
Topology Summary 
 
Background Information 
Well-Ordering, Induction, and SΩ 
Definition.  A set A is well-ordered if every non-empty subset of A has a smallest element. 
Theorem (Well-Ordering).  If A is a set then there exists an order relation on A that is a well-

ordering. 
Definition.  Let X be a well-ordered set.  Let a ∈ X.  The Sa = {x ∈ X | x < a} is called the section 

of X by a. 
Lemma.  There exists a well-ordered set A having a largest element, Ω, such that SΩ of A is 

uncountable but every other section is countable. 
Theorem.  If A is a countable subset of SΩ, then A has an upper bound in SΩ. 
Defintion.  Let J be a well-ordered set.  A subset J0 ⊂ J is inductive if, for every a ∈ J, Sa ⊂ J0 

implies that a ∈ J0. 
Principle of Transfinite Induction.  If J is a well-ordered set and J0 is an inductive subset, then J = 

J0. 
Theorem.  Let J and C be well-ordered.  Assume that there is no surjective mapping of a section 

of J into C.  Then there exists a unique function h: J à C such that h(x) = smallest[C – h(Sx)] 
for all x ∈ J. 

Groups (Particularly Free and Free Abelian Ones) 
Definition.  Let G be an abelian group and {Gα} a family of subgroups of G.  We say that the 

subgroups {Gα} generate G if each x ∈ G can be written as the finite sum of elements from the 
Gα; that is, x = ∑ xα, with all but finitely many xα = 0.  In this case, we say G is the sum of the 
Gα. 

Definition.  Let G be a group and {Gα} a family of subgroups of G.  We say the {Gα} generate G 
if each x ∈ G can be written as the finite product of elements of the Gα; that is, x = x1…xn.   

Note.  In x1…xn, we may only combine consecutive elements from the same subgroup.   The 
word resulting form this is a reduced word. 

Definition.  If the expression x = ∑ xα is unique for all x, G is the direct sum of {Gα}, and we 
write G = ⊕ Gα. 

Definition.  If the reduced word for x is unique for all x, then G is the free product of {Gα} and 
we write G = Π* Gα. 

Lemma.  G = ⊕ Gα ó given any abelian group H and any family of homomorphisms {hα: Gα à 
H}, there exists a unique h: G à H that agrees with hα on each Gα. 

Lemma.  G = Π* Gα ó given any group H and any family of homomorphisms {hα: Gα à H}, 
there exists a unique homomorphism h: G à H that agrees with each hα on each Gα. 

Definition.  Let {Gα} be abelian groups.  Suppose G is abelian, and that {iα: Gα à G} is a family 
of monomorphisms, such that G = ⊕  iα(Gα).  Then G is the external direct sum of {Gα} relative 
to {iα}. 

Definition.  Let {Gα} be groups.  Suppose G is a group and {iα: Gα à G} is a family of 
monomorphisms, such that G = Π* iα(Gα).  Then we say G is the external direct product of the 
groups{Gα} relative to the monomorphisms {iα}. 

Theorem.  Given a family of abelian groups {Gα}, there exists an abelian group G which is their 
external direct sum (consider the Cartesian product). 

Theorem.  Given a family of groups {Gα} there exists a group G which is their external direct 
product (consider all words of finite length with elements from the groups). 

Theorem.  Let {Gα} be abelian groups.  Suppose G and G’ are abelian groups which are external 
direct products of the {Gα} (relative to families of monomorphisms, {iα} and {iα’}).  Then there 
is a unique isomorphism, φ: G à G’, such that φ ° iα = iα’ for each α. 



Theorem.  Let {Gα} be groups.  Suppose G and G’ are groups which are the external free 
products of the {Gα} relative to monomorphisms {iα} and {iα’}.  Then there is a unique 
isomorphism, φ: G à G’, such that φ ° iα = iα’ for each α. 

Definition.  Let G be an abelian group and {aα} a family of elements of G.  Let Gα be the 
subgroup generated by aα.  If the {Gα} generate G, then we say the elements {aα} generate G.  
If each Gα is infinite cyclic and G is the direct sum of the {Gα}, then G is a free abelian group 
with {aα} as a basis. 

Definition.  Let {aα} be a family of elements of a group G.  Suppose each aα generates an infinite 
cyclic subgroup Gα of G.  If G is the free product of the {Gα}, then G is a free group with 
system of free generators {aα}. 

Lemma.  G is a free abelian group with basis {aα} ó for any abelian group H and any family of 
elements {yα} ⊂ H, there is a unique homomorphism h: G à H with h(aα) = yα for each α. 

Lemma.  G is a free group with system of free generators {aα} ó for any group H and any family 
of elements {yα} ⊂ H, there is a unique homomorphism, h: G à H with h(aα) = yα. 

Theorem.  If G is free abelian, the size of the basis is uniquely determined by G and is called the 
rank of G. 

Corollary.  If G is a free group, the number of elements in the system of free generators is unique. 
Definition.  Let G be a group.  If x, y ∈ G, we define [x, y] = xyx-1y-1 to be the commutator of x 

and y.  The subgroup generated by all the commutators in G called the commutator subgroup, 
[G, G]. 

Lemma.  [G, G] is a normal subgroup of G and the quotient group G/[G, G] is abelian.  If h: G à 
H is any homomorphism with H abelian, [G, G] ⊂ ker h., so that h induces a homomorphism, k: 
G/[G, G] à H. 

Proposition.  Let F be the free group generated by a1, …, an.  Let x ∈ F, N the least normal 
subgroup containing x, and G = F/N.  If p: F à F/[F, F] is the projection homomorphism, then 
F/[F, F] is free abelian with basis {p(a1), …, p(an)}.  The abelianization of G ( = G/[G, G]) is 
isomorphic to (F/[F,F])/N’, where N is the subgroup generated by p(x). 

Definition.  Let H0 be a subgroup of G.  The normalizer is N(H0) = {a ∈ G | aH0a
-1 = H0}.  This is 

the largest subgroup of G in which H0 is normal. 
Definition.  Let G be an abelian group.  Then G = Za ⊕ … ⊕ Zk ⊕ Zb.  We define the Betti 

number of G to be b (the rank of the free part of G).  If we have a sequence of homology 
groups, we define βq to be the Betti number of Hq. 

 
Point-Set Topology 
Definition.  A topology on a set X is a collection of subsets of X, T, such that (1) ∅, X ∈ T, (2) if 

Aα ∈ T for each α, then ∪ Aα ∈ T, and (3) if A1, …, An ∈ T, then ∩ Ai ∈ T.  We call the sets in 
T open sets. 

Definition.  A basis for a topology on X is a collection of subsets of X, B, such that (1) For all x ∈ 
X, there is some B ∈ B with x ∈ B, and (2) if x ∈ B1 ∩ B2 there is some B3 ∈ B such that x ∈ 
B3 ⊂ B1 ∩ B2.  U ⊂ X is open in the topology generated by B if, for all x ∈ U, there is some B 
∈ B, such that x ∈ B ⊂ U. 

Definition.  A subbasis, S, for a topology on X is a collection of subsets of X whose union is X.  
The topology generated by S is the topology with basis being the collection of all finite 
intersections of elements in S. 

Lemma.  Let X be a topological space.  Let C be a collection of open sets of X such that, for all 
open sets U and all x ∈ U, there exists C ∈ C such that x ∈ C ⊂ U.  Then C is a basis for the 
topology of X. 



Definition.  Suppose T and T’ are topologies on a set X.  If T’ ⊃ T then T’ is finer than T and T is 
coarser than T’.  If this containment is strict, then T’ is strictly finer than T and T is strictly 
coarser than T’. 

Lemma.  Let B and B’ be bases for topologies T and T’ on X.  T’ is finer than T if and only if for 
all x ∈ X and B ∈ B there is some B’ ∈ B’ such that x ∈ B’ ⊂ B. 

Definition.  Let X be a simply ordered set with at least two elements.  The order topology on X 
has basis {(a, b) | a < b} ∪ {[a0, b) | a0 is the smallest element of X} ∪ {(a, b0] | b0 is the largest 
element of X}. 

Definition.  Let X and Y be topological spaces.  The product topology on X and Y is given by the 
basis TX × TY.   

Definition.  Let X be a topological space.  Let Y ⊂ X.  The subspace topology on Y is given by TY 
= {U ∩ Y | U is open in X}. 

Theorem.  Let B and C be bases for topologies on X and Y.  Then, B × C = {U × V | U ∈ B and V 
∈ C} is a basis for the product topology on X and Y. 

Theorem.  BA = {A ∩ B | B ∈ B} is a basis for the subspace topology on A ⊂ X. 
Note.  The product of subspace topologies is not the subspace of the product of the topologies. 
Definition.  In a topological space X, A is closed if X – A is open. 
Theorem.  Let A be a subset of a space X.  Then x ∈ A-closure ó every open set containing x 

intersects A. 
Definition.  Let X be a topological space.  A sequence of points, x1,x2, …, converges to x ∈ X if, 

for each neighborhood, U, of x, there exists N such that xn ∈ U for all n ≥ N. 
Note.  Sequences that converge in one topology may not converge in a finer topology.  In some 

topologies, sequences may converge to more than one (or any!) point. 
Definition.  A space is Hausdorff if, for any x1, x2 ∈ X there exist disjoint open sets, U1 and U2 

with x1 ∈ U1 and x2 ∈ U2. 
Definition.  A space is T1 if one-point sets are closed. 
Note.  Hausdorff ⇒ T1. 
Proposition.  X is Hausdorff ó {x × x | x ∈ X} is closed in X × X. 
Continuous Functions 
Definition. A function f: X à Y is continuous if f-1(V) is open in X for each V that is open in Y. 
Note.  Let X and X’ be the same space with different topologies.  The identity function i: X à X’ 

is continuous ó the topology of X is finer than the topology of X’. 
Theorem.  Let f: X à Y be a function.  The following are equivalent: 

• f is continuous 
• For all A ⊂ X, f(A-closure) ⊂ f(A)-closure 
• f-1(C) is closed if C is closed 
• For every x ∈ X and every neighborhood, V, of f(x), there is a neighborhood U of x such 

that f(U) ⊂ V. 
Definition.  Suppose f: Xà Y is a bijection.  If both f and f-1 are continuous, we say f is a 

homeomorphism. 
Theorem.  Composites of continuous functions are continuous. 
Theorem.  f: X à Y is continuous if we can write X as the union of open sets, {Uα}, such that f | 

Uα is continuous for each α. 
Theorem (Pasting Lemma).  If f | A and g | B are continuous, A and B are closed, and f(x) = g(x) 

on A ∩ B, then there is a continuous function on A ∪ B that agrees with f on A and g on B. 
Definition.  Let J be an index set.  Given a set X, we define a J-tuple of X to be a function x: J à 

X.  If α ∈ J, we write xα for x(α).  We consider this as the αth coordinate, writing x = (xα)α∈J.  
Let {Aα} be a family of sets.  Let X = ∪ Aα.  Then, Π Aα is the set of all J-tuples of X with xα 
∈ Aα for all α ∈ J.  We define the projection function πβ(x) to be the βth coordinate of x. 



Definition.  Let Π Xα be the product of a family of topologies.  The box topology is the topology 
with basis {Π Uα | Uα  is open in Xα}. 

Definition. Let Π Xα be the product of a family of topologies.  The product topology is the 
topology with basis {Π Uα | Uα  is open in Xα and Uα = Xα for all but finitely many α ∈ J}. 

Note.  If J is infinite, the box topology is strictly finer than the product topology. 
Theorem.  Let f: A à Π Xα be given by f(a) = (fα(a)) where each fα: A à Xα is continuous.  In 

the product topology, f is continuous ó each fα is continuous. 
Theorem.  Let S = ∪α∈J{πα

-1(Uα) | Uα is open in Xα}.  S is a subbasis for the product topology. 
Note.  The product topology is the coarsest topology such that the projection functions out of it 

are continuous. 
Theorem.  In the box and product topologies, the Cartesian product preserves subspace 

relationships, Hausdorff-ness, and closures (Π A-closure = (Π A)-closure.) 
Definition.  If d is a metric on a set X then the collection of all ε-balls, Bd(x, ε) for all x ∈ X and ε 

> 0 is a basis for the metric topology on X induced by d. 
Definition.  If X is a topological space, X is metrizable if there is a metric that induces the given 

topology on X. 
Definition.  Let X be a metric space with metric d.  The standard bounded metric, d-bar, is d-

bar(x, y) = min{d(x, y), 1}. 
Definition.  Given an index set J and points x = (xα) and y = (yα) of RJ, we define a metric ρ-bar 

on RJ by ρ-bar(x, y) = sup{d-bar(xα, yα)}.  This is the uniform metric on RJ and induces the 
uniform topology. 

Note.  B(x, ε) = ∪δ < ε (x1 – δ, x1 + δ) × (x2 – δ, x2 + δ) × … 
Theorem.  In RJ, the uniform topology is finer than the product topology and coarser than the box 

topology. 
Theorem.  Let d-bar be the standard bounded metric on R.  If x, y ∈ Rω, define D(x, y) = sup{d-

bar(xi, yi)/i}.  Then D induces the product topology. 
Theorem.  Let f:X à Y.  Let X and Y be metrizable with metrics dx and dy.  f is continuous ó for 

all x ∈ X and ε > 0, there exists δ > 0 such that dy(f(x), f(y)) < ε whenever dx(x, y) < δ. 
Sequence Lemma.  Let X be a topological space, A ⊂ X.  If there is a sequence of point in A 

converging to x, then x ∈ A-closure.  If X is metrizable, then the converse holds. 
Corollary.  Rω

 in the box topology is not metrizable. 
Definition.  Let fn: X à Y be a sequence of functions with Y a metric space with metric d.  We 

say the sequence (fn) converges uniformly to the function f: X à Y if, for all ε > 0, there exists 
N such that d(fn(x), f(x)) < ε for all n > N and x ∈ X. 

Note.  Let fn: X à R.  (fn) converges uniformly to f: X à R ó the sequence (fn) ∈ RX converges 
to f in the uniform metric. 

Definition.  Let p: X à Y be surjective.  p is a quotient map if U ⊂ Y is open if and only if p-1(U) 
is open in X. 

Definition.  Let X be a space and Y a set.  Let p: X à Y be onto.  Then the quotient topology on 
T, TY is given by TY = {V | p-1(V) is open in X}. 

Theorem.  The quotient topology on Y is the finest topology such that p is continuous. 
Definition.  Let f: X à Y.  If f(U) is open whenever U is open, then f is an open map.  If f(C) is 

closed whenever C is closed, then f is a closed map. 
Proposition.  If p: X à Y is surjective, continuous, and either open or closed, then it is a quotient 

map. 
Facts. Let p: X à Y and q: X à X* be quotient maps. 

• The typical open set of X* is a collection of equivalence classes whose union is open in 
X. 



• If A is a subspace of X, the restriction p0: A à p(A) need not be a quotient map.  If A is a 
saturated open (closed) set or p is open (closed), then p0 is a quotient map. 

• The composite of quotient maps is a quotient map. 
• Any Cartesian product of quotient maps might not be a quotient map. 
• X* need not be Hausdorff,  even if X is. 
• If g: X à Z is constant on each p-1({y}), y ∈ Y, there exists f: Y à Z such that g = f ° p.  

f is continuous or a quotient map if and only if g is. 
Definition. A topological group is a group, G, which is also a topological space that satisfies the 

T1 axiom, such that group multiplication and inversion are continuous maps. 
Facts.  Let G be a topological group. 

• Let C be closed in G and a ∈ G.  Then Ca, aC, and aC-1 are closed. 
• Let U be open and S be any set in G.  Then US, SU, and U-1 are open. 
• G is regular. 
• Let N be the component of the identity in G.  Then N is a normal subgroup. 
• If N is the component of the identity, then G/N is totally disconnected. 

Connectedness 
Definition.  Let X be a topological space.  A separation of X is a pair of subsets of X that are 

disjoint, non-empty, and open, whose union is X. 
Definition.  If there is no separation of X, then X is connected. 
Theorem.  Suppose A ⊂ X is connected and A ⊂ B ⊂ A-closure.  Then B is connected. 
Theorem.  The image of a connected space under a continuous map is connected. 
Theorem.  A finite product of connected spaces is connected. 
Theorem.  An infinite product of connected spaces is connected in the product topology, but not 

in the uniform or box topology. 
Definition.  A simply ordered set, L, with more than one element is a linear continuum if (1) L 

has the least upper bound property, and (2) if x < y, there exists z ∈ L such that x < z < y. 
Theorem.  If L is a linear continuum with the order topology, then L and any intervals and rays in 

L are connected. 
Definition.  Let x, y ∈ X.  A path from x to y is a continuous map f: [a, b] à X such that f(a) = x 

and f(b) = y.  A space X is path-connected if there is a path between every pair of points in X. 
Note.  Path connected implies connected, but not vice versa. 
Theorem.  SΩ × [0, 1) is well-ordered.  Remove the smallest element, a0.  Then the remainder, L, 

is the “long line”.  L is path-connected and locally homeomorphic to R, but cannot be 
imbedded in any Rn. 

Definition.  Given a topological space X, we may define an equivalence relation on X, where x ~ 
y if there is some connected subspace of X containing both x and y.  We call the equivalence 
classes of this relation the components of X. 

Theorem.  The components of X are connected disjoint subsets of X whose union is X, such that 
each non-empty connected subspace of X intersects only one subset. 

Definition.  A path component is defined by the equivalence relations where x ~ y if x and y are 
connected by a path. 

Fact.  Components are always closed in X.  Components are open if there are finitely many 
components (Q is a counterexample). 

Definition.  X is locally connected at x ∈ X if, for each neighborhood U of x, there is a connected 
neighborhood of x contained in U.  X is locally path connected at x if each neighborhood of x 
contains a path connected neighborhood of x. 

Note.  Locally path connected implies locally connected. 
Theorem.  X is locally connected ó for each open set U in X, each component of U is open in X. 
Theorem.  X is locally path connected ó for each open U in X, each path component of U is 

open in X. 



Note.  If X has a basis of connected sets, it is locally connected. 
Theorem.  Each path component of X lies in a component of X.  X is locally path connected if 

and only if the components and the path components are the same. 
Definition.  X is weakly locally connected at x if, for every open neighborhood UU of x, there 

exists a connected subspace of x that is contained in U that contains a neighborhood of x. 
Proposition.  If X is weakly locally connected at each point, then X is locally connected. 
Compactness 
Definition.  Let X be a topological space.  Let A be a collection of subsets of X.  A covers X if the 

union of all the sets in A is X.  A is an open cover if each element of A is open in X. 
Definition.  A space X is compact if every open covering contains a finite subcovering. 
Lemma.  Let Y be a subspace of X.  Then Y is compact ó every open covering of Y be sets open 

in X contains a finite subcover of Y. 
Theorem.  Every compact subspace of a Hausdorff space is closed. 
Theorem.  The image of a compact set under a continuous map is closed. 
Theorem.  A subspace A ⊂ Rn is compact ó A is closed and bound in the Euclidean (or square) 

metric. 
Theorem (Extreme Value).  Let f: X à Y be continuous.  Let Y be an ordered set.  If X is 

compact, then there exist c, d ∈ X such that f(c) ≤ f(x) ≤ f(d) for all x ∈ X. 
Tube Lemma.  Consider X × Y with Y compact.  If N ⊂ X × Y is open and contains a slice x0 × Y 

then N contains some tube W × Y where W is an open neighborhood of x0 in X. 
Note.  If G is a topological space, with A closed and B compact, then AB is closed. 
Definition.  A collection, C, of subsets of X has the finite intersection property if, for every finite 

subcollection, {C1, …, Cn}, their intersection is non-empty. 
Theorem.  X is compact ó for every collection, C, of closed sets in X with the finite intersection 

property, the intersection of these sets is non-empty. 
Corollary.  A collection of nested sets in a compact space has a point in common. 
Definition.  A space X is limit point compact if every infinite subset of X has a limit point in X. 
Theorem.  Every compact space is limit point compact. 
Definition.  Let (xn) be a sequence of points in X.  Let n1 < n2 < … be an infinite sequence of 

increasing integers.  Then the sequence (xni) is a subsequence. 
Definition.  A space X is sequentially compact if every sequence has a convergent subsequence. 
Note.  Sequential compactness is also weaker than compactness. 
Theorem.  If X is metrizable, then compactness, limit point compactness, and sequential 

compactness are equivalent. 
Definition.  X is locally compact at x ∈ X if there is some compact subspace that contains a 

neighborhood of x. 
Note.  Compact implies locally compact. 
Theorem.  X is locally compact Hausdorff ó there exists Y such that (1) X is a subspace of Y, 

(2) Y – X consists of a single point, and (3) Y is compact.  Any two such Y are homeomorphic, 
with the homeomorphism equal to the identity on X. 

Definition.  Such a Y is the one-point compactification of X. 
Note.  To construct Y, we add a point, ∞, such that set are open if they are open in X or they are 

the complement of a compact set in X. 
Countability Axioms 
Definition.  A countable basis at a point is a countable subset of basis elements such that any 

neighborhood of that point contains one of these basis elements. 
Definition.  X is first-countable if there is a countable basis at each x ∈ X. 
Definition.  X is second-countable if the topology of X has a countable basis. 
definition.  X is Lindelof of every open cover contains a countable subcover. 
Definition.  A topology has a countable dense subset, A, is A is countable and A-closure = X.   



Note.  D is dense if every non-empty open set in X intersects D.  a is a limit point of S if every 
non-empty open set about a intersects S. 

Separability Axioms 
Definition.  Suppose one-point sets are closed in X.  X is regular if, for each pair consisting of a 

point x ∈ X and a closed set B ⊂ X, x ∉ B, there exist disjoint open sets containing x and B 
respectively.  X is normal if, for each pair of disjoint closed sets A and B, there exist disjoint 
open sets containing A and B. 

Note.  Normal ⇒ Regular ⇒ Hausdorff. 
Lemma.  Let X be a topological space in which one-point sets are closed.  X is regular ó for all x 

∈ X and any neighborhood U of x, there exists a neighborhood V of x such that V-closure ⊂ U.  
X is normal ó for all closed sets A ⊂ X and open sets U containing A, there exists an open set 
V such that A ⊂ V and V-closure ⊂ U. 

Example.  Metrizable spaces are normal. 
Theorem.  Subspaces and products of Hausdorff/regular spaces are Hausdorff/regular. 
 
Algebraic Topology 
Definition.  Let f, f’: X à Y be continuous maps.  f is homotopic of f’ if there is a continuous 

map F: X × I à Y such that F(x, 0) = f(x) and F(x, 1) = f’(x). 
Lemma.  Homotopy is an equivalence relation. 
Definition.  Let f, f’: [0, 1] à Y be continuous maps.  f is path homotopic to f’ is there is a 

continuous map F: [0, 1] × [0, 1] à Y such that F(x, 0) = f(x), F(x, 1) = f’(x), F(0, t) = f(0) = 
f’(0) and F(1, t) = f(1) = f’(1). 

Definition.  The composition of two paths, f*g, is given by f*g: [0, 1] à X, with f*g(t) = f(2t) or 
g(2(t-1/2)). 

Definition.  Let x0 ∈ X.  The set of path homotopy classes of loops based at x0, under path 
composition, is called the fundamental group relative to the basepoint x0, and is denoted by 
π1(X, x0). 

Definition.  Given a pointed set (X, x0), π0(X, x0) is the pointed set of path components. 
Proposition.  Let f: (X, x0) à (Y, y0), g: (W, w0) à (X, x0), with f ° g = h.  Then f*: π1(X, x0) à 

π(Y, y0) and g*: π1(W, w0) à π1(X, x0) are homomorphisms, as is h* = f* ° g*.  The same is true 
with π0 instead of π1. 

Definition.  If X is path connected and π1(X, x0) = {[x0]}, then X is simply connected.  If π0(X, 
x0) = {X}, then X is path connected. 

Definition.  Let α be a path from x0 to x1.  Define α^: π1(X, x0) à π1(X, x1) by α^([f]) = [α-
reverse]*[f]*[α]. 

Definition.  Let p: E à B be continuous and surjective.  Let U ⊂ B be open.  U is evenly covered 
by p if p-1(U) = ∪{Vα} where each Vα is open, homeomorphic to U, and disjoint from all other 
Vα’. 

Definition.  If every b ∈ B has a neighborhood that is evenly covered, then we call p a covering 
map and E a covering space of B. 

Note.  If p: E à B is a covering map and B is regular, so is E. 
Theorem.  Let p: E à B be continuous and onto, with U evenly covered.  If U is connected, then 

the partition of p-1(U) into slices is unique. 
Definition.  Let p: E à B be any map.  If f is a continuous map, f: X à B, a lifting of f is a map 

f~: X àY E such that p °f~ = f. 
Lemma.  Let p: E à B be a covering map.  Let p(e0) = b0.  Then any path f: [0, 1] à B beginning 

at b0 has a unique lifting to a path f~ beginning at e0 in E. 



Lemma.  Let p: E à B be a covering map.  Let p(e0) = b0.  Let F: I × I à B be continuous, with 
F(0, 0) = b0.  There is a unique lifting of F to the continuous map F~: I × I à E, such that F~(0, 
0) = e0.  If F is a path homotopy, so is F~. 

Theorem.  Let p: E à B be a covering map, with p(e0) = b0.  Let f and g be two paths in B from b0 
to b1.  Let f~ and g~ be their liftings to paths in E beginning at e0.  If f and g are path 
homotopic, the f~ and g~ end at the same point and are path homotopic. 

Definition.  Let p: E à B be a covering map.  Let p(e0) = b0.  Given [f] ∈ π1(B, b0), let f~ be the 
lifting of f to a path in E beginning at e0.  Let φ([f]) = f~(1).  Then φ: π1(B, b0) à p-1(b0) is a 
well-defined set map.  φ is the lifting correspondence derived from a covering map p. 

Theorem.  If E is path connected, φ: π1(B, b0) à p-1(b0) is surjective.  If E is simply connected, 
then φ is bijective. 

Theorem.  If p: E à B is a covering map with basepoints e0 and b0, let F = p-1(b0).  Then, * à 
π1(F, e0) à π1(E, e0) à π1(B, b0) à π0(F, e0) à π0(E, e0) à π0(B, b0) à * is a long exact 
sequence. 

Note.  If G is a topological group, H ⊆ G a closed subgroup such that p: G à G/H is a covering 
map, the sequence above is a long exact sequence of groups. 

Homotopy Lifting Lemma.  Let p: E à B be a covering map with p(e0) = b0.  Let F: I × I à B be 
continuous with F(0, 0) = b0.  Then F can be uniquely lifted to F~: I × I à E which is 
continuous and has F~(0, 0) = e0.  If F is a path homotopy, then so is F~. 

Definition.  If A ⊂ X, a retraction of X onto A is a continuous map r: X à A such that r | A is the 
identity map.  If such an r exists, we call A a retract of X. 

Lemma.  If A is a retract of X then the homomorphism of fundamental groups induced by 
inclusion, j: A à X, is injective. 

Theorem.  There is no retraction of B2 onto S1. 
Lemma.  Let h: S1 à X be continuous.  The following are equivalent: 

• h is nulhomotopic 
• h extends to a continuous map, k: B2 à X. 
• h* is the trivial homomorphism of fundamental groups. 

Corollary.  The inclusion map, j: S1 à R2 – 0 is not nulhomotopic.  Neither is the identity map, i: 
S1 à S1. 

Definition.  A vector field on Bn+1 is an ordered pair (x, v(x)) where x ∈ Bn+1, v: Bn+1 à Rn+1 is 
continuous.  We call a vector field non-vanishing if v(x) ≠ 0 for all x.  (So v: Bn+1 à Rn+1 – 0.) 

Theorem.  Given a non-vanishing vector field on B2, there exists a point on S1 where the vector 
field points directly outward and a point on S1 where it points directly outward. 

Theorem (Brouwer Fixed Point).  If f: B2 à B2 is continuous, then there is a point x ∈ B2 with 
f(x) = x. 

Corollary.  Let A be a 3 by 3 matrix of positive real numbers.  Then A has a positive real 
eigenvalue. 

Theorem (Fundamental Theorem of Algebra).  A polynomial equation, xn + an-1x
n-1 + … + a1x + 

a0 = 0 of degree n > 0 with real or complex coefficients has at least one real or complex root. 
Proof.  Scale the equations so that any root must be in B2.  If there is no root, this defines a non-

vanishing vector field, which must be nulhomotopic on S1.  Consider the map f(z) = zn on S1.  
These maps are homotopic, but one is nulhomotopic and the other isn’t.   

Theorem.  If h: S1 à S1 is continuous and preserves antipodes, then h is not nulhomotopic. 
Theorem (Borsuk-Ulam).  Given a continuous map, f: S2 à R2, there exists x ∈ S2 with f(x) = f(-

x). 
Definition.  Let A be a subspace of X.  A is a deformation retract of X if the identity map of X is 

homotopic to the retraction of X onto A, such that each point of A remains fixed during the 
homotopy. 



Definition.  Let f: X à Y and g: Y à X be continuous.  Suppose g ° f : X à X is homotopic to 
the identity map on X and f ° g: Y à Y is homotopic to the identity map on Y.  Then f and g 
are homotopy equivalences, and each is the homotopy inverse of the other.  Then X and Y are 
of the same homotopy type. 

Theorem.  Suppose X = U ∪ V, where U and V are open in X.  Suppose U ∩ V is path connected 
and x0 ∈ U ∩ V.  Let i, j be the inclusion maps of U and V into X.  Then the induced 
homomorphisms of fundamental groups, i*: π1(U, x0) à π1(X, x0) and j*: π1(V, x0) à π1(X, x0), 
generate π1(X, x0). 

Definition.  A surface is a  Hausdorff space with a countable basis, so that each point has a 
neighborhood homeomorphic to an open subset of R2. 

Theorem.  π1(X × Y, x0 × y0) is isomorphic to π1(X, x0) × π1(Y, y0). 
Definition.  The projective plane, P2, is the quotient space obtained by identifying each point, x, 

of S2 with –x. 
Definition.  T#T, the double torus, is obtained by cutting circular holes in two tori and attaching 

them along the holes. 
Theorem.  Let A1 and A2 be closed connected subsets of S2.  Let A1 ∩ A2 = {a, b}.  Let C = A1 ∪ 

A2.  Then C separates S2. 
Corollary.  Any two closed sets in S2 that intersect in exactly two points must miss at least two 

points of S2. 
Theorem (Jordan Curve).  Let C be a simple closed curve in S2.  Then C separates the sphere into 

exactly two components, of which C is the common boundary. 
Theorem (Schoenflies).  If the simple closed curve C separates S2 into two components U and V, 

then U-closure and V-closure are homeomorphic to B2.  Let h be a homeomorphism of C with 
the equator of S2.  The h extends to a homomorphism k: S2 à S2. 

Definition.  Theta space is the union of three arcs, all of which intersect at the two common 
endpoints. 

Lemma.  Let X be a theta space contained in S2.  Let A, B, C be arcs with A ∪ B ∪ C = X.  Then 
X separates S2 into exactly three components, with boundaries A ∪ B, A ∪ C, and B ∪ C. 

Theorem.  K3,3 cannot be imbedded in the plane. 
Definition.  Let h: S1 à R2 – 0 be continuous.  Then h*: π1(S

1) à π1(R
2 – 0) maps the generator 

of S1 to some element, d, of Z.  d is the winding number of h. 
Lemma.  Let h: S1 à R2 – 0 with C = Im h, so that h is a homeomorphism of S1 with a simple 

closed curve.  Then, if 0 is in the unbounded component, the winding number is 0, and if 0 is in 
the bounded component, the winding number is +1 or –1. 

Lemma.  The inclusion map, j: C à S2 – p – q induces an isomorphism of fundamental groups. 
Definition.  Let f be a loop in R2 with a ∈ R2 – Im f.  Set g(s) = (f(s) – a)/||f(s) – a||.  Then g is a 

loop in S1.  Let g~ be a lifting of g.  The winding number of g is g~(1) – g~(0) = n(f, a). 
Definition.  Let F: I × I be continuous, with F(0, t) = F(1, t), so that ft(s) = F(s, t) is a loop for all t.  

Then F is a free homotopy of loops. 
Lemma.  Let f be a loop in R2 – a.  If f is freely homotopic to f’ through loops in R2 – a, then n(f, 

a) = n(f’, a). 
Lemma.  Let α be a path from a to b in R2 – f(I).  Then n(f, a) = n(f, b). 
Fact.  n(f, a) = (∫f dz/(z – a))/2πi.  
Theorem (Siefert-Van Kampen).  Let X = U ∪ V, where U and V are open in X.  Let U, V, and U 

∩ V be path connected.  Let x0 ∈ U ∩ V.  Let H be any group, with homomorphisms φ1: π1(U, 
x0) à H and φ2: π1(V, x0) à H.  Let i1: π1(U ∩ V, x0) à π1(U, x0), i2: π1(U ∩ V, x0) à π1(V, 
x0), j1: π1(U, x0) à π1(U ∪ V, x0), and j2: π1(V, x0) à π1(U ∪ V, x0) be the homomorphisms 
induced by inclusion.  If φ1 ° i1 = φ2 ° i2, then there exists a unique homomorphism, Φ: π1(X, x0) 
à H, such that Φ ° j1 = φ1 and  Φ ° j2 = φ2. 



Theorem (Classical Seifert-Van Kampen).  Let j: π1(U, x0) * π1(V, x0) à π1(X, x0) extend the 
homomorphisms induced by inclusion, j1: π1(U, x0) à π1(X, x0) and j2: π1(V, x0) à π1(X, x0).  
Then j is surjective and its kernel is the least normal subgroup of π1(U, x0) * π1(V, x0) that 
contains {i1

-1(g)i2(g) | g ∈ π1(U ∩ V, x0)}. 
Corollary.  If U ∩ V is simply connected, k: π1(U, x0) * π1(v, x0) à π1(X, x0) is an isomorphism. 
Corollary.  If V is simply connected, π1(V, v0) = {e}, and there is an isomorphism k: π1(U, x0)/N 
à π1(X, x0), where N is the least normal subgroup of π1(U, x0) containing the image of i1: π1(U 
∩ V, x0) à π1(U, x0). 

Definition.  Suppose X is a space that is the union of closed subspaces, X1, …, Xn, with a single 
point {p} = ∩ Xi.  Then X is called the wedge of the spaces X1, …, Xn; we write X = X1 ∨ … ∨ 
Xn. 

Theorem.  Suppose that, for each i, that p is the deformation retract of an open set Wi ⊂ Xi.  Then, 
π1(X, p) is the external free product of {π1(Xi, p)} relative to the monomorphisms induced by 
inclusion. 

Definition.  Let X = ∪ Xα.  The topology of X is coherent with the subspaces Xα when a subset C 
⊂ X is closed if C ∩ Xα is closed in Xα for each α. 

Theorem.  Let X be a wedge of the circles Sα; let p be the common point of these circles.  Then 
π1(X, p) is a free group with system of free generators {fα | fα generates π1(Sα, p)}. 

Definition.  Let n > 1.  Let r: S1 à S1 be rotation by the angle 2π/n.  Form a quotient space from 
B2 by identifying the points of S1 that are images of each other under rotation.  This is the n-
fold dunce cap. 

Theorem.  The fundamental group of the n-fold dunce cap is Zn. 
Definition.  Let X and Y be disjoint normal spaces, A closed in X, and f: A à Y be continuous.  

The adjunction space, Zf, is the quotient space obtained from X ∪ Y by identifying a ∈ A with 
f(a) and every point of f-1({f(a)}). 

Theorem.  Let X be a Hausdorff space.  Let A’ be a closed, path-connected subspace of X.  
Suppose h: B2 à X is continuous, maps Int B2 onto X – A’ and S1 = Bd B2 into A’.  Let q ∈ S1 
and a = h(q).  Let k: (S1, q) à (A’, a) be the restriction of h.  then, the homomorphism i*: π1(A’, 
a) à π1(X, a) induced by inclusion is surjective with kernel the least normal subgroup of π1(A’, 
a) that contains Im k*. 

Note.  In the theorem above, the space obtained by adding B2 is the adjunction space of B2 and X. 
Note.  We may use this to show that any group is the fundamental group of some space. 
Definition.  For a path-connected space, its first homology group is H1(X) = π1(X, x0)/[π1(X, x0), 

π1(X, x0)]. 
Definition.  Let P be a polygonal region.  Given orientations and labels of edges of P, we may 

completely describe this labelling by w = a1
±1…ak

±1, where ai is the label on the ith edge (it is 
possible that ai = aj) and the exponent is +1 if the orientation is counterclockwise and –1 
otherwise,  This is called a labelling scheme of length n for P. 

Note.  A surface is obtained from a polygonal region by making a quotient space that identifies 
edges with the same labels, so that their orientations match. 

Note.  The following operations on polygonal schemes will not change the surface: 
• Cut: Replace y0y1 by y0c, c-1y1. 
• Paste: Replace y0c, c-1y1 by y0y1 if c is not used elsewhere in the scheme. 
• Relabel: Replace all occurrences of one label by another (not-yet-used!) label, or change 

the signs on all the exponents of one label. 
• Permute: Replace y0y1 by y1y0. 
• Flip: Write the entire scheme backwards. 
• Cancel: Replace y0cc-1y1 by y0y1. 



Definition.  Let w be a proper labelling scheme.  w is of torus type if each label in w appears once 
with exponent +1 and once with exponent –1.  Otherwise, w is of projective type. 

Theorem (Classification of Surfaces).  Let X be the quotient space obtained from a polygonal 
region by pasting its edges together in pairs.  Then X is homeomorphic to one of the following: 

• Sphere: S2 – aa-1bb-1 

• Projective Plane: P2 – abab 

• M-fold Connected Sum of Projective Planes: Pm – (a1a1)…(amam), m ≥ 2 

• N-fold Connected Sum of Tori: Tn – (a1b1a1
-1b1

-1)…(anbnan
-1bn

-1), n ≥ 1 

Covering Spaces 
Definition.  Let p: E à B and p’: E’ à B be covering maps.  They are equivalent if there exists a 

homeomorphism h: E à E’ such that p = p’ ° h.  h is called an equivalence of covering spaces. 
Theorem.  Let p: E à B and p’: E’ à B’ be covering maps, with p(e0) = p’(eo’) = b0.  There is an 

equivalence h: E à E’ such that h(e0) = e0’ ó p*(π1(E, e0)) = p*’(π1(E’, e0’)). 
Theorem.  Let p: E à B and p’: E’ à B’ be covering maps, with p(e0) = p’(eo’) = b0.    There is 

an equivalence h: E à E’ ó p*(π1(E, e0)) and p*’(π1(E’, e0’)) are conjugate in π1(B, b0). 
Definition.  A covering space is a universal covering space if it is simply connected. 
Theorem.  If E and E’ are universal covering maps of B, the E and E’ are equivalent. 
Lemma.  Let p, q, and r be continuous maps, with p = r ° q.  If p and r are covering maps, so is q.  

If p and q are covering maps, so is r.  If q and r are covering maps and Im p = Im r has a 
universal covering space, p is a covering map. 

Theorem.  Suppose E is a universal covering space of B and Y is any other covering space.  Then 
E is a covering space of Y. 

Lemma.  Let p: E à B be a covering map with p(e0) b0.  If E is simply connected, then b0 has a 
neighborhood U such that the homomorphism induced by inclusion, i*: π1(U, b0) à π1(B, b0) is 
trivial. 

Definition.  Let p: E à B be a covering map.  We call the group of equivalences of E with itself 
the group of covering transformations, C(E, p, B). 

Theorem.  N(H0) / H0 is isomorphic to C(E, p, B). 
Corollary.  If H0 is normal, N(H0) = π1(B, b0) and C(E, p, B) = π1(B, b0)/H0. 
Definition.  When p*(π1(E, e0)) is normal in π1(B, b0), p is a regular covering map. 
Theorem.  If p: X à B is a regular covering map and G = C(X, p, B), then there is a 

homeomorphism k: X/G à B, such that p = k ° π, where π: X à X/G is projection. 
Note.  X/G is the quotient space obtained from identifying the orbit of a point under the covering 

transformations to a single point. 
Definition.  A space B is semilocally simply connected if each b ∈ B has a neighborhood U such 

that the homomorphism i*: π1(U, b) à π1(B, b) induced by inclusion is trivial. 
Theorem.  Let B be path connected, locally path connected, and semilocally simply connected.  

Let b0 ∈ B.  Given a subgroup H of π1(B, b0) there exists a space E and a covering map p: E à 
B with e0 ∈ p-1({b0}) such that p*(π1(E, e0)) = H. 

Proof (Construction).  Let P be the set of all paths in B beginning at b0.  Define an equivalence 
relation on P by α ~ β if α(1) = β(1) and [α * β-reverse] ∈ H.  Let E be the set of all 
equivalence classes, α#.  Define p: E à B by p(α#) = α(1).  Topologize E with the basis B(U, 
α) = {(α * δ)# | δ is a path in U beginning at α(1)}. 

Exact Sequences, Chain Complexes, and Homology Groups 
Definition.  A pointed set (set with base point) is a pair (S, s0).  If G is a group, we assume (G, e) 

is the pointed set.  If f: (S, s0) à (T, t0), we mean f: S à T and f(s0) = t0.  Then, ker f = {s | f(s) 
= t0}. 



Definition.  Let {Ai} be a countable sequence of groups and {di: Ai à Ai-1} be homomorphisms.  
The sequence is a chain complex if each Ai is abelian and di ° di+1 is trivial (that is, Im di+1 ⊂ 
Ker di). 

Definition.  Let {Ai} be a sequence of groups and {di: Ai à Ai-1} be homomorphisms.  The 
sequence is exact at Ak if Im dk+1 = Ker dk.  It is exact if it is exact at each Ak. 

Definition.  Let C = ({Ci}; {di}) be a chain complex.  The ith homology group of C is Hi(C) = Ker 
di / Im di+1. 

Corollary.  C is exact ó Hi(C) is trivial for all i. 
Definition.  Let ({Ci}; {ci}) and ({Di}; {di}) be chain complexes.  A chain map, φ = {φi: Ci à Di} 

is a collection of homomorphisms such that φi ° ci+1 = di+1 ° φi+1. 
Definition.  If φ: C à D is a map of chain complexes, φi*[x] = [φi(x)] defines a map φi*: Hi(C) à 

Hi(D). 
Definition.  Let B = ({Bi}; {bi}) and C = ({Ci}; {ci}) be chain complexes.  Let f, g: B à C be 

chain maps.  If there exists Dn: Bn à Cn+1 for all n, such that (cn+1Dn + Dn-1bn)(σ) = f(σ) – g(σ) 
for all σ ∈ Bn, then {Dn} is a chain homotopy from f to g, and f and  g are chain homotopic. 

Theorem.  If f, g: B à C are chain homotopic, then Hnf = Hng for every n.  (That is, (f*([σ]) = 
g*([σ]).) 

Definition.  If f: B à C and g: C à B are chain maps, f and g are chain homotopy inverses of 
each other if f ° g: C à C and g ° f: B à B are chain homotopic to their respective identity 
maps. 

Corollary.  If f and g are chain homotopy inverses, then Hnf = f* and Hng = g* are inverse 
homomorphisms and Hn(C) = Hn(D). 

Lemma (Zig-Zag or Fundamental Lemma of Homological Algebra)..  Suppose we have chain 
complexes C, D = ({Di}, ∂), E, and chain maps f: C à D and g: D à E, such that 0 à Cn à Dn 
à En à 0 is exact for all n.  We define ∂*: HnE à Hn-1C by ∂*[x] = [y] where x ∈ Zn(E), y ∈ 
Cn-1 and there exists d ∈ Dn with gn(d) = x and fn-1(y) = ∂(d).  Then ∂* is a well-defined 
homomorphism, and the following sequence is exact: … à HnE à Hn-1C à Hn-1D à Hn-1E à 
… 

Lemma.  Let C = ({Cn}; {∂Cn}) and D = ({Dn}; {∂Dn}) be chain complexes.  Then, C ⊕ D = ({Cn 
⊕ Dn}, {(∂Cn, ∂Dn)}) is a chain complex, and Hn(C ⊕ D) = Hn(C) ⊕ Hn(D). 

Lemma.  βq is the dimension of Hq(K, Q) as a vector space over Q. 
Simplicial Homology 
Definition.  Let S = {s0, …, sn} be a set of vertices (none of which lie in the hyperplanes spanned 

by the others).  The n-simplex with vertex set S is σ(S) = {∑tisi | ∑ti = 1, ti > 0}.   
Definition.  A simplicial complex, K, is a collection of simplices, such that (1) every face of a 

simplex in the collection is also in the collection, (2) every two simplices intersect in one 
common face (which may be ∅), and (3) the topology on the union is coherent with the 
topologies of the simplices.  We define Kn to be the set of n-simplices in K. 

Definition.  Since, each simplex is a subspace of Rn for some n, the union of all the simplices is a 
subspace |K| of R∞.  |K| is called the geometric realization of K. 

Definition.  The unique simplex that a point lies in the interior of (ie., for which all the ti ≠ 0) is 
called the carrier of x, car(x). 

Definition.  If A = σ(S) is a simplex, S = {v0, …, vk}, the barycenter of A is A^ = (v0 + … + vk) / 
(k+1). 

Definition.  If A0 < … < Ak are nested simplices in a simplicial complex K, we write σ(A0, …, 
Ak) for the simplex with vertices at the barycenters of each Aj, which is σ(A0

^, …, Ak
^).  The 

collection of all such simplices is called the barycentric subdivision of K, or K1. 
Definition.  If K is a simplicial complex, the mesh, µ(K), is the maximum of the diameters of the 

simplices in the complex. 



Lemma.  If K is a simplicial complex such that the dimension of K and K1 are both n, the µ(K1) ≤ 
µ(K) n/(n+1). 

Definition.  A simplicial map, f: K à L, takes simplices of K linearly onto simplices of L.  
Equivalently, f0: K0 à L0 and whenever σ(S) ∈ K, f(σ(S)) = σ(f(S)) ∈ L. 

Definition.  A simplicial map, f: K à L, determines a simplicial map, |f|: |K| à |L| by |f|(∑tisi) = 
∑tif(si). 

Definition.  If f: |K| à |L| is a continuous map, a simplicial approximation is a simplicial map, s: 
K à L, such that |s|(x) ∈ car(f(x)) for all x ∈ |K|. 

Note.  Vertices are their own carriers, so |s|(u) = f(u) when f(u) is a vertex in |L|. 
Theorem (Simplicial Approximation).  If K is finite and if f: |K| à |L| is continuous, then for 

sufficiently large n, there is a simplicial approximation, s: Kn à L to f: |Kn| à |L|. 
Note.  A simplicial approximation is always homotopic to the original function. 
Definition.  We define Cn(K) to be the set of finite formal linear combinations of Kn with 

coefficients in Z. 
Definition.  Let v0, …, vn be an ordered set of vertices of a simplex.  We define ∂(v0, …, vn) = ∑(-

1)i(v0, …, vi-1, vi+1, …, vn) and ∂(v0) = 0. 
Note.  ∂(∂(v0, …, vn)) = 0 for all n.  So ({Cn(K)}, {∂: Cn(K) à Cn-1(K)}) is a chain complex. 
Definition.  Suppose K is a simplicial complex and v is not in the hyperplane spanned by any 

finite subset of K0.For each S = σ(v0, …, vn) ∈ K, let DnS = σ(v, v0, …, vn).  The cone on K, 
CK, with vertex v is the simplicial complex which contains K and DnS for each S ∈ K. 

Theorem.  Let K be any simplicial complex.  Let v0 be the cone vertex of CK.  Let f, g: CK à CK 
be simplicial maps (which induce chain maps).  Let f be the identity map and g(v) = v0 for all v 
∈ CK0.  Then f is chain homotopic to g. 

Theorem.  If K is a simplicial complex, then H0(CK) = Z and Hn(CK) = 0 otherwise. 
Corollary.  If K is a k-simplex together with all of its faces, H0(K) = Z and Hn(K) = 0 otherwise 

(since this is the cone on the (k-1)-simplex). 
Definition.  Let f, g: K à L be simplicial maps.  f and g are contiguous if, for every simplex σ ∈ 

K, there exists a simplex τ ∈ L which contains f(σ) and g(σ). 
Proposition.  If f and  g are contiguous, they are chain homotopic. 
Definition.  If K is a simplicial complex, we have the augmented chain: … à C2(K) à C1(K) à 

C0(K) à Span{∅} = Z à 0, where ε: C0(K) à Span{∅} is defined by ε(v) = 1.  (We write 
these as Cn~(K).)  The resulting homology groups are the reduced homology groups of K. 

Defintion.  Let K’ be the simplicial complex obtained from K be a single stellar subdivision (this 
adds a single barycenter vertex, v).  We define χ: C(K) à C(K’) by χ(v0, …, vk) = ∑(-1)i(v, v0, 
…, vi-1, vi+1, …, vk) if v is added to a face of (v0, …, vk) and χ(S) = S otherwise. 

Definition.  Let θ: K’ à K be the simplicial map that sends the added vertex to a vertex in its 
simplex.   

Theorem.  θ and χ are chain homotopy inverses. 
Lemma.  Suppose X is a simplicial complex, A and B subcomplexes with union X, and N = A ∩ 

B.  Consider 0 à Cn(N) à Cn(A) ⊕  Cn(B) à Cn(X) à 0, with φn: Cn(N) à Cn(A) ⊕ Cn(B) 
defined by φn(c) = (iA(c), -iB(c)) and ψn: Cn(A) ⊕ Cn(B) à Cn(X) defined by ψn(c, d) = jA(c) + 
jB(d), where iA, iB are inclusions from N, and jA, jB are inclusions into X.  This sequence is 
exact. 

Theorem (Mayer-Vietoris).  Let A and B be subcomplexes of X.  Let X = A ∪ B and N = A ∩ B.  
Then the following sequence is exact: … à HnN à HnA ⊕  HnB à HnX à Hn-1N à … à 
H0X à 0. 

Definition.  Let K be a simplicial complex.  Let αq be the number of q-simplices in K.  We define 
the Euler characteristic of K by χ(K) = ∑ (-1)q αq. 



Note.  If we puncture a surface, we remove a single 2-simplex, which decreases the Euler 
characteristic by 1.  If we puncture two surfaces and then glue them together along the missing 
triangle, this decreases the number of 2-simplices by 2, decreases the number of 1-simplices by 
3 and decreases the number of 3-simplices by 3; this means the Euler characteristic for the 
connected sum is the sum of the Euler characteristics minus 2. 

Theorem.  Let K be a simplicial complex.  Then, χ(K) = ∑(-1)q βq. 
Definition.  Let K be a triangulation of Sn, h: |K| à Sn.  Let [z] be a generator of Hn(S

n) = Z.  
Given a continuous map f: Sn à Sn, the induced homomorphism, (h-1fh)*: HnK à HnK maps [z] 
to λ[z].  We call λ the degree of f. 

Facts.  Homotopic maps have the same degree.  The degree of the identity is 1.  The degree of a 
homeomorphism is ± 1.  The degree of the constant map is 0.  The degree of the antipodal map 
is (-1)n+1.  The degree of a map with no fixed points is (-1)n+1.  deg(f ° g) = deg(f)deg(g). 

Definition.  Cq(K, Z2) is the set of all formal linear combinations of q-simplices in K with 
coefficients in Z2.  This induces the mod-2 homology.   

Note.  The boundary of a simplex in the mod-2 homology is the sum of its q-1 dimensional faces. 
Theorem (Borsuk-Ulam).  Any map f: Sn à Rn must identify a pair of antipodal points of Sn (ie., 

f(x) = f(-x)). 
Theorem.  Let f: Sn à Sn be a map which preserves antipodal points.  Then f has odd degree. 
Theorem.  If f: Sm à Sn sends antipodal points to antipodal points, m ≤ n. 
Definition.  If X is a compact triangulable space, with f: X à X, fix a triangulation h: |K| à X 

and a simplicial approximation to fh = h-1fh, s: |Km| à |K|.  Let χ: C(K, Q) à C(Km, Q) be the 
subdivision chain map.  Then fh induces a map: fh

q= sq ° χq: Cq(K) à Cq(K) for each q, and thus 
homomorphisms fh

q*: Hq(K, Q) à Hq(K, Q).  We may consider this as a linear map of vector 
spaces.  We define the Lefschetz number as Λf = ∑(-1)q trace(fh

q*).  (Note that if [σ1], …, [σn] is 
a basis and fh

q*([σi]) = … + λi[σi] + …, trace(fh
q*) = ∑ λi.) 

Theorem (Hopf Trace).  If φ: C(K, Q) à C(K, Q) is a chain map, then ∑(-1)q trace φq = ∑ (-1)q 
trace φq*. 

Theorem (Lefschetz Fixed Point).  If Λf ≠ 0 then f has a fixed point. 
Proposition.  If g is the constant map, Λg = 1. 
Corollary.  Homotopic maps have the same Lefschetz number.  So any nulhomotopic map has a 

Lefschetz number of 1, and thus a fixed point. 
Theorem.  If X is a compact, triangulable space with the homology type of one point space, then 

every map f: X à X has a fixed point. 
Theorem.  Let f: Sn à Sn.  Then Λf = (-1)n(deg f) + 1. 
Definition.  Let X be a compact Hausdorff space.  Take a finite open cover, F, of X.  Define a 

simplicial complex called the nerve of F, N(F), by letting the vertices be the elements of F and 
adding the simplex (U0, …, Un) if U0 ∩ … ∩ Un ≠ ∅. 

Note.  If F is the cover of |K| be open stars of K, then N(F) is isomorphic to K. 
Definition.  We say X is finite-dimensional if there exists m ∈ Z such that every open cover of X 

has a refinement, F, with dim(N(F)) ≤ m.  The dimension of X is the smallest such m. 
Note.  N(F) has dimension m ó m+1 is the largest integer such that some m+1 elements of F 

have a non-empty intersection. 
Note.  The dimension of a simplex (the largest k, such that there is a k-simplex) agrees with this 

definition. 
Theorem.  If A is a compact, Hausdorff subspace of X, then dim A ≤ dim X. 
Theorem.  Let A, B, X be compact Hausdorff, with X = A ∪ B.  Then, dim X = max{dim A, dim 

B}. 
Theorem (Imbedding).  Every compact metrizable space of dimension m can be imbedding in 

R2m+1. 



Fact.  If F covers X, then |N(F ∪ {∅}| = |N(F)| ∪ {p}. 
Fact.  If F covers X, then N(F ∪ {X}) = C(N(F)). 
 
 
Examples of Topologies 
Countable Complement Topology: {U | X – U is countable of all of X} 
Discrete Topology: All subsets are open. 
Indiscrete Topology:  Only X and ∅ are open. 
Standard Topology on R: {(a, b) | a < b} is a basis 
Standard Topology on R2: Open balls or open rectangles are a basis. 
Lower Limit Topology on R: {[a, b)} is a basis 
K-Topology on R: K = {1/n}.  {(a, b)} ∪ {(a, b) – K} is a basis 
Subspace Topology 
Product Topology 
Dictionary Order topology on two ordered sets (impose the order (x, y) < (x’, y’) when X < x’ or 

x = x’ and y < y’.  Use the order topology on that 
The Long Line: SΩ × [0, 1), minus the lowest point, in the dictionary order (SΩ is an uncountable 

well-ordered set, every section of which is countable) – every point has a neighborhood 
homeomorphic to an interval of the real line, but the long line is not homeomorphic to R. 

The infinite broom: Connected every point (q, 0), q rational, to (1, 0) with a line. 
The infinite comb: The interval [0, 1] with spikes up at 0 and each 1/n. 
Cantor’s Leaky Tent 
The Infinite Cage 
The Hawaiian earring 
 
Fundamental and First Homology Groups 
Theorem.  The fundamental group of S1 is isomorphic to Z under +. 
Theorem.  The fundamental group of T = S1 × S1 is isomorphic to Z × Z. 
Theorem.  Let X be the n-fold connected sum of tori.  Then H1(X) is a free abelian group of rank 

2n. 
Theorem.  Let X be the n-fold connected sum of projective planes.  Then H1(X) is the free abelian 

product of a group of order 2 and a free abelian group of rank n-1. 
 
Examples of Covering Spaces 
S1, by R 
P2, by S2 
The figure 8, by the infinite antenna, or by a line with circles cglued to it 
 
Some Homologies 
The point: H0(*) = Z, Hn(*) = 0 otherwise. 
Sn (n > 0): Hn(S

n) = H0(S
n) = Z.  Hk(S

n) = 0 otherwise. 
P2: H1(P

2) = Z2, H0(P
2) = Z, Hk(P

2) = 0 otherwise 
Torus:  H2(T) = H0(T) = Z, H1(T) = Z ⊕ Z, Hk(T) = 0 otherwise. 


