Topology Summary

Background Infor mation

Well-Ordering, Induction, and Sy

Definition. A set A iswell-ordered if every non-empty subset of A has a smallest el ement.

Theorem (Well-Ordering). If A isaset then there exists an order relation on A that isawell-
ordering.

Definition. Let X beawell-ordered set. Letal X. TheS,={x1 X |x < a} iscaled the section
of X by a

Lemma. There exists awell-ordered set A having alargest element, W, such that Sy, of A is
uncountable but every other section is countable.

Theorem. If A isacountable subset of Sy, then A has an upper bound in Sy.

Defintion. Let Jbe awell-ordered set. A subset 1 Jisinductiveif, for every al J, Sil %
impliesthat al J.

Principle of Transfinite Induction. If Jisawell-ordered set and J, is an inductive subset, then J =
.

Theorem. Let Jand C be well-ordered. Assume that there is no surjective mapping of a section
of Jinto C. Then there exists a unique function h: 3 > C such that h(x) = smallest[C — h(S))]
foral x1 J.

Groups (Particularly Free and Free Abelian Ones)

Definition. Let G be an abelian group and {G,} afamily of subgroups of G. We say that the
subgroups { G,} generate G if each x T G can be written as the finite sum of elements from the
G,; that is, x = & X,, with all but finitely many x, = 0. In this case, we say G isthe sum of the
Ga.

Definition. Let G beagroup and {G,} afamily of subgroups of G. We say the {G,} generate G
if eachx T G can be written as the finite product of elements of the G,; that is, X = X;...Xp.

Note. Inx;...X, we may only combine consecutive elements from the same subgroup. The
word resulting form thisis a reduced word.

Definition. If the expression x = & X, isunique for al x, G is the direct sum of { G}, and we
writeG = A G,.

Definition. If the reduced word for x is unique for al x, then G is the free product of { G,} and
wewriteG=P" G,.

Lemma. G=A G, & given any abelian group H and any family of homomorphisms{h,: G, >
H}, there exists a unique h: G - H that agrees with h, on each G,.

Lemma. G=P" G, ¢ given any group H and any family of homomorphisms{h.: G, > H},
there exists a unique homomorphism h: G - H that agrees with each h, on each G,.

Definition. Let {G,} be abelian groups. Suppose G is abelian, and that {i,: G, 2 G} isafamily
of monomorphisms, such that G = A i,(G,). Then G isthe external direct sum of {G,} relative
to {ia}.

Definition. Let {G,} begroups. Suppose Gisagroup and{i,: G, > G} isafamily of
monomorphisms, such that G = P i,(G,). Then we say G is the external direct product of the
groups{ G,} relative to the monomorphisms {i,} .

Theorem. Given afamily of abelian groups {G,}, there exists an abelian group G which istheir
external direct sum (consider the Cartesian product).

Theorem. Given afamily of groups {G,} there exists agroup G which istheir external direct
product (consider all words of finite length with elements from the groups).

Theorem. Let {G,} beabelian groups. Suppose G and G’ are abelian groups which are external
direct products of the {G,} (relative to families of monomorphisms, {i,} and {i,’}). Then there
isauniqueisomorphism, f: G > G, suchthat f °i, =i, for each a.




Theorem. Let {G,} begroups. Suppose G and G’ are groups which are the externa free
products of the { G,} relative to monomorphisms {i,} and{i,’}. Thenthereisaunique
isomorphism, f: G > G’, suchthat f °i, =i, for each a.

Definition. Let G be an abelian group and {a,} afamily of elementsof G. Let G, be the
subgroup generated by a,. If the {G,} generate G, then we say the elements{a,} generate G.

If each G, isinfinite cyclic and G isthe direct sum of the { G,}, then G is afree abelian group
with{a,} asabasis.

Definition. Let{a,} beafamily of elements of agroup G. Suppose each a, generates an infinite
cyclic subgroup G, of G. If Gisthe free product of the { G}, then G is afree group with
system of free generators{a,}.

Lemma. G isafreeabelian group with basis{a,} < for any abelian group H and any family of
elements{y.} | H, thereis aunique homomorphism h: G = H with h(a,) =y, for each a.

Lemma. G isafreegroup with system of free generators{a,} < for any group H and any family
of ements{y.} | H, thereis aunique homomorphism, h: G = H with h(a,) = Ya.

Theorem. If Gisfree abelian, the size of the basisis uniquely determined by G and is called the
rank of G.

Corollary. If Gisafreegroup, the number of elementsin the system of free generatorsis unique.

Definition. Let Gbeagroup. If x,yT G, wedefine[x, y] = xyx™y™ to be the commutator of x
and y. The subgroup generated by all the commutatorsin G called the commutator subgroup,
[G, G].

Lemma. [G, G] isanormal subgroup of G and the quotient group G/[G, G] isabelian. If h: G >
H is any homomorphism with H abelian, [G, G] | ker h., so that h induces a homomorphism, k:
G/[G, G] = H.

Proposition. Let F be the free group generated by a, ..., a,. Let x 1 F, N the least norma
subgroup containing x, and G = F/N. If p: F = F/[F, F] is the projection homomorphism, then
F/[F, F] is free abelian with basis {p(ay), ..., p(ay}. The abelianization of G ( = G/[G, Q]) is
isomorphic to (F/[F,F])/N’, where N is the subgroup generated by p(x).

Definition. Let Ho be a subgroup of G. The normalizer isN(Ho) = {al G|aHqa'=Hg}. Thisis
the largest subgroup of G in which Hg is normal.

Definition. Let G bean abelian group. ThenG=Z,A ... A Z, A Z°. We define the Betti
number of G to be b (the rank of the free part of G). If we have a sequence of homology
groups, we define b to be the Betti number of H,,.

Point-Set Topology

Definition. A topology on aset X isa collection of subsets of X, T, such that (1) &£ X 1T, (2) if
Al Tforeacha,thenE A T T,and (3)if Ay, ..., A,T T,thenC AiT T. Wecall thesetsin
T open sets.

Definition. A basis for atopology on X is a collection of subsets of X, B, such that (1) For al x
X, thereissomeB 1 Bwithx1 B, and (2) if xT B; C B, thereissomeB;1 B suchthat x 1
Bsl B;C B, Ul X isopeninthetopology generated by B if, for all x T U, thereis some B
1 B,suchthatx1 Bl U.

Definition. A subbasis, S for atopology on X isa collection of subsets of X whose union is X.
The topology generated by Sis the topology with basis being the collection of all finite
intersections of elementsin S

Lemma. Let X be atopological space. Let C be acollection of open sets of X such that, for al
opensetsU and all xT U, thereexistsCT CsuchthatxT CI U. Then Cisabasisfor the
topology of X.



Definition. Suppose T and T' aretopologiesonaset X. If T E Tthen T isfiner than Tand T is
coarser than T'. If this containment is strict, then T' is strictly finer than T and T is strictly
coarser than T'.

Lemma. Let B and B’ be bases for topologies T and T' on X. T isfiner than T if and only if for
dlxT XandB1 BthereissomeB’' 1 B suchthatx1 B’ 1 B.

Definition. Let X be asimply ordered set with at least two elements. The order topology on X
has basis {(a, b) | a< b} E {[a, b) | & isthe smallest element of X} E {(a, b] | by is the largest
element of X}.

Definition. Let X and Y be topological spaces. The product topology on X and Y is given by the
basis Tx ’ Ty.

Definition. Let X be atopological space. Let Y I X. The subspace topology on Y is given by Ty
={UC Y |UisopeninX}.

Theorem. Let B and C be bases for topologieson X and Y. Then,B” C={U” V|UT BandV
T C} isabasisfor the product topology on X and Y.

Theorem. B,={A C B|B1 B} isabasisfor the subspace topology on A1 X.

Note. The product of subspace topologies is not the subspace of the product of the topologies.

Definition. In atopological space X, A isclosed if X —A is open.

Theorem. Let A be asubset of aspace X. Thenx 1 A-closure <> every open set containing x
intersects A.

Definition. Let X be atopologica space. A sequence of paints, X3,X», ..., convergesto x1 Xif,
for each neighborhood, U, of x, there exists N such that x,1 Uforaln3 N.

Note. Sequences that converge in one topology may not converge in afiner topology. In some
topol ogies, sequences may converge to more than one (or any!) point.

Definition. A spaceis Hausdorff if, for any x,, X, 1 X there exist digoint open sets, U; and U,
with X]_T U, and Xzi Uo.

Definition. A spaceisT; if one-point sets are closed.

Note. Hausdorff b Tj.

Proposition. X isHausdorff <> {x~ x|x1 X} isclosedinX "~ X.

Continuous Functions

Definition. A function f: X 2 Y is continuous if f(V) is openin X for each V that isopenin Y.

Note. Let X and X’ be the same space with different topologies. The identity functioni: X = X’
is continuous <> the topology of X isfiner than the topology of X’.

Theorem. Letf: X = Y beafunction. The following are equivalent:

f is continuous

Foral A1 X, f(A-closure) I f(A)-closure

f%(C) isclosed if Cisclosed

For every x T X and every neighborhood, V, of f(x), there is a neighborhood U of x such
that f(U) I V.

Definition. Supposef: X-> Y isabijection. If both f and f* are continuous, we say f isa
homeomorphism.

Theorem. Composites of continuous functions are continuous.

Theorem. f: X = Y iscontinuous if we can write X as the union of open sets, {U,}, suchthat f |
U, is continuous for each a.

Theorem (Pasting Lemma). If f | A and g | B are continuous, A and B are closed, and f(x) = g(x)
on A C B, then thereis a continuous function on A E B that agrees with f on A and g on B.

Definition. Let Jbeanindex set. Given aset X, we define a Jtuple of X to be afunction x: J >
X. Ifal J wewritex, for x(a). We consider this asthe a™ coordinate, writing X = (Xa)ai .
Let {A,} beafamily of sets. Let X = E A,. Then, P A, isthe set of all Jtuples of X with x,
T Ajforalal J. We define the projection function p,(X) to be the b™ coordinate of x.




Definition. Let P X, bethe product of afamily of topologies. The box topology is the topology
with basis{P U, | U, isopenin X,}.

Definition. Let P X, be the product of afamily of topologies. The product topology is the
topology with basis{P U, | U, isopenin X, and U, = X, for al but finitely many a1 J}.

Note. If Jisinfinite, the box topology is strictly finer than the product topology.

Theorem. Letf: A > P X, begiven by f(a) = (f,(a)) whereeach f,: A > X, iscontinuous. In
the product topology, f is continuous <> each f, is continuous.

Theorem. Let S=E 4 {pa"(Ua) | Uaisopenin X,}. Sisasubbasisfor the product topology.

Note. The product topology is the coarsest topology such that the projection functions out of it
are continuous.

Theorem. In the box and product topologies, the Cartesian product preserves subspace
relationships, Hausdorff-ness, and closures (P A-closure = (P A)-closure.)

Definition. If disametric on aset X then the collection of all e-balls, By4(x, €) for all x1 Xande
> 0 isabasisfor the metric topology on X induced by d.

Definition. If X isatopological space, X is metrizable if there is a metric that induces the given
topology on X.

Definition. Let X be ametric space with metric d. The standard bounded metric, d-bar, is d-
bar(x, y) = min{d(x, y), 1}.

Definition. Given anindex set Jand pointsx = (x,) and y = (ya) of R’, we define a metric r -bar
on R’ by r-bar(x, y) = sup{d-bar(xa, ya)}. Thisisthe uniform metric on R’ and induces the
uniform topology.

Note. B(X, €) = Egqce (X1 —d, X1 +d) " (Xo—0d, X2+ d) " ...

Theorem. In R’, the uniform topology is finer than the product topology and coarser than the box
topology.

Theorem. Let d-bar be the standard bounded metricon R. If x,y T R", define D(x, y) = sup{d-
bar(x;, yi)/i}. Then D induces the product topology.

Theorem. Letf:X = Y. Let X and Y be metrizable with metrics d; and dy. f is continuous <> for
dl xT X and e> 0, there exists d > 0 such that dy(f(x), f(y)) < e whenever di(x, y) < d.

Sequence Lemma. Let X be atopological space, A1 X. If thereis asequence of pointin A
converging to x, then x 1 A-closure. If X ismetrizable, then the converse holds.

Corollary. R"in the box topology is not metrizable.

Definition. Let f: X = Y be a sequence of functionswith Y a metric space with metricd. We
say the sequence (f,) converges uniformly to the function f: X - Y if, for all e> 0, there exists
N such that d(f,(x), f(x)) <eforaln>NandxT X.

Note. Letf: X > R. (f,) converges uniformly to f: X & R  the sequence (f,) T R* converges
to f in the uniform metric.

Definition. Let p: X = Y besurjective. pisaquotient mapif U1 Y isopenif and only if p*(U)
isopenin X.

Definition. Let X beaspaceand Y aset. Let p: X = Y beonto. Then the quotient topology on
T, Ty isgivenby Ty ={V | p*(V) isopenin X}.

Theorem. The quotient topology on'Y is the finest topology such that p is continuous.

Definition. Letf: X = Y. If f(U) isopen whenever U is open, then f isan open map. If f(C) is
closed whenever C is closed, then f is a closed map.

Proposition. If p: X = Y issurjective, continuous, and either open or closed, then it is a quotient
map.

Facts. Letp: X > Y and g: X > X be quotient maps.

The typical open set of X is a collection of equivalence classes whose union is open in
X.




If A isasubspace of X, therestriction po: A > p(A) need not be a quotient map. If Aisa
saturated open (closed) set or pis open (closed), then po is a quotient map.

The composite of quotient mapsis a quotient map.

Any Cartesian product of quotient maps might not be a quotient map.

X" need not be Hausdorff, evenif X is.

If g: X > Zisconstant on each p*({y}),y1 Y, thereexistsf: Y > Z suchthat g=f ° p.
f is continuous or a quotient map if and only if gis.

Definition. A topological group isagroup, G, which is also atopological space that satisfies the
T, axiom, such that group multiplication and inversion are continuous maps.

Facts. Let G be atopologica group.

. LetCbeclosedinGandal G. Then Ca, aC, and aC* are closed.
Let U be open and She any setin G. Then US, SU, and U™ are open.
Gisregular.
Let N be the component of the identity in G. Then N isanormal subgroup.
-+ If N isthe component of the identity, then G/N istotally disconnected.

Connectedness

Definition. Let X be atopological space. A separation of X isapair of subsets of X that are
digoint, non-empty, and open, whose union is X.

Definition. If thereis no separation of X, then X is connected.

Theorem. Suppose A1 X isconnectedand A1 Bl A-closure. Then B is connected.

Theorem. Theimage of a connected space under a continuous map is connected.

Theorem. A finite product of connected spaces is connected.

Theorem. An infinite product of connected spaces is connected in the product topology, but not
in the uniform or box topology.

Definition. A simply ordered set, L, with more than one element is alinear continuum if (1) L
has the |east upper bound property, and (2) if x <y, thereexistsz1 L suchthatx <z<y.

Theorem. If L isalinear continuum with the order topology, then L and any intervals and raysin
L are connected.

Definition. Letx,y1 X. A path from x toy isa continuous map f: [a, b] = X such that f(a) = x
and f(b) =y. A space X is path-connected if there is a path between every pair of pointsin X.

Note. Path connected implies connected, but not vice versa

Theorem. Sy~ [0, 1) iswell-ordered. Remove the smallest element, a. Then the remainder, L,
isthe“long line”’. L is path-connected and locally homeomorphic to R, but cannot be
imbedded in any R".

Definition. Given atopologica space X, we may define an equivalence relation on X, where x ~
y if there is some connected subspace of X containing both x and y. We call the equivalence
classes of this relation the components of X.

Theorem. The components of X are connected digjoint subsets of X whose union is X, such that
each non-empty connected subspace of X intersects only one subset.

Definition. A path component is defined by the equivalence relationswherex ~y if x and y are
connected by a path.

Fact. Components are aways closed in X. Components are open if there are finitely many
components (Q is a counterexample).

Definition. X islocally connected at x 1 X if, for each neighborhood U of x, thereis a connected
neighborhood of x contained in U. X islocally path connected at x if each neighborhood of x
contains a path connected neighborhood of x.

Note. Locally path connected implieslocally connected.

Theorem. X islocally connected <> for each open set U in X, each component of U isopenin X.

Theorem. X islocally path connected < for each open U in X, each path component of U is
openin X.




Note. If X hasabasis of connected sets, it islocally connected.

Theorem. Each path component of X liesin acomponent of X. X islocally path connected if
and only if the components and the path components are the same.

Definition. X isweakly locally connected at x if, for every open neighborhood UU of X, there
exists a connected subspace of x that is contained in U that contains a neighborhood of x.

Proposition. If X isweakly locally connected at each point, then X islocally connected.

Compactness

Definition. Let X be atopological space. Let A be acollection of subsetsof X. A covers X if the
union of al thesetsin Ais X. Aisan open cover if each element of Aisopenin X.

Definition. A space X is compact if every open covering contains a finite subcovering.

Lemma. LetY beasubspace of X. ThenY iscompact <> every open covering of Y be sets open
in X contains afinite subcover of Y.

Theorem. Every compact subspace of a Hausdorff space is closed.

Theorem. Theimage of a compact set under a continuous map is closed.

Theorem. A subspace A1 R"iscompact <> A is closed and bound in the Euclidean (or square)
metric.

Theorem (Extreme Value). Letf: X = Y becontinuous. Let Y bean ordered set. If X is
compact, then there exist ¢, dT X such that f(c) £ f(x) £ f(d) for all xT X.

Tube Lemma. Consider X ~ Y with Y compact. If N1 X~ Y isopen and containsaslicex,” Y
then N contains sometube W ~ Y where W is an open neighborhood of xqin X.

Note. If Gisatopological space, with A closed and B compact, then AB is closed.

Definition. A collection, C, of subsets of X has the finite intersection property if, for every finite
subcollection, {C,, ..., Cy}, their intersection is non-empty.

Theorem. X iscompact <> for every collection, C, of closed setsin X with the finite intersection
property, the intersection of these sets is non-empty.

Corollary. A collection of nested sets in a compact space has a point in common.

Definition. A space X islimit point compact if every infinite subset of X hasalimit point in X.

Theorem. Every compact space is limit point compact.

Definition. Let (x,) be asequence of pointsin X. Let n; <n, < ... be aninfinite sequence of
increasing integers. Then the sequence (X)) is a subsequence.

Definition. A space X is sequentially compact if every sequence has a convergent subsequence.

Note. Sequential compactness is also weaker than compactness.

Theorem. If X is metrizable, then compactness, limit point compactness, and sequential
compactness are equivalent.

Definition. X islocally compact at x T X if there is some compact subspace that contains a
neighborhood of x.

Note. Compact implies locally compact.

Theorem. X islocaly compact Hausdorff < there exists Y such that (1) X isasubspaceof Y,
(2) Y — X consists of asingle point, and (3) Y is compact. Any two such'Y are homeomorphic,
with the homeomorphism equal to the identity on X.

Definition. Such aY isthe one-point compactification of X.

Note. To construct Y, we add a point, ¥, such that set are open if they are open in X or they are
the complement of a compact set in X.

Countability Axioms

Definition. A countable basis at a point is a countable subset of basis elements such that any
neighborhood of that point contains one of these basis elements.

Definition. X isfirst-countable if there is a countable basisat each x T X.

Definition. X is second-countable if the topology of X has a countable basis.

definition. X isLindelof of every open cover contains a countable subcover.

Definition. A topology has a countable dense subset, A, is A is countable and A-closure = X.




Note. D isdenseif every non-empty open set in X intersects D. aisalimit point of Sif every
non-empty open set about aintersects S.

Separability Axioms

Definition. Suppose one-point sets are closed in X. X isregular if, for each pair consisting of a
pointxT X andaclosedset B1 X, x 1 B, there exist digoint open sets containing x and B
respectively. X isnormal if, for each pair of digoint closed sets A and B, there exist digjoint
open sets containing A and B.

Note. Normal P Regular b Hausdorff.

Lemma. Let X be atopologica space in which one-point sets are closed. X isregular < for al x
T X and any neighborhood U of x, there exists a neighborhood V of x such that V-closurel U.
X isnormal <> for all closed sets A I X and open sets U containing A, there exists an open set
V suchthat A1 V and V-closurel U.

Example. Metrizable spaces are normal.

Theorem. Subspaces and products of Hausdorff/regular spaces are Hausdorff/regular.

Algebraic Topology

Definition. Letf, f': X = Y be continuous maps. f is homatopic of f’ if thereis a continuous
map F: X~ | > Y such that F(x, 0) = f(x) and F(x, 1) = f’(x).

Lemma. Homotopy is an equivalence relation.

Definition. Letf, f': [0, 1] = Y be continuous maps. f ispath homotopic to f’ isthereisa
continuous map F: [0, 1] © [0, 1] = Y such that F(x, 0) = f(x), F(x, 1) = f’(x), F(0, t) = f(0) =
f'(0) and F(1, t) = f(2) =" (2).

Definition. The composition of two paths, f*g, is given by f*g: [0, 1] = X, with f*g(t) = f(2t) or
o@(t-12).

Definition. Letxol X. The set of path homotopy classes of loops based at x,, under path
composition, is called the fundamental group relative to the basepoint x,, and is denoted by
p]_(X, X()).

Definition. Given apointed set (X, Xo), Po(X, Xo) is the pointed set of path components.

Proposition. Let f: (X, Xo) =2 (Y, Yo), 9: (W, Wg) = (X, Xo), withf ° g=h. Thenf.: ps(X, Xo) 2
p(Y, Yo) and g-: p1(W, wg) = p1(X, Xo) are homomorphisms, asish- =f. ° g.. The sameistrue
with po instead of p;.

Definition. If X is path connected and p1(X, Xo) = {[Xql}, then X issimply connected. If po(X,
Xg) ={ X}, then X is path connected.

Definition. Let a be apath from xo to x;. Definea’: pi(X, Xo) > pu(X, x2) by a"([f]) = [a-
reverse|*[f]*[a].

Definition. Let p: E > B be continuous and surjective. Let U1 B beopen. U isevenly covered
by pif p*(U) = E{V.} where each V, is open, homeomorphic to U, and digoint from all other
Va.

Definition. If every b1 B has aneighborhood that is evenly covered, then we call p a covering
map and E a covering space of B.

Note. If p: E > B isacovering map and B isregular, soisE.

Theorem. Let p: E > B be continuous and onto, with U evenly covered. If U is connected, then
the partition of p*(U) into slicesis unique.

Definition. Let p: E > B beany map. If f isacontinuous map, f: X - B, alifting of f isamap
f~: X =Y Esuchthat p °f~ =f.

Lemma. Let p: E > B beacovering map. Let p(e)) =bo. Then any path f: [0, 1] - B beginning
at by has a unique lifting to a path f~ beginning at e, in E.




Lemma. Let p: E > B beacovering map. Let p(ey) =ho. Let F: 1" | = B be continuous, with
F(0, 0) = bo. Thereisaunique lifting of F to the continuousmap F~: 1 © | - E, such that F~(0,
0) = &. If Fisapath homotopy, sois F~.

Theorem. Let p: E > B be acovering map, with p(ey) = bo. Let f and g be two pathsin B from by
tob;. Let f~and g~ betheir liftings to pathsin E beginning at ey. If f and g are path
homotopic, the f~ and g~ end at the same point and are path homotopic.

Definition. Let p: E > B be acovering map. Let p(e) = bo. Given[f] T pa(B, by), let f~ be the
lifting of f to apath in E beginning at &, Let f ([f]) = f~(1). Thenf: py(B, b)) 2> p'(by) isa
well-defined set map. f isthelifting correspondence derived from a covering map p.

Theorem. If E is path connected, f : py(B, by) > p(by) issurjective. If E issimply connected,
thenf isbijective.

Theorem. If p: E 2 B isacovering map with basepoints e, and by, let F = p™(bg). Then, * >
P1(F, &) = Pa(E, &) = pa(B, bo) = po(F, &) = Po(E, &) = po(B, bo) > * isalong exact
sequence.

Note. If Gisatopological group, H i G aclosed subgroup such that p: G = G/H is a covering
map, the sequence above is along exact sequence of groups.

Homotopy Lifting Lemma. Let p: E > B be acovering map with p(e) =bo. LetF: 1" | > B be
continuous with F(0, 0) = bo. Then F can be uniquely liftedto F~: 1 | > Ewhichis
continuous and has F~(0, 0) = &,. If Fisapath homotopy, then sois F~.

Definition. If A1 X, aretraction of X onto A isacontinuous map r: X = A suchthat r | A isthe
identity map. If such anr exists, we call A aretract of X.

Lemma. If A isaretract of X then the homomorphism of fundamental groups induced by
inclusion, j: A & X, isinjective.

Theorem. Thereis no retraction of B onto S".

Lemma. Let h: S'=> X be continuous. The following are equivalent:

h is nulhomotopic
h extends to a continuous map, k: B2 X.
h- isthe trivial homomorphism of fundamental groups.

Corlollar%. Theinclusion map, j: S' > R*—0is not nulhomotopic. Neither is the identity map, i:
S->S.

Definition. A vector field on B™" is an ordered pair (x, v(x)) wherex T B™*, v: B™ > R™is
continuous. We call avector field non-vanishing if v(x) * Ofor al x. (Sov: B™* > R™ -0.)

Theorem. Given anon-vanishing vector field on B there exists a point on S' where the vector
field points directly outward and a point on S' where it points directly outward.

Theorem (Brouwer Fixed Point). If f: B> 2 B?is continuous, then thereisapoint x T B? with
f(x) = x.

Corollary. Let A bea3 by 3 matrix of positive real numbers. Then A has a positive red
eigenvalue.

Theorem (Fundamental Theorem of Algebra). A polynomia equation, X" + a,.x™* + ... + ax +
a = 0 of degree n > 0 with real or complex coefficients has at least one real or complex root.
Proof. Scale the equations so that any root must bein B2 If there is no root, this defines a non-
vanishing vector field, which must be nulhomotopic on S'. Consider the map f(z) = 2" on S'.

These maps are homotopic, but one is nulhomotopic and the other isn't.

Theorem. If h: S' 2 S'is continuous and preserves antipodes, then h is not nulhomotopic.

Theorem (Borsuk-Ulam). Given a continuous map, f: S > R? thereexistsx T S with f(x) = f(-
X).

Definition. Let A be asubspace of X. A isadeformation retract of X if the identity map of X is
homotopic to the retraction of X onto A, such that each point of A remains fixed during the
homotopy.




Definition. Letf: X = Y andg: Y = X be continuous. Supposeg °f: X = X ishomotopic to
the identity mapon X andf ° g: Y = Y ishomotopic to the identity mapon Y. Thenf and g
are homotopy equivalences, and each is the homotopy inverse of the other. Then X and Y are
of the same homotopy type.

Theorem. Suppose X =U E V, where U and V are openin X. Suppose U C V is path connected
andx,T UC V. Leti, ] betheinclusion mapsof U and V into X. Then the induced
homomorphisms of fundamental groups, i=: p1(U, Xg) = p1(X, Xo) and j«: p1(V, Xq) = p1(X, Xo),
generate p1(X, Xo).

Definition. A surfaceisa Hausdorff space with a countable basis, so that each point has a
neighborhood homeomorphic to an open subset of R

Theorem. pi(X ™ Y, X0~ Yo) isisomorphic to pi(X, Xo) = px(Y, Yo).

Definition. The projective plane, P, is the quotient space obtained by identifying each point, X,
of S*with —x.

Definition. T#T, the double torus, is obtained by cutting circular holes in two tori and attaching
them along the holes.

Theorem. Let A; and A, be closed connected subsets of S°. Let A; CA={ab}. LeeC=A, E
A,. Then C separates S°.

Corollary. Any two closed setsin S° that intersect in exactly two points must miss at least two
points of S°.

Theorem (Jordan Curve). Let C beasimple closed curvein S°. Then C separates the sphere into
exactly two components, of which C is the common boundary.

Theorem (Schoenflies). If the simple closed curve C separates S” into two components U and V,
then U-closure and V-closure are homeomorphic to B2 Let h be a homeomorphism of C with
the equator of S°. The h extends to a homomorphism k: §° > S°.

Definition. Theta space is the union of three arcs, all of which intersect at the two common
endpoints.

Lemma. Let X be atheta space contained in S>. Let A, B, Cbearcswith A E B E C=X. Then
X separates S into exactly three components, with boundariesA E B, AE C,andB E C.

Theorem. K33 cannot be imbedded in the plane.

Definition. Let h: S' > R?—0 be continuous. Then h.: p;(SY) 2 py(R* —0) maps the generator
of S' to some element, d, of Z. d is the winding number of h.

Lemma. Let h: S'> R®—0with C =Imh, so that h is a homeomorphism of S' with asimple
closed curve. Then, if 0 isin the unbounded component, the winding number isO, and if O isin
the bounded component, the winding number is+1 or —1.

Lemma. Theinclusion map, j: C > S*—p —q induces an isomorphism of fundamental groups.

Definition. Letf bealoopin R*withal R*—Imf. Set g(s) = (f(s) — a)/|[f(s) —a|. Thengisa
loopinS'. Let g~ bealifting of g. The winding number of g is g~(1) — g~(0) = n(f, a).

Definition. Let F: |~ | be continuous, with F(0O, t) = F(1, t), so that f,(s) = F(s, t) isaloop for all t.
Then F is afree homotopy of loops.

Lemma. Letf bealoopin R?—a. If fisfreely homotopicto f through loops in R? —a, then n(f,
a =n(f’, a).

Lemma. Let a beapath fromatobin R?—f(1). Thenn(f, @ = n(f, b).

Fact. n(f, @ = (6 dz/(z—a))/2pi.

Theorem (Sefert-Van Kampen). Let X =U E V, where U and V are openin X. LetU, V, and U
C V be path connected. Let xo1 U C V. Let H be any group, with homomorphisms f 1: p1(U,
Xo) ->H andfz: p]_(V, Xo) ‘9 H. Let i]_: p]_(U Q V, Xo) -> p]_(u, X()), iz: p]_(U Q V, Xo) > p]_(V,
Xo), j1: P1(U, Xo) 2 p1(U E V, Xo), and j,: pi(V, Xo) =2 p1(U E V, Xg) be the homomorphisms
induced by inclusion. If f4°iy =1, °i,, then there exists a unique homomorphism, F: pi(X, Xo)
> H,SJChthatF °j1=f1and F °j2:f2.




Theorem (Classical Seifert-Van Kampen). Let j: pi(U, Xo) * pi(V, Xo) = pi(X, Xo) extend the
homomorphisms induced by inclusion, ji: pi(U, Xg) = pi(X, Xo) and j2: pi(V, Xo) = pi(X, Xo)-
Then | is surjective and its kernel is the least normal subgroup of pi(U, Xo) * p(V, Xg) that
contains {i(Q)i=(Q) 9T pa(U C V, xo)}.

Corollary. If U C V issmply connected, k: p1(U, Xo) * p1(v, Xo) = p1(X, Xg) is an isomorphism.

Corollary. If V issimply connected, p.(V, Vo) = {€}, and there is an isomorphism k: p1(U, Xo)/N
= pu(X, Xo), where N is the least normal subgroup of p,(U, Xg) containing the image of i: py(U
Q V, Xo) > p]_(U, X()).

Definition. Suppose X is a space that is the union of closed subspaces, X;, ..., X, with asingle
point {p} = C X;. Then X is called the wedge of the spaces X4, ..., Xn; wewrite X =X, U... U
Xn.

Theorem. Suppose that, for each i, that p is the deformation retract of an open set W, I Xi. Then,
p1(X, p) is the external free product of {pi(Xi, p)} relative to the monomorphisms induced by
inclusion.

Definition. Let X = E X,. Thetopology of X is coherent with the subspaces X, when a subset C
I Xisclosed if CC X, isclosedin X, for each a.

Theorem. Let X be awedge of the circles S;; let p be the common point of these circles. Then
p1(X, p) is afree group with system of free generators {f, | f, generates pi(S,, p)}-

Definition. Let n> 1. Letr: S' > S' be rotation by the angle 2p/n. Form a quotient space from
B? by identifying the points of S' that are images of each other under rotation. This is the n-

fold dunce cap.

Theorem. The fundamental group of the n-fold dunce cap is Z,,.

Definition. Let X and Y be digoint normal spaces, A closed in X, and f: A = Y be continuous.
The adjunction space, Z;, is the quotient space obtained from X E Y by identifying al A with
f(a) and every point of f*({f(a)}).

Theorem. Let X be a Hausdorff space. Let A’ be a closed, path-connected subspace of X.
Suppose h: B> > X is continuous, maps Int B onto X — A’ and S' = BdB?into A’. Letql S
anda=h(g). Letk: (S, q) > (A’, @) betherestriction of h. then, the homomorphism i.: py(A’,
a) =2 pa(X, @) induced by inclusion is surjective with kernel the least normal subgroup of py(A’,
a) that contains Im k.

Note. In the theorem above, the space obtained by adding B is the adjunction space of B” and X.

Note. We may use thisto show that any group is the fundamental group of some space.

Definition. For a path-connected space, its first homology group is Hi(X) = pi(X, Xo)/[p1(X, Xo),

1 X, Xo)]-

Dgﬁgition?] Let P be a polygonal region. Given orientations and labels of edges of P, we may
completely describe this labelling by w = a**...a*", where g is the label on the i edge (it is
possible that & = g) and the exponent is +1 if the orientation is counterclockwise and —1
otherwise, Thisiscalled alabelling scheme of length n for P.

Note. A surface is obtained from a polygonal region by making a quotient space that identifies
edges with the same labels, so that their orientations match.

Note. The following operations on polygonal schemes will not change the surface:

Cut: Replace yoy: by yo€, €'y

Paste: Replace yqc, ¢y by yoy if ¢ isnot used elsewhere in the scheme.

Relabel: Replace al occurrences of one label by another (not-yet-used!) label, or change
the signs on al the exponents of one label.

Permute: Replace yoy1 by yiYo.

Flip: Write the entire scheme backwards.

Cancel: Replace yoccly; by yoys.




Definition. Let w be a proper labelling scheme. w is of torus type if each label in w appears once
with exponent +1 and once with exponent —1. Otherwise, w is of projective type.

Theorem (Classification of Surfaces). Let X be the quotient space obtained from a polygonal
region by pasting its edges together in pairs. Then X is homeomorphic to one of the following:

" Sphere: S —aa'bb™
Projective Plane: P? — abab
M-fold Connected Sum of Projective Planes: Py, — (&yay)...(8nam), m 3 2
N-fold Connected Sum of Tori: T, — (absa 'y ™Y)... (8bnar oY), n3 1

Covering Spaces

Definition. Letp: E—> Bandp’: E - B be covering maps. They are equivalent if there exists a
homeomorphism h: E > E' suchthat p=p’ ° h. hiscalled an equivalence of covering spaces.

Theorem. Letp: E> Bandp': E - B’ be covering maps, with p(ey)) = p’'(&’) = be. Thereisan
equivalence h: E > E’ such that h(ey)) = ey & p«(pi(E, &) =p-' (p«(E’, &")).

Theorem. Letp: E> Bandp': E > B’ be covering maps, with p(ep) = p'(&’) =b,. Thereis
an equivalenceh: E > E < p(pi(E, &)) and p-'(p«(E’, &')) are conjugate in p1(B, bo).

Definition. A covering space isauniversal covering spaceif it is simply connected.

Theorem. If E and E’ are universal covering maps of B, the E and E' are equivalent.

Lemma. Let p, g, and r be continuous maps, withp=r ° g. If pand r are covering maps, soisq.
If p and g are covering maps, so isr. If g and r are covering maps and Im p = Im r has a
universal covering space, p is acovering map.

Theorem. Suppose E is auniversal covering space of B and Y is any other covering space. Then
E isacovering spaceof Y.

Lemma. Let p: E & B be acovering map with p(ey) bo. If E is simply connected, then by has a
neighborhood U such that the homomorphism induced by inclusion, i-: p1(U, bg) = pi(B, bo) is
trivial.

Definition. Let p: E > B be a covering map. We call the group of equivalences of E with itself
the group of covering transformations, C(E, p, B).

Theorem. N(Ho) / Ho isisomorphic to C(E, p, B).

Corollary. If Hpisnormal, N(Ho) = p1(B, bo) and C(E, p, B) = p1(B, bg)/Ho.

Definition. When p-(p1(E, &y)) is normal in py(B, bg), p isaregular covering map.

Theorem. If p: X - B is a regular covering map and G = C(X, p, B), then there is a
homeomorphism k: X/G - B, such that p =k ° p, where p: X = X/G is projection.

Note. X/G is the quotient space obtained from identifying the orbit of a point under the covering
transformations to a single point.

Definition. A space B is semilocally simply connected if each b1 B has a neighborhood U such
that the homomorphism i-: p,(U, b) = p1(B, b) induced by inclusion istrivial.

Theorem. Let B be path connected, locally path connected, and semilocally simply connected.
Letby T B. Given asubgroup H of p:(B, by) there exists a space E and a covering map p: E >
B witheyT p({ho}) such that p-(p.(E, &)) = H.

Proof (Construction). Let P be the set of all paths in B beginning at by. Define an equivalence
relation on P by a ~ b if a(1) = b(1) and [a * b-reverse] T H. Let E be the set of all
equivalence classes, a#. Define p: E > B by p(a#) = a(1). Topologize E with the basis B(U,
a)={(a* d#|disapathin U beginning at a(1)}.

Exact Sequences, Chain Complexes, and Homology Groups

Definition. A pointed set (set with base point) isapair (S, &). If Gisagroup, we assume (G, €)
isthe pointed set. If f: (S, s5) =2 (T, tp), wemeanf: S> T and f(s) =to. Then, ker f ={s|f(s)
= to} .




Definition. Let {A;} be acountable sequence of groupsand {di: Ai = A;.;} be homomorphisms.
The sequenceis achain complex if each A;isabdlianand d; © d+, istrivia (that is, Im Oisy |
Ker d,)

Definition. Let {A;} be asequence of groups and {d;: A; > A.1} be homomorphisms. The
sequence is exact at Ag if Im diy = Ker di. Itisexact if it isexact at each Ay.

Definition. Let C= ({C};{d}) beachain complex. Thei™ homology group of C is H;(C) = Ker
di /1m di+1.

Corollary. Cisexact <> H(C) istrivia for all i.

Definition. Let ({C}; {c}) and ({Di}; {d}) be chain complexes. A chain map, f ={f;: C; > D;}
isacollection of homomorphisms such that f; ° Gy = divg © fisa.

Definition. If f: C > D isamap of chain complexes, fi-[x] = [f(X)] definesamap f «: H;(C) >
Hi(D).

Deﬁsﬂt?on. Let B=({Bj};{b}) and C=({C}; {c}) bechain complexes. Letf,g:B > Che
chain maps. If there exists Dy: B, = C,.q for @l n, such that (¢,1Dp + Dpabn)(s) = 1(s) — g(s)
forals1 B, then {Dy} isachain homotopy from f to g, and f and g are chain homotopic.

Theorem. If f, g: B > C are chain homotopic, then H,f = H.g for every n. (That is, (f<([s]) =
g([s]).)

Definition. If f: B> Cand g: C > B are chain maps, f and g are chain homotopy inverses of
each other if f ° g: C > Cand g ° f: B > B are chain homotopic to their respective identity
maps.

Corollary. If f and g are chain homotopy inverses, then H.f = f- and H,g = g- areinverse
homomorphisms and H,(C) = Hn(D).

Lemma (Zig-Zag or Fundamental Lemma of Homological Algebra).. Suppose we have chain
complexesC, D = ({Di}, 1), E, and chain mapsf: C> D and g: D 2 E, suchthat 0 > C, > D,
> E, > Oisexact for al n. We define §-: H.E = H..1C by 1:[x] = [y] wherex T Z(E), y 1
C.1 and thereexistsd1 D, with On(d) =x and f.1(y) = T(d). Then - isawell-defined
homomorphism, and the following sequence is exact: ... > H.,E 2> H,,C > HpiD 2> HE >

Lemma. Let C=({Cy}; {Tc}) ad D = ({D}; {Ton}) be chain complexes. Then, CA D = ({C,
A D}, {(len Ton)}) isachain complex, and Hy(C A D) = H,(C) A Hy(D).

Lemma. by isthe dimension of Hy(K, Q) as avector space over Q.

Smplicial Homology

Definition. Let S={s, ..., S} be aset of vertices (hone of which lie in the hyperplanes spanned
by the others). The n-simplex with vertex set Siss(S) ={ats |at =1,t > 0}.

Definition. A simplicial complex, K, isacollection of simplices, such that (1) every face of a
simplex in the collection is also in the collection, (2) every two simplices intersect in one
common face (which may be A), and (3) the topology on the union is coherent with the
topologies of the simplices. We define K, to be the set of n-simplicesin K.

Definition. Since, each simplex is a subspace of R" for some n, the union of all the simplicesisa
subspace [K| of R¥. |K| is called the geometric realization of K.

Definition. The unique simplex that a point liesin the interior of (ie., for which al thet; * 0) is
called the carrier of x, car(x).

Definition. If A =s(S)isasimplex, S={vy, ..., i}, the barycenter of A isA" = Vot ... +v)/
(k+1).

Definition. If Ag<... <Ay are nested simplicesin asimplicia complex K, we write s(Ao, ...,
A\) for the simplex with vertices at the barycenters of each A;, whichiss(Aq, ..., Ay). The
collection of all such simplicesis called the barycentric subdivision of K, or KL

Definition. If K isasimplicial complex, the mesh, m(K), is the maximum of the diameters of the
simplices in the complex.




Lemma. If K isasimplicial complex such that the dimension of K and K are both n, the m(K*) £
mMK) n/(n+1).

Definition. A simplicial map, f: K = L, takes simplices of K linearly onto simplicesof L.
Equivalently, fo: Ko = Lo and whenever s(S) 1 K, f(s(S)) =s(f(9) 1 L.

Definition. A simplicia map, f: K - L, determines asimplicia map, [f|: |K| = |L| by [f|(atis) =

Deﬁni(ti())n. If f: |K| = |L| is acontinuous map, asimplicial approximationisasimplicia map, s:
K = L, suchthat |s|(x) T car(f(x)) forall xT |K].

Note. Vertices are their own carriers, so |s|(u) = f(u) when f(u) isavertex in [L|.

Theorem (Smplicial Approximation). If K isfinite and if f: |K| = |L| is continuous, then for
sufficiently large n, there is asimplicial approximation, s: K" = L to f: [K"| = |L|.

Note. A simplicial approximation is always homotopic to the original function.

Definition. We define C,(K) to be the set of finite formal linear combinations of K, with
coefficientsin Z.

Deﬁ_nition. Let vy, ..., vV, be an ordered set of vertices of asimplex. We define f(vo, ..., V) = a(-
1)'(Vo, ..., Vi1, Vis1, -.., Vpy) and T(vo) = 0.

Note. T(Tl(vo, ..., vp)) =0for al n. So ({C,(K)}, {T: Ci(K) = C,1(K)}) isachain complex.

Definition. Suppose K isasimplicial complex and v is not in the hyperplane spanned by any
finite subset of Kq.For each S=s(vy, ..., Vi) 1 K,letD,S= s(v, Vo, ..., V). TheconeonK,
CK, with vertex v is the simplicia complex which contains K and DS for each ST K.

Theorem. Let K beany smplicial complex. Let vy be the cone vertex of CK. Letf, g CK > CK
be smplicial maps (which induce chain maps). Let f be the identity map and g(v) = vy for al v
T CKo. Thenfischain homotopic to g.

Theorem. If K isasimplicial complex, then Hy(CK) = Z and H,(CK) = 0 otherwise.

Corollary. If K isak-simplex together with all of its faces, Hy(K) = Z and H,(K) = 0 otherwise
(since thisis the cone on the (k-1)-simplex).

Definition. Letf, g: K > L be simplicial maps. f and g are contiguous if, for every simplex s 1
K, there exisisasimplex t 1 L which contains f(s) and g(s).

Proposition. If f and g are contiguous, they are chain homotopic.

Definition. If K isasimplicial complex, we have the augmented chain: ... 2 Cx(K) = Cy(K) >
Co(K) = Span{ &} =Z > 0, where e: Co(K) > Spar{ A} isdefined by e(v) = 1. (We write
these as C,~(K).) The resulting homology groups are the reduced homology groups of K.

Defintion. Let K’ bethe ssimplicial complex obtained from K be a single stellar subdivision (this
adds a single barycenter vertex, v). Wedefine c: C(K) > C(K’) by c(v, ..., vi) = &(-1)'(v, Vo,
«eey Vi, Vi, ..., Vi) if vis added to aface of (v, ..., Vi) and c(S) = S otherwise.

Definition. Let g: K’ = K be the smplicial map that sends the added vertex to a vertex in its
simplex.

Theorem. g and ¢ are chain homotopy inverses.

Lemma. Suppose X isasimplicial complex, A and B subcomplexes with union X, andN=A C
B. Consider 0 > Cn(N) = C,(A) A C.(B) > C,(X) = 0, withf ,: C,(N) > C,(A) A C,(B)
defined by f ,(c) = (ia(C), -is(c)) and y . Cy(A) A C(B) = C(X) defined by y (c, d) = ja(c) +
je(d), where iy, ig areinclusionsfrom N, and ja, jg areinclusionsinto X. This sequenceis
exact.

Theorem (Mayer-Vietoris). Let A and B be subcomplexesof X. Let X =AE BandN =A C B.
Then the following sequenceisexact: ... > H\N > H A AHB>HX>HuUN> ..>
HoX = 0.

Definition. Let K beasimplicial complex. Let aq be the number of g-simplicesin K. We define
the Euler characteristic of K by c(K) =a (-1)%a,




Note. If we puncture a surface, we remove a single 2-simplex, which decreases the Euler
characteristic by 1. If we puncture two surfaces and then glue them together along the missing
triangle, this decreases the number of 2-simplices by 2, decreases the number of 1-simplices by
3 and decreases the number of 3-simplices by 3; this means the Euler characteristic for the
connected sum is the sum of the Euler characteristics minus 2.

Theorem. Let K be asimplicial complex. Then, c(K) = a(-1)* by,

Definition. Let K be atriangulation of S', h: |K| > S". Let [z] be a generator of H,(S") = Z.
Given a continuous map f: S" 2 S, the induced homomorphism, (h*fh).: H.K = H,K maps[Z]
tol [z]. Wecdl | thedegree of f.

Facts. Homotopic maps have the same degree. The degree of the identity is1. The degree of a
homeomorphismis+ 1. The degree of the constant map is0. The degree of the antipodal map
is (-1)™*. The degree of amap with no fixed pointsis (-1)™*. deg(f ° g) = deg(f)deg(g).

Definition. Cy(K, Z5) isthe set of all formal linear combinations of g-simplicesin K with
coefficientsin Z,. This induces the mod-2 homology.

Note. The boundary of asimplex in the mod-2 homology is the sum of its g-1 dimensional faces.

Theorem (Borsuk-Ulam). Any map f: S = R" must identify a pair of antipodal points of S’ (ie.,
f(x) = f(-x)).

Theorem. Let f: S'> S be amap which preserves antipodal points. Then f has odd degree.

Theorem. If f: S" > S" sends antipodal points to antipodal points, m £ n.

Definition. If X isacompact triangulable space, with f: X - X, fix atriangulation h: |K| > X
and asimplicial approximation to f" = h'fth, s: K™ > |K|. Letc: C(K, Q) > C(K™, Q) bethe
subdivision chain map. Then f" induces amap: = s, ° ¢ C4(K) > C4(K) for each g, and thus
homomorphisms th*: Hq(K, Q) 2 Hy(K, Q). We may consider thisas alinear map of vector
spaces. We define the Lefschetz number as L = & (-1)° trace(f"y-). (Notethat if [s4], ..., [Sd] is

abasisand f'([si]) = ... + | i[s]] + ..., trace(f"y) =& | ;)
Theorem (Hopf Trace). If f: C(K, Q) = C(K, Q) isachain map, then &(-1)* tracef ;= & (-1)
tracef .

Theorem (Lefschetz Fixed Point). If Ly O thenf hasafixed point.

Proposition. If gisthe constant map, L 4= 1.

Corollary. Homotopic maps have the same Lefschetz number. So any nulhomotopic map has a
Lefschetz number of 1, and thus a fixed point.

Theorem. If X isacompact, triangul able space with the homology type of one point space, then
every map f: X > X hasafixed point.

Theorem. Letf: S'> S". ThenL;=(-1)"(degf) + 1.

Definition. Let X be a compact Hausdorff space. Take afinite open cover, F, of X. Definea
simplicial complex called the nerve of F, N(F), by letting the vertices be the el ements of F and
adding the simplex (Ug, ..., Up) if Ug C ... C Uyt A

Note. If Fisthe cover of |K| be open stars of K, then N(F) isisomorphic to K.

Definition. We say X isfinite-dimensional if there exisssm1 Z such that every open cover of X
has arefinement, F, with dim(N(F)) £ m. The dimension of X isthe smallest such m.

Note. N(F) has dimension m & m+1 isthe largest integer such that some m+1 elements of F
have a non-empty intersection.

Note. The dimension of asimplex (the largest k, such that there is a k-simplex) agrees with this
definition.

Theorem. If A isacompact, Hausdorff subspace of X, then dim A £ dim X.

Theorem. Let A, B, X be compact Hausdorff, with X = A E B. Then, dim X = max{dim A, dim
B}.

Theorem (Imbedding). Every compact metrizable space of dimension m can be imbedding in
R2m+1.




Fact. If F covers X, then [N(F E {/&}| = N(F)| E {p}.
Fact. If F covers X, then N(F E {X}) = C(N(F)).

Examples of Topologies

Countable Complement Topology: {U | X — U is countable of all of X}

Discrete Topology: All subsets are open.

Indiscrete Topology: Only X and A are open.

Standard Topology on R: {(a, b) | a< b} isabasis

Standard Topology on R?: Open balls or open rectangles are a basis.

Lower Limit Topology on R: {[a, b)} isabasis

K-Topology on R: K ={1/n}. {(a b)} E {(a b) —K} isabasis

Subspace Topology

Product Topology

Dictionary Order topology on two ordered sets (impose the order (x, y) < (X', y') when X <X’ or
x =X andy <y’. Usethe order topology on that

TheLong Line: Sy~ [0, 1), minus the lowest point, in the dictionary order (Swis an uncountable
well-ordered set, every section of which is countable) — every point has a neighborhood
homeomorphic to an interval of thereal line, but the long line is not homeomorphic to R.

The infinite broom: Connected every point (g, 0), g rational, to (1, 0) with aline.

The infinite comb: Theinterval [0, 1] with spikes up at 0 and each 1/n.

Cantor’s Leaky Tent

The Infinite Cage

The Hawaiian earring

Fundamental and First Homology Groups

Theorem. The fundamental group of S"isisomorphic to Z under +.

Theorem. The fundamental group of T=S"" S'isisomorphictoZ = Z.

Theorem. Let X be the n-fold connected sum of tori. Then Hy(X) is a free abelian group of rank
2n.

Theorem. Let X be the n-fold connected sum of projective planes. Then Hy(X) isthe free abelian
product of a group of order 2 and a free abelian group of rank n-1.

Examples of Covering Spaces
Sh by R
P, by §°

The figure 8, by the infinite antenna, or by aline with circles cglued to it

Some Homologies

The point: Ho(*) = Z, H,(*) = 0 otherwise.

S"(n>0): Hy(S") = Ho(S") = Z. Hy(S") = 0 otherwise.

P% Hy(P?) = Z, Ho(P) = Z, Hi(P?) = 0 otherwise

Torus: Hy(T) = Ho(T) =Z, Hy(T) =Z A Z, H(T) = 0 otherwise.



