
Modern Algebra II 
 
Orthogonal Transformations and Rotations 
Definition.  A real n × n matrix is orthogonal if AT = A-1.  The group of orthogonal 

matrices is On, the orthogonal group. 
Definition.  The subgroup of the orthogonal group in which determinants are +1 is called 

the special orthogonal group, SO2. 
Theorem.  A matrix represents a rotation in R2 or R3 if and only if it is in SO2 or SO3. 
Proposition.  The following conditions on an n × n matrix are equivalent: 

• A is orthogonal 
• Multiplication by A preserves dot products – <Ax, Ay> = <x, y>. 
• The columns of A are mutually orthogonal unit vectors. 

Proposition.  Let m: Rn à Rn.  The followins are equivalent: 
• m is a rigid motion which preserves the origin 
• m preserves dot products 
• m is left multiplication by an orthogonal matrix 

Corollary.  A rigid motion which fixes the origin is a linear operator. 
Proposition.  Every rigid motion is the composition of a linear operator and a translation.  

That is, m(x) = Ax + b, for an orthogonal matirx A and some vector b. 
Definition.  An orthogonal operator is orientation-preserving if its determinat is +1 and 

oritentaion-reversing if its determinant is –1. 
Theorem.  We may classify the rigid motions of the plane as: 

• Orientation-preserving motions: 
o Translation:  parallel motion of the plane by a vector a: p à p + a 
o Rotation:  Rotates the plane by an angle about some point 

• Orientation-reversing motions: 
o Reflection about a line l 
o Glide Reflection:  Reflecting about a line l and then translating by a 

nonzero vector a parallel to l 
 Lemma.  Every rigid motion can be written as m = taρθ or m = taρθr, where ta is 

translation by a vector a, ρθ is rotation by θ is r is reflection.  This expression is unique. 
Note.  The rules for computing with these rigid motions are: 

• tatb = ta+b 
• ρθρη = ρθ+η 
• rr = 1 
• ρθta = ta’ρθ, where a’ = ρθ(a) 
• rta = ta’r, where a’ = r(a) 
• rρθ = ρ-θr 

Proposition.  The subgroup of motions fixing p is O’ = tpOtp
-1. 

Theorem (Fixed Point Theorem).  Let G be a finite subgroup of the group of motions M.  
There is a point p in the plane which is left fixed by every element of G; that is,  g(p) = 
p for all g ∈ G. 

Theorem.  Let G be a subgroup of the O (rigid motions which fix the origin).  Then G is 
either Cn, the cyclic group of order n (generated by a rotation), or G is Dn, the dihedral 
group (generated by a rotation and reflection). 



Definition.  The dihedral group, Dn, is generated by the elements x and y subject to the 
relations xn = 1, y2 = 1, and yx=x-1y. 

Definition.  A subgroup G of M is discrete if it does not contain arbitrarily small rotations 
or rotations. 

Definition.  Let G be a group of rigid motions.  The translation group, LG, of G is the set 
of vectors, a, such that ta ∈ G. 

Proposition.  Every discrete subgroup L of R2 is of the form: 
• L = {0} 
• L = {ma | m ∈ Z} 
• L = {ma + nb | m, n ∈ Z} 

Definition.  Let G be a group of rigid motions.  The point group, G-bar, of G is the image 
of G in O.  If G is discrete, so is its point group. 

Proposition.  Let G be a discrete subgroup of M, with translation group LG and point 
group G-bar.  The elements of G-bar carry LG to itself. 

Proposition.  Let H ⊂ O be a finite subgroup of the group of symmetries of a lattice, L.  
Then every rotation in H has order 1, 2, 3, 4, or 6, so H = Cn or Dn, with n = 1, 2, 3, 4, 
or 6. 

Definition.  An element v ∈ L is primitive if it is not an integer multiple of another vector 
in L.   

Corollary.  Let L be a lattice and v a primitive element of L.  There is an element w ∈ L 
so that (v, w) is a lattice basis. 

Theorem.  Every finite subgroup of SO3 is one of the following: 
• Ck: the cyclic group of rotations by 2π/k about a fixed line 
• Dk: the symmetries of a regular k-gon 
• T: the tetrahedral group (12 rotations which carry a tetrahedron to itself) 
• O:  the octahedral group (24 rotations which carry either a cube or an octahedron 

to itself) 
• I: the icosahedral group (60 rotations which carry either a regular dodecahdron or 

a regular icosahedron to itself) 
 
Abstract Group Operations 
Definition.  Let G be a group and S a set.  An operation  of G on S is a rule for combining 

elements g ∈ G and s ∈ S so that gs ∈ S, such that 1s = s for all s, and (gg’)s = g(g’s) 
for all g, g’, and s.  With this operation, S is called a G-set. 

Definition.  Let s ∈ S, with S a G-set.  The orbit of s is the set Os = {s’ ∈ S | s’ = gs for 
some g ∈ G}. 

Proposition.  S is a union of disjoint orbits. 
Definition.  If S consists of a single orbit, G operates transitively on S. 
Definition.  The stabilizer of s ∈ S is the subgroup Gs = {g ∈ G | gs = s}. 
Proposition.  xs = ys ó x-1y ∈ Gs. 
Definition.  Let H be a subgroup of a group G.  The set of left cosets, aH, of G is called 

the coset space, and may be written G/H.  G/H is a G-set, under the operation g(aH) = 
(ga)H. 

Proposition.  Let S be a G-set.  Let s ∈ S.  Let H be the stabilizer of s and Os the orbit of 
s.  Then ϕ: G/H à Os given by ϕ(aH) = as is bijective. 



Proposition.  Let S be a G-set.  Let s ∈ S.  Let s’ = as.  Then, the set of elements of such 
that gs = s’ is the left coset aGs.  Gs’ = aGsa

-1. 
Proposition (Counting Formula).  Let s ∈ S.  Then, |G| = |Gs| |Os| = (order of stabilizer) 

(order of orbit).  Equivalently, |Os| = [G: Gs].  Because the orbits partition S, we find |S| 
= |O1| + … + |On|, where each summand divides |G|. 

Proposition. Let H and K be subgroups of a group G.  Then, [H : H ∩ K] ≤ [G : K]. 
Definition.  A permutation representation of a group G is a homomorphism ϕ: G à Sn. 
Proposition.  There is a bijective correspondence between operations of G on S and 

homomorphisms from G to the group of permutations of S.  We define ϕ(g) as left 
multiplication by g. 

Definition.  If ϕ: G à Perm(S) is injective then we say the operation of G on S is faithful. 
Proposition.  GL2(Z2) is isomorphic to S3. 
Proposition.  The map f: S3 à Aut(S3) defined by f(g) = conjugation by g is bijective. 
Proposition.  The group of automorphisms of the cyclic group of order p is isomorphic to 

the multiplicative group, Zp
*. 

 
More Group Theory 
Theorem (Cayley’s Theorem).  Every finite group is isomorphic to a subgroup of a 

permutation group.  In particular, if |G| = n, then G is isomorphic to a subgroup of Sn. 
Definition.  The stabilizer of an element x ∈ G under conjugation is called the centralizer 

of x: Z(x) = {g ∈ G | gx = xg}. 
Definition.  The orbit of an element under conjugation is called its conjugacy class. 
Theorem (Class Equation).  |G| = |C1| + … + |Cn| where each |Ci| is a distinct conjugacy 

class.  Each summand divides |G| and at least one (the one of the identity) is exactly 1. 
Proposition.  A element is in the center of a group if and only if its centralizer Z(x) is the 

whole group. 
Definition.  Let G be a group where |G| = pk, k > 0.  Then G is called a p-group. 
Proposition.  The center of a p-group G has order greater than 1. 
Proposition.  Let G be a p-group.  Let S be a finite G-set.  If p does not divide the order 

of S, then there is a fixed point for the action of G (that is, an element whose stabilizer 
is G). 

Proposition.  Every group of order p2 is abelian. 
Corollary.  Every group of order p2  is isomorphic to either Zpp or Zp × Zp. 
Lemma.  If a normal subgroup of G contains an element x, it contains the conjugacy class 

of x.  Thus every normal subgroup is the union of conjugacy classes and its size is the 
sum of the orders of these conjugacy classes. 

Theorem.  The icosahedral group is simple (and isomorphic to A5). 
Definition.  Let S be a G-set.  If U ⊂ S, then gU = {gu | u ∈ U}. 
Proposition.  Let S be an H-set.  Let U ⊂ S.  H stabilizes U if and only if U is the union 

of H-orbits. 
Proposition.  Let U be a subset of a group G.  The order of Stab(U) under the operation 

of left multiplication divides the order of U.  (Since U is a union of right cosets.) 
Definition.  The stabilizer of a subgroup H of G under conjugation is the normalizer of H, 

N(H) = {g ∈ G | gHg-1 = H}. 
Note.  N(H) is the largest subgroup containing H as a normal subgroup. 
Corollary.  If H is any subgroup of G, |G| = |N(H)| |conjugate subgroups of H|. 



Theorem (First Sylow Theorem).  Let G be a group, |G| = pem, (m, p) = 1.  There is a 
subgroup of G whose order is pe. 

Corollary (Cauchy’s Theorem).  If a prime p divides the order of G, then G contains an 
element of order p. 

Corollary.  The only groups of order 6 are C6 and D3. 
Definition.  Let G be a group of order pem (p prime, p not dividing m, e ≥ 1).  The 

subgroups H of G of order pe are called Sylow p-subgroups. 
Theorem (Second Sylow Theorem).  Let K be a subgroup of G whose order is divisible by 

p.  Het H be a Sylow p-subgroup of G.  There is a conjugate subgroup h’ = gHg-1 such 
that K ∩ H’ is a Sylow subgroup of K. 

Corollary.  If K is any subgroup of G which is a p-group, then K is contained in a Sylow 
p-subgroup of G. 

Corollary.  All the Sylow p-subgroups are conjugate. 
Theorem (Third Sylow Theorem).  Let |G| = pem.  Let s be the number of Sylow p-

subgroups.  Then s | m, and s ≡ 1 (mod p). 
Example.  Every group of order 15 is cyclic.  (Show that both the 5- and 3-subgroups 

must be normal.) 
Example.  There are two isomorphism classes of groups of order 21 (The other one comes 

from having 7 conjugate Sylow 3-subgroups.  Then, x7 = y3 = 1, and yxy-1 = xi for some 
i, since the 7-subgroup is normal and thus conjugates to itself.) 

Example.  A group of order 12 must be of the form: 
• C3 × C4 
• C2 × C2 × C3 
• A4 (the alternating group) 
• D6 
• the group generated by x and y with x4 = y3 = 1, xy = y2x. 

Proposition.  Let σ, τ be permutations which act on disjoint sets of indices.  Then στ = 
τσ. 

Proposition.  Every permutation which is not the identity is a product of disjoint cyclic 
permutations; these cyclic permutations are unique up to order. 

Proposition.  Let σ be the cyclic permutation (i1 … ik).  Let q be any permutation.  Let 
q(ir) = jr.  Then qσq-1 = (j1 … jk).  If p = σ1…σn is the product of disjoint cycles, then 
qpq-1 = (qσ1q

-1)…(qσnq
-1) is the product of disjoint cycles. 

Corollary.  Two permutations are conjugate elements of the symmetric group if and only 
if their disjoint cycle decompositions have the same order. 

Theorem.  Let p be prime.  Let H be a subgroup of the symmetric group Sp whose order is 
divisible by p.  If the Sylow p-subgroup of H is normal, then the elements of H can be 
relabeled so that H is contained in the group of operators of the form f(x) = cx+a, in the 
field Zp. 

 
Bilinear Forms 
Definition.  Let V be a vector space over a field F.  A bilinear form on V is a function of 

two variables, <,>: V × V à F, such that: 
• <v1 + v2, w> = <v1, w> + <v2, w> 
• <cv, w> = c<v, w> = <v, cw> 



• <v, w1 + w2> = <v, w1> + <v, w2> 
Definition.  A form <,> is symmetric if <v, w> = <w, v> for all v and w.   
Definition.  A form <,> is skew-symmetric if <v, v> = 0 for all v.  (Equivalently, <v, w> 

= - <w, v> for all v and w, if the field is not characteristic 2.) 
Definition.  Let A be an n × n matrix in F.  Then <X, Y> = XTAY is a bilinear form. 
Proposition.  <X, Y> = XTAY is symmetric if and only if A is a symmetric matrix. 
Proposition.  Let A be the matrix of a bilinear form with respect to a basis.  The matrices 

A’ which represent the same form with respect to a different basis are A’ = QAQT 
where Q ∈ GLn(F). 

Corollary.  The matrices A which represent a form equivalent to a dot product (in some 
basis) are A = PTP where P is invertible. 

Definition.  A form is positive definite if <X, X> > 0 for all X. 
Theorem.  The following properties of a real n × n matrix, A, are equivalent: 

• A represents dot product with respect to some basis of Rn. 
• There is an invertible matrix P ∈ GLn(R) such that A = PTP. 
• A is symmetric and positive definite. 

Definition.  Vectors v and w are orthogonal with respect to a symmetric form if <v, w> = 
0. 

Definition.  A basis B = (v1, …, vn) is an orthonormal basis with respect to a form <,> if 
<vi, vj> = 0 when i ≠ j and <vi, vi> = 1 for all i. 

Theorem.  Let <,> be a positive definite symmetric form on a finite-dimensional vector 
space V.  There exists an orthonormal basis for V. 

Proof.  Use the Gram-Schmidt algorithm. 
Theorem.  Let Ai be the upper left i × i submatrix of a real symmetric n × n matrix A.  A 

is positive definite if and only if det Ai is positive for each i = 1, …,  n. 
Definition.  A form <,> is indefinite if <v, v> can be positive or negative. 
Proposition.  Suppose <,> is not identically zero.  Then there is a vector, v, such that <v, 

v> ≠ 0. 
Definition.  Let W be a subspace of V.  The orthogonal complement of W is given by W⊥ 

= {v ∈ V | <v, W> = 0}, which is the set of vectors orthogonal to every vector in W. 
Definition.  A vector v ∈ V is a null vector if <v, w> = 0 for every w ∈ V.  The null 

space of the form is the set of all null vectors.  A form is non-degenerate if the null 
space is {0}. 

Proposition.  Let A be the matrix of a symmetric form with respect to a basis.  The null 
space of this form is the set of solutions to AX = 0.  Thus, the form is nondegenerate if 
and only if A is non-singular. 

Proposition.  Let W be a subspace of V.  If <,> if nondegenerate on W, the V = W ⊕ W⊥.  
That is, W ∩ W⊥ = {0} and W and W⊥ span V. 

Definition.  An orthogonal basis B = (v1, …, vn) for V with respect to a form <,> is a 
basis such that <vi, vj> = 0 whenever i ≠ j. 

Corollary.  The matrix of a form is diagonal if and only if the basis is orthogonal. 
Theorem.  Let <,> be a symmetric form on a real vector space V.  There is a basis for V, 

(v1, …, vn) such that <vi, vj> = 0 when i ≠ j and <vi, vi> is 0, 1 or –1.  In matrix form, 
for any real symmetric matrix, there is a matrix Q ∈ GLn(R) such that QAQT is a 
diagonal matrix with diagonal entries 0, 1 or –1. 



Theorem (Sylvester’s Law of Inertia).  The number +1, -1, and 0’s in the diagonal matrix 
of a form are unique.  (So we call (p, m) = (# of 1’s, # of –1’s) the signature of the 
form.) 

Definition.  Let <,> be a real symmetric positive definite form.  The vector space together 
with this form is called a Euclidean space.  The length of a vector is given by √<v, v> = 
|v|. 

Definition.  Let W be a subspace of a Euclidean space.  Then V = W ⊕ W⊥.  Then the 
expression v = w + w’, with w ∈ W and <w, w’> = 0.  The orthogonal projection, π: V 
à W, is given by π(w + w’) = w. 

Proposition.  Let (w1, …, wr) be an orthonormal basis of a subspace W.  Let v ∈ V.  The 
orthogonal projection π(v) of v onto W is the vector π(v) = <v, w1>w1 + … + <v,wr>wr. 

Corollary.  Let B = (b1, …, bn) be an orthonormal basis for a Euclidean space.  Then, v = 
<v, v1>v1 + … + <v,vn>vn.  That is, the coordinate vector is (<v, v1>, …, <v, vn)

T. 
Definition.  If V is a complex vector space, a hermitian form on V is a function <,>: V × 

V à C that satisfies the following properties: 
• Linearity in the second variable: <X, cY> = c<X, Y>, <X, Y1 + Y2> = <X, Y1> + 

<X, Y2> 
• Conjugate linearity in the first variable: <cX, Y> = c<X, Y>, <X1 + X2, Y> = 

<X1, Y> + <X2, Y>        _____  
• Hermitian symmetry: <Y, X> = <X,Y> (conjugate) 

Note.  Let A be a complex matrix. Then A defines a form: <X, Y> = XTAY. 
Definition.  The adjoint of a matrix A is A* =AT (A-conjugateT).  A matrix is hermitian 

or self-adjoint if A = A*. 
Corollary.  A real matrix is symmetric if and only if it is hermitian. 
Corollary.  Let A be the matrix of a hermitian form.  The matrices which represent the 

same form with respect to a different basis are those of the form A’ = QAQ*, Q ∈ 
GLn(C). 

Definition.  A matrix P is unitary if P*P = I, or P* = P-1. 
Definition.  The set of all unitary matrices is the unitary group, Un. 
Corollary.  A change of basis preserves the standard hermitian product – that is, X*Y = 

X’*Y’ – if and only if the matrix change of basis is unitary. 
Proposition.  Let T be a linear operator on a hermitian spacwe V.  Let M be the matrix of 

T with respect to an orthonormal basis.  The matrix M is hermititan if and only if <v, 
Tw> = <Tv, w> for all v, w ∈ V.  Then, T is called a hermitian operator.  The matrix M 
is unitary if and only if <v, w> = <Tv, Tw> for all v, w ∈ V.  Then T is called a unitary 
operator. 

Proposition.  Let M be the matrix of a real operator T with respect to an orthonormal 
basis.  The matrix M is symmetric if and only if <v, Tw> = <Tv, w> for all v, w ∈ V.  
If so, T is called a symmetric operator.  The matrix M is orthogonal if and only if <v, 
w> = <Tv, Tw> for all v, w ∈ V.  If so, T is called an orthogonal operator. 

Theorem (Spectral Theorem).  Let T be a hermitian operator on a hermitian vector space 
V.  There is an orthonormal basis of V consisting of eigenvectors of T.  If M is the 
matrix of T, there is a unitary matrix P such that PMP*is a real diagonal matrix. 

Theorem (Spectral Theorem – real case).  Let T be asymmetric operator on a real vector 
space V with a positive definite biliear form.  There is an orthonormal basis of 



eigenvectors of T.  If M is the matrix of T, there is an orthogonal matric P ∈ On® such 
that PMPT is diagonal. 

Proposition.  The eigenvalues of a hermitian operator T are real numbers. 
Corollary.  The eigenvalues of a real symmetric matrix are real. 
Definition.  A conic if a locus of points in R2 defined by a quadratic equation in two 

variables: f(x, y) = a11x
2 + 2a12xy + a22y

2 + b1x + b2y + c = 0.  This locus is an ellipse, a 
hyperbola, a parabola, or degenerate (a pair of lines, a single line, a point, and empty). 

Definition.  A quadratic form in n variables x1, …, xn is a polynomial each of whose 
terms has degree two in the varibles. 

Note.  Every quadratic form is of the form q(x1, …, xn) = (x1, …, xn) A(x1, …, xn)
T, where 

A is symmetric.  (aii is the coefficient on xi
2, aij is half the coefficient on xixj.) 

Theorem.  The congruence classes of non-degenerate conics in R2 are: 
• Ellipse: a11x1

2 + a22x2
2 – 1 = 0 

• Hyperbola: a11x1
2 – a22x2

2 – 1 = 0 
• Parabola: a11x1

2 – x2 = 0 
Proof.  Diagonalize the matrix of the quadratic part and then translate to remove som of 

the linear and constant terms. 
Theorem.  The congruence classes of non-degenerate conics in R3 are: 

• Ellipsoids: a11x1
2 + a22x2

2 + a33x3
2 – 1 = 0 

• 1-sheeted hyperboloids: a11x1
2 + a22x2

2 – a33x3
2 – 1 = 0 

• 2-sheeted hyperboloids: a11x1
2 - a22x2

2 – a33x3
2- 1 = 0 

• Elliptic Paraboloids: a11x1
2 + a22x2

2 – x3 = 0 
• Hyperbolic Paraboloids: a11x1

2 – a22x2
2 – x3 = 0. 

Definition.  A matrix M is called normal if MM* = M*M. 
Lemma.  If M is normal and P is unitary, then M’ = PMP* is normal. 
definition.  A normal operator, T: V à V is a linear operator whose matrix M is normal. 
Theorem.  A complex matrix is normal if and only if there is a unitary matrix such that 

PMP* is diagonal. 
Corollary.  Every conjugacy class in the unitary group contains a diagonal matrix. 
Theorem.  Let V be a vector space of dimension m over a field F.  Let <,> be a non-

degenerate skew-symmetric form on V.  The m is an even integer and tehre is a basis of 
V such that the matrix A is of the form: 

  J2n =  [0  I] 
   [I  0] 
 where 0 and I are m/2 × m/2 matrices.  Let A be a non-singular skew-symmetric m × m 

matrix.  Then m is even and there is a matrix Q ∈ GLm(F) such that QAQT is the matrix 
J2n. 

 
Modules 
Definition.  Let R be a commutative ring with identity.  An r-module V is an abelian group with 

law of composition +, together with a scalar multiplication R × V à V, satisfying the following 
axioms: 

• 1v = v 
• (rs)v = r(sv) 
• (r + s)v = rv + sv 
• r(v + v’) = rv + rv’ 



Definition.  Let Rn be the set ofg R-vectors of length n.  This is a mdule and is called a free 
module. 

Example.  Any abelian group (with composition written additively) is a Z-modulewith the 
scalar multiplication: nv = V + … + v (n times.  Thus, any Z-module is an abelian 
group, if we ignore its scalar multiplication. 

Definition.  A submodule of an R-module V is a nonempty subset of V which is closed 
under addition and scalar multiplication. 

Proposition.  The submodules of the R-module R1 are the ideals of R. 
Definition.  A homomorphism, ϕ: V à W of R-modules is a function that satisfies ϕ(v + 

v’) = ϕ(v) + ϕ(v’) and ϕ(rv) = rϕ(v).  A bijective homomorphism is an isomorphism. 
Note.  If ϕ: V à W is a homomorphism, the kernel of ϕ is a submodule of V and the 

image of ϕ is a submodule of W. 
Definition.  Let W be a submodule of an R-module V.  The quotient V/W is the additive 

group of coset, [v] = v + W.    This is an R-modlule if we deine r[v] = [rv]. 
Proposition.  The definition of a quotient module is well-defined and creates an R-module.  

The canonical map, π: V à V/W, π(v) = [v] is a surjective homomorphis, of R-
modules with kernel W.   

Proposition (Mapping Property).  Let f: V à V’ be a homomorphism of R modules whose 
kernel contains W.  There is a unique homomorphism f’: V/W à V’ such that f = f’π. 

Theorem (First Isomorphism Theorem).  If ker f = W, then f’: V/W à V’ is an isomorphism 
from V/W to Im f. 

Theorem (Correspondence Theorem).  There is a bijective correspondence between 
submodules S/W of V/W and the submodules S of V that contain W, defined by S = π-

1(S/W) and S/W = π(S).  (V/W)/(S/W) = (V/S). 
Proposition.  The invertible n × n matrices with entries in a ring R are those matrices 

whose determinant is a unit.  They form a group GLn(R), called the general linear group 
over R. 

Definition.  An ordered set (v1, …, vk) of elements of a module V generates V if every v ∈ 
V can be written as v = r1v1 + … + rkvk, ri ∈ R.  Then, the vi are called generators.  A 
module V is finitely generated if there exists a finite set of generators. 

Definition.  A finitely generated module is free if there is an isomorphism ϕ: Rn à V.  A 
free Z-module is also called a free abelian group. 

Definition.  A set of elements (v1, …, vn) of a module V is independent if no nontrivial 
linear combination of them is 0; that is, if r1v1 + … + rnvn = 0 then ri = 0 for all i. 

Definition.  A set of elements is a basis if it is independent and a generating set. 
Proposition.  A module has a basis if and only if it is free. 
Theorem.  Let R be a commutative ring.  Any two bases of a free R-module have the same 

cardinality.  
Definition.  An elementary integer matrix corresponds to adding an integer multiple of a 

row/column to another row/column, interchanging two rows/columns, or multiplying a 
row/column by a unit. 

Theorem.  Let A be an m × n integer matrix.  There exist Q and P, which are products of 
elementary integer matrices, such that QAP-1 is diagonal, where the diagonal entries dii 
are nonnegative and di | di+1 for all i. 



Theorem.  Let R be a Euclidean domain.  Let A be an m × n matrix with entries in R.  
There are products Q and P of elementary R-matrices such that QAP-1 is diagonal and 
each diagonal entry divides the next. 

Theorem.  Let ϕ: V à W be a homomorphism of free abelian groups.  There exists bases 
of V and W such that the matrix of the homomorphism has diagonal form. 

Thorem.  Let S be a subgroup of a free abelian group W of rank m.  There is a basis (w1, 
…, wm) of W and a basis (s1, …, sn) of S such that n ≤ m, for each j ≤ n there is a 
positive integer dj such that uj = djwj, and di | di+1 for i ≤ n-1. 

Corollary.  Every subgroup of a free abelian group of rank m is free and its rank is at most 
m. 

Definition.  If (v1, …, vm) are generators of an R-module V, equations of the form a1v1 + 
… + amvm = 0 are relations among the elements.  The R-vector (a1, …, am)T is called a 
relation vector.  A complete set of relations is a set fo relation vectors such that any 
other relation vector is a linear combination of the relation vectors in the set.   

Definition.  Let ϕ: W à W’ be a homomorphism of R-modules.  The cokernel of ϕ is the 
quotient module W’/(Im ϕ). 

Definition.  Let ϕ: Rnà Rm be the homomorphism that is left multiplication by A.  the 
cokernel of ϕ is presented by the matrix A.   

Corollary.  If A is an m × n presentation matrix, the module it presents is isomorphic to 
Rm/ARn. 

Proposition.  Let A be an m × n presentation matrix for a module V.  The following 
matrices present the same module V: 

• QAP-1, where Q ∈ GLm(R) and P ∈ GLn(R) 
• the matrix obtained by deleting a column of zeros (that relation tells us nothing) 
• the matrix obtained by deleting the ith row and jth column, if the jth column has a 1 

in the ith place and a 0 everywhere else (that generator must always be 0). 
Proposition.  Let V be an R-module.  Every submodule W of V is finitely generated if and 

only if there is no infinite strictly increasing chain of submodules W1 < W2 < … of V 
(this is the ascending chain condition). 

Lemma.  Let ϕ: V à W be a homomorphism of R-modules.  If the kernel and image of ϕ 
are finitely generated modules, so it V.  If V is finitely generated and ϕ is surjective, W 
is finitely generated.  In fact, if (v1, …, vn) generates V, then (ϕ(v1), …, ϕ(vn)) 
generates W. 

Corollary.  Let W be a submodule of an R-module V.  If both W and V/W are finitely 
generated, so is V. 

Definition.  A ring R is noetherian if every ideal of R is finitely generated. 
Corollary.  Let R be a noetherian ring.  Every proper ideal of R is contained in a maximal 

ideal. 
Proposition.  Let V be a finitely generated model over a noetherian ring R.  Then every 

submodule of V is finitely generated. 
Theorem (Hilbert Basis Theorem).  If a ring R is noetherian, so is R[x]. 

Proposition.  Let R be a noetherian ring, and let I be an ideal of R.  The quotient ring R/I 
is noetherian. 
Lemma.  The set of leading coefficients of the polynomials in an ideal of R[x], together 
with 0, is an ideal of R. 



Lemma.  Let Pn be the set of polynomials in R[x] with degree less than n, together with 
zero.  Let Sn = I ∩ Pn.  Then Sn is an R-submodule of the R-module Pn. 

Definition.  Let W1, …, Wk be submodules of a module V.  V is the direct sum of the 
submodules Wi if each element v ∈ V can be written uniquely in the form w1 + … + 
wk, with wi ∈ Wi.  We then write V = W1 ⊕ … ⊕ Wk. 

Theorem (Structure Theorem for Abelian Groups).  Let V be a finitely generated abelian 
group.  Then V is the direct sum of finite syclic subgroups Cd1, …, Cdk and a free 
abelian group L, where di > 1 and d1 | d2 | d3 | … 

Proof.  Write the group as a Z-module.  Diagonalize the presentation matrix.  This gives 
the necessary relations. 

Corollary.  Every finitely generated abelian group is the direct sum of cyclic groups of 
prime power orders and of a free abliean group. 

Theorem.  Suppose V = Cd1 ⊕ … ⊕ Cdk.  Then the integers d1, …, dk are uniquely 
determined by V.  (The same is true for the prime power orders.) 

Theorem (Structure Theorem for modules over Euclidean domains).  Let V be a finitely 
generated R-module, with R a Euclidean domain.  The V is the direct sum of cyclic 
modules Cj and a free module L.  Equivalently, there is an isomorphism from V to 
R/(d1) × … × R/(dk) × Rr. 

Definition.  Let T: V à V be a linear operator on a vector space over a field F.  We make 
V a F[t]-module by f(t)v = f(T)(v) = anT

n(V) + … + a1T(v) + a0v. 
Definition.  Suppose V is a F[t]-module.  Define T: V à V be T(v) = tv.  Then T is a 

linear operator on V. 
Corollary.  F[t]-modules are equivalent to linear operators on F-vector  spaces. 


