Analysis Seminar (Shorter) Summary

Inverse and Implicit Function Theorems

- *Lemma*. Let A be open in \mathbb{R}^n , f: A $\rightarrow \mathbb{R}^n$ be C¹. If Df(a) is non-singular then there exists $\alpha > 0$ and $\varepsilon > 0$ such that $|f(x_1) f(x_2)| \ge \alpha |x_1 x_2|$ for all x_1, x_2 in C(a, ε).
- *Inverse Function Theorem.* Let A be open in \mathbb{R}^n and f: A $\rightarrow \mathbb{R}^n$ be C^r. If Df is nonsingular then there is a neighborhood, U, about x and a neighborhood, V, about f(x) such that f: U \rightarrow V is onto V. Then f⁻¹ is C^r.
- *Implicit Function Theorem.* Let A be open in \mathbb{R}^{n+k} . Let f: A $\rightarrow \mathbb{R}^n$ be C^r. Write f as f(x, y), where $\mathbf{x} \in \mathbb{R}^k$ and $\mathbf{y} \in \mathbb{R}^n$. Let $(\mathbf{a}, \mathbf{b}) \in A$ with $f(\mathbf{a}, \mathbf{b}) = 0$ and det $\partial f/\partial \mathbf{y} (\mathbf{a}, \mathbf{b}) \neq 0$. Then, there exists a unique g: $\mathbb{R}^k \rightarrow \mathbb{R}^n$ such that $f(\mathbf{a}, \mathbf{g}(\mathbf{a})) = 0$.

Integration Theory

- *Definition.* The <u>volume</u> of Q is given by $v(Q) = (b_1 a_1) \dots (b_n a_n)$.
- *Definition.* The lower and upper sums of a partition, *P*, where each R is a subrectangle of *P* are L(f; *P*) = $\sum_{R} m_{R}v(R)$ and U(f; *P*) = $\sum_{R} M_{R}v(R)$.

Definition. The upper and lower integrals and $\int_{Q} f = \sup\{L(f; P)\}$ and $\overline{\int}_{Q} f = \inf\{U(f; P)\}$.

Definition. f is <u>integrable</u> over Q if $\int_Q f = \int_Q f$. We set $\int_Q f$ equal to this value.

Theorem. Let $Q \subset \mathbf{R}^n$ and f: $Q \rightarrow \mathbf{R}$ be bounded. Let D be the set of discontinuities of f on Q. Then, f is integrable over Q if and only if D has measure 0.

- *Definition.* Let $S \subset \mathbb{R}^n$ be bounded and $f: S \to \mathbb{R}$ be bounded. Let $f_S: \mathbb{R}^n \to \mathbb{R}$ be defined by $f(\mathbf{x}) = f(\mathbf{x})$ if $\mathbf{x} \in S$ and $f(\mathbf{x}) = 0$ elsewhere. We define $\int_S f$ by $\int_Q f_S$ where Q is any rectangle containing S.
- *Definition.* Let S be bounded in \mathbb{R}^n . If the constant function 1 is integrable over S, we say S is <u>rectifiable</u>.
- Theorem. S is rectifiable if and only if S is bounded and Bd S has measure 0.
- *Theorem.* Let $S \subset \mathbb{R}^n$ be rectifiable. Let $f: S \rightarrow \mathbb{R}$ be bounded and discontinuous only on a set of measure 0. Then, $\int_S f$ exists.
- *Theorem.* Let A be open in \mathbb{R}^n . Let f: A $\rightarrow \mathbb{R}$ be continuous. Choose a sequence, $\{C_n\}$ of compact rectifiable subsets of A whose union is A, such that $C_n \subset \text{Int } C_{n+1}$. f is integrable over A if and only if $\{\int_{C_n} |f|\}$ is bounded. Then, $\int_A f = \lim \int_{C_n} f$.

Partitions of Unity

Definition. If ϕ : $\mathbf{R}^n \rightarrow \mathbf{R}$ the support of ϕ is the closure of $\{\mathbf{x} \mid \phi(\mathbf{x}) \neq 0\}$.

Theorem. Let *A* be a collection of sets in \mathbb{R}^n . Let *A* be their union. There exists $\{\phi_i\}, \phi_i$: $\mathbb{R}^n \rightarrow \mathbb{R}$ which fulfill the following conditions:

- *1.* $\phi(\mathbf{x}) \ge 0$ for all \mathbf{x} .
- 2. $S_i =$ Support $\phi_i \subset A$ for all ϕ_i .
- 3. If $x \in A$ then x is contained in a finite number of S_i .
- 4. $\sum \phi_i(\mathbf{x}) = 1$ for all $\mathbf{x} \in A$.
- 5. Each ϕ_i is C^{∞} .
- 6. The S_i are compact.
- 7. Each S_i is contained in one element of A.

Definition. A set of functions fulfilling the first four conditions is called a <u>partition of unity</u>.

Theorem. Let $A \subset \mathbb{R}^n$ be open. Let $f: A \rightarrow \mathbb{R}$ be continuous. Let $\{\phi_i\}$ be a partition of unity on A with compact supports. The integral $\int_A f$ exists if and only if $\sum (\int_A \phi_i |f|)$ converges. In this case, $\int_A f = \sum (\int_A \phi_i f)$.

Change of Variables Theorem

- *Definition.* Let A be open in \mathbb{R}^n , g: A $\rightarrow \mathbb{R}^n$ be one-to-one and of class C^r, with det Dg(**x**) $\neq 0$ for all $\mathbf{x} \in A$. Then, g is called a <u>change of variables</u> or a <u>diffeomorphism</u>.
- *Change of Variables Theorem.* Let g: A \rightarrow B be a diffeomorphism of open sets in \mathbb{R}^n . Let f: B $\rightarrow \mathbb{R}$ be continuous. Then, f is integrable over B if and only if $(f \circ g)|\det Dg|$ is integrable over A. In that case, $\int_B f = \int_A (f \circ g)|\det Dg|$.

Manifolds

- *Theorem.* There is a unique function, V, that assigns to every k-tuple of elements in \mathbb{R}^n a non-negative number such that (1) If h: $\mathbb{R}^n \rightarrow \mathbb{R}^n$ is an isometry then V(h(\mathbf{x}_1), ..., h(\mathbf{x}_n)) = V(\mathbf{x}_1 , ..., \mathbf{x}_n), and (2) If \mathbf{y}_1 , ..., $\mathbf{y}_k \in \mathbb{R}^k \times \mathbf{0}^{n\cdot k} \subset \mathbb{R}^n$, so that $\mathbf{y}_i = [\mathbf{z}_i \ \mathbf{0}]$ then V(\mathbf{y}_1 , ..., \mathbf{y}_k) = |det [$\mathbf{z}_1 \dots \mathbf{z}_n$]|. In addition, V(\mathbf{x}_1 , ..., \mathbf{x}_n) = 0 if and only if { \mathbf{x}_1 , ..., \mathbf{x}_k } are dependent. Notice that V is defined by V = (det $X^T X$)^{1/2} where X = [$\mathbf{x}_1 \dots \mathbf{x}_k$]. We call this volume. Also, V(X) = ($\sum_{[I]} (det X_I)^2$)^{1/2} where [I] is the set of all ascending k-tuples from {1, 2, ..., n}.
- *Definition.* Let k > 0. Let $M \subset \mathbb{R}^n$. Suppose that for any $\mathbf{p} \in M$ there exists V containing \mathbf{p} such that V is open in M and there exists an open set $U \subset \mathbb{R}^k$ and a one-to-one and onto α : U \rightarrow V such that (1) α is C^r , (2) α^{-1} : V \rightarrow U is continuous, and (3) D α has rank k everywhere on U. Then we call α a coordinate patch and M is a <u>k-manifold</u> without boundary.
- *Theorem.* Let M be a k-manifold in \mathbb{R}^n of class C^r. Let $\alpha_0: U_0 \rightarrow V_0$, $\alpha_1: U_1 \rightarrow V_1$ be coordinate patches on M with $W = V_0 \cap V_1 \neq \emptyset$. Let $W_i = \alpha_i^{-1}(W)$. Then $\alpha_1^{-1} \circ \alpha_0: W_0 \rightarrow W_1$ is C^r and D($\alpha_1^{-1} \circ \alpha_0$) is non-singular.
- *Definition.* Let M be a k-manifold in \mathbb{R}^n . Let $\mathbf{p} \in M$. If there is a coordinate patch, α : U \rightarrow V on M about \mathbf{p} that is open in \mathbb{R}^k then \mathbf{p} is an <u>interior point</u>. If there is no such coordinate patch, then \mathbf{p} is a <u>boundary point</u>. The set of all boundary points is ∂M .

Scalar Functions on Manifolds.

- *Definition.* Let M be a k-manifold in \mathbb{R}^n . Let f: $M \rightarrow \mathbb{R}$. Suppose Support(f) $\subset V$ and α : $U \rightarrow V$ is a coordinate patch. Them, we define $\int_M f = \int_U (f \circ \alpha) V(D\alpha)$.
- *Definition.* Let M be a k-manifold in \mathbb{R}^n and f: $M \rightarrow \mathbb{R}$. Let V be a collection of coordinate patches on M. Choose a partition of unity on \mathbb{R}^n dominated by V (by extending each $V \in V$ to an open set in \mathbb{R}^n). Since M is compact, all but finitely many ϕ_i vanish at any point of M. Then, $\int_M f = \sum \int_M \phi_i f$.

Tensors, Transformations, and Differential Forms

- *Definition.* f: $V^k \rightarrow \mathbf{R}$ is a <u>tensor</u> if f is multi-linear (linear in the ith coordinate, when all other coordinates are fixed, for all i). The set of all k-tensors on V is $L^k(V)$.
- *Theorem.* There is a unique $\phi_I: V^k \rightarrow \mathbf{R}$ such that for all $J = (j_1, ..., j_k), \phi_I(a_{j1}, ..., a_{jk}) = 1$ if I = J, 0 if $I \neq J$. { ϕ_I } is a basis for $L^k(V)$ (which is a vector space).

- *Definition.* Let f be a k-tensor and g an l-tensor over the same vector space. The tensor product is defined by $f \otimes g(\mathbf{v}_1, ..., \mathbf{v}_k, \mathbf{v}_{k+1}, ..., \mathbf{v}_{k+l}) = f(\mathbf{v}_1, ..., \mathbf{v}_k) g(\mathbf{v}_{k+1}, ..., \mathbf{v}_{k+l})$.
- *Theorem.* If ϕ_I is a k-tensor with $I = (i_1, ..., i_k)$, then $\phi_I = \phi_{i1} \otimes ... \otimes \phi_{ik}$, where ϕ_{ij} is a 1-tensor.
- *Definition.* A k-tensor on V is <u>alternating</u> if $f(\mathbf{v}_1, ..., \mathbf{v}_{i-1}, \mathbf{v}_i, \mathbf{v}_{i+2}, ..., \mathbf{v}_n) = -f(\mathbf{v}_1, ..., \mathbf{v}_n)$. The set of all alternating k-tensors is $A^k(V)$.
- *Theorem.* Let V be a vector space with basis $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$. Let $I = (i_1, ..., i_k)$ be an ascending k-tuple. There exists a unique k-tensor, Ψ_I , on V, such that for all ascending k-tuples, J, $\Psi_I(\mathbf{a}_{j1}, ..., \mathbf{a}_{jk}) = 1$ if I = J and 0 otherwise. These tensors form a basis for $A^k(V)$.
- *Definition.* We define a linear transformation A: $L^{k}(V) \rightarrow L^{k}(V)$ by Af = $\sum_{\sigma} (\text{sgn } \sigma) f^{\sigma}$. If f is an alternating k-tensor and g is an alternating l-tensor on V, we define the <u>wedge</u> <u>product</u>, an alternating k+l tensor on V, by f ^ g = A(f \otimes g)/ k! l!.
- *Note.* $\Psi_{I} = A \phi_{I} = \phi_{i1} \wedge \ldots \wedge \phi_{ik}$. $\Psi_{I}(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}) = \det X_{I}$.
- *Theorem.* The wedge product is associative, homogeneous, and distributive. In addition, $g \wedge f = (-1)^{kl} f \wedge g$. The wedge product is preserved under the pullback: $T^*(f \wedge g) = (T^*f) \wedge (T^*g)$.
- *Definition.* Let $\mathbf{x} \in \mathbf{R}^n$. A <u>tangent vector</u> to \mathbf{R}^n at \mathbf{x} is $(\mathbf{x}; \mathbf{v})$, where $\mathbf{v} \in \mathbf{R}^n$. We define: $(\mathbf{x}; \mathbf{v}) + (\mathbf{x}; \mathbf{w}) = (\mathbf{x}; \mathbf{v} + \mathbf{w})$ and $\mathbf{c}(\mathbf{x}; \mathbf{v}) = (\mathbf{x}; \mathbf{cv})$. The set of all tangent vectors to \mathbf{R}^n at \mathbf{x} is called the <u>tangent space</u> to \mathbf{R}^n at \mathbf{x} , or $T_{\mathbf{x}}(\mathbf{R}^n)$.
- *Definition.* Let A be open in \mathbf{R}^k or \mathbf{H}^k , $\alpha: A \rightarrow \mathbf{R}^n$ be of class C^r . Let $\mathbf{x} \in A$ and $\mathbf{p} = \alpha(\mathbf{x})$. We define $\alpha_*: T_{\mathbf{x}}(\mathbf{R}^k) \rightarrow T_{\mathbf{p}}(\mathbf{R}^n)$ by $\alpha_*(\mathbf{x}; \mathbf{v}) = (\mathbf{p}; D\alpha(\mathbf{x}) * \mathbf{v})$. This is the <u>transformation induced by α and a <u>push-forward</u>.</u>
- *Lemma.* Let A be open in \mathbf{R}^k or \mathbf{H}^k . Let $\alpha: A \rightarrow \mathbf{R}^m$ be C^r. Let B be open in \mathbf{R}^m or \mathbf{H}^m , with $\alpha(A) \subset B$. Let $\beta: B \rightarrow \mathbf{R}^n$ be C^r. Then, $(\beta \circ \alpha)_* = \beta_* \circ \alpha_*$.
- *Definition.* Let M be a k-manifold of class C^r in \mathbb{R}^n . If $\mathbf{p} \in M$, choose a coordinate patch α : U \rightarrow V about \mathbf{p} . Let $\mathbf{x} \in U$ such that $\alpha(\mathbf{x}) = \mathbf{p}$. Then we define the <u>tangent space to</u> <u>M</u> at \mathbf{p} by $T_{\mathbf{p}}(M) = \alpha_*(T_{\mathbf{x}}(\mathbb{R}^k)) = \{\alpha_*(\mathbf{x}; \mathbf{v}) \mid \mathbf{v} \in \mathbb{R}^k\}.$
- *Definition.* Let $A \subset \mathbb{R}^n$ be open. A <u>tangent vector field</u> in A is a continuous function F: $A \rightarrow \mathbb{R}^n \times \mathbb{R}^n$ such that $F(\mathbf{x}) \in T_{\mathbf{x}}(\mathbb{R}^n)$. Thus, we may write $F(\mathbf{x}) = (\mathbf{x}; f(\mathbf{x}))$ where f: A $\rightarrow \mathbb{R}^n$.
- *Definition.* Let $A \subset \mathbb{R}^n$ be open. A <u>k-tensor field</u>. in A is $\omega: \mathbf{x} \to L^k(T_{\mathbf{x}}(\mathbb{R}^n))$; in other words, ω assigns a k-tensor defined on $T_{\mathbf{x}}(\mathbb{R}^n)$ to each $\mathbf{x} \in A$. Notice that $\omega(\mathbf{x})((\mathbf{x}; \mathbf{v}_1), \dots, (\mathbf{x}; \mathbf{v}_k))$ must be continuous as a function of $\mathbf{x}, \mathbf{v}_1, \dots, \mathbf{v}_k$. If $\omega(\mathbf{x})$ is an alternating k-tensor for all \mathbf{x} , we call ω a <u>differential form of order k</u> on A.
- *Definition.* The <u>elementary 1-forms</u> on \mathbf{R}^n are given by $\phi_i(\mathbf{x})(\mathbf{x}; \mathbf{e}_j) = 1$ if i = j, 0 otherwise. The <u>elementary k-forms</u> on \mathbf{R}^n are given by $\psi_I(\mathbf{x}) = \phi_{i1}(\mathbf{x}) \wedge \dots \wedge \phi_{ik}(\mathbf{x})$, where $I = (i_1, \dots, i_k)$ is an ascending k-tuple.
- *Note.* If ω is a k-form on A, we may write $\omega(\mathbf{x}) = \sum_{[I]} b_I(\mathbf{x}) \psi_I(\mathbf{x})$, where the b_I are scalar functions and are called the components of ω .
- *Definition.* Let A be open in \mathbb{R}^n . If f: A $\rightarrow \mathbb{R}$ is C^r, f is called a <u>scalar field</u> in A and a <u>differential form of order 0</u>.
- *Note.* $\omega(\mathbf{x}) \wedge f(\mathbf{x}) = f(\mathbf{x}) \omega(\mathbf{x}).$
- *Definition.* Let A be open in \mathbb{R}^n and f: A $\rightarrow \mathbb{R}$ be \mathbb{C}^{∞} . The, $d(f(\mathbf{x}; \mathbf{v})) = Df(\mathbf{x}) \bullet \mathbf{v}$. We call this the <u>differential</u> of f.

Theorem. Let A be open in \mathbb{R}^n and f: A $\rightarrow \mathbb{R}$ be C^{∞}. Then, df = (D₁f)dx₁ + ... + (D_nf)dx_n.

Definition. Let $\omega \in \Omega^{k}(A)$, j > 0. Let $\omega = \sum_{[I]} f_{I} dx_{I}$. We define $d\omega = \sum_{[I]} df_{I} \wedge dx_{I}$. *Theorem.* Let $d: \Omega^{k}(A) \rightarrow \Omega^{k+1}(A)$.

- d is linear $(d(a\omega + b\eta) = a(d\omega) + b(d\eta).)$.
- $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$, where ω is a k-form and η is any form.
- $d(d\omega) = 0$ for all forms.

Definition. A form, ω , is <u>closed</u> if $d\omega = 0$.

Definition. A form, ω , is <u>exact</u> if $\omega = d\theta$ for some k-1 form θ .

Definition. Let B be open in \mathbf{R}^n and $\alpha(A) \subset B$. A <u>dual transformation of forms</u>

(<u>pullback</u>) is given by $(\alpha^* f)(\mathbf{x}) = f(\alpha(\mathbf{x}))$ if f is a 0 form, and $((\alpha^* \omega)(\mathbf{x}))(\mathbf{v}_1, ..., \mathbf{v}_k) = \omega(\alpha(\mathbf{x}))(\alpha_*(\mathbf{x}; \mathbf{v}_1), ..., \alpha_*(\mathbf{x}; \mathbf{v}_n)).$

Proposition. Let ω , η , and θ be forms, with ω and η having the same order. Then:

- $\alpha^*(a\omega + b\eta) = a \alpha^*(\omega) + b \alpha^*(\eta)$ [linear]
- $\alpha_*(\omega \land \theta) = \alpha_*(\omega) \land \alpha_*(\theta)$
- $(\beta \circ \alpha)^* = \alpha^* \circ \beta^*$
- $\alpha^*(d\omega) = d(\alpha^*\omega).$
- *Theorem.* Let A be open in \mathbf{R}^k . Let α : A $\rightarrow \mathbf{R}^n$ be \mathbb{C}^∞ . Let $\mathbf{x} \in \mathbf{R}^k$ and $\mathbf{y} \in \mathbf{R}^n$ with $\alpha(\mathbf{x}) = \mathbf{y}$. If $\mathbf{I} = (i_1, ..., i_l)$ is an ascending l-tuple from $\{1, 2, ..., n\}$ then $\alpha^*(dy_I) = \sum_{[J]} \det(\partial \alpha_I / \partial x_J) dx_J$.

Integrating over a Manifold.

Note. $\int_A f dx_1 \wedge .. dx_n = \int_A f$, for $A \subset \mathbf{R}^n$.

Theorem. Let $\omega = f \, dz_I$. Then, $\int_{Y\alpha} \omega = \int_A \alpha^* \omega = \int_A (f \circ \alpha) \det (\partial \alpha_I / \partial x)$.

- *Definition.* Let M be a k-manifold in \mathbb{R}^n . Let $\alpha_0: U_0 \rightarrow V_0$ and $\alpha_1: U_1 \rightarrow V_1$ be coordinate patches on M. If $V_0 \cap V_1$ is non-empty, then α_0 and α_1 <u>overlap</u>. If α_0 and α_1 overlap and $\alpha_1^{-1} \circ \alpha_0$ is orientation-preserving, then α_0 and α_1 <u>overlap positively</u>. If α_0 and α_1 overlap and $\alpha_1^{-1} \circ \alpha_0$ is not orientation-preserving, then α_0 and α_1 <u>overlap positively</u>. If α_0 and α_1 <u>overlap and $\alpha_1^{-1} \circ \alpha_0$ is not orientation-preserving, then α_0 and α_1 <u>overlap negatively</u>. If we may cover M by coordinate patches that overlap positively or not at all, we call M <u>orientable</u>.</u>
- *Definition.* Let M be a compact oriented k-manifold in \mathbb{R}^n . Let ω be a k-form defined in an open set of \mathbb{R}^n containing M. Let $C = M \cap$ Support ω ; note that C is compact. Suppose there is a coordinate patch α : U \rightarrow V on M belonging to the orientation of M with $C \subset V$. Assume U is bounded. We define the integral of ω over M as $\int_M \omega = \int_{Int U} \alpha^*(\omega)$.
- *Definition.* Let M be a compact oriented k-manifold in \mathbb{R}^n . Let ω be a k-form defined in an open set of \mathbb{R}^n containing M. Cover M by coordinate patches belonging to the orientation of M; choose a partition of unity on M dominated by these coordinate patches. We define $\int_M \omega = \sum (\int_M \phi_i \omega)$.
- *Definition*. A <u>0-manifold</u> is a finite collection of points, $\{\mathbf{x}_1, ..., \mathbf{x}_n\}$ in \mathbf{R}^n . We define an orientation on such a manifold by a function ϵ : $\{\mathbf{x}_1, ..., \mathbf{x}_n\} \rightarrow \{-1, 1\}$. $\int_M f = \sum \epsilon(\mathbf{x}_i) f(\mathbf{x}_i)$.
- *Definition.* Let M be an oriented 1-manifold in \mathbb{R}^n . We define the orientation of ∂M by $\varepsilon(\mathbf{p}) = -1$ if there exists $\alpha: U \rightarrow V$, about \mathbf{p} , with $U \subset \mathbf{H}^k$ and $\varepsilon(\mathbf{p}) = 1$ otherwise.

Stokes Theorem. Let M be an oriented k manifold in \mathbb{R}^n . Let ∂M have the induced orientation. Let ω be a k-1 form on an open set containing M. Then, $\int_M d\omega = \int_{\partial M} \omega$.

Lebesgue Measure

Definition. A $\underline{\sigma}$ -algebra, or a Borel field, is an algebra of sets that is closed under countable union (and therefore countable intersection). A Borel set is the smallest σ -algebra that contains the closed and open intervals.

Definition. The <u>outer measure</u> of a set $E \subset \mathbf{R}$ is $m^*E = \inf_{E \subset \cup I(n)} \sum l(I_n)$ (where l(I) is the length of the interval), so that $\{I_n\}$ is a set of intervals that covers E.

Proposition. Let $\{A_n\}$ be any countable collection of sets. Then, $m^*(\cup A_n) \le \sum m^*A_n$. (This is called <u>countable subadditivity</u>.)

Proposition. Given any set A and $\varepsilon > 0$, there exists an open set O such that $A \subset O$ and $m^*O \le m^*A + \varepsilon$. There is a $G \in G_{\delta}$ such that $A \subset G$ and $m^*A = m^*G$.

Definition. E is <u>measurable</u> if, for all A, $m^*A = m^*(A \cap E) + m^*(A \cap E^C)$.

Lemma. If $m^*E = 0$, E is measurable.

Theorem. The measurable sets form an algebra.

Lemma. Let A be any set. Let $E_1, ..., E_n$ be a finite sequence of disjoint measurable sets. Then, $m^*(A \cap (\cup E_i)) = \sum m^*(A \cap E_i)$.

Lemma. (a, ∞) is measurable.

Theorem. Every Borel set is measurable.

Proposition. Let $\{E_i\}$ be an infinite, decreasing (ie. $E_{i+1} \subset E_i$) sequence of measurable sets. Let $mE_1 < \infty$. Then, $m(\cap E_i) = \lim mE_n$.

Proposition. Let E be a set. The following are equivalent:

i. E is measurable.

ii. Given $\varepsilon > 0$ there exists an open set $O \supset E$ with $m^*(O - E) < \varepsilon$.

- *iii.* Given $\varepsilon > 0$ there exists a closed set $F \subset E$ with $m^*(E F) < \varepsilon$.
- *iv.* There is a $G \in G_{\delta}$ with $E \subset G$ such that $m^*(G E) = 0$.
- *v*. There is an $F \in F_{\sigma}$ with $F \subset E$ such that $m^*(E F) = 0$.
- vi. (If $m^*E < \infty$, then) If $\varepsilon > 0$ there exists a *finite* union $U = \bigcup I_i$ such that $m^*((U E) \cup (E U)) < \varepsilon$.

Proposition. Let f be any function. Let $a \in \mathbf{R}$. The following are equivalent:

- *i.* $\{x \mid f(x) > a\}$ is measurable.
- *ii.* $\{x \mid f(x) < a\}$ is measurable.
- *iii.* $\{x \mid f(x) \le a\}$ is measurable.
- *iv.* $\{x \mid f(x) \ge a\}$ is measurable.
- *Definition.* A function is <u>measurable</u> if its domain is measurable and the conditions above hold.
- *Theorem.* Let $\{f_n\}$ be a sequence of measurable functions defined on the same domain. Then the functions $\sup\{f_1, \ldots, f_n\}$, $\inf\{f_1, \ldots, f_n\}$, $\sup_n f_n$, $\inf_n f_n$, $\lim_n \sup_n f_n$, and $\lim_n \inf_n f_n$ are also measurable.
- *Theorem.* If f is measurable and f = g almost everywhere, then g is measurable.

Littlewood's Three Principles. Every measurable set is nearly a union of intervals. Every measurable function is nearly continuous. Every convergent sequence of measurable functions is nearly uniformly convergent.

Lebesgue Integration

Definition. A simple function, φ , is defined by $\varphi(x) = \sum_{i=1}^{n} a_i \chi_{Ei}(x)$, where χ_{Ei} is the characteristic function of E_i (1 on E_i , 0 elsewhere).

Note. φ is simple if and only if it is measurable and takes on a finite number of values. *Definition.* Let $\varphi = \sum a_i \chi_{Ei}$. We define $\int \varphi = \sum a_i mE_i$.

Definition. If f is bounded and measurable on a set E of finite measure, we define $\int_E f = \inf_{\psi \ge f} \int_E \psi = \sup_{\phi \le f} \int_E \phi$.

Proposition. If f and g are bounded, measurable functions defined on a set E of finite measure, then:

- $\int_E (af + bg) = a \int_E f + b \int_E g.$
- If $g \le f$ almost everywhere, then $\int_E g \le \int_E f$.
- If $A \le f(x) \le B$ almost everywhere, then $A(mE) \le \int_E f \le B(mE)$.
- If $A \cap B = \emptyset$ and A, B have finite measure, $\int_{A \cup B} f = \int_A f + \int_B f$.

Definition. If f is non-negative and measurable on any measurable set E, we define $\int_E f = \sup_{h \le f} \int_E h$ where h is bounded, measurable, and non-zero only on a set of finite

measure. f is <u>integrable</u> over the measurable set E if $\int_E f < \infty$.

Definition. Let f be any function. Define $f^+(x) = \max\{f(x), 0\}$ and $f(x) = -\min\{f(x), 0\} = \max\{-f(x), 0\}$.

Definition. Let f be measurable. f is <u>integrable</u> over E if f^+ and f are integrable. Then, $\int_E f = \int_E f^+ - \int_E f$.

Proposition. The following properties hold for the general Lebesgue integral:

- $\int_E (af + bg) = a \int_E f + b \int_E g.$
- If $g \le f$ almost everywhere, then $\int_E g \le \int_E f$.
- If $A \cap B = \emptyset$ and A, B have finite measure, $\int_{A \cup B} f = \int_A f + \int_B f$.

Bounded Convergence Theorem. Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a set E of finite measure. Suppose there is some real number M such that $|f_n(x)| \leq M$ for all n, x. If $f(x) = \lim_{x \to \infty} f_n(x)$ almost everywhere in E, then $\int_E f = \lim_{x \to \infty} \int_E f_n$.

Fatou's Lemma. Let $\langle f_n \rangle$ be a sequence of non-negative, measurable functions with $\lim_{f_n(x) = f(x)} f_n(x) = f(x)$ almost everywhere on a measurable set E. Then, $\int_E f \leq \underline{\lim} \int_E f_n$.

Monotone Convergence Theorem. Let $\langle f_n \rangle$ be an increasing sequence of non-negative, measurable functions with $f(x) = \lim f_n(x)$ almost everywhere. Then, $\int f = \lim \int f_n$.

- Lebesgue Convergence Theorem. Let g be integrable over E and $\langle f_n \rangle$ a sequence of measurable functions with $|f_n| \leq g$ everywhere on E. Let $\lim f_n(x) = f(x)$ almost everywhere on E. Then, $\int_E f = \lim \int_E f_n$.
- *Theorem.* Let $\langle g_n \rangle$ be a sequence of measurable functions over E that converge almost everywhere to an integrable function g. Let $\langle f_n \rangle$ be a sequence of measurable functions with $|f_n| \leq g_n$ and $\lim f_n(x) = f(x)$ almost everywhere. If $\int_E g = \lim \int_E g_n$ then $\int_E f = \lim \int_E f_n$.
- *Definition.* A sequence $\langle f_n \rangle$ converges to f in measure if, given $\varepsilon > 0$, there exists N such that, for all n > N, $m\{x \mid |f(x) f_n(x)| \ge \varepsilon\} < \varepsilon$.
- *Proposition.* Suppose $\langle f_n \rangle$ converges to f in measure and all the f_n are measurable. Then there is a subsequence $\langle f_{nk} \rangle$ that converges to f almost everywhere.
- *Corollary.* Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a set E of finite measure. Then f_n converges to f in measure if and only if every subsequence of $\langle f_n \rangle$ has in turn a subsequence that converges to f almost everywhere.

Proposition. The convergence theorems stated above hold if "convergence almost everywhere" is replaced by "convergence in measure."

L^p Spaces

Definition. $f \in L^p$ if $\int_{[0,1]} |f|^p < \infty$.

Definition. $||f||_p = (\int_{[0,1]} |f|^p)^{1/p}$.

- *Note.* If we consider functions equivalent when they are equal almost everywhere, then L^{p} is a normed linear space.
- Definition. $f \in L^{\infty}$ if f is bounded almost everywhere and measurable. $||f||_{\infty} = ess \sup |f(x)| = inf \{M \mid m\{t \mid f(t) > M\} = 0\}.$

Applications to Vector Calculus

- *Definition.* Let A be open in \mathbb{R}^n . Let f: A $\rightarrow \mathbb{R}$ be a scalar field. We define the <u>gradient</u> of f by (grad f)(\mathbf{x}) = (\mathbf{x} ; D₁f(\mathbf{x}) \mathbf{e}_1 + ... + D_nf(\mathbf{x}) \mathbf{e}_n). Let G(\mathbf{x}) = (\mathbf{x} ; g(\mathbf{x})) be a vector field on A, with g(\mathbf{x}) = g₁(\mathbf{x}) \mathbf{e}_1 + ... + g_n(\mathbf{x}) \mathbf{e}_n . We define the <u>divergence</u> of G by (div G) = D₁g₁(\mathbf{x}) + ... + D_ng_n(\mathbf{x}).
- *Theorem.* Let A be open in \mathbb{R}^n . Then we have the following vector space isomorphisms: α_0 : Scalar fields in A $\rightarrow \Omega^0(A)$.
 - α_1 : Vector fields in A $\rightarrow \Omega^1(A)$
 - β_{n-1} : Vector fields in $A \rightarrow \Omega^{n-1}(A)$
 - β_n : Scalar field in $A \rightarrow \Omega^n(A)$
- so that $d \circ \alpha_0 = \alpha_1 \circ \text{grad}$ and $d \circ \beta_{n-1} = \beta_n \circ \text{div}$.
- *Proof.* $\alpha_0(f) = f$
 - $\alpha_1(F) = \sum f_i dx_i$
 - $\beta_{n-1}(G) = \sum (-1)^{i-1} g_i dx_1 \wedge \ldots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \ldots dx_n$

$$\beta_n(h) = h \, dx_1 \wedge \ldots \wedge dx_n$$

- *Definition*. Let $A \subset \mathbf{R}^3$ be open. Let $F(\mathbf{x}) = (\mathbf{x}; \sum f_i(\mathbf{x})\mathbf{e}_i)$ be a vector field in A. We define the vector field, curl F, by (curl F)(\mathbf{x}) = (\mathbf{x} ; ($D_2f_3 D_3f_2$)(\mathbf{x}) $\mathbf{e}_1 + (D_3f_1 D_1f_3)(\mathbf{x})\mathbf{e}_2 + (D_1f_2 D_2f_1)(\mathbf{x})\mathbf{e}_3$).
- *Theorem.* Let A be open in \mathbf{R}^3 . Then, in addition to the isomorphisms in the previous theorem, we find that d ° $\alpha_1 = \beta_2$ ° curl.
- *Definition.* Let M be a 1-manifold. The <u>unit tangent vector</u> at $\mathbf{p} \in M$ if given by $T(\mathbf{p}) = (\mathbf{p}; D\alpha(t)/||D\alpha(t_0)||)$ where $\alpha(t_0) = \mathbf{p}$.
- *Definition.* So that we may have outward-pointing unit tangent vectors, we define the <u>left-half-line</u>, $\mathbf{L} = \{x \mid x \le 0\}$ and allow coordinate patches α : $\mathbf{L} \rightarrow \mathbf{R}^{n}$.
- *Definition.* Let M be an n-1 manifold in \mathbb{R}^n . Let $\mathbf{p} \in M$. Let $(\mathbf{p}; \mathbf{n})$ be a tangent vector to \mathbb{R}^n that is orthogonal to the tangent space to M at \mathbf{p} . Let $||\mathbf{n}|| = 1$. If \mathbf{n} is always pointing the "same" direction, this is called a <u>normal vector field</u> to M and defines an orientation.
- *Definition.* Let M be an n-manifold in \mathbf{R}^n . The <u>natural orientation</u> of M is the set of all coordinate patches α : $\mathbf{R}^n \rightarrow \mathbf{R}^n$ with det $D\alpha > 0$.
- *Theorem.* Let k > 1. If M is an oriented k-manifold in \mathbb{R}^n with ∂M non-empty, then ∂M is orientable.

- *Definition.* Let M be an orientable k-manifold in \mathbb{R}^n , with ∂M non-empty. Given an orientation of M, the <u>induced orientation</u> of ∂M is defined by the orientation of the restricted coordinate patch if k is even and the opposite orientation if k is odd.
- *Note.* The induced orientation of an n-1 manifold that is the boundary of a naturally oriented n-manifold always points outward from the manifold.
- *Theorem.* Let M be a compact, oriented n-1 manifold in \mathbb{R}^n . Let N be the unit normal field (corresponding to the induced orientation). Let G be a vector field on an open set containing M, so that $G(\mathbf{y}) = (\mathbf{y}; g(\mathbf{y})) = (\mathbf{y}; \sum g_i(\mathbf{y}) \mathbf{e}_i)$. Let $\omega = \sum (-1)^{i-1} g_i dy_1 \wedge ... \wedge dy_{i-1} \wedge dy_{i+1} \wedge ... \wedge dy_n$. Then, $\int_M \omega = \int_M \langle G, N \rangle dV$.
- *Theorem.* Let M be an n-manifold in \mathbb{R}^n . Let $\omega = h \, dx_1 \wedge \ldots \wedge dx_n$. Then, $\int_M \omega = \int_M h \, dV$.
- *Divergence Theorem.* Let M be a compact, oriented n-manifold in \mathbb{R}^n . Let N be the unit normal field. If G is a vector field, then $\int_M (\operatorname{div} G) \, dV = \int_{\partial M} \langle G, N \rangle \, dV$.
- *Classical Stokes Theorem.* Let M be a compact, oriented 2-manifold in \mathbb{R}^3 . Let N be the unit normal field. Let F be a C^{∞} function. Then, if $\partial M = \emptyset$, then $\int_M \langle \text{curl F}, N \rangle dV = 0$. Otherwise, $\int_M \langle \text{curl F}, N \rangle dV = \int_{\partial M} \langle F, T \rangle dV$, where T is the unit tangent field to ∂M with the induced orientation.