
Analysis Seminar (Shorter) Summary 
 
Inverse and Implicit Function Theorems 
Lemma.  Let A be open in Rn, f: A à Rn be C1.  If Df(a) is non-singular then there exists 

α > 0 and ε > 0 such  that |f(x1) – f(x2)| ≥ α |x1 – x2| for all x1, x2 in C(a, ε). 
Inverse Function Theorem.  Let A be open in Rn and f: A à Rn be Cr.  If Df is non-

singular then there is a neighborhood, U, about x and a neighborhood, V, about f(x) 
such that f: U à V is onto V.  Then f-1 is Cr. 

Implicit Function Theorem.  Let A be open in Rn+k.  Let f: A à Rn be Cr.  Write f as f(x, 
y), where x ∈ Rk and y ∈ Rn.  Let (a, b) ∈ A with f(a, b) = 0 and det ∂f/∂y (a, b) ≠ 0.  
Then, there exists a unique g:  Rk à Rn such that f(a, g(a)) = 0. 

 
Integration Theory 
Definition.  The volume of Q is given by v(Q) = (b1 – a1) … (bn – an). 
Definition.  The lower and upper sums of a partition, P, where each R is a subrectangle of 

P are L(f; P) = ∑R mRv(R) and U(f; P) = ∑R MRv(R). 
Definition.  The upper and lower integrals and ∫Q f = sup{L(f; P)} and∫Q f = inf{U(f;P)}. 
Definition.  f is integrable over Q if ∫Q f =∫Q f.  We set ∫Q f equal to this value. 
Theorem.  Let Q ⊂ Rn and f: Q à R be bounded.  Let D be the set of discontinuities of f 

on Q.  Then, f is integrable over Q if and only if D has measure 0. 
Definition.  Let S ⊂ Rn be bounded and f: S à R be bounded.  Let fS: Rn à R be defined 

by f(x) = f(x) if x ∈ S and f(x) = 0 elsewhere.  We define ∫S f by ∫Q fS where Q is any 
rectangle containing S. 

Definition.  Let S be bounded in Rn.  If the constant function 1 is integrable over S, we 
say S is rectifiable. 

Theorem.  S is rectifiable if and only if S is bounded and Bd S has measure 0. 
Theorem.  Let S ⊂ Rn be rectifiable.  Let f: S à R be bounded and discontinuous only on 

a set of measure 0.  Then, ∫S f exists. 
Theorem.  Let A be open in Rn.  Let f: A à R be continuous.  Choose a sequence, {Cn} 

of compact rectifiable subsets of A whose union is A, such that Cn ⊂ Int Cn+1.  f is 
integrable over A if and only if {∫Cn |f| } is bounded.  Then, ∫A f = lim ∫Cn f. 

 
Partitions of Unity   
Definition.  If φ: Rn à R the support of φ is the closure of {x | φ(x) ≠ 0}. 
Theorem.  Let A be a collection of sets in Rn.  Let A be their union.  There exists {φi}, φi: 

Rn à R which fulfill the following conditions: 
1. φ(x) ≥ 0 for all x. 
2. Si = Support φi ⊂ A for all φi. 
3. If x ∈ A then x is contained in a finite number of Si. 
4. ∑φi(x) = 1 for all x ∈ A. 
5. Each φi is C∞. 
6. The Si are compact. 
7. Each Si is contained in one element of A. 

Definition.  A set of functions fulfilling the first four conditions is called a partition of 
unity.   



Theorem.  Let A ⊂ Rn be open.  Let f: A à R be continuous.  Let {φi} be a partition of 
unity on A with compact supports.  The integral ∫A f exists if and only if ∑ (∫A φi |f|) 
converges.  In this case, ∫A f =  ∑ (∫A φi f). 

 
Change of Variables Theorem 
Definition.  Let A be open in Rn, g: A à Rn be one-to-one and of class Cr, with det Dg(x) 

≠ 0 for all x ∈ A.  Then, g is called a change of variables or a diffeomorphism. 
Change of Variables Theorem.  Let g: A à B be a diffeomorphism of open sets in Rn.  

Let f: B à R be continuous.  Then, f is integrable over B if and only if (f °g)|det Dg| is 
integrable over A.  In that case, ∫B f = ∫A (f °g)|det Dg|.  

 
Manifolds 
Theorem.  There is a unique function, V, that assigns to every k-tuple of elements in Rn a 

non-negative number such that (1)  If h: Rn à Rn is an isometry then V(h(x1), …, 
h(xn)) = V(x1, …, xn), and (2)  If y1, …, yk ∈ Rk × 0n-k ⊂ Rn, so that yi = [zi 0] then 
V(y1, … , yk) = |det [z1 … zn]|.  In addition, V(x1, …, xn) = 0 if and only if {x1, …, xk} 
are dependent.  Notice that V is defined by V = (det XTX)1/2 where X = [x1 … xk].  We 
call this volume.  Also, V(X) = (∑[I] (det XI)

2)1/2 where [I] is the set of all ascending k-
tuples from {1, 2, …, n}. 

Definition.  Let k > 0.  Let M ⊂ Rn.  Suppose that for any p ∈ M there exists V 
containing p such that V is open in M and there exists an open set U ⊂ Rk and a one-to-
one and onto α: U à V such that (1) α is Cr, (2) α-1: V à U is continuous, and (3) Dα 
has rank k everywhere on U.  Then we call α a coordinate patch and M is a k-manifold 
without boundary. 

Theorem.  Let M be a k-manifold in Rn of class Cr.  Let α0: U0 à V0, α1: U1 à V1 be 
coordinate patches on M with W = V0 ∩ V1 ≠ ∅.  Let Wi = αi

-1(W).  Then α1
-1 ° α0: W0 

à W1 is Cr and D(α1
-1 ° α0)  is non-singular. 

Definition.  Let M be a k-manifold in Rn.  Let p ∈ M.  If there is a coordinate patch, α: U 
à V on M about p that is open in Rk then p is an interior point.  If there is no such 
coordinate patch, then p is a boundary point.  The set of all boundary points is ∂M. 

 
Scalar Functions on Manifolds. 
Definition. Let M be a k-manifold in Rn.  Let f: M à R.  Suppose Support(f) ⊂ V and α: 

U à V is a coordinate patch.  Them, we define ∫M f = ∫U (f °α) V(Dα). 
Definition.  Let M be a k-manifold in Rn and f: M à R.  Let V be a collection of 

coordinate patches on M.  Choose a partition of unity on Rn dominated by V (by 
extending each V ∈ V to an open set in Rn).  Since M is compact, all but finitely many 
φi vanish at any point of M.  Then, ∫M f = ∑ ∫M φif. 

 
Tensors, Transformations, and Differential Forms  
Definition.  f: Vk à R is a tensor if f is multi-linear (linear in the ith coordinate, when all 

other coordinates are fixed, for all i).  The set of all k-tensors on V is Lk(V). 
Theorem.  There is a unique φI: V

k à R such that for all J = (j1, …, jk), φI(aj1, …, ajk) = 1 
if I = J, 0 if I ≠ J.  {φI} is a basis for Lk(V) (which is a vector space). 



Definition.  Let f be a k-tensor and g an l-tensor over the same vector space.  The tensor 
product is defined by f ⊗ g (v1, …, vk, vk+1, …, vk+l) = f(v1, …, vk) g(vk+1, …, vk+l). 

Theorem.  If φI is a k-tensor with I = (i1, …, ik), then φI = φi1⊗ …⊗φik, where φij is a 1-
tensor. 

Definition.  A k-tensor on V is alternating if f(v1, …, vi-1, vi+1, vi, vi+2, …, vn) = - f(v1, …, 
vn).  The set of all alternating k-tensors is Ak(V). 

Theorem.  Let V be a vector space with basis {a1, …, an}.  Let I = (i1, …, ik) be an 
ascending k-tuple.  There exists a unique k-tensor, ΨI, on V, such that for all ascending 
k-tuples, J, ΨI(aj1, …, ajk) = 1 if I = J and 0 otherwise.  These tensors form a basis for 
Ak(V).   

Definition.  We define a linear transformation A: Lk(V) à Lk(V) by Af = ∑σ (sgn σ) fσ.  
If f is an alternating k-tensor and g is an alternating l-tensor on V, we define the wedge 
product, an alternating k+l tensor on V,  by f ^ g = A(f ⊗ g)/ k! l!. 

Note.  ψI = AφI = φi1 ^ … ^ φik..  ΨI(x1, …, xk) = det XI. 
Theorem.  The wedge product is associative, homogeneous, and distributive.  In addition, 

g ^f = (-1)kl f ^ g.  The wedge product is preserved under the pullback:  T*(f ^g) = (T*f) 
^ (T*g). 

Definition.  Let x ∈ Rn. A tangent vector to Rn at x is (x; v), where v ∈ Rn.  We define: 
(x; v) + (x; w) = (x; v + w) and c(x; v) = (x; cv).  The set of all tangent vectors to Rn at 
x is called the tangent space to Rn at x, or Tx(R

n). 
Definition.  Let A be open in Rk or Hk, α: A à Rn be of class Cr.  Let x ∈ A and p = 

α(x).  We define α*: Tx(R
k) à Tp(Rn) by α*(x; v) = (p; Dα(x) * v).  This is the 

transformation induced by α and a push-forward. 
Lemma.  Let A be open in Rk or Hk.  Let α: A à Rm be Cr.  Let B be open in Rm or Hm, 

with α(A) ⊂ B.  Let β: B à Rn be Cr.  Then, (β ° α)* = β* ° α*. 
Definition.  Let M be a k-manifold of class Cr in Rn.  If p ∈ M, choose a coordinate patch 

α: U à V about p.  Let x ∈ U such that α(x) = p.  Then we define the tangent space to 
M at p by Tp(M) = α*(Tx(R

k)) = {α*(x; v) | v ∈ Rk}. 
Definition.  Let A ⊂ Rn be open.  A tangent vector field in A is a continuous function F: 

A à Rn × Rn such that F(x) ∈ Tx(R
n).  Thus, we may write F(x) = (x; f(x)) where f: A 

à Rn.   
Definition.  Let A ⊂ Rn be open.  A k-tensor field. in A is ω: x à Lk(Tx(R

n)); in other 
words, ω assigns a k-tensor defined on Tx(R

n) to each x ∈ A.  Notice that ω(x)((x; v1), 
…, (x; vk)) must be continuous as a function of x, v1, …, vk.  If ω(x) is an alternating k-
tensor for all x, we call ω a differential form of order k on A. 

Definition.  The elementary 1-forms on Rn are given by φi(x)(x; ej) = 1 if i = j, 0 
otherwise.  The elementary k-forms on Rn are given by ψI(x) = φi1(x) ^ … ^ φik(x), 
where I = (i1, …, ik) is an ascending k-tuple. 

Note.  If ω is a k-form on A, we may write ω(x) = ∑[I] bI(x) ψI(x), where the bI are scalar 
functions and are called the components of ω. 

Definition.  Let A be open in Rn.  If f: A à R is Cr, f is called a scalar field in A and a 
differential form of order 0. 

Note.  ω(x) ^ f(x) = f(x) ω(x). 
Definition.  Let A be open in Rn and f: A à R be C∞.  The, d(f(x; v)) = Df(x)•v.  We call 

this the differential of f. 



Theorem.  Let A be open in Rn and f: A à R be C∞.  Then, df = (D1f)dx1 + … + 
(Dnf)dxn. 

Definition.  Let ω ∈ Ωk(A), j > 0.  Let ω = ∑[I] fI dxI.  We define dω = ∑[I] dfI ^ dxI. 
Theorem.  Let d: Ωk(A) à Ωk+1(A).   

• d is linear (d(aω + bη) = a(dω) + b(dη).).   
• d(ω ^ η) = dω ^ η + (-1)k ω ^ dη, where ω is a k-form and η is any form. 
• d(dω) = 0 for all forms. 

Definition.  A form, ω, is closed if dω = 0. 
Definition.  A form, ω, is exact if ω = dθ for some k-1 form θ. 
Definition.  Let B be open  in Rn and α(A) ⊂ B.  A dual transformation of forms 

(pullback) is given by (α*f)(x) = f(α(x)) if f is a 0 form, and ((α*ω)(x))(v1, …, vk) = 
ω(α(x))(α*(x; v1), …, α*(x; vn)).   

Proposition.  Let ω, η, and θ be forms, with ω and η having the same order.  Then: 
• α*(aω + bη) = a α*(ω) + b α*(η) [linear] 
• α*(ω ^ θ) = α∗(ω) ^ α∗(θ) 
• (β ° α)* = α* ° β* 
• α*(dω) = d(α*ω). 

Theorem.  Let A be open in Rk.  Let α: A à Rn be C∞.  Let x ∈ Rk and y ∈ Rn with α(x) 
= y.  If I = (i1, …, il) is an ascending l-tuple from {1, 2, …, n} then α*(dyI) = ∑[J] det 
(∂αI / ∂xJ) dxJ. 

 
Integrating over a Manifold. 
Note.  ∫A f dx1 ^ .. dxn = ∫A f, for A ⊂ Rn. 
Theorem.  Let ω = f dzI.  Then, ∫Yα ω = ∫A α*ω = ∫A (f ° α) det (∂αI/∂x). 
Definition.  Let M be a k-manifold in Rn.  Let α0: U0 à V0 and α1: U1 à V1 be 

coordinate patches on M.  If V0 ∩ V1 is non-empty, then α0 and α1 overlap.  If α0 and 
α1 overlap and α1

-1 ° α0 is orientation-preserving, then α0 and α1 overlap positively.  If 
α0 and α1 overlap and α1

-1 ° α0 is not orientation-preserving, then α0 and α1 overlap 
negatively.  If we may cover M by coordinate patches that overlap positively or not at 
all, we call M orientable. 

Definition.  Let M be a compact oriented k-manifold in Rn.  Let ω be a k-form defined in 
an open set of Rn containing M.  Let C = M ∩ Support ω; note that C is compact.  
Suppose there is a coordinate patch α: U à V on M belonging to the orientation of M 
with C ⊂ V.  Assume U is bounded.  We define the integral of ω over M as ∫M ω = ∫Int U 
α*(ω).   

Definition.  Let M be a compact oriented k-manifold in Rn.  Let ω be a k-form defined in 
an open set of Rn containing M.  Cover M by coordinate patches belonging to the 
orientation of M; choose a partition of unity on M dominated by these coordinate 
patches.  We define ∫M ω = ∑ (∫M φi ω). 

Definition.  A 0-manifold is a finite collection of points, {x1, …, xn} in Rn.  We define an 
orientation on such a manifold by a function ε: {x1, …, xn} à {-1, 1}.  ∫M f = ∑ 
ε(xi)f(xi). 

Definition.  Let M be an oriented 1-manifold in Rn.  We define the orientation of ∂M by 
ε(p) = -1 if there exists α: U à V, about p, with U ⊂ Hk and ε(p) = 1 otherwise. 



Stokes Theorem.  Let M be an oriented k manifold in Rn.   Let ∂M have the induced 
orientation.  Let ω be a k-1 form on an open set containing M.  Then, ∫M dω = ∫∂M ω. 

 
Lebesgue Measure 
Definition.  A σ-algebra, or a Borel field, is an algebra of sets that is closed under 

countable union  (and therefore countable intersection).  A Borel set is the smallest σ-
algebra that contains the closed and open intervals. 

Definition.  The outer measure of a set E ⊂ R is m*E = inf E ⊂ ∪I(n) ∑ l(In) (where l(I) is 
the length of the interval), so that {In} is a set of intervals that covers E. 

Proposition.  Let {An} be any countable collection of sets.  Then, m*(∪ An) ≤ ∑ m*An.  
(This is called countable subadditivity.) 

Proposition.  Given any set A and ε > 0, there exists an open set O such that A ⊂ O and 
m*O ≤ m*A + ε.  There is a G ∈ Gδ such that A ⊂ G and m*A = m*G. 

Definition.  E is measurable if, for all A, m*A = m*(A ∩ E) + m*(A ∩ EC). 
Lemma.  If m*E = 0, E is measurable. 
Theorem.  The measurable sets form an algebra. 
Lemma.  Let A be any set.  Let E1, …, En be a finite sequence of disjoint measurable sets.  

Then, m*(A ∩ (∪ Ei)) = ∑ m*(A ∩ Ei). 
Lemma.  (a, ∞) is measurable. 
Theorem.  Every Borel set is measurable. 
Proposition.  Let {Ei} be an infinite, decreasing (ie. Ei+1 ⊂ Ei) sequence of measurable 

sets.  Let mE1 < ∞.  Then, m(∩Ei) = lim mEn. 
Proposition.  Let E be a set.  The following are equivalent: 

i. E is measurable. 
ii. Given ε > 0 there exists an open set O ⊃ E with m*(O – E) < ε. 
iii. Given ε > 0 there exists a closed set F ⊂ E with m*(E – F) < ε. 
iv. There is a G ∈ Gδ with E ⊂ G such that m*(G – E) = 0. 
v. There is an F ∈ Fσ with F ⊂ E such that m*(E – F) = 0. 
vi. (If m*E < ∞, then) If ε > 0 there exists a finite union U = ∪ Ii such that m*((U – 

E) ∪ (E – U)) < ε. 
Proposition.  Let f be any function.  Let a ∈ R.  The following are equivalent: 

i. {x | f(x) > a} is measurable. 
ii. {x | f(x) < a} is measurable. 
iii. {x | f(x) ≤ a} is measurable. 
iv. {x | f(x) ≥ a} is measurable. 

Definition.  A function is measurable if its domain is measurable and the conditions 
above hold. 

Theorem.  Let {fn} be a sequence of measurable functions defined on the same domain.  
Then the functions sup{f1, …, fn}, inf{f1, …, fn}, supn fn, infn fn, lim sup fn, and lim inf 
fn are also measurable. 

Theorem.  If f is measurable and f = g almost everywhere, then g is measurable. 
Littlewood’s Three Principles.  Every measurable set is nearly a union of intervals.  

Every measurable function is nearly continuous.  Every convergent sequence of 
measurable functions is nearly uniformly convergent. 

 



Lebesgue Integration 
Definition.  A simple function, ϕ, is defined by ϕ(x) = ∑i=1

n ai χEi(x), where χEi is the 
characteristic function of Ei (1 on Ei, 0 elsewhere). 

Note.  ϕ is simple if and only if it is measurable and takes on a finite number of values. 
Definition.  Let ϕ = ∑ ai χEi.  We define ∫ ϕ = ∑ ai mEi. 
Definition.  If f is bounded and measurable on a set E of finite measure, we define ∫E f = 

infψ≥f ∫E ψ = supϕ≤f ∫E ϕ. 
Proposition.  If f and g are bounded, measurable functions defined on a set E of finite 

measure, then: 
• ∫E (af + bg) = a∫E f + b∫E g. 
• If g ≤ f almost everywhere, then ∫E g ≤ ∫E f. 
• If A ≤ f(x) ≤ B almost everywhere, then A(mE) ≤ ∫E f ≤ B(mE). 
• If A ∩ B = ∅ and A, B have finite measure, ∫A∪B f = ∫A f + ∫B f. 

Definition.  If f is non-negative and measurable on any measurable set E, we define ∫E f = 
suph≤f ∫E h where h is bounded, measurable, and non-zero only on a set of finite 
measure.  f is integrable over the measurable set E if ∫E f < ∞. 

Definition.  Let f be any function.  Define f+(x) = max{f(x), 0} and f-(x) = -min{f(x), 0} = 
max{-f(x), 0}. 

Definition.  Let f be measurable.  f is integrable over E if f+ and f- are integrable.  Then, ∫E 
f = ∫E f+ - ∫E f-. 

Proposition.  The following properties hold for the general Lebesgue integral: 
• ∫E (af + bg) = a∫E f + b∫E g. 
• If g ≤ f almost everywhere, then ∫E g ≤ ∫E f. 
• If A ∩ B = ∅ and A, B have finite measure, ∫A∪B f = ∫A f + ∫B f. 

Bounded Convergence Theorem.  Let <fn> be a sequence of measurable functions defined 
on a set E of finite measure.  Suppose there is some real number M such that |fn(x)| ≤ M 
for all n, x.  If f(x) = lim fn(x) almost everywhere in E, then ∫E f = lim ∫E fn. 

Fatou’s Lemma.  Let <fn> be a sequence of non-negative, measurable functions with lim 
fn(x) = f(x) almost everywhere on a measurable set E.  Then, ∫E f ≤ lim ∫E fn. 

Monotone Convergence Theorem.  Let <fn> be an increasing sequence of non-negative, 
measurable functions with f(x) = lim fn(x) almost everywhere.  Then, ∫ f = lim ∫ fn. 

Lebesgue Convergence Theorem.  Let g be integrable over E and <fn> a sequence of 
measurable functions with |fn| ≤ g everywhere on E.  Let lim fn(x) = f(x) almost 
everywhere on E.  Then, ∫E f = lim ∫E fn. 

Theorem.  Let <gn> be a sequence of measurable functions over E that converge almost 
everywhere to an integrable function g.  Let <fn> be a sequence of measurable 
functions with |fn| ≤ gn and lim fn(x) = f(x) almost everywhere.  If ∫E g = lim ∫E gn then ∫E 
f = lim ∫E fn. 

Definition.  A sequence <fn> converges to f in measure if, given ε > 0, there exists N such 
that, for all n > N, m{x | |f(x) – fn(x)| ≥ ε} < ε. 

Proposition.  Suppose <fn> converges to f in measure and all the fn are measurable.  Then 
there is a subsequence <fnk> that converges to f almost everywhere. 

Corollary.  Let <fn> be a sequence of measurable functions defined on a set E of finite 
measure.  Then fn converges to f in measure if and only if every subsequence of <fn> 
has in turn a subsequence that converges to f almost everywhere. 



Proposition.  The convergence theorems stated above hold if “convergence almost 
everywhere” is replaced by “convergence in measure.” 

 
Lp Spaces 
Definition.  f ∈ Lp if ∫[0,1] |f|

p < ∞. 
Definition.  ||f||p = (∫[0,1] |f|

p)1/p. 
Note.  If we consider functions equivalent when they are equal almost everywhere, then 

Lp is a normed linear space. 
Definition.  f ∈ L∞ if f is bounded almost everywhere and measurable.  ||f||∞ = ess sup 

|f(x)| = inf {M | m{t | f(t) > M} = 0}. 
 
Applications to Vector Calculus 
Definition.  Let A be open in Rn.  Let f: A à R be a scalar field.  We define the gradient 

of f by (grad f)(x) = (x; D1f(x)e1 + … + Dnf(x)en).  Let G(x) = (x; g(x)) be a vector field 
on A, with g(x) = g1(x)e1 + … + gn(x)en.  We define the divergence of G by (div G) = 
D1g1(x) + … + Dngn(x). 

Theorem.  Let A be open in Rn.  Then we have the following vector space isomorphisms: 
   α0: Scalar fields in A à Ω0(A). 
   α1: Vector fields in A à Ω1(A) 
   βn-1: Vector fields in A à Ωn-1(A) 
   βn: Scalar field in A à Ωn(A) 
 so that d ° α0 = α1 ° grad and d ° βn-1 = βn ° div. 
Proof.  α0(f) = f  

α1(F) = ∑ fi dxi 
βn-1 (G) = ∑ (-1)i-1 gi dx1 ^ … ^ dxi-1 ^ dxi+1 ^ … dxn 
βn (h) = h dx1 ^ … ^ dxn 

Definition.  Let A ⊂ R3 be open.  Let F(x) = (x; ∑ fi(x)ei) be a vector field in A.  We 
define the vector field, curl F, by (curl F)(x) = (x; (D2f3 – D3f2)(x)e1 + (D3f1 – D1f3)(x)e2 
+ (D1f2 – D2f1)(x)e3). 

Theorem.  Let A be open in R3.  Then, in addition to the isomorphisms in the previous 
theorem, we find that d ° α1 = β2 ° curl. 

Definition.  Let M be a 1-manifold.  The unit tangent vector at p ∈ M if given by T(p) = 
(p; Dα(t)/||Dα(t0)||) where α(t0) = p. 

Definition.  So that we may have outward-pointing unit tangent vectors, we define the 
left-half-line, L = {x | x ≤ 0} and allow coordinate patches α: L à Rn. 

Definition.  Let M be an n-1 manifold in Rn.  Let p ∈ M.  Let (p; n) be a tangent vector to 
Rn that is orthogonal to the tangent space to M at p.  Let ||n|| = 1.  If n is always 
pointing the “same” direction, this is called a normal vector field to M and defines an 
orientation. 

Definition.  Let M be an n-manifold in Rn.  The natural orientation of M is the set of all 
coordinate patches α: Rn à Rn with det Dα > 0. 

Theorem.  Let k > 1.  If M is an oriented k-manifold in Rn with ∂M non-empty, then ∂M 
is orientable. 



Definition.  Let M be an orientable k-manifold in Rn, with ∂M non-empty.  Given an 
orientation of M, the induced orientation of ∂M is defined by the orientation of the 
restricted coordinate patch if k is even and the opposite orientation if k is odd. 

Note.  The induced orientation of an n-1 manifold that is the boundary of a naturally 
oriented n-manifold always points outward from the manifold. 

Theorem.  Let M be a compact, oriented n-1 manifold in Rn.  Let N be the unit normal 
field (corresponding to the induced orientation).  Let G be a vector field on an open set 
containing M, so that G(y) = (y; g(y)) = (y; ∑ gi(y) ei).  Let ω = ∑ (-1)i-1 gi dy1 ^ … ^ 
dyi-1 ^ dyi+1 ^… ^ dyn.  Then, ∫M ω = ∫M <G, N> dV. 

Theorem.  Let M be an n-manifold in Rn.  Let ω = h dx1 ^ … ^ dxn.  Then, ∫M ω = ∫M h 
dV. 

Divergence Theorem.  Let M be a compact, oriented n-manifold in Rn.  Let N be the unit 
normal field.  If G is a vector field, then ∫M (div G) dV = ∫∂M <G, N> dV. 

Classical Stokes Theorem.  Let M be a compact, oriented 2-manifold in R3.  Let N be the 
unit normal field.  Let F be a C∞ function.  Then, if ∂M = ∅, then ∫M <curl F, N> dV = 
0.  Otherwise, ∫M <curl F, N> dV = ∫∂M <F, T> dV, where T is the unit tangent field to 
∂M with the induced orientation. 

 
 


