Modern Algebrall

Orthogonal Transformations and Rotations
Definition. A red n” nmatrix is orthogonal if AT = A™. The group of orthogonal
matrices is O,, the orthogonal group.
Definition. The subgroup of the orthogonal group in which determinants are +1 is called
the special orthogonal group, SO..
Theorem. A matrix represents a rotation in R? or R® if and only if it isin SO, or SOs.
Proposition. The following conditionsonann” n matrix are equivalent:
A is orthogonal
Multiplication by A preserves dot products — <Ax, Ay> = <x, y>.
The columns of A are mutually orthogonal unit vectors.
Proposition. Let m: R" = R". The followins are equivalent:
m is arigid motion which preserves the origin
m preserves dot products
m is left multiplication by an orthogonal matrix
Corollary. A rigid motion which fixes the origin is a linear operator.
Proposition. Every rigid motion is the composition of alinear operator and a trandation.
That is, m(x) = Ax + b, for an orthogonal matirx A and some vector b.
Definition. An orthogonal operator is orientation-preserving if its determinat is +1 and
oritentaion-reversing if its determinant is —1.
Theorem. We may classify the rigid motions of the plane as:
Orientation-preserving motions:
o Trandation: parallel motion of the plane by avectora:p > p +a
0 Rotation: Rotates the plane by an angle about some point
Orientation-reversing motions:
0 Reflection about alinel
0 Glide Reflection: Reflecting about aline | and then trandating by a
nonzero vector a parallel to |
Lemma. Every rigid motion can be written asm = tar gor m = tar o, Whereta is
translation by a vector a, r g isrotation by q isr isreflection. This expression is unique.
Note. The rulesfor computing with these rigid motions are:

talh = tarp
m=1

I qta=tal g, Wherea =r 4(a)
rta=tar, wherea =r(a)
© Mg=lgf

Proposition. The subgroup of motionsfixing p isO’ = tpOtp'l.

Theorem (Fixed Point Theorem). Let G be afinite subgroup of the group of motions M.
Thereisapoint p in the plane which is left fixed by every element of G,; that is, g(p) =
pforalgl G.

Theorem. Let G be a subgroup of the O (rigid motions which fix the origin). Then G is
either C,, the cyclic group of order n (generated by arotation), or G is Dy, the dihedrd
group (generated by arotation and reflection).



Definition. The dihedral group, Dy, is generated by the elements x and y subject to the
relations x" = 1, y* = 1, and yx=xy.

Definition. A subgroup G of M isdiscrete if it does not contain arbitrarily small rotations
or rotations.

Definition. Let G be agroup of rigid motions. The trandation group, Lg, of G isthe set
of vectors, a, suchthat t,T G.

Proposition. Every discrete subgroup L of R? is of the form:

L ={0}
L={ma|ml Z}
L={ma+nb|mnil Z}

Definition. Let G be agroup of rigid motions. The point group, G-bar, of G isthe image
of GinO. If Gisdiscrete, soisits point group.

Proposition. Let G be a discrete subgroup of M, with translation group L and point
group G-bar. The elements of G-bar carry L to itself.

Proposition. Let HI1 O be afinite subgroup of the group of symmetries of alattice, L.
Then every rotation inH hasorder 1, 2, 3,4, or 6, soH = C, or D, withn=1, 2, 3, 4,
or 6.

Definition. Aneementv 1 L isprimitiveif it isnot an integer multiple of another vector
inL.

Corollary. Let L bealattice and v aprimitive lement of L. Thereisan elementw 1 L
so that (v, w) isalattice basis.

Theorem. Every finite subgroup of SOz is one of the following:

- Cy: the cyclic group of rotations by 2p/k about afixed line
Dy: the symmetries of aregular k-gon
T: the tetrahedral group (12 rotations which carry atetrahedron to itself)
O: the octahedral group (24 rotations which carry either a cube or an octahedron
to itself)
I: the icosahedral group (60 rotations which carry either aregular dodecahdron or
aregular icosahedron to itself)

Abstract Group Operations

Definition. Let G beagroup and Saset. Anoperation of G on Sisarulefor combining
elementsgl Gandsl Ssothatgsi S, suchthat 1s=sforal s, and (gg')s=g(g'9)
for al g, g, and s. With thisoperation, Siscaled a G-set.

Definition. LetsT S, with SaG-set. The orbit of sistheset Os={s T S|s =gsfor
somegl G}.

Proposition. Sisaunion of digoint orbits.

Definition. If Sconsists of asingle orbit, G operates transitively on S.

Definition. The stabilizer of sT Sisthe subgroup Gs={gl G|gs=¢}.

Proposition. xs=ys< x'y1 Gs

Definition. Let H be a subgroup of agroup G. The set of left cosets, aH, of G is called
the coset space, and may be written G/H. G/H is a G-set, under the operation g(aH) =
(9a)H.

Proposition. Let SbeaG-set. LetsT S. Let H be the stabilizer of s and Os the orbit of
s. Thenj : G/IH - Osgiven by j (aH) = asis bijective.




Proposition. Let SbheaG-set. Letsi S. Lets =as. Then, the set of elements of such
that gs= s isthe left coset aGs. Gs = aGa .

Proposition (Counting Formula). LetsT S. Then, |G| = |G4 |O4 = (order of stabilizer)
(order of orbit). Equivalently, [O4 =[G: G¢. Because the orbits partition S, we find |S|
=|O4| + ... +|On|, where each summand divides |G|

Proposition. Let H and K be subgroups of agroup G. Then, [H: H C K] £[G : K].

Definition. A permutation representation of agroup G is a homomorphismj : G 2 S.

Proposition. Thereis a bijective correspondence between operations of G on S and
homomorphisms from G to the group of permutations of S. We definej (g) asleft
multiplication by g.

Definition. If j : G = Perm(S) isinjective then we say the operation of G on Sisfaithful.

Proposition. GLy(Z7) isisomorphic to Ss.

Proposition. The map f: S3 2> Aut(S;) defined by f(g) = conjugation by g is bijective.

Proposition. The group of automorphisms of the cyclic group of order p isisomorphic to
the multiplicative group, Z, .

More Group Theory

Theorem (Cayley’s Theorem). Every finite group isisomorphic to a subgroup of a
permutation group. In particular, if |G| = n, then G isisomorphic to a subgroup of S..

Definition. The stabilizer of an element x T G under conjugation is called the centralizer
of x: Z(x) ={g1 G|gx=xg}.

Definition. The orbit of an element under conjugation is called its conjugacy class.

Theorem (Class Equation). |G| =|Cy| + ... + |Cy| where each |Ci| is a distinct conjugacy
class. Each summand divides |G| and at least one (the one of the identity) is exactly 1.

Proposition. A element isin the center of agroup if and only if its centralizer Z(x) isthe
whole group.

Definition. Let G be agroup where |G| = p*, k > 0. Then Giscalled ap-group.

Proposition. The center of ap-group G has order greater than 1.

Proposition. Let G beap-group. Let Sbeafinite G-set. If p does not divide the order
of S, then thereis afixed point for the action of G (that is, an element whose stabilizer
iIsG).

Proposition. Every group of order p? is abelian.

Corollary. Every group of order p® isisomorphic to either Zp, or Z,~ Zp,

Lemma. If anormal subgroup of G contains an element X, it contains the conjugacy class
of X. Thus every normal subgroup is the union of conjugacy classes and its size isthe
sum of the orders of these conjugacy classes.

Theorem. The icosahedral group is ssimple (and isomorphic to As).

Definition. Let SbeaG-set. If Ul S thengU ={gu|ul U}.

Proposition. Let SbeanH-set. Let U1 S. H stabilizes U if and only if U isthe union
of H-orbits.

Proposition. Let U be a subset of agroup G. The order of Stab(U) under the operation
of left multiplication divides the order of U. (Since U isaunion of right cosets.)

Definition. The stabilizer of a subgroup H of G under conjugation is the normalizer of H,
N(H)={gT G|gHg"=H}.

Note. N(H) isthe largest subgroup containing H as a normal subgroup.

Corollary. If Hisany subgroup of G, |G| = IN(H)| |conjugate subgroups of H.




Theorem (First Sylow Theorem). Let G beagroup, |G| = p°m, (m, p) = 1. Thereisa
subgroup of G whose order is p°.

Corollary (Cauchy’s Theorem). If aprime p dividesthe order of G, then G contains an
element of order p.

Corollary. The only groups of order 6 are Cs and Ds.

Definition. Let G be agroup of order p°m (p prime, p not dividingm, e3 1). The
subgroups H of G of order p° are called Sylow p-subgroups.

Theorem (Second Sylow Theorem). Let K be a subgroup of G whose order is divisible by
p. Het H be a Sylow p-subgroup of G. Thereis a conjugate subgroup h’ = gHg™ such
that K C H’ isa Sylow subgroup of K.

Corollary. If K isany subgroup of G which is a p-group, then K is contained in a Sylow
p-subgroup of G.

Corollary. All the Sylow p-subgroups are conjugate.

Theorem (Third Sylow Theorem). Let |G| = p°m. Let s be the number of Sylow p-
subgroups. Thens|m, and s° 1 (mod p).

Example. Every group of order 15 iscyclic. (Show that both the 5- and 3-subgroups
must be normal.)

Example. There are two isomorphism classes of groups of order 21 (The other one comes
from having 7 conjugate Sylow 3-subgroups. Then, x” = y* =1, and yxy™* = X' for some
I, since the 7-subgroup is normal and thus conjugates to itself.)

Example. A group of order 12 must be of the form:

- C3T Cy
C G G
A4 (the alternating group)
Ds
. the group generated by x and y with x* = y* = 1, xy = y*x.

Proposition. Let s, t be permutations which act on digoint setsof indices. Then st =
ts.

Proposition. Every permutation which is not the identity is a product of digoint cyclic
permutations; these cyclic permutations are unigue up to order.

Proposition. Let s be the cyclic permutation (i ... ix). Let g beany permutation. Let
q(i) =jr. Thengsq™ = (s ... j). If p=si...snisthe product of disjcint cycles, then
apg™ = (gs19™)...(gsng™) is the product of disjoint cycles.

Corollary. Two permutations are conjugate elements of the symmetric group if and only
if their digoint cycle decompositions have the same order.

Theorem. Let p beprime. Let H be asubgroup of the symmetric group S, whose order is
divisble by p. If the Sylow p-subgroup of H is normal, then the elements of H can be
relabeled so that H is contained in the group of operators of the form f(x) = cx+a, in the
field Z,.

Bilinear Forms
Definition. Let V be avector space over afield F. A bilinear form on V is afunction of
two variables, <,>: V"~ V - F, such that:
<V + Vo, W> = <V, W> + <Vp, W>
<cv, W> = C<V, W> = <V, CW>



<V, Wy + Wo> = <V, Wi> + <V, Wo>

Definition. A form <,>issymmetric if <v, w> = <w, v>for all v and w.

Definition. A form <,> is skew-symmetric if <v, v>=0for adl v. (Equivaently, <v, w>
=-<w, v>for al vand w, if thefield is not characteristic 2.)

Definition. Let Abeann’ nmatrix in F. Then <X, Y>= X"AY isabilinear form.

Proposition. <X, Y>= X'AY is symmetric if and only if A isasymmetric matrix.

Proposition. Let A be the matrix of a bilinear form with respect to abasis. The matrices
A’ which represent the same form with respect to a different basisare A’ = QAQ'
where QT GL(F).

Corollary. The matrices A which represent aform equivalent to a dot product (in some
basis) are A = P'"P where Pisinvertible.

Definition. A form is positive definite if <X, X>> 0 for al X.

Theorem. The following properties of areal n” n matrix, A, are equivalent:

A represents dot product with respect to some basis of R".
Thereisan invertible matrix PT GL(R) such that A = P'P.
A is symmetric and positive definite.

Definition. Vectorsv and w are orthogonal with respect to a symmetric form if <v, w> =
0.

Definition. A basisB = (v, ..., V) isan orthonormal basis with respect to aform <,> if
<vi, vi>=0wheni? jand <v;, vi>=1forali.

Theorem. Let <,> be a positive definite symmetric form on afinite-dimensional vector
space V. There exists an orthonormal basisfor V.

Proof. Use the Gram-Schmidt algorithm.

Theorem. Let A; be the upper lefti ™ i submatrix of area symmetricn” n matrix A. A
is positive definite if and only if det A; is positivefor eachi =1, ..., n.

Definition. A form <,> isindefinite if <v, v> can be positive or negative.

Proposition. Suppose <,> isnot identically zero. Then thereis avector, v, such that <v,
v>1 0.

Definition. Let W be a subspace of V. The orthogonal complement of W is given by W
={vl V|<v, W>=0}, which is the set of vectors orthogonal to every vector in W.

Definition. A vector vi V isanull vector if <v, w>=0foreveryw1 V. Thenull
space of the form isthe set of al null vectors. A form is non-degenerate if the null
spaceis{0}.

Proposition. Let A be the matrix of a symmetric form with respect to abasis. The null
gpace of thisform is the set of solutionsto AX = 0. Thus, the form is nondegenerate if
and only if A isnon-singular.

Proposition. Let W be asubspace of V. If <,> if nondegenerateon W, theV =W A W
That is, WC W' ={0} and W and W" span V.

Definition. An orthogonal basisB = (vs, ..., vy) for V with respect to aform <,>isa
basis such that <v;, vi> = 0 wheneveri® j.

Corollary. The matrix of aform isdiagonal if and only if the basisis orthogonal.
Theorem. Let <,> be asymmetric form on areal vector spaceV. Thereisabasisfor V,
(v, ..., Vn) such that <v;, vi>=0wheni? j and <vi, vi>is0, 1 or —1. In matrix form,
for any real symmetric matrix, thereisamatrix Q1 GL(R) such that QAQ' isa

diagona matrix with diagonal entriesO, 1 or —1.




Theorem (Sylvester’s Law of Inertia). The number +1, -1, and O’'sin the diagonal matrix
of aform are unique. (Sowecall (p, m) = (#of 1's, # of —1's) the signature of the
form.)

Definition. Let <,> be areal symmetric positive definite form. The vector space together
with this form is called a Euclidean space. The length of a vector is given by O<v, v> =
.

Definition. Let W be a subspace of a Euclidean space. ThenV =W A W". Then the
expressionv =w +w', withw 1 W and <w, w'>= 0. The orthogonal projection, p: V
-> W, isgivenby p(w +w’) = w.

Proposition. Let (wy, ..., w;) be an orthonormal basis of asubspace W. Letvi V. The
orthogonal projection p(v) of v onto W isthe vector p(v) = <v, wi>w; + ... + <V,W>W,.

Corollary. Let B = (b, ..., by) be an orthonormal basis for a Euclidean space. Then, v =
<V, Vi>Vi + ...+ <v,vp>Vn. That is, the coordinate vector is (<v, vi>, ..., <V, Vi)'.

Definition. If V isacomplex vector space, a hermitian form on V isafunction<,>: VvV~
V - C that satisfies the following properties:

Linearity in the second variable: <X, cY>=c<X, Y>,<X,Y1+Y>=<X,Y >+
<X, Y>>

Conjugate linearity in the first variable: <cX, Y>="¢<X, Y>, <X; + X3, Y>=
<X1, Y> + <Xy, Y>

Hermitian symmetry: <Y, X> =" <X,Y > (conjugate)

Note. Let A be acomplex matrix. Then A definesaform: <X, Y>="X'AY.

Definition. The adjoint of amatrix A isA* =" AT (A-conjugate’). A matrix is hermitian
or self-adjoint if A = A*.

Corollary. A rea matrix is symmetric if and only if it is hermitian.

Corollary. Let A bethe matrix of a hermitian form. The matrices which represent the
same form with respect to a different basis are those of the form A’ = QAQ*, Q1
GL1(C).

Definition. A matrix Pisunitary if P*P =1, or P* = P,

Definition. The set of al unitary matrices is the unitary group, U.

Corollary. A change of basis preserves the standard hermitian product —that is, X*Y =
X'*Y’ —if and only if the matrix change of basisis unitary.

Proposition. Let T be alinear operator on a hermitian spacwe V. Let M be the matrix of
T with respect to an orthonormal basis. The matrix M is hermititan if and only if <v,
Tw> = <Tv,w>foral v,w1 V. Then, T iscalled a hermitian operator. The matrix M
isunitary if and only if <v, w> = <Tv, Tw>foralv,w1 V. Then T iscalled aunitary
operator.

Proposition. Let M be the matrix of areal operator T with respect to an orthonormal
basis. The matrix M is symmetric if and only if <v, Tw>=<Tv, w>foral v,w1 V.

If so, T iscaled asymmetric operator. The matrix M is orthogonal if and only if <v,
w>=<Tv, Tw>foral v,w1 V. If so, T iscalled an orthogonal operator.

Theorem (Spectral Theorem). Let T be a hermitian operator on a hermitian vector space
V. Thereisan orthonormal basis of V consisting of eigenvectorsof T. If M isthe
matrix of T, thereis a unitary matrix P such that PMP*is areal diagonal matrix.

Theorem (Spectral Theorem—real case). Let T be asymmetric operator on areal vector
space V with a positive definite biliear form. There is an orthonormal basis of




eigenvectors of T. If M isthe matrix of T, thereis an orthogonal matric PT O,® such
that PMP" is diagonal.

Proposition. The eigenvalues of a hermitian operator T are real numbers.

Corollary. The eigenvalues of areal symmetric matrix are real.

Definition. A conic if alocus of pointsin R? defined by a quadratic equation in two
variables: f(X, y) = a1X? + 2a1oXy + apoy” + bix + boy + ¢ = 0. Thislocusisan elipse, a
hyperbola, a parabola, or degenerate (apair of lines, asingle line, a point, and empty).

Definition. A quadratic form in n variables xy, ..., X, isapolynomial each of whose
terms has degree two in the varibles.

Note. Every quadratic form is of the form q(Xy, ..., Xn) = (X1, ..., Xn) A(Xg, ..., Xn)', where
A issymmetric. (a; isthe coefficient on x;?, &; is half the coefficient on x;x;.)

Theorem. The congruence classes of non-degenerate conicsin R? are:

Elllpse a11x12 + 822X22 -1=0
Hyperbola: a1xi> — aox>—1=0
Parabola: a11x12 —X2=0

Proof. Diagonalize the matrix of the quadratic part and then trandlate to remove som of
the linear and constant terms.

Theorem. The congruence classes of non-degenerate conicsin R are:

E”IpSOI ds: a11x12 + 822X22 + 833X32 -1=0

1-sheeted hyperboloids: a1X:? + @pX2> — 8g3Xa> —1 =0
2-sheeted hyperboloids: a;1x1% - apXo? — agaXs™- 1=0
Elliptic Paraboloids: apixi® + agoX? — X3 =0
Hyperbolic Paraboloids; a1x1% — @aX2” — X3 = 0.

Definition. A matrix M is caled normal if MM* = M*M.

Lemma. If M isnormal and Pis unitary, then M’ = PMP* isnormal.

definition. A normal operator, T: V = V isalinear operator whose matrix M is normal.

Theorem. A complex matrix is normal if and only if there is a unitary matrix such that
PMP* isdiagonal.

Corollary. Every conjugacy classin the unitary group contains a diagona matrix.

Theorem. Let V be avector space of dimension m over afield F. Let <,> be anon-
degenerate skew-symmetric form on V. The m isan even integer and tehreis a basis of
V such that the matrix A is of the form:

n= [0 1]
[l O]
whereOand | arem/2” m/2 matrices. Let A be anon-singular skew-symmetricm”™ m
matrix. Then miseven and thereisamatrix Q1 GLn(F) such that QAQ" is the matrix
N

Modules
Definition. Let R be acommutative ring with identity. Anr-module V is an abelian group with
law of composition +, together with a scalar multiplication R~ V > V, satisfying the following
axioms:
v=v
(rs)v =r(sv)
(rtv=rv+sv
rv+v)=rv+rv



Definition. Let R" be the set ofg R-vectors of length n. Thisisamdule and is called afree
module.

Example. Any abelian group (with composition written additively) is a Z-modulewith the
scalar multiplication: nv =V + ... + v (ntimes. Thus, any Z-module is an abelian
group, if we ignore its scalar multiplication.

Definition. A submodule of an R-module V is a nonempty subset of V whichis closed
under addition and scalar multiplication.

Proposition. The submodules of the R-module R* are the idedls of R.

Definition. A homomorphism, j : V = W of R-modulesis afunction that satisfiesj (v +
V)=j(v)+] (v)andj (rv) =r1j (v). A bijective homomorphism is an isomorphism.

Note. Ifj : V = W isahomomorphism, the kernel of | isasubmodule of VV and the
image of | isasubmodule of W.

Definition. Let W be a submodule of an R-module V. The quotient V/W is the additive
group of coset, [v] =v+W. Thisisan R-modluleif we deiner[v] =[rv].

Proposition. The definition of a quotient module is well-defined and creates an R-module.
The canonical map, p: V =2 V/W, p(v) = [v] is a surjective homomorphis, of R-
modules with kernel W.

Proposition (Mapping Property). Let f: V = V' be a homomorphism of R modules whose
kernel contains W. There is a unigue homomorphism f': V/W = V’ such that f = f'p.
Theorem (First Isomorphism Theorem). If ker f =W, thenf': V/W - V’ is an isomorphism

from V/W to Imf.

Theorem (Correspondence Theorem). There is a bijective correspondence between
submodules S/\W of V/W and the submodules S of V that contain W, defined by S=p°
HSW) and SIW = p(S). (VIW)/I(SIW) = (V/9).

Proposition. Theinvertiblen” n matrices with entriesin aring R are those matrices
whose determinant is a unit. They form a group GLx(R), called the general linear group
over R.

Definition. An ordered set (vy, ..., Vi) of elements of amodule V generatesV if every v 1
V can bewritten asv = rivy + ... + v, 11 R. Then, thev; are called generators. A
module V isfinitely generated if there exists afinite set of generators.

Definition. A finitely generated module is free if there is an isomorphismj : R" > V. A
free Z-module is also called a free abelian group.

Definition. A set of elements (va, ..., V) of amodule V isindependent if no nontrivia
linear combination of them isO; that is, if rivy + ... + rv, =0thenr; =0for al i.

Definition. A set of elementsisabasisif it isindependent and a generating set.

Proposition. A module has abasisif and only if itisfree.

Theorem. Let R be acommutative ring. Any two bases of afree R-module have the same
cardinality.

Definition. An elementary integer matrix corresponds to adding an integer multiple of a
row/column to another row/column, interchanging two rows/columns, or multiplying a
row/column by a unit.

Theorem. Let A beanm ™ ninteger matrix. There exist Q and P, which are products of
elementary integer matrices, such that QAP is diagonal, where the diagonal entries d;;
are nonnegative and d; | di+1 for al i.




Theorem. Let R be aEuclidean domain. Let A beanm ™ n matrix with entriesin R.
There are products Q and P of elementary R-matrices such that QAP is diagonal and
each diagonal entry divides the next.

Theorem. Letj : V = W be ahomomorphism of free abelian groups. There exists bases
of V and W such that the matrix of the homomorphism has diagonal form.

Thorem. Let S be asubgroup of afree abelian group W of rank m. Thereisabasis (wi,
..., Wy) of Wand abasis(s, ..., S)) of Ssuchthat n £ m, for each j £ nthereisa
positive integer d; such that u; = diw;, and d; | di+1 for i £ n-1.

Corallary. Every subgroup of afree abelian group of rank misfree and itsrank is at most
m.

Definition. If (v4, ..., Vm) are generators of an R-module V, equations of the form a;v; +
... + anVm = 0 are relations among the elements. The R-vector (ay, ..., an)' iscaled a
relation vector. A complete set of relationsis a set fo relation vectors such that any
other relation vector is alinear combination of the relation vectorsin the set.

Definition. Let] : W - W’ be a homomorphism of R-modules. The cokernel of | isthe
guotient module W’/(Im j ).

Definition. Letj : R"™> R™ be the homomorphism that is left multiplication by A. the
cokernel of j ispresented by the matrix A.

Corollary. If Aisanm’ n presentation matrix, the module it presents is isomorphic to
R"AR".

Proposition. Let A beanm ™ n presentation matrix for amodule V. The following
matrices present the same module V:

QAP*, where QT GLn(R) and PT GL.(R)

the matrix obtained by deleting a column of zeros (that relation tells us nothing)

the matrix obtained by deleting thei™ row and j™ column, if the ] column hasa 1
in the i™ place and a 0 everywhere else (that generator must always be 0).

Proposition. Let V bean R-module. Every submodule W of V isfinitely generated if and
only if there is no infinite strictly increasing chain of submodulesW; <W; < ... of V
(thisis the ascending chain condition).

Lemma. Letj : V = W be ahomomorphism of R-modules. If the kernel and image of |
arefinitely generated modules, so it V. If V isfinitely generated andj is surjective, W
isfinitely generated. Infact, if (va, ..., Vn) generates V, then (j (v1), ..., ) (Vn))
generates W.

Corollary. Let W be a submodule of an R-module V. If both W and V/W are finitely
generated, soisV.

Definition. A ring R is noetherian if every ideal of R isfinitely generated.

Corollary. Let R be anoetherian ring. Every proper ideal of R is contained in a maximal
ideal.

Proposition. Let V be afinitely generated model over a noetherian ring R. Then every
submodule of V isfinitely generated.

Theorem (Hilbert Basis Theorem). If aring R is noetherian, so isR[X].

Proposition. Let R be anoetherian ring, and let | be an ideal of R. The quotient ring R/I
is noetherian.

Lemma. The set of leading coefficients of the polynomialsin anidea of R[x], together
with O, isanided of R.




Lemma. Let P, bethe set of polynomialsin R[x] with degree less than n, together with
zero. Let S,=1C P,. Then S,isan R-submodule of the R-module P,.

Definition. Let Wj, ..., Wy be submodules of amodule V. V isthe direct sum of the
submodules Wi if each element v V can be written uniquely in the formwy + ... +
Wi, Wwithw; T Wi, WethenwriteV =W A ... A W,.

Theorem (Structure Theorem for Abelian Groups). Let V be afinitely generated abelian
group. ThenV isthe direct sum of finite syclic subgroups Cqj, ..., Ca and afree
abeliangroup L, whered, >1and d; [dz | ds | ...

Proof. Write the group asaZ-module. Diagonalize the presentation matrix. This gives
the necessary relations.

Corollary. Every finitely generated abelian group is the direct sum of cyclic groups of
prime power orders and of afree abliean group.

Theorem. SupposeV = Cg A ... A Cq. Thentheintegersds, ..., di are uniquely
determined by V. (The same istrue for the prime power orders.)

Theorem (Structure Theorem for modules over Euclidean domains). Let V be afinitely
generated R-module, with R a Euclidean domain. TheV isthe direct sum of cyclic
modules C; and afree module L. Equivalently, there is an isomorphism from V to
R/I(d)) " ...” R/(d) R

Definition. Let T: V = V be alinear operator on a vector space over afield F. We make
V aF[t]-module by f(t)v = f(T)(v) = a,T"(V) + ... + & T(V) + aV.

Definition. SupposeV isaF[t]-module. DefineT:V = V beT(v) =tv. ThenTisa
linear operator on V.

Corollary. F[t]-modules are equivalent to linear operators on F-vector spaces.



