Topology Summary

Background Information

Well-Ordering, Induction, and S_W

Definition. A set A is well-ordered if every non-empty subset of A has a smallest element.

Theorem (Well-Ordering). If A is a set then there exists an order relation on A that is a well-ordering.

Definition. Let X be a well-ordered set. Let $a \in X$. The $S_a = \{x \in X \mid x < a\}$ is called the section of X by a.

Lemma. There exists a well-ordered set A having a largest element, Ω , such that S_{Ω} of A is uncountable but every other section is countable.

Theorem. If A is a countable subset of S_{Ω} , then A has an upper bound in S_{Ω} .

Definition. Let J be a well-ordered set. A subset $J_0 \subset J$ is <u>inductive</u> if, for every $a \in J$, $S_a \subset J_0$ implies that $a \in J_0$.

Principle of Transfinite Induction. If J is a well-ordered set and J_0 is an inductive subset, then $J = J_0$.

Theorem. Let J and C be well-ordered. Assume that there is no surjective mapping of a section of J into C. Then there exists a unique function h: $J \rightarrow C$ such that $h(x) = smallest[C - h(S_x)]$ for all $x \in J$.

Groups (Particularly Free and Free Abelian Ones)

Definition. Let G be an abelian group and $\{G_{\alpha}\}$ a family of subgroups of G. We say that the subgroups $\{G_{\alpha}\}$ generate G if each $x \in G$ can be written as the finite sum of elements from the G_{α} ; that is, $x = \sum x_{\alpha}$, with all but finitely many $x_{\alpha} = 0$. In this case, we say G is the sum of the G_{α} .

Definition. Let G be a group and $\{G_{\alpha}\}$ a family of subgroups of G. We say the $\{G_{\alpha}\}$ generate G if each $x \in G$ can be written as the finite product of elements of the G_{α} ; that is, $x = x_1...x_n$.

Note. In $x_1...x_n$, we may only combine consecutive elements from the same subgroup. The word resulting form this is a <u>reduced word</u>.

- *Definition.* If the expression $x = \sum x_{\alpha}$ is unique for all x, G is the <u>direct sum</u> of $\{G_{\alpha}\}$, and we write $G = \bigoplus G_{\alpha}$.
- *Definition.* If the reduced word for x is unique for all x, then G is the <u>free product</u> of $\{G_{\alpha}\}$ and we write $G = \Pi^* G_{\alpha}$.
- *Lemma.* $G = \bigoplus G_{\alpha} \Leftrightarrow$ given any abelian group H and any family of homomorphisms { $h_{\alpha}: G_{\alpha} \rightarrow$ H}, there exists a unique h: G \rightarrow H that agrees with h_{α} on each G_{α} .
- *Lemma.* $G = \Pi^* G_{\alpha} \Leftrightarrow$ given any group H and any family of homomorphisms { $h_{\alpha}: G_{\alpha} \rightarrow H$ }, there exists a unique homomorphism h: $G \rightarrow H$ that agrees with each h_{α} on each G_{α} .
- *Definition.* Let $\{G_{\alpha}\}$ be abelian groups. Suppose G is abelian, and that $\{i_{\alpha}: G_{\alpha} \rightarrow G\}$ is a family of monomorphisms, such that $G = \bigoplus i_{\alpha}(G_{\alpha})$. Then G is the <u>external direct sum</u> of $\{G_{\alpha}\}$ relative to $\{i_{\alpha}\}$.

Definition. Let $\{G_{\alpha}\}$ be groups. Suppose G is a group and $\{i_{\alpha}: G_{\alpha} \rightarrow G\}$ is a family of monomorphisms, such that $G = \Pi^* i_{\alpha}(G_{\alpha})$. Then we say G is the <u>external direct product</u> of the groups $\{G_{\alpha}\}$ relative to the monomorphisms $\{i_{\alpha}\}$.

- *Theorem.* Given a family of abelian groups $\{G_{\alpha}\}$, there exists an abelian group G which is their external direct sum (consider the Cartesian product).
- *Theorem.* Given a family of groups $\{G_{\alpha}\}$ there exists a group G which is their external direct product (consider all words of finite length with elements from the groups).
- *Theorem.* Let $\{G_{\alpha}\}$ be abelian groups. Suppose G and G' are abelian groups which are external direct products of the $\{G_{\alpha}\}$ (relative to families of monomorphisms, $\{i_{\alpha}\}$ and $\{i_{\alpha}'\}$). Then there is a unique isomorphism, $\phi: G \rightarrow G'$, such that $\phi \circ i_{\alpha} = i_{\alpha}'$ for each α .

- *Theorem.* Let $\{G_{\alpha}\}$ be groups. Suppose G and G' are groups which are the external free products of the $\{G_{\alpha}\}$ relative to monomorphisms $\{i_{\alpha}\}$ and $\{i_{\alpha}'\}$. Then there is a unique isomorphism, $\phi: G \rightarrow G'$, such that $\phi \circ i_{\alpha} = i_{\alpha}'$ for each α .
- *Definition.* Let G be an abelian group and $\{a_{\alpha}\}$ a family of elements of G. Let G_{α} be the subgroup generated by a_{α} . If the $\{G_{\alpha}\}$ generate G, then we say the elements $\{a_{\alpha}\}$ generate G. If each G_{α} is infinite cyclic and G is the direct sum of the $\{G_{\alpha}\}$, then G is a <u>free abelian group</u> with $\{a_{\alpha}\}$ as a <u>basis</u>.
- *Definition.* Let $\{a_{\alpha}\}\$ be a family of elements of a group G. Suppose each a_{α} generates an infinite cyclic subgroup G_{α} of G. If G is the free product of the $\{G_{\alpha}\}\$, then G is a <u>free group</u> with <u>system of free generators</u> $\{a_{\alpha}\}$.
- *Lemma.* G is a free abelian group with basis $\{a_{\alpha}\} \Leftrightarrow$ for any abelian group H and any family of elements $\{y_{\alpha}\} \subset H$, there is a unique homomorphism h: G \rightarrow H with $h(a_{\alpha}) = y_{\alpha}$ for each α .
- *Lemma.* G is a free group with system of free generators $\{a_{\alpha}\} \Leftrightarrow$ for any group H and any family of elements $\{y_{\alpha}\} \subset H$, there is a unique homomorphism, h: G \rightarrow H with $h(a_{\alpha}) = y_{\alpha}$.
- *Theorem.* If G is free abelian, the size of the basis is uniquely determined by G and is called the rank of G.
- Corollary. If G is a free group, the number of elements in the system of free generators is unique.
- *Definition.* Let G be a group. If $x, y \in G$, we define $[x, y] = xyx^{-1}y^{-1}$ to be the <u>commutator</u> of x and y. The subgroup generated by all the commutators in G called the <u>commutator subgroup</u>, [G, G].
- *Lemma.* [G, G] is a normal subgroup of G and the quotient group G/[G, G] is abelian. If h: G \rightarrow H is any homomorphism with H abelian, [G, G] \subset ker h., so that h induces a homomorphism, k: G/[G, G] \rightarrow H.
- *Proposition.* Let F be the free group generated by $a_1, ..., a_n$. Let $x \in F$, N the least normal subgroup containing x, and G = F/N. If p: $F \rightarrow F/[F, F]$ is the projection homomorphism, then F/[F, F] is free abelian with basis $\{p(a_1), ..., p(a_n)\}$. The abelianization of G (= G/[G, G]) is isomorphic to (F/[F,F])/N', where N is the subgroup generated by p(x).
- *Definition*. Let H_0 be a subgroup of G. The <u>normalizer</u> is $N(H_0) = \{a \in G \mid aH_0a^{-1} = H_0\}$. This is the largest subgroup of G in which H_0 is normal.
- *Definition.* Let G be an abelian group. Then $G = \mathbf{Z}_a \oplus ... \oplus \mathbf{Z}_k \oplus \mathbf{Z}^b$. We define the <u>Betti</u> <u>number</u> of G to be b (the rank of the free part of G). If we have a sequence of homology groups, we define β_q to be the Betti number of H_q .

Point-Set Topology

- *Definition.* A topology on a set X is a collection of subsets of X, T, such that (1) \emptyset , $X \in T$, (2) if $A_{\alpha} \in T$ for each α , then $\bigcup A_{\alpha} \in T$, and (3) if $A_1, ..., A_n \in T$, then $\bigcap A_i \in T$. We call the sets in T open sets.
- *Definition.* A basis for a topology on X is a collection of subsets of X, B, such that (1) For all $x \in X$, there is some $B \in B$ with $x \in B$, and (2) if $x \in B_1 \cap B_2$ there is some $B_3 \in B$ such that $x \in B_3 \subset B_1 \cap B_2$. U $\subset X$ is open in the topology generated by B if, for all $x \in U$, there is some $B \in B$, such that $x \in B \subset U$.
- *Definition.* A <u>subbasis</u>, *S*, for a topology on X is a collection of subsets of X whose union is X. The topology generated by *S* is the topology with basis being the collection of all finite intersections of elements in *S*.
- *Lemma.* Let X be a topological space. Let C be a collection of open sets of X such that, for all open sets U and all $x \in U$, there exists $C \in C$ such that $x \in C \subset U$. Then C is a basis for the topology of X.

- *Definition.* Suppose *T* and *T*' are topologies on a set X. If $T' \supset T$ then *T*' is <u>finer</u> than *T* and *T* is <u>coarser</u> than *T*'. If this containment is strict, then *T*' is <u>strictly finer</u> than *T* and *T* is <u>strictly</u> <u>coarser</u> than *T*'.
- *Lemma.* Let *B* and *B*' be bases for topologies *T* and *T*' on X. *T*' is finer than *T* if and only if for all $x \in X$ and $B \in B$ there is some $B' \in B'$ such that $x \in B' \subset B$.
- *Definition.* Let X be a simply ordered set with at least two elements. The order topology on X has basis $\{(a, b) | a < b\} \cup \{[a_0, b) | a_0 \text{ is the smallest element of } X\} \cup \{(a, b_0] | b_0 \text{ is the largest element of } X\}$.
- *Definition.* Let X and Y be topological spaces. The <u>product topology</u> on X and Y is given by the basis $T_X \times T_Y$.
- *Definition.* Let X be a topological space. Let $Y \subset X$. The <u>subspace topology</u> on Y is given by $T_Y = \{U \cap Y \mid U \text{ is open in } X\}.$
- *Theorem.* Let *B* and *C* be bases for topologies on X and Y. Then, $B \times C = \{U \times V | U \in B \text{ and } V \in C\}$ is a basis for the product topology on X and Y.

Theorem. $B_A = \{A \cap B \mid B \in B\}$ is a basis for the subspace topology on $A \subset X$.

Note. The product of subspace topologies is not the subspace of the product of the topologies. *Definition.* In a topological space X, A is <u>closed</u> if X - A is open.

- *Theorem.* Let A be a subset of a space X. Then $x \in A$ -closure \Leftrightarrow every open set containing x intersects A.
- *Definition.* Let X be a topological space. A sequence of points, $x_1, x_2, ..., \underline{converges}$ to $x \in X$ if, for each neighborhood, U, of x, there exists N such that $x_n \in U$ for all $n \ge N$.
- *Note.* Sequences that converge in one topology may not converge in a finer topology. In some topologies, sequences may converge to more than one (or any!) point.
- *Definition.* A space is <u>Hausdorff</u> if, for any $x_1, x_2 \in X$ there exist disjoint open sets, U_1 and U_2 with $x_1 \in U_1$ and $x_2 \in U_2$.

Definition. A space is \underline{T}_1 if one-point sets are closed.

Note. Hausdorff \Rightarrow T₁.

Proposition. X is Hausdorff \Leftrightarrow {x × x | x ∈ X} is closed in X × X.

Continuous Functions

Definition. A function f: $X \rightarrow Y$ is <u>continuous</u> if $f^{-1}(V)$ is open in X for each V that is open in Y. *Note.* Let X and X' be the same space with different topologies. The identity function i: $X \rightarrow X'$ is continuous \Leftrightarrow the topology of X is finer than the topology of X'.

Theorem. Let f: $X \rightarrow Y$ be a function. The following are equivalent:

- f is continuous
- For all $A \subset X$, f(A-closure) $\subset f(A)$ -closure
- f⁻¹(C) is closed if C is closed
- For every x ∈ X and every neighborhood, V, of f(x), there is a neighborhood U of x such that f(U) ⊂ V.
- *Definition.* Suppose $f: X \rightarrow Y$ is a bijection. If both f and f^1 are continuous, we say f is a homeomorphism.

Theorem. Composites of continuous functions are continuous.

Theorem. f: X \rightarrow Y is continuous if we can write X as the union of open sets, {U_{α}}, such that f | U_{α} is continuous for each α .

Theorem (Pasting Lemma). If $f \mid A$ and $g \mid B$ are continuous, A and B are closed, and f(x) = g(x) on $A \cap B$, then there is a continuous function on $A \cup B$ that agrees with f on A and g on B.

Definition. Let J be an index set. Given a set X, we define a <u>J-tuple</u> of X to be a function x: $J \rightarrow X$. If $\alpha \in J$, we write x_{α} for $x(\alpha)$. We consider this as the α^{th} coordinate, writing $\mathbf{x} = (x_{\alpha})_{\alpha \in J}$. Let $\{A_{\alpha}\}$ be a family of sets. Let $X = \bigcup A_{\alpha}$. Then, $\prod A_{\alpha}$ is the set of all J-tuples of X with x_{α}

 $\in A_{\alpha}$ for all $\alpha \in J$. We define the projection function $\pi_{\beta}(x)$ to be the β^{th} coordinate of x.

Definition. Let ΠX_{α} be the product of a family of topologies. The <u>box topology</u> is the topology with basis { $\Pi U_{\alpha} | U_{\alpha}$ is open in X_{α} }.

Definition. Let ΠX_{α} be the product of a family of topologies. The <u>product topology</u> is the topology with basis { $\Pi U_{\alpha} | U_{\alpha}$ is open in X_{α} and $U_{\alpha} = X_{\alpha}$ for all but finitely many $\alpha \in J$ }.

Note. If J is infinite, the box topology is strictly finer than the product topology.

Theorem. Let f: A $\rightarrow \prod X_{\alpha}$ be given by $f(a) = (f_{\alpha}(a))$ where each f_{α} : A $\rightarrow X_{\alpha}$ is continuous. In the product topology, f is continuous \Leftrightarrow each f_{α} is continuous.

Theorem. Let $S = \bigcup_{\alpha \in J} \{ \pi_{\alpha}^{-1}(U_{\alpha}) \mid U_{\alpha} \text{ is open in } X_{\alpha} \}$. *S* is a subbasis for the product topology.

- *Note.* The product topology is the coarsest topology such that the projection functions out of it are continuous.
- *Theorem.* In the box and product topologies, the Cartesian product preserves subspace relationships, Hausdorff-ness, and closures (Π A-closure = (Π A)-closure.)
- *Definition.* If d is a metric on a set X then the collection of all ε -balls, $B_d(x, \varepsilon)$ for all $x \in X$ and $\varepsilon > 0$ is a basis for the <u>metric topology</u> on X induced by d.
- *Definition.* If X is a topological space, X is <u>metrizable</u> if there is a metric that induces the given topology on X.
- *Definition.* Let X be a metric space with metric d. The <u>standard bounded metric</u>, d-bar, is $d-bar(x, y) = min\{d(x, y), 1\}$.
- *Definition.* Given an index set J and points $\mathbf{x} = (x_{\alpha})$ and $\mathbf{y} = (y_{\alpha})$ of \mathbf{R}^{J} , we define a metric ρ -bar on \mathbf{R}^{J} by ρ -bar(\mathbf{x}, \mathbf{y}) = sup{d-bar(x_{α}, y_{α})}. This is the <u>uniform metric</u> on \mathbf{R}^{J} and induces the <u>uniform topology</u>.

Note. $B(\mathbf{x}, \varepsilon) = \bigcup_{\delta < \varepsilon} (x_1 - \delta, x_1 + \delta) \times (x_2 - \delta, x_2 + \delta) \times \dots$

- *Theorem.* In \mathbf{R}^{J} , the uniform topology is finer than the product topology and coarser than the box topology.
- *Theorem.* Let d-bar be the standard bounded metric on **R**. If $\mathbf{x}, \mathbf{y} \in \mathbf{R}^{\omega}$, define $D(\mathbf{x}, \mathbf{y}) = \sup\{d-bar(x_i, y_i)/i\}$. Then D induces the product topology.
- *Theorem.* Let $f: X \rightarrow Y$. Let X and Y be metrizable with metrics d_x and d_y . f is continuous \Leftrightarrow for all $x \in X$ and $\varepsilon > 0$, there exists $\delta > 0$ such that $d_y(f(x), f(y)) < \varepsilon$ whenever $d_x(x, y) < \delta$.

Sequence Lemma. Let X be a topological space, $A \subset X$. If there is a sequence of point in A converging to x, then $x \in A$ -closure. If X is metrizable, then the converse holds.

Corollary. \mathbf{R}^{ω} in the box topology is not metrizable.

- *Definition.* Let $f_n: X \rightarrow Y$ be a sequence of functions with Y a metric space with metric d. We say the sequence (f_n) <u>converges uniformly</u> to the function $f: X \rightarrow Y$ if, for all $\varepsilon > 0$, there exists N such that $d(f_n(x), f(x)) < \varepsilon$ for all n > N and $x \in X$.
- *Note.* Let $f_n: X \rightarrow \mathbf{R}$. (f_n) converges uniformly to $f: X \rightarrow \mathbf{R} \Leftrightarrow$ the sequence $(f_n) \in \mathbf{R}^X$ converges to f in the uniform metric.
- *Definition.* Let p: X \rightarrow Y be surjective. p is a <u>quotient map</u> if U \subset Y is open if and only if p⁻¹(U) is open in X.
- *Definition.* Let X be a space and Y a set. Let p: X \rightarrow Y be onto. Then the <u>quotient topology</u> on T, T_Y is given by $T_Y = \{V \mid p^{-1}(V) \text{ is open in } X\}.$

Theorem. The quotient topology on Y is the finest topology such that p is continuous.

- *Definition.* Let $f: X \rightarrow Y$. If f(U) is open whenever U is open, then f is an <u>open map</u>. If f(C) is closed whenever C is closed, then f is a <u>closed map</u>.
- *Proposition.* If p: $X \rightarrow Y$ is surjective, continuous, and either open or closed, then it is a quotient map.

Facts. Let p: $X \rightarrow Y$ and q: $X \rightarrow X^*$ be quotient maps.

• The typical open set of X^{*} is a collection of equivalence classes whose union is open in X.

- If A is a subspace of X, the restriction $p_0: A \rightarrow p(A)$ need not be a quotient map. If A is a saturated open (closed) set or p is open (closed), then p_0 is a quotient map.
- The composite of quotient maps is a quotient map.
- Any Cartesian product of quotient maps might not be a quotient map.
- X^{*} need not be Hausdorff, even if X is.
- If g: $X \rightarrow Z$ is constant on each $p^{-1}(\{y\}), y \in Y$, there exists f: $Y \rightarrow Z$ such that $g = f^{\circ} p$. f is continuous or a quotient map if and only if g is.

Definition. A topological group is a group, G, which is also a topological space that satisfies the T_1 axiom, such that group multiplication and inversion are continuous maps.

Facts. Let G be a topological group.

- Let C be closed in G and $a \in G$. Then Ca, aC, and aC^{-1} are closed.
- Let U be open and S be any set in G. Then US, SU, and U^{-1} are open.
- G is regular.
- Let N be the component of the identity in G. Then N is a normal subgroup.
- If N is the component of the identity, then G/N is totally disconnected.

Connectedness

Definition. Let X be a topological space. A <u>separation</u> of X is a pair of subsets of X that are disjoint, non-empty, and open, whose union is X.

Definition. If there is no separation of X, then X is <u>connected</u>.

Theorem. Suppose $A \subset X$ is connected and $A \subset B \subset A$ -closure. Then B is connected.

Theorem. The image of a connected space under a continuous map is connected.

Theorem. A finite product of connected spaces is connected.

- *Theorem.* An infinite product of connected spaces is connected in the product topology, but not in the uniform or box topology.
- *Definition.* A simply ordered set, L, with more than one element is a <u>linear continuum</u> if (1) L has the least upper bound property, and (2) if x < y, there exists $z \in L$ such that x < z < y.
- *Theorem.* If L is a linear continuum with the order topology, then L and any intervals and rays in L are connected.

Definition. Let $x, y \in X$. A path from x to y is a continuous map f: [a, b] $\rightarrow X$ such that f(a) = xand f(b) = y. A space X is <u>path-connected</u> if there is a path between every pair of points in X.

Note. Path connected implies connected, but not vice versa.

Theorem. $S_{\Omega} \times [0, 1)$ is well-ordered. Remove the smallest element, a_0 . Then the remainder, L, is the "long line". L is path-connected and locally homeomorphic to **R**, but cannot be imbedded in any **R**ⁿ.

Definition. Given a topological space X, we may define an equivalence relation on X, where $x \sim y$ if there is some connected subspace of X containing both x and y. We call the equivalence classes of this relation the <u>components</u> of X.

Theorem. The components of X are connected disjoint subsets of X whose union is X, such that each non-empty connected subspace of X intersects only one subset.

Definition. A <u>path component</u> is defined by the equivalence relations where $x \sim y$ if x and y are connected by a path.

Fact. Components are always closed in X. Components are open if there are finitely many components (**Q** is a counterexample).

Definition. X is <u>locally connected</u> at $x \in X$ if, for each neighborhood U of x, there is a connected neighborhood of x contained in U. X is <u>locally path connected</u> at x if each neighborhood of x contains a path connected neighborhood of x.

Note. Locally path connected implies locally connected.

Theorem. X is locally connected \Leftrightarrow for each open set U in X, each component of U is open in X.

Theorem. X is locally path connected \Leftrightarrow for each open U in X, each path component of U is open in X.

Note. If X has a basis of connected sets, it is locally connected.

Theorem. Each path component of X lies in a component of X. X is locally path connected if and only if the components and the path components are the same.

Definition. X is <u>weakly locally connected</u> at x if, for every open neighborhood UU of x, there

exists a connected subspace of x that is contained in U that contains a neighborhood of x. *Proposition.* If X is weakly locally connected at each point, then X is locally connected.

Compactness

Definition. Let X be a topological space. Let A be a collection of subsets of X. A <u>covers</u> X if the union of all the sets in A is X. A is an <u>open cover</u> if each element of A is open in X.

Definition. A space X is compact if every open covering contains a finite subcovering.

Lemma. Let Y be a subspace of X. Then Y is compact \Leftrightarrow every open covering of Y be sets open in X contains a finite subcover of Y.

Theorem. Every compact subspace of a Hausdorff space is closed.

Theorem. The image of a compact set under a continuous map is closed.

Theorem. A subspace $A \subset \mathbf{R}^n$ is compact \Leftrightarrow A is closed and bound in the Euclidean (or square) metric.

Theorem (Extreme Value). Let $f: X \rightarrow Y$ be continuous. Let Y be an ordered set. If X is compact, then there exist c, $d \in X$ such that $f(c) \le f(x) \le f(d)$ for all $x \in X$.

Tube Lemma. Consider $X \times Y$ with Y compact. If $N \subset X \times Y$ is open and contains a slice $x_0 \times Y$ then N contains some tube $W \times Y$ where W is an open neighborhood of x_0 in X.

Note. If G is a topological space, with A closed and B compact, then AB is closed.

Definition. A collection, *C*, of subsets of X has the <u>finite intersection property</u> if, for every finite subcollection, $\{C_1, ..., C_n\}$, their intersection is non-empty.

Theorem. X is compact \Leftrightarrow for every collection, C, of closed sets in X with the finite intersection property, the intersection of these sets is non-empty.

Corollary. A collection of nested sets in a compact space has a point in common.

Definition. A space X is <u>limit point compact</u> if every infinite subset of X has a limit point in X. *Theorem.* Every compact space is limit point compact.

Definition. Let (x_n) be a sequence of points in X. Let $n_1 < n_2 < ...$ be an infinite sequence of increasing integers. Then the sequence (x_{ni}) is a <u>subsequence</u>.

Definition. A space X is <u>sequentially compact</u> if every sequence has a convergent subsequence. *Note.* Sequential compactness is also weaker than compactness.

Theorem. If X is metrizable, then compactness, limit point compactness, and sequential compactness are equivalent.

Definition. X is locally compact at $x \in X$ if there is some compact subspace that contains a neighborhood of x.

Note. Compact implies locally compact.

Theorem. X is locally compact Hausdorff \Leftrightarrow there exists Y such that (1) X is a subspace of Y,

(2) Y - X consists of a single point, and (3) Y is compact. Any two such Y are homeomorphic, with the homeomorphism equal to the identity on X.

Definition. Such a Y is the <u>one-point compactification</u> of X.

Note. To construct Y, we add a point, ∞ , such that set are open if they are open in X or they are the complement of a compact set in X.

Countability Axioms

Definition. A <u>countable basis</u> at a point is a countable subset of basis elements such that any neighborhood of that point contains one of these basis elements.

Definition. X is <u>first-countable</u> if there is a countable basis at each $x \in X$.

Definition. X is second-countable if the topology of X has a countable basis.

definition. X is <u>Lindelof</u> of every open cover contains a countable subcover.

Definition. A topology has a <u>countable dense subset</u>, A, is A is countable and A-closure = X.

Note. D is dense if every non-empty open set in X intersects D. a is a limit point of S if every non-empty open set about a intersects S.

Separability Axioms

Definition. Suppose one-point sets are closed in X. X is <u>regular</u> if, for each pair consisting of a point $x \in X$ and a closed set $B \subset X$, $x \notin B$, there exist disjoint open sets containing x and B respectively. X is <u>normal</u> if, for each pair of disjoint closed sets A and B, there exist disjoint open sets containing A and B.

Note. Normal \Rightarrow Regular \Rightarrow Hausdorff.

Lemma. Let X be a topological space in which one-point sets are closed. X is regular \Leftrightarrow for all x \in X and any neighborhood U of x, there exists a neighborhood V of x such that V-closure \subset U. X is normal \Leftrightarrow for all closed sets A \subset X and open sets U containing A, there exists an open set V such that A \subset V and V-closure \subset U.

Example. Metrizable spaces are normal.

Theorem. Subspaces and products of Hausdorff/regular spaces are Hausdorff/regular.

Algebraic Topology

Definition. Let f, f': X \rightarrow Y be continuous maps. f is <u>homotopic</u> of f' if there is a continuous map F: X × I \rightarrow Y such that F(x, 0) = f(x) and F(x, 1) = f'(x).

Lemma. Homotopy is an equivalence relation.

- *Definition.* Let f, f': [0, 1] → Y be continuous maps. f is <u>path homotopic</u> to f' is there is a continuous map F: [0, 1] × [0, 1] → Y such that F(x, 0) = f(x), F(x, 1) = f'(x), F(0, t) = f(0) = f'(0) and F(1, t) = f(1) = f'(1).
- *Definition.* The composition of two paths, f^*g , is given by f^*g : $[0, 1] \rightarrow X$, with $f^*g(t) = f(2t)$ or g(2(t-1/2)).
- *Definition.* Let $x_0 \in X$. The set of path homotopy classes of loops based at x_0 , under path composition, is called the <u>fundamental group</u> relative to the basepoint x_0 , and is denoted by $\pi_1(X, x_0)$.
- *Definition.* Given a pointed set (X, x_0) , $\pi_0(X, x_0)$ is the pointed set of path components.

Proposition. Let f: (X, x_0) \rightarrow (Y, y_0), g: (W, w_0) \rightarrow (X, x_0), with f ° g = h. Then f_{*}: $\pi_1(X, x_0) \rightarrow \pi(Y, y_0)$ and g_{*}: $\pi_1(W, w_0) \rightarrow \pi_1(X, x_0)$ are homomorphisms, as is $h_* = f_* \circ g_*$. The same is true with π_0 instead of π_1 .

- *Definition.* If X is path connected and $\pi_1(X, x_0) = \{[x_0]\}$, then X is <u>simply connected</u>. If $\pi_0(X, x_0) = \{X\}$, then X is <u>path connected</u>.
- Definition. Let α be a path from x_0 to x_1 . Define $\alpha : \pi_1(X, x_0) \rightarrow \pi_1(X, x_1)$ by $\alpha'([f]) = [\alpha$ -reverse]*[f]*[α].
- *Definition.* Let p: E \rightarrow B be continuous and surjective. Let U \subset B be open. U is <u>evenly covered</u> by p if p⁻¹(U) = \cup {V_{α}} where each V_{α} is open, homeomorphic to U, and disjoint from all other V_{α'}.
- *Definition.* If every $b \in B$ has a neighborhood that is evenly covered, then we call p a <u>covering</u> map and E a <u>covering space</u> of B.

Note. If p: $E \rightarrow B$ is a covering map and B is regular, so is E.

- *Theorem.* Let $p: E \rightarrow B$ be continuous and onto, with U evenly covered. If U is connected, then the partition of $p^{-1}(U)$ into slices is unique.
- *Definition.* Let $p: E \rightarrow B$ be any map. If f is a continuous map, f: $X \rightarrow B$, a <u>lifting</u> of f is a map $f_{\sim}: X \rightarrow Y E$ such that $p \circ f_{\sim} = f$.
- *Lemma.* Let $p: E \rightarrow B$ be a covering map. Let $p(e_0) = b_0$. Then any path f: [0, 1] $\rightarrow B$ beginning at b_0 has a unique lifting to a path f~ beginning at e_0 in E.

- *Lemma.* Let p: $E \rightarrow B$ be a covering map. Let $p(e_0) = b_0$. Let F: $I \times I \rightarrow B$ be continuous, with $F(0, 0) = b_0$. There is a unique lifting of F to the continuous map $F \sim I \times I \rightarrow E$, such that $F \sim (0, 0) = e_0$. If F is a path homotopy, so is $F \sim I$.
- *Theorem.* Let $p: E \rightarrow B$ be a covering map, with $p(e_0) = b_0$. Let f and g be two paths in B from b_0 to b_1 . Let f~ and g~ be their liftings to paths in E beginning at e_0 . If f and g are path homotopic, the f~ and g~ end at the same point and are path homotopic.
- *Definition.* Let p: E \rightarrow B be a covering map. Let $p(e_0) = b_0$. Given $[f] \in \pi_1(B, b_0)$, let f~ be the lifting of f to a path in E beginning at e_0 . Let $\phi([f]) = f\sim(1)$. Then $\phi: \pi_1(B, b_0) \rightarrow p^{-1}(b_0)$ is a well-defined set map. ϕ is the lifting correspondence derived from a covering map p.
- *Theorem.* If E is path connected, $\phi: \pi_1(B, b_0) \rightarrow p^{-1}(b_0)$ is surjective. If E is simply connected, then ϕ is bijective.
- *Theorem.* If p: E \rightarrow B is a covering map with basepoints e_0 and b_0 , let $F = p^{-1}(b_0)$. Then, $* \rightarrow \pi_1(F, e_0) \rightarrow \pi_1(E, e_0) \rightarrow \pi_1(B, b_0) \rightarrow \pi_0(F, e_0) \rightarrow \pi_0(E, e_0) \rightarrow \pi_0(B, b_0) \rightarrow *$ is a long exact sequence.
- *Note.* If G is a topological group, $H \subseteq G$ a closed subgroup such that p: $G \rightarrow G/H$ is a covering map, the sequence above is a long exact sequence of groups.
- *Homotopy Lifting Lemma.* Let p: $E \rightarrow B$ be a covering map with $p(e_0) = b_0$. Let F: $I \times I \rightarrow B$ be continuous with $F(0, 0) = b_0$. Then F can be uniquely lifted to F~: $I \times I \rightarrow E$ which is continuous and has F~(0, 0) = e_0 . If F is a path homotopy, then so is F~.
- *Definition.* If $A \subset X$, a <u>retraction</u> of X onto A is a continuous map r: $X \rightarrow A$ such that $r \mid A$ is the identity map. If such an r exists, we call A a <u>retract</u> of X.
- *Lemma.* If A is a retract of X then the homomorphism of fundamental groups induced by inclusion, j: A \rightarrow X, is injective.
- *Theorem.* There is no retraction of B^2 onto S^1 .
- *Lemma.* Let h: $S^1 \rightarrow X$ be continuous. The following are equivalent:
 - h is nulhomotopic
 - h extends to a continuous map, k: $B^2 \rightarrow X$.
 - h* is the trivial homomorphism of fundamental groups.
- *Corollary.* The inclusion map, j: $S^1 \rightarrow \mathbf{R}^2 \mathbf{0}$ is not nulhomotopic. Neither is the identity map, i: $S^1 \rightarrow S^1$.
- *Definition.* A vector field on B^{n+1} is an ordered pair $(\mathbf{x}, \mathbf{v}(\mathbf{x}))$ where $\mathbf{x} \in B^{n+1}$, $\mathbf{v}: B^{n+1} \rightarrow \mathbf{R}^{n+1}$ is continuous. We call a vector field <u>non-vanishing</u> if $\mathbf{v}(\mathbf{x}) \neq \mathbf{0}$ for all \mathbf{x} . (So $\mathbf{v}: B^{n+1} \rightarrow \mathbf{R}^{n+1} \mathbf{0}$.)
- *Theorem.* Given a non-vanishing vector field on B^2 , there exists a point on S^1 where the vector field points directly outward and a point on S^1 where it points directly outward.
- *Theorem (Brouwer Fixed Point).* If $f: B^2 \rightarrow B^2$ is continuous, then there is a point $x \in B^2$ with f(x) = x.
- *Corollary.* Let A be a 3 by 3 matrix of positive real numbers. Then A has a positive real eigenvalue.
- *Theorem (Fundamental Theorem of Algebra).* A polynomial equation, $x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0 = 0$ of degree n > 0 with real or complex coefficients has at least one real or complex root.
- *Proof.* Scale the equations so that any root must be in B^2 . If there is no root, this defines a non-vanishing vector field, which must be nulhomotopic on S^1 . Consider the map $f(z) = z^n$ on S^1 . These maps are homotopic, but one is nulhomotopic and the other isn't.
- *Theorem.* If h: $S^1 \rightarrow S^1$ is continuous and preserves antipodes, then h is not nulhomotopic. *Theorem (Borsuk-Ulam).* Given a continuous map, f: $S^2 \rightarrow \mathbf{R}^2$, there exists $\mathbf{x} \in S^2$ with $f(\mathbf{x}) = f(-\mathbf{x})$.
- *Definition*. Let A be a subspace of X. A is a <u>deformation retract</u> of X if the identity map of X is homotopic to the retraction of X onto A, such that each point of A remains fixed during the homotopy.

- *Definition.* Let $f: X \rightarrow Y$ and $g: Y \rightarrow X$ be continuous. Suppose $g \circ f: X \rightarrow X$ is homotopic to the identity map on X and $f \circ g: Y \rightarrow Y$ is homotopic to the identity map on Y. Then f and g are <u>homotopy equivalences</u>, and each is the <u>homotopy inverse</u> of the other. Then X and Y are of the same <u>homotopy type</u>.
- *Theorem.* Suppose $X = U \cup V$, where U and V are open in X. Suppose $U \cap V$ is path connected and $x_0 \in U \cap V$. Let i, j be the inclusion maps of U and V into X. Then the induced homomorphisms of fundamental groups, i_{*}: $\pi_1(U, x_0) \rightarrow \pi_1(X, x_0)$ and j_{*}: $\pi_1(V, x_0) \rightarrow \pi_1(X, x_0)$, generate $\pi_1(X, x_0)$.
- *Definition.* A <u>surface</u> is a Hausdorff space with a countable basis, so that each point has a neighborhood homeomorphic to an open subset of \mathbf{R}^2 .

Theorem. $\pi_1(X \times Y, x_0 \times y_0)$ is isomorphic to $\pi_1(X, x_0) \times \pi_1(Y, y_0)$.

- *Definition.* The projective plane, P^2 , is the quotient space obtained by identifying each point, **x**, of S^2 with $-\mathbf{x}$.
- *Definition.* T#T, the double torus, is obtained by cutting circular holes in two tori and attaching them along the holes.
- *Theorem.* Let A_1 and A_2 be closed connected subsets of S^2 . Let $A_1 \cap A_2 = \{a, b\}$. Let $C = A_1 \cup A_2$. Then C separates S^2 .
- *Corollary.* Any two closed sets in S^2 that intersect in exactly two points must miss at least two points of S^2 .
- *Theorem (Jordan Curve)*. Let C be a simple closed curve in S^2 . Then C separates the sphere into exactly two components, of which C is the common boundary.
- *Theorem (Schoenflies).* If the simple closed curve C separates S^2 into two components U and V, then U-closure and V-closure are homeomorphic to B^2 . Let h be a homeomorphism of C with the equator of S^2 . The h extends to a homeomorphism k: $S^2 \rightarrow S^2$.
- *Definition*. <u>Theta space</u> is the union of three arcs, all of which intersect at the two common endpoints.
- *Lemma*. Let X be a theta space contained in S². Let A, B, C be arcs with $A \cup B \cup C = X$. Then X separates S² into exactly three components, with boundaries $A \cup B$, $A \cup C$, and $B \cup C$. *Theorem.* K_{3,3} cannot be imbedded in the plane.
- *Definition.* Let h: $S^1 \rightarrow \mathbb{R}^2 0$ be continuous. Then $h_*: \pi_1(S^1) \rightarrow \pi_1(\mathbb{R}^2 0)$ maps the generator of S^1 to some element, d, of Z. d is the <u>winding number</u> of h.
- *Lemma.* Let h: $S^1 \rightarrow \mathbf{R}^2 \mathbf{0}$ with C = Im h, so that h is a homeomorphism of S^1 with a simple closed curve. Then, if **0** is in the unbounded component, the winding number is 0, and if **0** is in the bounded component, the winding number is +1 or -1.

Lemma. The inclusion map, j: C \rightarrow S² – p – q induces an isomorphism of fundamental groups.

- Definition. Let f be a loop in \mathbb{R}^2 with $a \in \mathbb{R}^2$ Im f. Set g(s) = (f(s) a)/||f(s) a||. Then g is a loop in S¹. Let $g \sim$ be a lifting of g. The <u>winding number</u> of g is $g \sim (1) g \sim (0) = n(f, a)$.
- *Definition.* Let F: I × I be continuous, with F(0, t) = F(1, t), so that $f_t(s) = F(s, t)$ is a loop for all t. Then F is a <u>free homotopy of loops</u>.
- *Lemma.* Let \overline{f} be a loop in $\mathbf{R}^2 a$. If \overline{f} is freely homotopic to \overline{f} through loops in $\mathbf{R}^2 a$, then n(f, a) = n(f', a).

Lemma. Let α be a path from a to b in $\mathbf{R}^2 - f(\mathbf{I})$. Then n(f, a) = n(f, b).

- *Fact.* $n(f, a) = (\int_f dz/(z a))/2\pi i.$
- *Theorem (Siefert-Van Kampen).* Let $X = U \cup V$, where U and V are open in X. Let U, V, and U \cap V be path connected. Let $x_0 \in U \cap V$. Let H be any group, with homomorphisms $\phi_1: \pi_1(U, x_0) \Rightarrow H$ and $\phi_2: \pi_1(V, x_0) \Rightarrow H$. Let $i_1: \pi_1(U \cap V, x_0) \Rightarrow \pi_1(U, x_0), i_2: \pi_1(U \cap V, x_0) \Rightarrow \pi_1(V, x_0), j_1: \pi_1(U, x_0) \Rightarrow \pi_1(U \cup V, x_0)$, and $j_2: \pi_1(V, x_0) \Rightarrow \pi_1(U \cup V, x_0)$ be the homomorphisms induced by inclusion. If $\phi_1 \circ i_1 = \phi_2 \circ i_2$, then there exists a unique homomorphism, $\Phi: \pi_1(X, x_0) \Rightarrow H$, such that $\Phi \circ j_1 = \phi_1$ and $\Phi \circ j_2 = \phi_2$.

- Theorem (Classical Seifert-Van Kampen). Let $j: \pi_1(U, x_0) * \pi_1(V, x_0) \rightarrow \pi_1(X, x_0)$ extend the homomorphisms induced by inclusion, $j_1: \pi_1(U, x_0) \rightarrow \pi_1(X, x_0)$ and $j_2: \pi_1(V, x_0) \rightarrow \pi_1(X, x_0)$. Then j is surjective and its kernel is the least normal subgroup of $\pi_1(U, x_0) * \pi_1(V, x_0)$ that contains $\{i_1^{-1}(g)i_2(g) \mid g \in \pi_1(U \cap V, x_0)\}$.
- *Corollary.* If $U \cap V$ is simply connected, k: $\pi_1(U, x_0) * \pi_1(v, x_0) \rightarrow \pi_1(X, x_0)$ is an isomorphism.
- *Corollary.* If V is simply connected, $\pi_1(V, v_0) = \{e\}$, and there is an isomorphism k: $\pi_1(U, x_0)/N \rightarrow \pi_1(X, x_0)$, where N is the least normal subgroup of $\pi_1(U, x_0)$ containing the image of $i_1: \pi_1(U \cap V, x_0) \rightarrow \pi_1(U, x_0)$.
- *Definition.* Suppose X is a space that is the union of closed subspaces, $X_1, ..., X_n$, with a single point $\{p\} = \bigcap X_i$. Then X is called the <u>wedge</u> of the spaces $X_1, ..., X_n$; we write $X = X_1 \lor ... \lor X_n$.
- *Theorem.* Suppose that, for each i, that p is the deformation retract of an open set $W_i \subset X_i$. Then, $\pi_1(X, p)$ is the external free product of $\{\pi_1(X_i, p)\}$ relative to the monomorphisms induced by inclusion.
- *Definition.* Let $X = \bigcup X_{\alpha}$. The topology of X is <u>coherent</u> with the subspaces X_{α} when a subset C $\subset X$ is closed if $C \cap X_{\alpha}$ is closed in X_{α} for each α .
- *Theorem.* Let X be a wedge of the circles S_{α} ; let p be the common point of these circles. Then $\pi_1(X, p)$ is a free group with system of free generators $\{f_{\alpha} | f_{\alpha} \text{ generates } \pi_1(S_{\alpha}, p)\}$.
- *Definition.* Let n > 1. Let $r: S^1 \rightarrow S^1$ be rotation by the angle $2\pi/n$. Form a quotient space from B^2 by identifying the points of S^1 that are images of each other under rotation. This is the <u>n-fold dunce cap</u>.
- *Theorem.* The fundamental group of the n-fold dunce cap is \mathbf{Z}_{n} .
- *Definition.* Let X and Y be disjoint normal spaces, A closed in X, and f: A \rightarrow Y be continuous. The <u>adjunction space</u>, Z_f, is the quotient space obtained from X \cup Y by identifying a \in A with f(a) and every point of f⁻¹({f(a)}).
- *Theorem.* Let X be a Hausdorff space. Let A' be a closed, path-connected subspace of X. Suppose h: $B^2 \rightarrow X$ is continuous, maps Int B^2 onto X – A' and $S^1 = Bd B^2$ into A'. Let $q \in S^1$ and a = h(q). Let k: $(S^1, q) \rightarrow (A', a)$ be the restriction of h. then, the homomorphism $i_*: \pi_1(A', a) \rightarrow \pi_1(X, a)$ induced by inclusion is surjective with kernel the least normal subgroup of $\pi_1(A', a)$ that contains Im k*.

Note. In the theorem above, the space obtained by adding B^2 is the adjunction space of B^2 and X. *Note*. We may use this to show that any group is the fundamental group of some space.

- Definition. For a path-connected space, its <u>first homology group</u> is $H_1(X) = \pi_1(X, x_0)/[\pi_1(X, x_0), \pi_1(X, x_0)]$.
- *Definition.* Let P be a polygonal region. Given orientations and labels of edges of P, we may completely describe this labelling by $w = a_1^{\pm 1} \dots a_k^{\pm 1}$, where a_i is the label on the ith edge (it is possible that $a_i = a_j$) and the exponent is +1 if the orientation is counterclockwise and -1 otherwise, This is called a <u>labelling scheme</u> of length n for P.
- *Note.* A surface is obtained from a polygonal region by making a quotient space that identifies edges with the same labels, so that their orientations match.

Note. The following operations on polygonal schemes will not change the surface:

- Cut: Replace y_0y_1 by y_0c , $c^{-1}y_1$.
- Paste: Replace y_0c , $c^{-1}y_1$ by y_0y_1 if c is not used elsewhere in the scheme.
- Relabel: Replace all occurrences of one label by another (not-yet-used!) label, or change the signs on all the exponents of one label.
- Permute: Replace y_0y_1 by y_1y_0 .
- Flip: Write the entire scheme backwards.
- Cancel: Replace $y_0 cc^{-1}y_1$ by y_0y_1 .

Definition. Let w be a proper labelling scheme. w is of <u>torus type</u> if each label in w appears once with exponent +1 and once with exponent -1. Otherwise, w is of <u>projective type</u>.

Theorem (Classification of Surfaces). Let X be the quotient space obtained from a polygonal region by pasting its edges together in pairs. Then X is homeomorphic to one of the following:

- Sphere: $S^2 aa^{-1}bb^{-1}$
- Projective Plane: P^2 abab
- M-fold Connected Sum of Projective Planes: $P_m (a_1a_1)...(a_ma_m), m \ge 2$
- N-fold Connected Sum of Tori: $T_n (a_1b_1a_1^{-1}b_1^{-1})...(a_nb_na_n^{-1}b_n^{-1}), n \ge 1$

Covering Spaces

Definition. Let $p: E \rightarrow B$ and $p': E' \rightarrow B$ be covering maps. They are <u>equivalent</u> if there exists a homeomorphism h: $E \rightarrow E'$ such that $p = p' \circ h$. h is called an <u>equivalence of covering spaces</u>.

Theorem. Let $p: E \rightarrow B$ and $p': E' \rightarrow B'$ be covering maps, with $p(e_0) = p'(e_0') = b_0$. There is an equivalence $h: E \rightarrow E'$ such that $h(e_0) = e_0' \Leftrightarrow p_*(\pi_1(E, e_0)) = p_*'(\pi_1(E', e_0'))$.

Theorem. Let p: E \rightarrow B and p': E' \rightarrow B' be covering maps, with $p(e_0) = p'(e_0') = b_0$. There is an equivalence h: E \rightarrow E' \Leftrightarrow p*($\pi_1(E, e_0)$) and p*'($\pi_1(E', e_0')$) are conjugate in $\pi_1(B, b_0)$.

Definition. A covering space is a universal covering space if it is simply connected.

Theorem. If E and E' are universal covering maps of B, the E and E' are equivalent.

- *Lemma*. Let p, q, and r be continuous maps, with $p = r \circ q$. If p and r are covering maps, so is q. If p and q are covering maps, so is r. If q and r are covering maps and Im p = Im r has a universal covering space, p is a covering map.
- *Theorem.* Suppose E is a universal covering space of B and Y is any other covering space. Then E is a covering space of Y.
- *Lemma*. Let p: E \rightarrow B be a covering map with p(e₀) b₀. If E is simply connected, then b₀ has a neighborhood U such that the homomorphism induced by inclusion, i*: $\pi_1(U, b_0) \rightarrow \pi_1(B, b_0)$ is trivial.

Definition. Let p: $E \rightarrow B$ be a covering map. We call the group of equivalences of E with itself the group of covering transformations, C(E, p, B).

Theorem. $N(H_0) / H_0$ is isomorphic to C(E, p, B).

Corollary. If H_0 is normal, $N(H_0) = \pi_1(B, b_0)$ and $C(E, p, B) = \pi_1(B, b_0)/H_0$.

Definition. When $p_*(\pi_1(E, e_0))$ is normal in $\pi_1(B, b_0)$, p is a <u>regular covering map</u>.

Theorem. If p: X \rightarrow B is a regular covering map and G = C(X, p, B), then there is a homeomorphism k: X/G \rightarrow B, such that p = k ° π , where π : X \rightarrow X/G is projection.

- *Note*. X/G is the quotient space obtained from identifying the orbit of a point under the covering transformations to a single point.
- *Definition.* A space B is <u>semilocally simply connected</u> if each $b \in B$ has a neighborhood U such that the homomorphism $i_*: \pi_1(U, b) \rightarrow \pi_1(B, b)$ induced by inclusion is trivial.
- *Theorem.* Let B be path connected, locally path connected, and semilocally simply connected. Let $b_0 \in B$. Given a subgroup H of $\pi_1(B, b_0)$ there exists a space E and a covering map p: $E \rightarrow B$ with $e_0 \in p^{-1}(\{b_0\})$ such that $p_*(\pi_1(E, e_0)) = H$.
- *Proof (Construction).* Let *P* be the set of all paths in B beginning at b₀. Define an equivalence relation on *P* by $\alpha \sim \beta$ if $\alpha(1) = \beta(1)$ and $[\alpha * \beta$ -reverse] \in H. Let E be the set of all equivalence classes, α #. Define p: E \rightarrow B by p(α #) = $\alpha(1)$. Topologize E with the basis B(U, α) = {($\alpha * \delta$)# | δ is a path in U beginning at $\alpha(1)$ }.

Exact Sequences, Chain Complexes, and Homology Groups

Definition. A <u>pointed set</u> (set with base point) is a pair (S, s₀). If G is a group, we assume (G, e) is the pointed set. If f: (S, s₀) \rightarrow (T, t₀), we mean f: S \rightarrow T and f(s₀) = t₀. Then, ker f = {s | f(s) = t₀}.

- *Definition.* Let $\{A_i\}$ be a countable sequence of groups and $\{d_i: A_i \rightarrow A_{i-1}\}$ be homomorphisms. The sequence is a <u>chain complex</u> if each A_i is abelian and $d_i \circ d_{i+1}$ is trivial (that is, Im $d_{i+1} \subset$ Ker d_i).
- *Definition.* Let $\{A_i\}$ be a sequence of groups and $\{d_i: A_i \rightarrow A_{i-1}\}$ be homomorphisms. The sequence is <u>exact at A_k </u> if Im $d_{k+1} = \text{Ker } d_k$. It is <u>exact</u> if it is exact at each A_k .
- *Definition.* Let $C = (\{C_i\}; \{d_i\})$ be a chain complex. The <u>ith homology group</u> of *C* is $H_i(C) = \text{Ker} d_i / \text{Im } d_{i+1}$.
- *Corollary. C* is exact \Leftrightarrow H_i(*C*) is trivial for all i.
- *Definition.* Let ({C_i}; {c_i}) and ({D_i}; {d_i}) be chain complexes. A <u>chain map</u>, $\phi = \{\phi_i: C_i \rightarrow D_i\}$ is a collection of homomorphisms such that $\phi_i \circ c_{i+1} = d_{i+1} \circ \phi_{i+1}$.
- *Definition.* If $\phi: C \rightarrow D$ is a map of chain complexes, $\phi_{i^*}[x] = [\phi_i(x)]$ defines a map $\phi_{i^*}: H_i(C) \rightarrow H_i(D)$.
- Definition. Let $B = (\{B_i\}; \{b_i\})$ and $C = (\{C_i\}; \{c_i\})$ be chain complexes. Let f, g: $B \rightarrow C$ be chain maps. If there exists $D_n: B_n \rightarrow C_{n+1}$ for all n, such that $(c_{n+1}D_n + D_{n-1}b_n)(\sigma) = f(\sigma) g(\sigma)$ for all $\sigma \in B_n$, then $\{D_n\}$ is a <u>chain homotopy</u> from f to g, and f and g are <u>chain homotopic</u>.
- *Theorem.* If f, g: $B \rightarrow C$ are chain homotopic, then $H_n f = H_n g$ for every n. (That is, $(f_*([\sigma]) = g_*([\sigma]).)$
- *Definition.* If f: $B \rightarrow C$ and g: $C \rightarrow B$ are chain maps, f and g are <u>chain homotopy inverses</u> of each other if f ° g: $C \rightarrow C$ and g ° f: $B \rightarrow B$ are chain homotopic to their respective identity maps.
- *Corollary.* If f and g are chain homotopy inverses, then $H_nf = f_*$ and $H_ng = g_*$ are inverse homomorphisms and $H_n(C) = H_n(D)$.
- *Lemma* (*Zig-Zag or Fundamental Lemma of Homological Algebra*).. Suppose we have chain complexes $C, D = (\{D_i\}, \partial), E$, and chain maps f: $C \rightarrow D$ and g: $D \rightarrow E$, such that $0 \rightarrow C_n \rightarrow D_n$ $\rightarrow E_n \rightarrow 0$ is exact for all n. We define $\partial_*: H_n E \rightarrow H_{n-1}C$ by $\partial_*[x] = [y]$ where $x \in Z_n(E)$, $y \in C_{n-1}$ and there exists $d \in D_n$ with $g_n(d) = x$ and $f_{n-1}(y) = \partial(d)$. Then ∂_* is a well-defined homomorphism, and the following sequence is exact: ... $\rightarrow H_n E \rightarrow H_{n-1}C \rightarrow H_{n-1}D \rightarrow H_{n-1}E \rightarrow$...
- *Lemma.* Let $C = (\{C_n\}; \{\partial_{C_n}\})$ and $D = (\{D_n\}; \{\partial_{D_n}\})$ be chain complexes. Then, $C \oplus D = (\{C_n \oplus D_n\}, \{(\partial_{C_n}, \partial_{D_n})\})$ is a chain complex, and $H_n(C \oplus D) = H_n(C) \oplus H_n(D)$.
- *Lemma*. β_q is the dimension of $H_q(K, \mathbf{Q})$ as a vector space over \mathbf{Q} . *Simplicial Homology*
- *Definition.* Let $S = \{s_0, ..., s_n\}$ be a set of vertices (none of which lie in the hyperplanes spanned by the others). The n-simplex with vertex set S is $\sigma(S) = \{\sum t_i s_i \mid \sum t_i = 1, t_i > 0\}$.
- *Definition.* A simplicial complex, K, is a collection of simplices, such that (1) every face of a simplex in the collection is also in the collection, (2) every two simplices intersect in one common face (which may be \emptyset), and (3) the topology on the union is coherent with the topologies of the simplices. We define K_n to be the set of n-simplices in K.
- *Definition.* Since, each simplex is a subspace of \mathbf{R}^n for some n, the union of all the simplices is a subspace $|\mathbf{K}|$ of \mathbf{R}^{∞} . $|\mathbf{K}|$ is called the <u>geometric realization</u> of K.
- *Definition.* The unique simplex that a point lies in the interior of (ie., for which all the $t_i \neq 0$) is called the <u>carrier</u> of x, car(x).
- Definition. If $A = \sigma(S)$ is a simplex, $S = \{v_0, ..., v_k\}$, the <u>barycenter</u> of A is $A^{\hat{}} = (v_0 + ... + v_k) / (k+1)$.
- *Definition.* If $A_0 < ... < A_k$ are nested simplices in a simplicial complex K, we write $\sigma(A_0, ..., A_k)$ for the simplex with vertices at the barycenters of each A_j , which is $\sigma(A_0^{\uparrow}, ..., A_k^{\uparrow})$. The collection of all such simplices is called the <u>barycentric subdivision</u> of K, or K¹.
- *Definition.* If K is a simplicial complex, the <u>mesh</u>, $\mu(K)$, is the maximum of the diameters of the simplices in the complex.

- *Lemma.* If K is a simplicial complex such that the dimension of K and K¹ are both n, the $\mu(K^1) \le \mu(K) n/(n+1)$.
- *Definition.* A simplicial map, f: $K \rightarrow L$, takes simplices of K linearly onto simplices of L. Equivalently, $f_0: K_0 \rightarrow L_0$ and whenever $\sigma(S) \in K$, $f(\sigma(S)) = \sigma(f(S)) \in L$.
- *Definition.* A simplicial map, f: K \rightarrow L, determines a simplicial map, $|f|: |K| \rightarrow |L|$ by $|f|(\sum t_i s_i) = \sum t_i f(s_i)$.
- *Definition.* If f: $|K| \rightarrow |L|$ is a continuous map, a <u>simplicial approximation</u> is a simplicial map, s: $K \rightarrow L$, such that $|s|(x) \in car(f(x))$ for all $x \in |K|$.
- *Note.* Vertices are their own carriers, so |s|(u) = f(u) when f(u) is a vertex in |L|.
- *Theorem (Simplicial Approximation).* If K is finite and if f: $|K| \rightarrow |L|$ is continuous, then for sufficiently large n, there is a simplicial approximation, s: $K^n \rightarrow L$ to f: $|K^n| \rightarrow |L|$.
- *Note.* A simplicial approximation is always homotopic to the original function.
- *Definition.* We define $C_n(K)$ to be the set of finite formal linear combinations of K_n with coefficients in \mathbb{Z} .
- *Definition.* Let $v_0, ..., v_n$ be an ordered set of vertices of a simplex. We define $\partial(v_0, ..., v_n) = \sum (-1)^i (v_0, ..., v_{i-1}, v_{i+1}, ..., v_n)$ and $\partial(v_0) = 0$.
- *Note.* $\partial(\partial(v_0, ..., v_n)) = 0$ for all n. So $(\{C_n(K)\}, \{\partial: C_n(K) \rightarrow C_{n-1}(K)\})$ is a chain complex.
- *Definition.* Suppose K is a simplicial complex and v is not in the hyperplane spanned by any finite subset of K₀. For each $S = \sigma(v_0, ..., v_n) \in K$, let $D_n S = \sigma(v, v_0, ..., v_n)$. The <u>cone</u> on K, CK, with vertex v is the simplicial complex which contains K and $D_n S$ for each $S \in K$.
- *Theorem.* Let K be any simplicial complex. Let v_0 be the cone vertex of CK. Let f, g: CK \rightarrow CK be simplicial maps (which induce chain maps). Let f be the identity map and $g(v) = v_0$ for all $v \in CK_0$. Then f is chain homotopic to g.
- *Theorem.* If K is a simplicial complex, then $H_0(CK) = \mathbb{Z}$ and $H_n(CK) = 0$ otherwise.
- *Corollary.* If K is a k-simplex together with all of its faces, $H_0(K) = Z$ and $H_n(K) = 0$ otherwise (since this is the cone on the (k-1)-simplex).
- *Definition.* Let f, g: $K \rightarrow L$ be simplicial maps. f and g are <u>contiguous</u> if, for every simplex $\sigma \in K$, there exists a simplex $\tau \in L$ which contains $f(\sigma)$ and $g(\sigma)$.
- *Proposition.* If f and g are contiguous, they are chain homotopic.
- *Definition.* If K is a simplicial complex, we have the augmented chain: ... → $C_2(K) \rightarrow C_1(K) \rightarrow C_0(K) \rightarrow Span\{\emptyset\} = \mathbb{Z} \rightarrow 0$, where $\varepsilon: C_0(K) \rightarrow Span\{\emptyset\}$ is defined by $\varepsilon(v) = 1$. (We write these as $C_n \sim (K)$.) The resulting homology groups are the <u>reduced homology groups</u> of K.
- *Definition.* Let K' be the simplicial complex obtained from K be a single stellar subdivision (this adds a single barycenter vertex, v). We define $\chi: C(K) \rightarrow C(K')$ by $\chi(v_0, ..., v_k) = \sum (-1)^i (v, v_0, ..., v_{i-1}, v_{i+1}, ..., v_k)$ if v is added to a face of $(v_0, ..., v_k)$ and $\chi(S) = S$ otherwise.
- Definition. Let θ : K' \rightarrow K be the simplicial map that sends the added vertex to a vertex in its simplex.
- *Theorem.* θ and χ are chain homotopy inverses.
- *Lemma.* Suppose X is a simplicial complex, A and B subcomplexes with union X, and $N = A \cap B$. Consider $0 \rightarrow Cn(N) \rightarrow C_n(A) \oplus C_n(B) \rightarrow C_n(X) \rightarrow 0$, with $\phi_n: C_n(N) \rightarrow C_n(A) \oplus C_n(B)$ defined by $\phi_n(c) = (i_A(c), -i_B(c))$ and $\psi_n: C_n(A) \oplus C_n(B) \rightarrow C_n(X)$ defined by $\psi_n(c, d) = j_A(c) + c_A(c) + c_B(c)$.
- $j_B(d)$, where i_A , i_B are inclusions from N, and j_A , j_B are inclusions into X. This sequence is exact.
- *Theorem (Mayer-Vietoris).* Let A and B be subcomplexes of X. Let $X = A \cup B$ and $N = A \cap B$. Then the following sequence is exact: ... $\rightarrow H_n N \rightarrow H_n A \oplus H_n B \rightarrow H_n X \rightarrow H_{n-1} N \rightarrow ... \rightarrow H_0 X \rightarrow 0$.
- *Definition.* Let K be a simplicial complex. Let α_q be the number of q-simplices in K. We define the <u>Euler characteristic</u> of K by $\chi(K) = \sum (-1)^q \alpha_q$.

- *Note.* If we puncture a surface, we remove a single 2-simplex, which decreases the Euler characteristic by 1. If we puncture two surfaces and then glue them together along the missing triangle, this decreases the number of 2-simplices by 2, decreases the number of 1-simplices by 3 and decreases the number of 3-simplices by 3; this means the Euler characteristic for the connected sum is the sum of the Euler characteristics minus 2.
- *Theorem.* Let K be a simplicial complex. Then, $\chi(K) = \Sigma(-1)^q \beta_q$.
- Definition. Let K be a triangulation of Sⁿ, h: $|K| \rightarrow S^n$. Let [z] be a generator of $H_n(S^n) = \mathbb{Z}$. Given a continuous map f: Sⁿ \rightarrow Sⁿ, the induced homomorphism, (h⁻¹fh)*: $H_nK \rightarrow H_nK$ maps [z] to $\lambda[z]$. We call λ the <u>degree</u> of f.
- *Facts.* Homotopic maps have the same degree. The degree of the identity is 1. The degree of a homeomorphism is ± 1 . The degree of the constant map is 0. The degree of the antipodal map is $(-1)^{n+1}$. The degree of a map with no fixed points is $(-1)^{n+1}$. deg(f ° g) = deg(f)deg(g).
- *Definition.* $C_q(K, \mathbb{Z}_2)$ is the set of all formal linear combinations of q-simplices in K with coefficients in \mathbb{Z}_2 . This induces the <u>mod-2 homology</u>.
- *Note.* The boundary of a simplex in the mod-2 homology is the sum of its q-1 dimensional faces. *Theorem (Borsuk-Ulam).* Any map f: $S^n \rightarrow \mathbf{R}^n$ must identify a pair of antipodal points of S^n (ie., f(x) = f(-x)).
- *Theorem.* Let $f: S^n \rightarrow S^n$ be a map which preserves antipodal points. Then f has odd degree. *Theorem.* If $f: S^m \rightarrow S^n$ sends antipodal points to antipodal points, $m \le n$.
- Definition. If X is a compact triangulable space, with f: $X \rightarrow X$, fix a triangulation h: $|K| \rightarrow X$ and a simplicial approximation to $f^h = h^{-1}fh$, s: $|K^m| \rightarrow |K|$. Let χ : $C(K, \mathbf{Q}) \rightarrow C(K^m, \mathbf{Q})$ be the subdivision chain map. Then f^h induces a map: $f^h_q = s_q \circ \chi_q$: $C_q(K) \rightarrow C_q(K)$ for each q, and thus homomorphisms $f^h_{q^*}$: $H_q(K, \mathbf{Q}) \rightarrow H_q(K, \mathbf{Q})$. We may consider this as a linear map of vector spaces. We define the <u>Lefschetz number</u> as $\Lambda_f = \Sigma(-1)^q$ trace $(f^h_{q^*})$. (Note that if $[\sigma_1], ..., [\sigma_n]$ is a basis and $f^h_{q^*}([\sigma_i]) = ... + \lambda_i[\sigma_i] + ..., trace<math>(f^h_{q^*}) = \Sigma \lambda_i$.)
- *Theorem (Hopf Trace).* If $\phi: C(K, \mathbf{Q}) \rightarrow C(K, \mathbf{Q})$ is a chain map, then $\Sigma(-1)^q$ trace $\phi_q = \Sigma (-1)^q$ trace ϕ_{q^*} .
- *Theorem (Lefschetz Fixed Point).* If $\Lambda_f \neq 0$ then f has a fixed point.
- *Proposition.* If g is the constant map, $\Lambda_g = 1$.
- *Corollary*. Homotopic maps have the same Lefschetz number. So any nulhomotopic map has a Lefschetz number of 1, and thus a fixed point.
- *Theorem.* If X is a compact, triangulable space with the homology type of one point space, then every map f: $X \rightarrow X$ has a fixed point.
- *Theorem.* Let $f: S^n \rightarrow S^n$. Then $\Lambda_f = (-1)^n (\deg f) + 1$.
- *Definition*. Let X be a compact Hausdorff space. Take a finite open cover, *F*, of X. Define a simplicial complex called the <u>nerve</u> of *F*, N(*F*), by letting the vertices be the elements of *F* and adding the simplex $(U_0, ..., U_n)$ if $U_0 \cap ... \cap U_n \neq \emptyset$.
- *Note.* If *F* is the cover of |K| be open stars of K, then N(F) is isomorphic to K.
- *Definition.* We say X is <u>finite-dimensional</u> if there exists $m \in \mathbb{Z}$ such that every open cover of X has a refinement, *F*, with dim(N(*F*)) $\leq m$. The <u>dimension</u> of X is the smallest such m.
- *Note.* N(*F*) has dimension m \Leftrightarrow m+1 is the largest integer such that some m+1 elements of *F* have a non-empty intersection.
- *Note*. The dimension of a simplex (the largest k, such that there is a k-simplex) agrees with this definition.
- *Theorem.* If A is a compact, Hausdorff subspace of X, then dim $A \le \dim X$.
- *Theorem.* Let A, B, X be compact Hausdorff, with $X = A \cup B$. Then, dim $X = \max{\dim A, \dim B}$.
- *Theorem (Imbedding).* Every compact metrizable space of dimension m can be imbedding in \mathbf{R}^{2m+1} .

Fact. If *F* covers X, then $|N(F \cup \{\emptyset\})| = |N(F)| \cup \{p\}$. *Fact.* If *F* covers X, then $N(F \cup \{X\}) = C(N(F))$.

Examples of Topologies

Countable Complement Topology: $\{U \mid X - U \text{ is countable of all of } X\}$ Discrete Topology: All subsets are open. Indiscrete Topology: Only X and \emptyset are open. Standard Topology on **R**: $\{(a, b) | a < b\}$ is a basis Standard Topology on \mathbf{R}^2 : Open balls or open rectangles are a basis. Lower Limit Topology on \mathbf{R} : {[a, b)} is a basis K-Topology on **R**: $K = \{1/n\}$. $\{(a, b)\} \cup \{(a, b) - K\}$ is a basis Subspace Topology Product Topology Dictionary Order topology on two ordered sets (impose the order (x, y) < (x', y') when X < x' or x = x' and y < y'. Use the order topology on that The Long Line: $S_{\Omega} \times [0, 1)$, minus the lowest point, in the dictionary order (S_{Ω} is an uncountable well-ordered set, every section of which is countable) - every point has a neighborhood homeomorphic to an interval of the real line, but the long line is not homeomorphic to **R**. The infinite broom: Connected every point (q, 0), q rational, to (1, 0) with a line. The infinite comb: The interval [0, 1] with spikes up at 0 and each 1/n. Cantor's Leaky Tent The Infinite Cage

The Hawaiian earring

Fundamental and First Homology Groups

Theorem. The fundamental group of S^1 is isomorphic to **Z** under +.

Theorem. The fundamental group of $T = S^1 \times S^1$ is isomorphic to $Z \times Z$.

Theorem. Let X be the n-fold connected sum of tori. Then $H_1(X)$ is a free abelian group of rank 2n.

Theorem. Let X be the n-fold connected sum of projective planes. Then $H_1(X)$ is the free abelian product of a group of order 2 and a free abelian group of rank n-1.

Examples of Covering Spaces

 S^1 , by **R** P^2 , by S^2 The figure 8, by the infinite antenna, or by a line with circles cglued to it

Some Homologies

The point: $H_0(^*) = \mathbb{Z}$, $H_n(^*) = 0$ otherwise. $S^n (n > 0)$: $H_n(S^n) = H_0(S^n) = \mathbb{Z}$. $H_k(S^n) = 0$ otherwise. P^2 : $H_1(P^2) = \mathbb{Z}_2$, $H_0(P^2) = \mathbb{Z}$, $H_k(P^2) = 0$ otherwise Torus: $H_2(T) = H_0(T) = \mathbb{Z}$, $H_1(T) = \mathbb{Z} \oplus \mathbb{Z}$, $H_k(T) = 0$ otherwise.