delta > 0$ such that if p, $q \in E$ with $d(p, q) < \delta$ then $d'(f(p), f(q)) < \varepsilon$.
- *Theorem.* Let (E; d) and (E'; d') be metric spaces, and f: $E \rightarrow E'$ be continuous. If E is compact then f is uniformly continuous.

Sequences of Continuous Functions

- *Definition.* Let (E; d) and (E'; d') be metric spaces and $f_n: E \rightarrow E'$ for all n. $\{f_n\}$ <u>converges</u> at p if $\{f_n(p)\}$ converges. $\{f_n\}$ <u>converges pointwise</u> on E if $\{f_n\}$ converges at p for all $p \in E$.
- *Definition.* Let (E; d) and (E'; d') be metric spaces and $f_n: E \rightarrow E'$ for all n. The sequence $\{f_n\}$ <u>converges</u> <u>uniformly</u> to f if, given any $\varepsilon > 0$ there exists N such that, for all $p \in E$, if n > N, $d(f_n(p), f(p)) < \varepsilon$.
- *Theorem.* Let (E; d) and (E'; d') be metric spaces. Let $\{f_n\}$ be a uniformly convergent sequence of continuous function. Then the limit of the sequence is continuous.
- *Definition.* Let $f_n: E \rightarrow E'$. $\{f_n\}$ is a <u>uniformly Cauchy sequence</u> if, given any $\varepsilon > 0$ there exists N such that, for all n, m > N and for all $p \in E$, $d'(f_n(p), f_m(p)) < \varepsilon$.

- *Theorem.* Let (E; d) and (E'; d') be metric spaces. Let E' be complete. Let $f_n: E \rightarrow E'$. The sequence $\{f_n\}$ converges uniformly if and only $\{f_n\}$ is uniformly Cauchy.
- *Theorem.* Let (E; d) and (E'; d') be metric spaces. Let E be compact and E' be complete. Let C(E) be the set of all continuous functions from $E \rightarrow E'$. Let $d_c(f, g) = \max\{d'(f(p), g(p)) | p \in E\}$ be a function from $C(E) \times C(E) \rightarrow \mathbf{R}$. Then, (C(E); d_c) is a complete metric space. Moreover, convergence in this metric space is equivalent to uniform convergence in E.
- Corollary. The metric space $(C([0, 1]); L_{\infty})$ is complete.

Contraction Mapping Principle

- *Definition.* Let (E; d) be a metric space. Let $f: E \rightarrow E$. f is <u>Lipschitz</u> if there exists A > 0 such that d(f(x), f(y)) < A d(x, y) for all $x, y \in E$. f is a contraction if A < 1.
- *Remark.* Any Lipschitz function is uniformly continuous. (Choose $\delta < \epsilon / A$.)
- *Theorem (Contraction Mapping Principle).* Let E be a complete metric space. Let $f: E \rightarrow E$ be a contraction with contractive constant A. Then there exists a unique p such that f(p) = p. If $p_0 \in E$ then $\{f^n(p_0)\}$ converges to p, and $d(f^n(p_0), p) \leq d(p, p_0) A^n / (1 A)$.

Differentiation

Definition. Let f be a real-valued function on an open subset $U \subset \mathbf{R}$. Let $x_0 \in U$. f is <u>differentiable</u> at x_0 if $\lim_{x \to x_0} (f(x) - f(x_0))/(x - x_0)$ exists. The limit is denoted by $f'(x_0)$. Alternatively, f is differentiable if there exists $f'(x_0)$ such that, for any $\varepsilon > 0$ there exists $\delta > 0$ such that whenever $|x - x_0| < \delta$, $|f(x) - f(x_0) - f'(x_0)(x - x_0)| < \varepsilon |x - x_0|$.

Theorem. If f is differentiable at x_0 then f is continuous at x_0 .

- *Proposition.* Let f be a real-valued function on U then attains a maximum or minimum at $x_0 \in U$. Then, if f is differentiable, $f'(x_0) = 0$.
- *Rolle's Lemma.* Let $a, b \in \mathbf{R}$, a < b. Let f be continuous on [a, b] and differentiable on (a, b). Suppose f(a) = f(b) = 0. Then there exists $c \in (a, b)$ such that f'(c) = 0.
- *Mean Value Theorem.* Let $a, b \in \mathbf{R}$, a < b. Let f be continuous on [a, b] and differentiable on (a, b). Then, there exists $c \in (a, b)$ such that f'(c) = (f(b) f(a)) / (b a) [equivalently, f(b) f(a) = f'(c)(b a)].
- *Cauchy Mean Value Theorem.* Let f and g be continuous on [a, b] and differentiable on (a, b). Then there exists $c \in (a, b)$ such that f'(c) (g(b) g(a)) = g'(c) (f(b) f(a)).
- *Corollary.* If f'(x) < 0 (> 0) for all $x \in (a, b)$ then f is decreasing (increasing).
- *Proposition.* Let I = [a, b]. Let f be continuous on I and differentiable on (a, b). Let $f(I) \subseteq I$. Suppose $|f'(t)| < \alpha < 1$ for all $t \in I$. Then f(x) = x has a unique solution, x_0 , given by $x_0 = \lim (n \rightarrow \infty) f^n(x)$ and $x \in I$.
- *Taylors's Theorem.* Let $U \subset \mathbf{R}$ be an open interval. Let $f: U \rightarrow \mathbf{R}$ be n+1 times differentiable. Then, for any $a, b \in U$, $f(b) = f(a) + f'(a)(b-a)/1! + f''(a)(b-a)^2/2! + ... + f^{(n)}(a)(b-a)^n/n! + f^{n+1}(c)(b-a)^{n+1}/(n+1)!$, where $c \in (a, b)$.

Sequences of Differentiable Functions

Theorem. Let $\{f_n\}$ be a sequence of real-values functions which are continuous on [a, b] and differentiable on (a, b). Let $\{f_n\}$ converge pointwise to f and $\{f_n'\}$ converge uniformly to ϕ . Then, $\{f_n\}$ converges uniformly to f, f is differentiable, and f' = ϕ .

Integration Theory

- $\begin{array}{l} \textit{Definition.} \ A \ \underline{\text{partition}} \ of \ [a, b] \subset \pmb{R} \ is \ a \ finite \ sequence \ of \ numbers \ x_0, \ x_1, \ \dots, \ x_n, \ such \ that \ a = x_0 < x_1 < \dots < x_n = b. \end{array}$
- *Definition.* The Riemann sum for f corresponding to *P* is $S(f; P) = \sum f(x_i')(x_i x_{i-1})$ where $x_i' \in [x_{i-1}, x_i]$. *Definition.* F is <u>Riemann integrable</u> on [a, b] if the sequence of partial Riemann sums for any partition *P*
- of [a, b] converges as the width of *P* approaches 0. Given $\varepsilon > 0$ there exists $\delta > 0$ such that whenever width(*P*) < δ , |S(f; *P*) $\int_{a}^{b} f(x) dx$ | < ε .
- Fact. Constant and step functions are integrable.

- $\begin{array}{l} \textit{Definition. Let f be a bounded function on [a, b]. Let P be a partition of [a, b]. The <u>upper and lower</u> \\ \underline{\textit{Darboux sums}} are \ \overline{S}(f; P) = \sum M_i \ (x_i x_{i-1}) \text{ where } M_i = \sup \ \{f(x) \mid x_{i-1} \leq x \leq x_i\} \text{ and } S_{-}(f; P) = \sum m_i \ (x_i x_{i-1}) \text{ where } m_i = \inf \ \{f(x) \mid x_{i-1} \leq x \leq x_i\}. \end{array}$
- *Remark.* If *P* is replaced by a finer partition, *P*', then S $(P; f) \leq S_{(P'; f)} \leq \overline{S}(P'; f) \leq \overline{S}(P; f)$.
- *Definition.* The upper and lower Darboux integrals are the limits of the Darboux sums as the width of the partitions approach 0.
- *Remark.* Because the upper Darboux sums are decreasing and bounded from below (by the lower Darboux sums), they must converge. Similarly, the lower Darboux sums must converge.
- *Remark.* $S_(P; f) \leq S(P; f) \leq \overline{S}(P; f)$ for any *P*.
- *Theorem.* The Riemann integral on [a, b] exists if and only if the upper and lower Darboux integrals are equal.
- *Corollary.* f is Riemann integrable on [a, b] \Leftrightarrow for every ε there exists δ such that whenever width $P < \delta$, $0 \le \text{upper-S}(f; P) \text{lower-S}(f; P) \le \varepsilon$.
- Theorem. Every continuous function on [a, b] is integrable.
- *Proposition.* $\int f(x) dx + \int g(x) dx = \int f(x) + g(x) dx$ [over the same intervals].
- *Proposition.* $\int c f(x) dx = c \int f(x) dx$ [over the same intervals].
- *Proposition.* $\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$. (If any two of these exist, the third must exist.)
- *Proposition.* If $f(x) \ge g(x)$ for all $x \in [a, b]$ then $\int_a^b f(x) dx \ge \int_a^b g(x)$.
- *Fundamental Theorem of Calculus.* Let f be a continuous function on an open interval $U \subset \mathbf{R}$. Let $a \in U$. Let $F(x) = \int_a^x f(t) dt$. Then, F is differentiable on U, and F' = f.
- *Corollary.* If f is continuous, then f is the derivative of some function which may be defined by $F(x) = \int_a^x f(t) dt$.
- *Corollary.* If F is a real-valued function on [a, b] that has derivative f, then $\int_a^b f(x) dx = F(b) F(a)$.
- *Theorem.* Let $[a, b] \subset \mathbf{R}$. Let $\{f_n\}$ be a sequence of integrable functions on [a, b] that converges uniformly to f. Then, f is integrable and $\lim \int f_n(x) dx = \int f(x) dx$.

Series of Functions

- *Definition.* Let $\{f_k\}$ be a sequence of functions from (E; d) $\rightarrow \mathbf{R}$. We define $S_n(x) = \sum f_k(x) = f_1(x) + \dots f_n(x)$. If $\{S_n(x)\}$ converges to f(x) on E, then we say $\sum f_k(x) = f(x)$.
- *Definition.* If $\sum |f_k(x)|$ converges, then $\sum f(x)$ converges absolutely. If $\{S_n(x)\}$ converges uniformly, then $\sum f_k(x)$ converges uniformly.
- *Theorem.* Suppose f_k is continuous for all k. If $\sum f_k(x)$ converges uniformly, then $\sum f_k(x)$ is continuous.

Theorem. Suppose f_k is integrable for all k. If $\sum f_k(x)$ converges uniformly, then $\sum f_k(x)$ is integrable.

- *Theorem.* Suppose f_k is differentiable, $\sum f_k$ converges pointwise to f, and $\sum f'$ converges uniformly to ϕ . The, $\sum f_k$ converges uniformly to f, and f is differentiable with derivative ϕ .
- $\begin{array}{l} \textit{Proposition. Let } \{f_k\} \text{ be a sequence of functions. } \sum f_k \text{ is uniformly convergent } \Leftrightarrow \text{ for all } \epsilon > 0 \text{ there} \\ \text{ exists } M \text{ such that, for all } m, n > M, m > n, |f_{n+1}(x) + f_{n+2}(x) + \ldots + f_m(x)| < \epsilon. \end{array}$
- *Theorem (Weierstrass M Test).* Let M_k be a sequence of non-negative numbers such that $|f_k(x)| < M_k$ for all k, x. If $\sum M_k$ converges then $\sum f_k$ is uniformly convergent.

Measure and Integrability [optional]

- *Definition.* If I is a bounded interval with endpoints a and b we define the <u>length</u> of I by |I| = |b a|. *Definition.* A subset $A \subset \mathbf{R}$ is a set of measure 0 if, for all $\varepsilon > 0$ there exists a sequence of bounded intervals, $I_1, I_2, ...$, such that $A \subset \bigcup I_n$ and $\sum |I_n| < \varepsilon$.
- *Remark.* No closed interval with $a \neq b$ has measure 0.
- Remark. Any countable set of points has measure 0.
- Remark. Any subset of a set of measure 0 has measure 0.
- Remark. The union of a countable number of sets of measure 0 has measure 0.
- Remark. There are uncountable sets of measure 0. Consider the Cantor set.

Definition. A property that holds except on a set of measure 0 is said to hold almost everywhere.

 $\begin{array}{l} \textit{Definition.} \ \ \text{For a sequence of real numbers, } \{a_n\}, \text{ we define the lim sup as } \limsup_{n \to \infty} = \lim_{N \to \infty} \sup \ \{a_n \mid n > N\}. \end{array}$

Definition. The limit is defined by $\liminf_{n \to \infty} \{a_n\} = \lim_{N \to \infty} \inf\{a_n \mid n > N\}$.

Remark. Because $\{a_n \mid n > N\} \subset \{a_n \mid n > N-1\}$, sup $\{a_n \mid n > N\}$ is decreasing. Therefore, it converges if it is bounded below. Similarly for the liminf.

Remark. $\{a_n\}$ converges if and only if limit $\{a_n\}$ = limsup $\{a_n\}$ (and both exist).

Definition. Let f: [a, b] $\rightarrow \mathbf{R}$, $c \in [a, b]$. We define $\limsup_{x\to c} f(x) = \lim_{\delta\to 0} \sup\{f(x)|x\in[a, b]\cap[c-\delta, c+\delta]\}$. we define $\liminf_{x\to c} f(x) = \lim_{\delta\to 0} \inf\{f(x)|x\in[a, b]\cap[c-\delta, c+\delta]\}$.

Definition. The <u>oscillation</u> of f at c is $\omega(f; c) = \text{limsup}_{x \to c} f(x) - \text{liminf}_{x \to c} f(x)$.

Remark. If f is continuous ar c then $\omega(f; c) = 0$.

Proposition. If $\omega(f; c) < \varepsilon$ for all $c \in [a, b]$ then there exists $\delta > 0$ such that if $x, y \in [a, b]$ with $|x - y| < \delta$ then $|f(x) - f(y)| < \varepsilon$.

Theorem. A bounded function is Riemann integrable if and only if it is continuous almost everywhere.