Analysis Seminar Summary

Inverse and Implicit Function Theorems

Definition. $C(\mathbf{a}, r)$ is the open cube in \mathbf{R}^n about \mathbf{a} of side length 2r. It is the set of points where each coordinate differs from any coordinate of \mathbf{a} by at most r.

Lemma. Let A be open in \mathbb{R}^n , f: A $\rightarrow \mathbb{R}^n$ be C¹. If Df(a) is non-singular then there exists $\alpha > 0$ and $\varepsilon > 0$ such that $|f(x_1) - f(x_2)| \ge \alpha |x_1 - x_2|$ for all x_1, x_2 in C(a, ε).

Note. This lemma implies that f is 1-1 in a neighborhood of **a**.

Lemma. Let A be open in \mathbb{R}^n and f: A $\rightarrow \mathbb{R}^n$ be C^r. Let B = f(A). If f is 1-1 and Df(x) is non-singular for all $x \in A$ then B is open in \mathbb{R}^n and f⁻¹ is C^r.

Proof. Step 1: If a function has a local minimum or maximum, then the derivative is 0 there.

Step 2: B = f(A) is open.

Step 3: f^{-1} is continuous.

Step 4: f^1 is differentiable.

Step 5: f^{-1} is C^{r} .

Inverse Function Theorem. Let A be open in \mathbb{R}^n and f: A $\rightarrow \mathbb{R}^n$ be C^r. If Df(x) is nonsingular then there is a neighborhood, U, about x and a neighborhood, V, about f(x) such that f: U \rightarrow V is onto V. Then f⁻¹ is C^r.

Lemma. Let A be open in \mathbf{R}^{n+k} . Let f: A $\rightarrow \mathbf{R}^n$ be differentiable. Suppose there exists g: $\mathbf{R}^k \rightarrow \mathbf{R}^n$ such that $f(\mathbf{x}, g(\mathbf{x})) = 0$ for all $\mathbf{x} \in \mathbf{R}^k$. Then, $\partial f/\partial \mathbf{x} + \partial f/\partial \mathbf{y} * \partial g/\partial \mathbf{x} = 0$.

Implicit Function Theorem. Let A be open in \mathbf{R}^{n+k} . Let f: A $\rightarrow \mathbf{R}^{n}$ be C^r. Write f as f(x,

y), where $\mathbf{x} \in \mathbf{R}^k$ and $\mathbf{y} \in \mathbf{R}^n$. Let $(\mathbf{a}, \mathbf{b}) \in A$ with $f(\mathbf{a}, \mathbf{b}) = 0$ and det $\partial f/\partial \mathbf{y} (\mathbf{a}, \mathbf{b}) \neq 0$. Then, there exists a unique g: $\mathbf{R}^k \rightarrow \mathbf{R}^n$ such that $f(\mathbf{a}, g(\mathbf{a})) = 0$.

Proof. Apply the inverse function theorem to $F(\mathbf{x}, \mathbf{y}) = (\mathbf{x}, f(\mathbf{x}, \mathbf{y}))$.

Integration Theory

- *Definition.* A <u>rectangle</u>, Q, in \mathbf{R}^n is Q = [a₁, b₁] × ... × [a_n, b_n].
- *Definition.* The <u>volume</u> of Q is given by $v(Q) = (b_1 a_1) \dots (b_n a_n)$.
- *Definition.* A <u>partition</u>, *P*, of Q is an n-tuple of partitions of [a_i, b_i]. The parts of the partition are called <u>subrectangles</u>.
- *Definition.* If f: Q \rightarrow **R** is bounded, then we define $m_R(f) = \inf\{f(x) \mid x \in R\}$, where R is a subrectangle of Q.

Definition. Under the same conditions, $M_R(f) = \sup\{f(x) \mid x \in R\}$.

Definition. The lower and upper sums of a partition, *P*, where each R is a subrectangle of *P* are L(f; *P*) = $\sum_{R} m_{R}v(R)$ and U(f; *P*) = $\sum_{R} M_{R}v(R)$.

Definition. The upper and lower integrals and $\int_Q f = \sup\{L(f; P)\}$ and $\overline{\int}_Q f = \inf\{U(f; P)\}$. *Definition.* f is <u>integrable</u> over Q if $\int_Q f = \overline{\int}_Q f$. We set $\int_Q f$ equal to this value.

- *Theorem.* Suppose that given $\varepsilon > 0$ there exists $\delta > 0$ such that if *P* is any partition of mesh less than δ with $x_R \in R$ then $|\Sigma_R f(x_R)v(R) A| < \varepsilon$. Then, f is integrable over Q with $\int_{\Omega} f = A$.
- *Definition.* Let $A \subset \mathbb{R}^n$. A has <u>measure zero</u> if, for all $\varepsilon > 0$, there exists a covering $\{Q_i\}$ of A by countable many rectangles such that $\sum v(Q_i) < \varepsilon$.
- *Theorem.* Let $Q \subset \mathbf{R}^n$ and f: $Q \rightarrow \mathbf{R}$ be bounded. Let D be the set of discontinuities of f on Q. Then, f is integrable over Q if and only if D has measure 0.

Definition. Let $S \subset \mathbb{R}^n$ be bounded and f: $S \rightarrow \mathbb{R}$ be bounded. Let $f_S: \mathbb{R}^n \rightarrow \mathbb{R}$ be defined by $f(\mathbf{x}) = f(\mathbf{x})$ if $\mathbf{x} \in S$ and $f(\mathbf{x}) = 0$ elsewhere. We define $\int_{S} f$ by $\int_{O} f_{S}$ where Q is any rectangle containing S.

Lemma. $\int_{S} f$ is well-defined.

- *Theorem.* Under the conditions of boundedness, the following conditions about the integral hold:
 - Linearity: $\int_{S} (af + bg) = a \int_{S} f + b \int_{S} g$ provided the right-hand integrals exist.
 - Comparison: If $f(\mathbf{x}) \le g(\mathbf{x})$ for all $\mathbf{x} \in S$ then $\int_S f \le \int_S g$. In particular, |f| is integrable if f is integrable, and $|\int_{S} f| \leq \int_{S} |f|$.
 - Monotonicity: Suppose $T \subset S$, f(x) is non-negative on S, and both $\int_S f$ and $\int_T f$ exist. Then, $\int_T f \leq \int_S f$.
 - Additivity: Let $S = S_1 \cup S_2$. If f is integrable over S_1 and S_2 then it is integrable over their union and intersection, with $\int_{S} f = \int_{S1} f + \int_{S2} f - \int_{S1 \cap S2} f$.
- *Definition.* Let S be bounded in \mathbf{R}^n . If the constant function 1 is integrable over S, we say S is rectifiable.
- *Definition.* We define the (Jordan) volume of S by $v(S) = \int_{S} 1$.
- *Theorem.* S is rectifiable if and only if S is bounded and Bd S has measure 0.
- *Proof (sketch).* The function that is 1 on S and 0 elsewhere can be integrated unless the set of discontinuities, which is Bd S, has measure greater than 0.
- *Theorem.* Let $S \subset \mathbf{R}^n$ be rectifiable. Let $f: S \rightarrow \mathbf{R}$ be bounded and discontinuous only on a set of measure 0. Then, $\int_{S} f$.
- *Lemma*. Let A be open in \mathbb{R}^n . Let f: A $\rightarrow \mathbb{R}$ be continuous. If C \subset A is compact and f vanishes outside C the $\int_A f = \int_C f$.
- *Theorem.* Let A be open in \mathbb{R}^n . Let f: A $\rightarrow \mathbb{R}$ be continuous. Choose a sequence, $\{C_n\}$ of compact rectifiable subsets of A whose union is A, such that $C_n \subset Int C_{n+1}$. f is integrable over A if and only if $\{\int_{Cn} |f|\}$ is bounded. Then, $\int_{A} f = \lim \int_{Cn} f$.

Partitions of Unity

- *Lemma*. Let $Q \subset \mathbf{R}^n$ be a rectangle. Then, there exists a C^{∞} function, $\phi: \mathbf{R}^n \rightarrow \mathbf{R}$, such that $\phi(\mathbf{x}) > 0$ for $\mathbf{x} \in \text{Int } Q$ and $\phi(\mathbf{x}) = 0$ elsewhere. *Proof.* Let $f(\mathbf{x}) = e^{-1/x}e^{-1/(1-x)}$. This function works for [0, 1].
- *Lemma*. Let A be a collection of open sets in \mathbb{R}^n . Let $A = \bigcup A$. Then, there exists a countable collection, $\{Q_i\}$ of rectangles contained in A such that
 - 1. \cup Q_i covers A
 - 2. Each Q_i is contained in some element of A.
 - 3. Each $a \in A$ has a neighborhood that intersects finitely many Q_i .
- *Proof (outline).* Cover A by compact nested subsets, D_i . Let $B_i = D_i Int D_{i-1}$. Cover each B_i by closed cubes that do not intersect D_{i-2}, and thus by a finite subcover. These are the Q_i.

Definition. If ϕ : $\mathbf{R}^n \rightarrow \mathbf{R}$ the support of ϕ is the closure of $\{\mathbf{x} \mid \phi(\mathbf{x}) \neq 0\}$.

Theorem. Let A be a collection of sets in \mathbb{R}^n . Let A be their union. There exists $\{\phi_i\}, \phi_i$:

 $\mathbf{R}^{n} \rightarrow \mathbf{R}$ which fulfill the following conditions:

- *1*. $\phi(\mathbf{x}) \ge 0$ for all \mathbf{x} .
- 2. $S_i = \text{Support } \phi_i \subset A \text{ for all } \phi_i$.
- 3. If $\mathbf{x} \in A$ then \mathbf{x} is contained in a finite number of S_i .

- 4. $\sum \phi_i(\mathbf{x}) = 1$ for all $\mathbf{x} \in A$.
- 5. Each ϕ_i is C^{∞} .
- 6. The S_i are compact.
- 7. Each S_i is contained in one element of A.
- *Proof.* Use the previously constructed $\{Q_i\}$ and ϕ for each Q_i , normalizing so that they sum to one.
- *Definition.* A set of functions fulfilling the first four conditions is called a <u>partition of unity</u>.
- *Theorem.* Let $A \subset \mathbf{R}^n$ be open. Let $f: A \rightarrow \mathbf{R}$ be continuous. Let $\{\phi_i\}$ be a partition of unity on A with compact supports. The integral $\int_A f$ exists if and only if $\sum (\int_A \phi_i |f|)$ converges. In this case, $\int_A f = \sum (\int_A \phi_i f)$.

Change of Variables Theorem

Definition. Let A be open in \mathbb{R}^n , g: A $\rightarrow \mathbb{R}^n$ be one-to-one and of class C^r, with det Dg(**x**) $\neq 0$ for all $\mathbf{x} \in A$. Then, g is called a <u>change of variables</u> or a <u>diffeomorphism</u>.

- *Lemma.* Let A be open in \mathbb{R}^n and g: A $\rightarrow \mathbb{R}^n$ be C^r. If $E \subset A$ has measure 0 in \mathbb{R}^n then g(E) has measure 0 in \mathbb{R}^n as well.
- *Proof.* Cover E by cubes. Show that g sends each cube to the interior of a cube with width nMw, where w was the width of the old cube and M is the largest absolute value in the matrix det Dg. Cover A with nested compact sets and let E_k be the intersection of E with each. Cover E_k by finitely may cubes with total volume less than $\epsilon/(nM)^n$. Show that g(E) has measure less than ϵ .
- *Theorem.* Let g: A \rightarrow B be a diffeomorphism of class C^r of open sets in **R**ⁿ. Let D, Bd D \subset A and E = g(D). Then, g(Int D) = Int E and g(Bd D) = Bd E. If D is rectifiable, sp is E.
- *Definition.* Let h: A \rightarrow B be a diffeomorphism of open sets in \mathbb{R}^n , $n \ge 2$, with $h(\mathbf{x}) = (h_1(\mathbf{x}), \dots, h_n(\mathbf{x}))$. h preserves the ith coordinate if $h_i(\mathbf{x}) = x_i$ for all $\mathbf{x} \in A$. If h preserves the ith coordinate for any i, then h is a primitive diffeomorphism.
- *Theorem.* Let g: A \rightarrow B be a diffeomorphism of open sets in \mathbb{R}^n , $n \ge 2$. Then, there is a neighborhood U₀ of **a** and a sequence of primitive diffeomorphisms, $h_1: U_1 \rightarrow U_0$, $h_2: U_2 \rightarrow U_1, ..., h_k: U_k \rightarrow U_{k-1}$ such that $h_k \circ ... \circ h_1 \circ h_0(\mathbf{x}) = g(\mathbf{x})$ for all $\mathbf{x} \in U_0$.
- Theorem (Substitution Rule). Let I = [a, b], g: $I \rightarrow \mathbf{R}$ be C_1 with g'(\mathbf{x}) $\neq 0$ for all $\mathbf{x} \in (a, b)$. Then, g(I) = J is a closed interval with endpoints g(a) and g(b). If f: $J \rightarrow \mathbf{R}$ is continuous then $\int_{g(a)}^{g(b)} f = \int_{a}^{b} (f \circ g) g'$ and $\int_{J} f = \int_{I} (f \circ g)|g'|$.
- *Change of Variables Theorem.* Let g: A \rightarrow B be a diffeomorphism of open sets in \mathbb{R}^n . Let f: B $\rightarrow \mathbb{R}$ be continuous. Then, f is integrable over B if and only if $(f \circ g)|\det Dg|$ is integrable over A. In that case, $\int_B f = \int_A (f \circ g)|\det Dg|$.
- *Proof.* Step 1: Prove the case where n = 1, only in a neighborhood of a point. (Use the substitution rule on an interval with **x** in the interior and the support of f contained in the interval.)
 - *Step 2:* The case for primitive diffeomorphisms with n > 1, locally. (Using primitive-ness, reduce the problem to a question of n 1.)
 - Step 3: Composing primitive diffeomorphism, using the chain rule.
 - Step 4: Using a partition of unity to extend local to global.

Manifolds

Theorem. Let $W \subset \mathbf{R}^n$ be a linear subspace of dimension k. Then there is an orthogonal basis of \mathbf{R}^n in which the first k vectors are a basis for W.

Theorem. There is an isometry (orthogonal transformation) from any k-dimensional linear subspace of dimension k to $\mathbf{R}^{k} \times \mathbf{0}^{n-k}$.

Theorem. There is a unique function, V, that assigns to every k-tuple of elements in \mathbb{R}^n a non-negative number such that (1) If h: $\mathbb{R}^n \to \mathbb{R}^n$ is an isometry then V(h(\mathbf{x}_1), ..., h(\mathbf{x}_n)) = V(\mathbf{x}_1 , ..., \mathbf{x}_n), and (2) If \mathbf{y}_1 , ..., $\mathbf{y}_k \in \mathbb{R}^k \times \mathbf{0}^{n-k} \subset \mathbb{R}^n$, so that $\mathbf{y}_i = [\mathbf{z}_i \ \mathbf{0}]$ then V(\mathbf{y}_1 , ..., \mathbf{y}_k) = |det [$\mathbf{z}_1 \dots \mathbf{z}_n$]|. In addition, V(\mathbf{x}_1 , ..., \mathbf{x}_n) = 0 if and only if { \mathbf{x}_1 , ..., \mathbf{x}_k } are dependent. Notice that V is defined by V = (det $X^T X$)^{1/2} where X = [$\mathbf{x}_1 \dots \mathbf{x}_k$]. We call this volume.

- *Definition.* Let $(\mathbf{x}_1, ..., \mathbf{x}_k) \in (\mathbf{R}^n)^k$, $k \le n$. Let $X = [\mathbf{x}_1 ... \mathbf{x}_k]$, $I = (i_1, ..., i_k)$ be an ascending k-tuple of integers, $1 \le i_1 < ... < i_k \le n$. Let X_I be a $k \times k$ matrix with the first row the i_1^{st} row of X, ..., the k^{th} row the i_k^{th} row of X.
- *Theorem.* Let X be an $n \times k$ matrix, $k \le n$. Then, $V(X) = (\sum_{[I]} (\det X_I)^2)^{1/2}$ where [I] is the set of all ascending k-tuples from $\{1, 2, ..., n\}$.
- *Definition.* Let $k \le n$, A be open in \mathbb{R}^k , α : A $\rightarrow \mathbb{R}^n$ of class C^r. Then $Y = \alpha(A)$ is a k-dimensional <u>parameterized manifold</u>.
- *Definition.* The volume of a parameterized manifold is $v(Y_{\alpha}) = \int_{A} V(D\alpha)$.
- *Definition.* Let f: $Y_{\alpha} \rightarrow \mathbf{R}$. We define the integral of f over Y_{α} as $\int_{Y_{\alpha}} f \, dV = \int_{A} (f \circ \alpha) V(D\alpha)$.
- *Theorem.* Let g: A \rightarrow B be a diffeomorphism of open sets in \mathbf{R}^k . Let $\beta: B \rightarrow \mathbf{R}^n$ be C^r and $Y = \beta(B)$. Let $\alpha = \beta^\circ g$. Then, $\alpha: A \rightarrow \mathbf{R}^n$ with $Y = \alpha(A)$. Then, $\int_{Y\alpha} f \, dV = \int_{Y\beta} f \, dV$.
- Proof. Apply the Chain Rule and the Change of Variables Theorem.
- *Definition.* Let k > 0. Let $M \subset \mathbf{R}^n$. Suppose that for any $\mathbf{p} \in M$ there exists V
- containing **p** such that V is open in M and there exists an open set $U \subset \mathbf{R}^k$ and a one-toone and onto α : $U \rightarrow V$ such that (1) α is C^r , (2) α^{-1} : $V \rightarrow U$ is continuous, and (3) D α has rank k everywhere on U. Then we call α a <u>coordinate patch</u> and M is a <u>k-manifold</u> without boundary.
- *Note.* Manifolds are defined locally. The second condition ensures that manifolds do not cross themselves, and the third condition ensures that there are no singularities.
- *Definition.* Let $S \subset \mathbf{R}^k$, f: $S \rightarrow \mathbf{R}^n$. f is $\underline{C^r \text{ on } S}$ if f may be extended to a function g: $U \rightarrow \mathbf{R}^n$ that is C^r on an open set U containing S.
- *Lemma.* If $S \subset \mathbf{R}^k$, f: $S \to \mathbf{R}^n$, and if for all $\mathbf{x} \in S$ there exists a neighborhood, $U_{\mathbf{x}}$, around \mathbf{x} , and $g_{\mathbf{x}}$: $U_{\mathbf{x}} \to \mathbf{R}^n$ that is C^r with compact support contained in $S \cap U_{\mathbf{x}}$ then f is C^r .
- *Definition.* \mathbf{H}^{k} is the <u>upper half-space</u> in \mathbf{R}^{k} . $\mathbf{H}^{k} = \{\mathbf{x} \in \mathbf{R}^{k} \mid x_{k} \ge 0\}$. $\mathbf{H}^{k}_{+} = \{\mathbf{x} \in \mathbf{R}^{k} \mid x_{k} \ge 0\}$.
- *Theorem.* Let U be open in \mathbf{H}^k but not \mathbf{R}^k and α : $U \cap \mathbf{H}^k \rightarrow \mathbf{R}$. Let β : $U \rightarrow \mathbf{R}$ be any extension of α . Then $D\alpha = D\beta$ everywhere on $U \cap \mathbf{H}^k$.
- *Lemma.* If M is a manifold in \mathbf{R}^n and α is a coordinate patch on M then the restriction of α to \mathbf{H}^k is also a manifold.
- *Theorem.* Let M be a k-manifold in \mathbb{R}^n of class C^r . Let $\alpha_0: U_0 \rightarrow V_0$, $\alpha_1: U_1 \rightarrow V_1$ be coordinate patches on M with $W = V_0 \cap V_1 \neq \emptyset$. Let $W_i = \alpha_i^{-1}(W)$. Then $\alpha_1^{-1} \circ \alpha_0: W_0 \rightarrow W_1$ is C^r and $D(\alpha_1^{-1} \circ \alpha_0)$ is non-singular.

Proof. Apply the change of variable theorem.

- *Definition.* Let M be a k-manifold in \mathbb{R}^n . Let $\mathbf{p} \in M$. If there is a coordinate patch, α : U → V on M about \mathbf{p} that is open in \mathbb{R}^k then \mathbf{p} is an <u>interior point</u>. If there is no such coordinate patch, then \mathbf{p} is a <u>boundary point</u>. The set of all boundary points is ∂M .
- *Lemma.* Let M be a k-manifold in \mathbb{R}^n , α : U \rightarrow V a coordinate patch on M about **p**. If U is open in \mathbb{R}^k then **p** is an interior point. If U is open in \mathbb{H}^k and $\mathbf{p} = \alpha(\mathbf{x})$ for some $\mathbf{x} \in \mathbb{H}^{k^k}$, the **p** is an interior point of M. If U is open in \mathbb{H}^k and $\mathbf{p} = \alpha(\mathbf{x})$ from some $\mathbf{x} \in \mathbb{R}^{k^{-1}} \times 0$, then **p** is a boundary point.
- *Proof.* In the second case, notice that $U \cap \mathbf{H}_{+}^{k}$ is open and therefore may be used as a coordinate patch to show that **p** is in interior point. In the third case, if there were any open coordinate patch, β , in \mathbf{R}^{k} , then $\beta^{-1} \circ \alpha$ is invertible and would take open sets to open sets. This leads to a contradiction.

Scalar Functions on Manifolds.

- *Definition.* Let M be a k-manifold in \mathbb{R}^n . Let f: $M \rightarrow \mathbb{R}$. Suppose Support(f) $\subset V$ and α : $U \rightarrow V$ is a coordinate patch. Them, we define $\int_M f = \int_U (f \circ \alpha) V(D\alpha)$.
- *Note.* If M is a 2-manifold in \mathbb{R}^3 this corresponds to $\int_M f = \int_U (f \circ \alpha) ||\partial \alpha / \partial u \times \partial \alpha / \partial v|| du dv.$
- *Note.* As with parameterized manifolds, we may use the change of variables theorem to show that the parameterization does not matter.
- *Definition.* Let M be a k-manifold in \mathbb{R}^n and f: $M \rightarrow \mathbb{R}$. Let V be a collection of coordinate patches on M. Choose a partition of unity on \mathbb{R}^n dominated by V (by extending each $V \in V$ to an open set in \mathbb{R}^n). Since M is compact, all but finitely many ϕ_i vanish at any point of M. Then, $\int_M f = \sum \int_M \phi_i f$.
- *Note.* The choice of partition of unity does not change the value of the integral.
- *Note.* To find integrals over manifolds that are not compact, take the limit of compact manifolds whose union is M.

Tensors

Definition. Let V be a vector space. If f: $V \rightarrow \mathbf{R}$ is linear, f is a linear functional.

- *Definition.* The set of all linear functionals corresponding to some vector space is also a vector space. This is the <u>dual</u> of the vector space.
- *Note.* A basis of the dual is $\{f_1, ..., f_n\}$ such that $f_i(b_j) = 1$ if i = j, 0 otherwise, where $\{b_1, ..., b_n\}$ is a basis for the vector space.
- *Note.* In a finite dimensional vector space, the dual of the dual is the original vector space.
- *Definition.* f: $V^k \rightarrow \mathbf{R}$ is a <u>tensor</u> if f is multi-linear (linear in the ith coordinate, when all other coordinates are fixed, for all i). The set of all k-tensors on V is $L^k(V)$. *Theorem.* The set of all k-tensors is a vector space.

Lemma. Let $\mathbf{a}_1, ..., \mathbf{a}_n$ be a basis of V. If f, g: $\mathbf{V}^k \rightarrow \mathbf{R}$ are k-tensors on V and $f(\mathbf{a}_{i1}, ..., \mathbf{a}_{ik}) = g(\mathbf{a}_{i1}, ..., \mathbf{a}_{ik})$ for all $\mathbf{I} = (i_1, ..., i_k)$ chosen from $\{1, 2, ..., n\}$, then $\mathbf{f} = \mathbf{g}$.

Theorem. There is a unique $\phi_I: V^k \rightarrow \mathbf{R}$ such that for all $J = (j_1, ..., j_k), \phi_I(a_{j1}, ..., a_{jk}) = 1$ if I = J, 0 if $I \neq J$. { ϕ_I } is a basis for $L^k(V)$.

- *Definition.* Let f be a k-tensor and g an l-tensor over the same vector space. The tensor product is defined by $f \otimes g(\mathbf{v}_1, ..., \mathbf{v}_k, \mathbf{v}_{k+1}, ..., \mathbf{v}_{k+l}) = f(\mathbf{v}_1, ..., \mathbf{v}_k) g(\mathbf{v}_{k+1}, ..., \mathbf{v}_{k+l})$.
- *Theorem.* If ϕ_I is a k-tensor with $I = (i_1, ..., i_k)$, then $\phi_I = \phi_{i1} \otimes ... \otimes \phi_{ik}$, where ϕ_{ij} is a 1-tensor.

Theorem. The tensor product is associative, homogeneous ((cf) \otimes g = f \otimes (cg) = c(f \otimes g)), and distributive.

Definition. An <u>elementary permutation</u> is a permutation that switches i and i+1, for some i.

Note. All permutations are the product of elementary permutations.

Definition. A k-tensor on V is <u>alternating</u> if $f(\mathbf{v}_1, ..., \mathbf{v}_{i-1}, \mathbf{v}_i, \mathbf{v}_{i+2}, ..., \mathbf{v}_n) = -f(\mathbf{v}_1, ..., \mathbf{v}_n)$. The set of all alternating k-tensors is $A^k(V)$.

Note. $A^{k}(V)$ is a subspace of $L^{k}(V)$.

Theorem. Let V be a vector space with basis $\{\mathbf{a}_1, ..., \mathbf{a}_n\}$. Let $I = (i_1, ..., i_k)$ be an ascending k-tuple. There exists a unique k-tensor, Ψ_I , on V, such that for all ascending k-tuples, J, $\Psi_I(\mathbf{a}_{j1}, ..., \mathbf{a}_{jk}) = 1$ if I = J and 0 otherwise. These tensors form a basis for $A^k(V)$.

- *Note.* We may also define $\Psi_{I} = \sum_{\sigma} (\text{sgn } \sigma) (\phi_{I})^{\sigma}$, for all $\sigma \in S_{n}$, where $(\phi_{I})^{\sigma}$ applies ϕ_{I} to the permutation σ of the vectors.
- *Note.* $\Psi_{I}(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}) = \det X_{I}.$

Example. The alternating 2-tensors on \mathbf{R}^3 are $\Psi_{(1,2)} = \phi_{(1,2)} - \phi_{(2,1)} = x_1y_2 - x_2y_1$, $\Psi_{(1,3)} = x_1y_3 - x_3y_1$, and $\Psi_{(2,3)} = x_2y_3 - x_3y_2$.

Note. The number of k-tensors on \mathbf{R}^n is n^k . The number of alternating k-tensors on \mathbf{R}^n is $\binom{n}{k}$.

Definition. We define a linear transformation A: $L^{k}(V) \rightarrow L^{k}(V)$ by Af = $\sum_{\sigma} (\text{sgn } \sigma) f^{\sigma}$. If f is an alternating k-tensor and g is an alternating l-tensor on V, we define the <u>wedge</u> <u>product</u>, an alternating k+l tensor on V, by f ^ g = A(f \otimes g)/ k! l!.

Note. $\psi_{I} = A\phi_{I}$.

Note. For 1-tensors, $\phi_i \wedge \phi_j = \phi_i \otimes \phi_j$.

- *Theorem.* The wedge product is associative, homogeneous, and distributive. In addition, $g \wedge f = (-1)^{kl} f \wedge g$. The wedge product is preserved under the pullback: $T^*(f \wedge g) = (T^*f) \wedge (T^*g)$.
- *Note.* Since $\phi_i \wedge \phi_j = -\phi_j \wedge \phi_i$, $\phi_i \wedge \phi_i = 0$.
- *Theorem.* $\Psi_{I} = \phi_{i1} \wedge \ldots \wedge \phi_{ik}$.
- *Definition.* Let $\mathbf{x} \in \mathbf{R}^n$. A <u>tangent vector</u> to \mathbf{R}^n at \mathbf{x} is $(\mathbf{x}; \mathbf{v})$, where $\mathbf{v} \in \mathbf{R}^n$. We define: $(\mathbf{x}; \mathbf{v}) + (\mathbf{x}; \mathbf{w}) = (\mathbf{x}; \mathbf{v} + \mathbf{w})$ and $\mathbf{c}(\mathbf{x}; \mathbf{v}) = (\mathbf{x}; \mathbf{cv})$. The set of all tangent vectors to \mathbf{R}^n at \mathbf{x} is called the <u>tangent space</u> to \mathbf{R}^n at \mathbf{x} , or $T_{\mathbf{x}}(\mathbf{R}^n)$.
- *Definition.* Let A be open in \mathbf{R}^k or \mathbf{H}^k , $\alpha: A \rightarrow \mathbf{R}^n$ be of class C^r . Let $\mathbf{x} \in A$ and $\mathbf{p} = \alpha(\mathbf{x})$. We define $\alpha_*: T_{\mathbf{x}}(\mathbf{R}^k) \rightarrow T_{\mathbf{p}}(\mathbf{R}^n)$ by $\alpha_*(\mathbf{x}; \mathbf{v}) = (\mathbf{p}; D\alpha(\mathbf{x}) \bullet \mathbf{v})$. This is the <u>transformation induced by α and a <u>push-forward</u>.</u>
- *Definition.* Let $(a, b) \subset \mathbf{R}$. Let γ : $(a, b) \rightarrow \mathbf{R}^n$ be C^r . We define the <u>velocity vector</u> of γ corresponding to t to be $(\gamma(t); D\gamma(t))$.
- Note. Velocity vectors are special cases of push-forwards.
- *Lemma.* Let A be open in \mathbf{R}^k or \mathbf{H}^k . Let $\alpha: A \rightarrow \mathbf{R}^m$ be C^r. Let B be open in \mathbf{R}^m or \mathbf{H}^m , with $\alpha(A) \subset B$. Let $\beta: B \rightarrow \mathbf{R}^n$ be C^r. Then, $(\beta \circ \alpha)_* = \beta_* \circ \alpha_*$.
- *Definition.* Let M be a k-manifold of class C^r in \mathbf{R}^n . If $\mathbf{p} \in \mathbf{M}$, choose a coordinate patch α : U \rightarrow V about \mathbf{p} . Let $\mathbf{x} \in \mathbf{U}$ such that $\alpha(\mathbf{x}) = \mathbf{p}$. Then we define the <u>tangent space to</u> <u>M</u> at \mathbf{p} by $T_{\mathbf{p}}(\mathbf{M}) = \alpha_*(T_{\mathbf{x}}(\mathbf{R}^k)) = \{\alpha_*(\mathbf{x}; \mathbf{v}) \mid \mathbf{v} \in \mathbf{R}^k\}.$
- *Note.* $T_{\mathbf{p}}(\mathbf{M})$ is a linear subspace of $T_{\mathbf{x}}(\mathbf{R}^n)$.
- *Definition.* The union of $T_{\mathbf{p}}(\mathbf{M})$ over all $\mathbf{p} \in \mathbf{M}$ is called the <u>tangent bundle</u> of M.

- *Definition.* Let $A \subset \mathbb{R}^n$ be open. A <u>tangent vector field</u> in A is a continuous function F: $A \rightarrow \mathbb{R}^n \times \mathbb{R}^n$ such that $F(\mathbf{x}) \in T_{\mathbf{x}}(\mathbb{R}^n)$. Thus, we may write $F(\mathbf{x}) = (\mathbf{x}; f(\mathbf{x}))$ where f: A $\rightarrow \mathbb{R}^n$. If F is of class C^r we say the tangent vector field is of class C^r. The tangent vector field to a manifold is F: $\mathbf{M} \rightarrow T(\mathbf{M})$.
- *Definition.* Let $A \subset \mathbb{R}^n$ be open. A <u>k-tensor field</u>. in A is $\omega: \mathbf{x} \to L^k(T_{\mathbf{x}}(\mathbb{R}^n))$; in other words, ω assigns a k-tensor defined on $T_{\mathbf{x}}(\mathbb{R}^n)$ to each $\mathbf{x} \in A$. Notice that $\omega(\mathbf{x})((\mathbf{x}; \mathbf{v}_1), \dots, (\mathbf{x}; \mathbf{v}_k))$ must be continuous as a function of $\mathbf{x}, \mathbf{v}_1, \dots, \mathbf{v}_k$. If $\omega(\mathbf{x})$ is an alternating k-tensor for all \mathbf{x} , we call ω a <u>differential form of order k</u> on A.
- *Definition.* The <u>elementary 1-forms</u> on \mathbf{R}^n are given by $\phi_i(\mathbf{x})(\mathbf{x}; \mathbf{e}_j) = 1$ if i = j, 0 otherwise. The <u>elementary k-forms</u> on \mathbf{R}^n are given by $\psi_I(\mathbf{x}) = \phi_{i1}(\mathbf{x}) \wedge \dots \wedge \phi_{ik}(\mathbf{x})$, where $I = (i_1, \dots, i_k)$ is an ascending k-tuple.
- *Note.* If ω is a k-form on A, we may write $\omega(\mathbf{x}) = \sum_{[I]} b_I(\mathbf{x}) \psi_I(\mathbf{x})$, where the b_I are scalar functions and are called the components of ω .
- *Lemma.* Let ω be a k-form on A open in \mathbf{R}^n . The ω is C^r if and only if all its components are C^r .
- *Lemma.* Let ω , η be k-forms and θ be an l-form on A. If they are all C^r, so are $a\omega + b\eta$ and $\eta \wedge \theta$.
- *Definition.* Let A be open in \mathbb{R}^n . If f: A $\rightarrow \mathbb{R}$ is C^r, f is called a <u>scalar field</u> in A and a <u>differential form of order 0</u>.
- *Note.* $\omega(\mathbf{x}) \wedge f(\mathbf{x}) = f(\mathbf{x}) \omega(\mathbf{x}).$
- *Definition.* Let A be open in \mathbb{R}^n and f: A $\rightarrow \mathbb{R}$ be \mathbb{C}^∞ . The, $d(f(\mathbf{x}; \mathbf{v})) = Df(\mathbf{x}) \bullet \mathbf{v}$. We call this the <u>differential</u> of f.
- *Lemma.* Let $\pi_i: \mathbf{R}^n \to \mathbf{R}$, where $\pi_i(\mathbf{x}) = x_i$ (the *i*th projection function). Then, $d\pi_i = \phi_i$. (We generally write this as dx_i .)

Theorem. Let A be open in \mathbb{R}^n and f: A $\rightarrow \mathbb{R}$ be C^{∞} . Then, df = $(D_1 f)dx_1 + \ldots + (D_n f)dx_n$.

Theorem. d is linear on 0-forms.

Note. $dx_I = dx_{i1} \wedge \ldots \wedge dx_{ik} = \psi_I$. $dx_I(\mathbf{x})((\mathbf{x}; \mathbf{v}_1), \ldots, (\mathbf{x}, \mathbf{v}_k)) = \det V_I$.

Definition. We define $\Omega^{k}(A)$ to be the set of all k-forms on A.

 $\begin{array}{l} \textit{Definition.} \ \text{Let} \ \omega \in \ \Omega^k(A), \ j > 0. \ \text{Let} \ \omega = \sum_{[I]} \ f_I \ dx_I. \ \text{We define} \ d\omega = \sum_{[I]} \ df_I \ ^dx_I. \\ \textit{Theorem.} \ \text{Let} \ d: \ \Omega^k(A) \ \textbf{\rightarrow} \ \Omega^{k+1}(A). \end{array}$

- d is linear $(d(a\omega + b\eta) = a(d\omega) + b(d\eta).)$.
- $df(\mathbf{x})(\mathbf{x}; \mathbf{v}) = Df(\mathbf{x})\mathbf{v}$ if f is a 0-form.
- $d(\omega^{\wedge} \eta) = d\omega^{\wedge} \eta + (-1)^k \omega^{\wedge} d\eta$, where ω is a k-form and η is any form.
- $d(d\omega) = 0$ for all forms.

Definition. A form, ω , is <u>closed</u> if $d\omega = 0$.

Definition. A form, ω , is <u>exact</u> if $\omega = d\theta$ for some k-1 form θ .

Proposition. Every exact form is closed.

Definition. Let A be open in \mathbb{R}^n . Let f: A $\rightarrow \mathbb{R}$ be a scalar field. We define the <u>gradient</u> of f by (grad f)(\mathbf{x}) = (\mathbf{x} ; D₁f(\mathbf{x}) \mathbf{e}_1 + ... + D_nf(\mathbf{x}) \mathbf{e}_n). Let G(\mathbf{x}) = (\mathbf{x} ; g(\mathbf{x})) be a vector field on A, with g(\mathbf{x}) = g₁(\mathbf{x}) \mathbf{e}_1 + ... + g_n(\mathbf{x}) \mathbf{e}_n . We define the <u>divergence</u> of G by (div G) = D₁g₁(\mathbf{x}) + ... + D_ng_n(\mathbf{x}).

Theorem. Let A be open in \mathbb{R}^n . Then we have the following vector space isomorphisms: α_0 : Scalar fields in $A \rightarrow \Omega^0(A)$.

 α_1 : Vector fields in A $\rightarrow \Omega^1(A)$

 β_{n-1} : Vector fields in A $\rightarrow \Omega^{n-1}(A)$ β_n : Scalar field in A $\rightarrow \Omega^n(A)$ so that d $\circ \alpha_0 = \alpha_1 \circ$ grad and d $\circ \beta_{n-1} = \beta_n \circ \text{div}$. *Proof.* $\alpha_0(f) = f$ $\alpha_1(F) = \sum f_i dx_i$ $\beta_{n-1}(G) = \sum (-1)^{i-1} g_i dx_1 \wedge \ldots \wedge dx_{i-1} \wedge dx_{i+1} \wedge \ldots dx_n$ β_n (h) = h dx₁ ^ ... ^ dx_n *Definition*. Let $A \subset \mathbf{R}^3$ be open. Let $F(\mathbf{x}) = (\mathbf{x}; \sum f_i(\mathbf{x})\mathbf{e}_i)$ be a vector field in A. We define the vector field, curl F, by (curl F)(\mathbf{x}) = (\mathbf{x} ; ($\mathbf{D}_2\mathbf{f}_3 - \mathbf{D}_3\mathbf{f}_2$)(\mathbf{x}) $\mathbf{e}_1 + (\mathbf{D}_3\mathbf{f}_1 - \mathbf{D}_1\mathbf{f}_3)(\mathbf{x})\mathbf{e}_2$ + $(D_1f_2 - D_2f_1)(\mathbf{x})\mathbf{e}_3)$. *Theorem.* Let A be open in \mathbf{R}^3 . Then, in addition to the isomorphisms in the previous theorem, we find that d $\circ \alpha_1 = \beta_2 \circ \text{curl}$. *Corollary*. Since $d(d\omega) = 0$, curl(grad f) = 0 and div(curl F) = 0. Definition. Let B be open in \mathbf{R}^n and $\alpha(A) \subset B$. A <u>dual transformation of forms</u> (pullback) is given by $(\alpha^* f)(\mathbf{x}) = f(\alpha(\mathbf{x}))$ if f is a 0 form, and $((\alpha^* \omega)(\mathbf{x}))(\mathbf{v}_1, \dots, \mathbf{v}_k) =$ $\omega(\alpha(\mathbf{x}))(\alpha_*(\mathbf{x};\mathbf{v}_1),\ldots,\alpha_*(\mathbf{x};\mathbf{v}_n)).$ *Note.* $\omega(\mathbf{y}) \in A^k(T_{\mathbf{y}}(\mathbf{R}^n))$ and $T^*(\omega(\mathbf{y})) = (\alpha^* \omega)(\mathbf{x})$. *Proposition.* Let ω , η , and θ be forms, with ω and η having the same order. Then: • $\alpha^*(a\omega + b\eta) = a \alpha^*(\omega) + b \alpha^*(\eta)$ [linear] • $\alpha^*(\omega \wedge \theta) = \alpha^*(\omega) \wedge \alpha^*(\theta)$ • $(\beta \circ \alpha)^* = \alpha^* \circ \beta^*.$ *Theorem.* Let A be open in \mathbb{R}^k . Let $\alpha: A \rightarrow \mathbb{R}^n$ be \mathbb{C}^∞ . Let $\mathbf{x} \in \mathbb{R}^k$ and $\mathbf{y} \in \mathbb{R}^n$ with $\alpha(\mathbf{x})$ = y. If I = (i_1, \ldots, i_l) is an ascending l-tuple from $\{1, 2, \ldots, n\}$ then $\alpha^*(dy_I) = \sum_{IJ} det$ $(\partial \alpha_{\rm I} / \partial x_{\rm I}) dx_{\rm I}$. *Proof.* $\alpha^*(dy_I) = \sum_{IJ} b_J dx_J$ for some scalar functions b_J . For any specific J, $b_J(\mathbf{x}) =$ $\alpha^*(\mathrm{dy}_{\mathrm{I}})(\mathbf{x})((\mathbf{x};\mathbf{e}_{\mathrm{i}1}),\ldots,(\mathbf{x};\mathbf{e}_{\mathrm{i}l})) = \mathrm{dy}_{\mathrm{I}}(\mathbf{y})((\mathbf{y};\partial\alpha(\mathbf{x})/\partial \mathbf{x}_{\mathrm{i}1}),\ldots,(\mathbf{y};\partial\alpha(\mathbf{x})/\partial \mathbf{x}_{\mathrm{i}l})) = \mathrm{det}$ $\left[\frac{\partial \alpha_{I}}{\partial x_{J}}\right]_{I}$. *Theorem.* Let ω be an l-form defined on an open set containing $\alpha(A)$. Then, $\alpha^*(d\omega) = \alpha^*(d\omega)$ $d(\alpha^*\omega)$. *Proof.* Use the chain rule to prove for 0-forms. By linearity, only $\omega = f dy_I$ (for one I) needs to be proven. Integrating over a Parameterized Manifold. Definition. Let A be open in \mathbf{R}^k . Let $\alpha: A \rightarrow \mathbf{R}^n$ be C^{∞} , so that $Y = \alpha(A)$ is a parameterized manifold. If ω is a k-form defined on an open set B, Y \subset B, then we define $\int_{Y} \omega = \int_{A} \alpha^* \omega$ if the latter integral exists. *Note.* $\int_A f dx_1 \wedge ... dx_n = \int_A f$, for $A \subset \mathbf{R}^n$. *Theorem.* Let g: A \rightarrow B be a diffeomorphism of sets in \mathbf{R}^k . Assume that det Dg is of constant sign on A. Let $\beta: B \rightarrow \mathbf{R}^n$ be C^{∞} . Let $Y = \beta(B)$. Let $\alpha = \beta^{\circ} g$, so that $\alpha: \mathbf{R}^k$ \rightarrow **R**ⁿ and Y = α (A). If ω is a k-form on **R**ⁿ defined on an open set containing Y, the ω

is integrable over Y_{β} if and only if it is integrable over Y_{α} . Also, $\int_{Y_{\alpha}} \omega = \pm \int_{Y_{\beta}} \omega$, where the sign corresponds to the sign of det Dg.

Proof. Use the change of variables theorem to show $\int_A (\beta \circ g)^* \omega = \int_A \beta^* \omega$. *Theorem.* Let $\omega = f \, dz_I$. Then, $\int_{Y\alpha} \omega = \int_A \alpha^* \omega = \int_A (f \circ \alpha) \det (\partial \alpha_I / \partial x)$. *Definition.* A frame, $(\mathbf{a}_1, \dots, \mathbf{a}_n)$, with $\mathbf{a}_i \in \mathbf{R}^n$ is <u>right-handed</u> if det $[\mathbf{a}_1 \dots \mathbf{a}_n] > 0$. *Definition.* Let g: A \rightarrow B be a diffeomorphism of open sets in \mathbb{R}^n . g is <u>orientation-preserving</u> if det Dg is right-handed.

Note. If A is connected and g is a diffeomorphism, then det Dg has constant sign.

- *Definition.* Let M be a k-manifold in \mathbb{R}^n . Let $\alpha_0: U_0 \rightarrow V_0$ and $\alpha_1: U_1 \rightarrow V_1$ be coordinate patches on M. If $V_0 \cap V_1$ is non-empty, then α_0 and α_1 <u>overlap</u>. If α_0 and α_1 overlap and $\alpha_1^{-1} \circ \alpha_0$ is orientation-preserving, then α_0 and α_1 <u>overlap positively</u>. If α_0 and α_1 overlap and $\alpha_1^{-1} \circ \alpha_0$ is not orientation-preserving, then α_0 and α_1 <u>overlap positively</u>. If α_0 and α_1 overlap and $\alpha_1^{-1} \circ \alpha_0$ is not orientation-preserving, then α_0 and α_1 <u>overlap positively</u>.
- *Definition.* If we may cover M by coordinate patches that overlap positively or not at all, we call M <u>orientable</u>.
- *Definition.* The collection of coordinate patches that cover M and overlap positively is called an <u>orientation</u> of M. M, together with an orientation, is called an <u>oriented</u> <u>manifold</u>.
- *Definition.* Let M be a compact oriented k-manifold in \mathbb{R}^n . Let ω be a k-form defined in an open set of \mathbb{R}^n containing M. Let $C = M \cap$ Support ω ; note that C is compact. Suppose there is a coordinate patch α : U \rightarrow V on M belonging to the orientation of M with $C \subset V$. Assume U is bounded. We define the integral of ω over M as $\int_M \omega = \int_{Int U} \alpha^*(\omega)$.
- *Definition.* Let M be a compact oriented k-manifold in \mathbb{R}^n . Let ω be a k-form defined in an open set of \mathbb{R}^n containing M. Cover M by coordinate patches belonging to the orientation of M; choose a partition of unity on M dominated by these coordinate patches. We define $\int_M \omega = \sum (\int_M \phi_i \omega)$.
- *Definition.* Let M be a 1-manifold. The <u>unit tangent vector</u> at $\mathbf{p} \in M$ if given by $T(\mathbf{p}) = (\mathbf{p}; D\alpha(t)/||D\alpha(t_0)||)$ where $\alpha(t_0) = \mathbf{p}$.
- *Definition.* So that we may have outward-pointing unit tangent vectors, we define the <u>left-half-line</u>, $\mathbf{L} = \{\mathbf{x} \mid \mathbf{x} \le 0\}$ and allow coordinate patches $\alpha: \mathbf{L} \rightarrow \mathbf{R}^n$.
- *Definition.* Let M be an n-1 manifold in \mathbb{R}^n . Let $\mathbf{p} \in M$. Let $(\mathbf{p}; \mathbf{n})$ be a tangent vector to \mathbb{R}^n that is orthogonal to the tangent space to M at \mathbf{p} . Let $||\mathbf{n}|| = 1$. If \mathbf{n} is always pointing the "same" direction, this is called a <u>normal vector field</u> to M and defines an orientation.
- *Definition.* Let M be an n-manifold in \mathbf{R}^n . The <u>natural orientation</u> of M is the set of all coordinate patches α : $\mathbf{R}^n \rightarrow \mathbf{R}^n$ with det $D\alpha > 0$.
- *Theorem.* Let k > 1. If M is an oriented k-manifold in \mathbb{R}^n with ∂M non-empty, then ∂M is orientable.
- *Proof.* Define $b(x_1, ..., x_{k-1} = (x_1, ..., x_{k-1}, 0)$. Then the restricted patches for ∂M are $\alpha \circ b$. These define an orientation.
- *Definition.* Let M be an orientable k-manifold in \mathbb{R}^n , with ∂M non-empty. Given an orientation of M, the <u>induced orientation</u> of ∂M is defined by the orientation of the restricted coordinate patch if k is even and the opposite orientation if k is odd.
- *Note.* The induced orientation of an n-1 manifold that is the boundary of a naturally oriented n-manifold always points outward from the manifold.
- *Lemma*. Let η be a k-1 form in \mathbf{R}^k defined on an open set containing $I^k = [0, 1]^k$, where η vanishes on Bd I^k , except possibly on $\mathbf{R}^{k-1} \times 0$ (the bottom face). Let b: $\mathbf{R}^{k-1} \rightarrow \mathbf{R}^k$ be given by $b(\mathbf{x}) = (\mathbf{x}, 0)$. Then, $\int_{Ik} d\eta = (-1)^k \int_{Int I(k-1)} b^* \eta$.

Proof. By linearity, let $\eta = f \, dx_{Ij}$, where $I_j = (1, ..., j-1, j+1, ..., k)$ so $d\eta = (-1)^{j-1} D_j f \, fx_I$, where I = (1, ..., k). Then,

 $= (-1)^k \int_{I(k-1)} f^{\circ} b \text{ or } 0.$

Since $b^*(dx_{Ij}) = \det(Db)_{Ij} dx_1 \wedge ... \wedge dx_{k-1} = dx_1 \wedge ... \wedge dx_{k-1}$ if j=k, 0 otherwise, $\int_{Int I(k-1)} b^* \eta = \int_{Int I(k-1)} f \circ b$ if j=k, 0 otherwise = $(-1)^k \int_{Int I(k)} d\eta$.

Stokes Theorem. Let M be an oriented k manifold in \mathbf{R}^n . Let ∂M have the induced orientation. Let ω be a k-1 form on an open set containing M. Then, $\int_M d\omega = \int_{\partial M} \omega$.

Proof. (For k > 1.) Choose coordinate patches contained in I^k , such that boundary points are in (Int I^{k-1}) × 0. Use partitions of unity and linearity.

Definition. A <u>0-manifold</u> is a finite collection of points, $\{\mathbf{x}_1, ..., \mathbf{x}_n\}$ in \mathbf{R}^n . We define an orientation on such a manifold by a function ϵ : $\{\mathbf{x}_1, ..., \mathbf{x}_n\} \rightarrow \{-1, 1\}$. $\int_M f = \sum \epsilon(\mathbf{x}_i) f(\mathbf{x}_i)$.

Definition. Let M be an oriented 1-manifold in \mathbb{R}^n . We define the orientation of ∂M by $\varepsilon(\mathbf{p}) = -1$ if there exists α : U \rightarrow V, about \mathbf{p} , with U $\subset \mathbf{H}^k$ and $\varepsilon(\mathbf{p}) = 1$ otherwise.

Note. With this definition, Stokes' theorem holds in this case as well.

Classical Stokes' Theorem. Let F be a vector field in \mathbb{R}^3 . Then, $\iint_S \nabla \times \mathbf{F} \, d\mathbf{A} = \int_{\partial S} \mathbf{F} \, d\mathbf{S}$. *Theorem.* Let M be a compact, oriented n-1 manifold in \mathbb{R}^n . Let N be the unit normal field (corresponding to the induced orientation). Let G be a vector field on an open set containing M, so that $G(\mathbf{y}) = (\mathbf{y}; g(\mathbf{y})) = (\mathbf{y}; \sum g_i(\mathbf{y}) \mathbf{e}_i)$. Let $\omega = \sum (-1)^{i-1} g_i \, dy_1 \wedge \dots \wedge dy_{i+1} \wedge dy_{i+1} \wedge \dots \wedge dy_n$. Then, $\int_M \omega = \int_M \langle G, N \rangle \, dV$.

Theorem. Let M be an n-manifold in \mathbf{R}^n . Let $\omega = h \, dx_1 \wedge \ldots \wedge dx_n$. Then, $\int_M \omega = \int_M h \, dV$.

Divergence Theorem. Let M be a compact, oriented n-manifold in \mathbb{R}^n . Let N be the unit normal field. If G is a vector field, then $\int_M (\operatorname{div} G) \, dV = \int_{\partial M} \langle G, N \rangle \, dV$.

Classical Stokes Theorem. Let M be a compact, oriented 2-manifold in \mathbb{R}^3 . Let N be the unit normal field. Let F be a C^{∞} function. Then, if $\partial M = \emptyset$, then $\int_M \langle \text{curl F}, N \rangle dV = 0$. Otherwise, $\int_M \langle \text{curl F}, N \rangle dV = \int_{\partial M} \langle F, T \rangle dV$, where T is the unit tangent field to ∂M with the induced orientation.

Lebesgue Measure and the Lebesgue Integral

Definition. A $\underline{\sigma}$ -algebra, or a Borel field, is an algebra of sets that is closed under countable union (and therefore countable intersection).

Definition. A <u>Borel set</u> is the smallest σ -algebra that contains the closed and open intervals.

Definition. The <u>outer measure</u> of a set $E \subset \mathbf{R}$ is $m^*E = \inf_{E \subset \cup I(n)} \sum l(I_n)$ (where l(I) is the length of the interval), so that $\{I_n\}$ is a set of intervals that covers E.

Proposition. The outer measure of an interval is its length.

Proposition. Let $\{A_n\}$ be any countable collection of sets. Then, $m^*(\cup A_n) \le \sum m^*A_n$. (This is called <u>countable subadditivity</u>.)

Proof. Use the $\varepsilon/2^n$ trick.

Corollary. If A is a countable set, then $m^*A = 0$.

Corollary. [0, 1] is uncountable.

Proposition. Given any set A and $\varepsilon > 0$, there exists an open set O such that $A \subset O$ and $m^*O \le m^*A + \varepsilon$. There is a $G \in G_{\delta}$ such that $A \subset G$ and $m^*A = m^*G$.

Proof. Since m* is defined as an infimum, we may choose $O = \bigcup I_n$ whose measure is at most ε more that m*A. Take the countable intersection of the O corresponding to 1/n for each n to make G.

Definition. E is measurable if, for all A, $m^*A = m^*(A \cap E) + m^*(A \cap E^C)$.

Note. If E is measurable, so is E^{C} . \emptyset and **R** are measurable.

- *Note.* By countable subadditivity, $m^*A \le m^*(A \cap E) + m^*(A \cap E^C)$. Thus, we need only prove the other direction to show that something is measurable.
- *Lemma*. If $m^*E = 0$, E is measurable.
- *Lemma.* If E_1 and E_2 are measurable, so are $E_1 \cup E_2$ and $E_1 \cap E_2$.

Corollary. The measurable sets are an algebra (closed under complement, intersection, and union.)

- *Lemma*. Let A be any set. Let $E_1, ..., E_n$ be a finite sequence of disjoint measurable sets. Then, $m^*(A \cap (\cup E_i)) = \sum m^*(A \cap E_i)$.
- *Theorem.* The set of measurable sets is a σ -algebra (since it is closed under countable union as well).
- *Lemma.* (a, ∞) is measurable.

Theorem. Every Borel set is measurable.

Proof. All the open sets are measurable and the measurable sets form an algebra.

Proposition. Let $\{E_i\}$ be an infinite, decreasing (ie. $E_{i+1} \subset E_i$) sequence of measurable sets. Let $mE_1 < \infty$. Then, $m(\cap E_i) = \lim mE_n$.

Proof. Construct a sequence of $F_i = E_i - E_{i+1}$.

Proposition. Let E be a set. The following are equivalent:

- *i*. E is measurable.
- *ii.* Given $\varepsilon > 0$ there exists an open set $O \supset E$ with $m^*(O E) < \varepsilon$.
- *iii.* Given $\varepsilon > 0$ there exists a closed set $F \subset E$ with $m^*(E F) < \varepsilon$.
- *iv.* There is a $G \in G_{\delta}$ with $E \subset G$ such that $m^*(G E) = 0$.
- *v*. There is an $F \in F_{\sigma}$ with $F \subset E$ such that $m^*(E F) = 0$.
- *vi.* (If $m^*E < \infty$, then) If $\varepsilon > 0$ there exists a *finite* union $U = \bigcup I_i$ such that $m^*((U E) \cup (E U)) < \varepsilon$.

Proof. ($i \rightarrow ii \rightarrow vi \rightarrow ii$ in the finite case, then $i \rightarrow ii \rightarrow iv \rightarrow i$, then $i \rightarrow iii \rightarrow v \rightarrow i$.) *Proposition.* The measure of a set is translation invariant.

Proposition. Let f be any function. Let $a \in \mathbf{R}$. The following are equivalent:

- *i.* $\{x \mid f(x) > a\}$ is measurable.
- *ii.* $\{x \mid f(x) < a\}$ is measurable.
- *iii.* $\{x \mid f(x) \le a\}$ is measurable.
- *iv.* $\{x \mid f(x) \ge a\}$ is measurable.

Definition. A function is <u>measurable</u> if its domain is measurable and the conditions above hold.

Proposition. Let $c \in \mathbf{R}$ and f, g be measurable functions on the same domain. Then, f + c, cf, f + g, and fg are measurable.

- *Theorem.* Let $\{f_n\}$ be a sequence of measurable functions defined on the same domain. Then the functions $\sup\{f_1, \ldots, f_n\}$, $\inf\{f_1, \ldots, f_n\}$, $\sup_n f_n$, $\inf_n f_n$, $\lim_n \sup_n f_n$, and $\lim_n \inf_n f_n$ are also measurable.
- *Theorem.* If f is measurable and f = g almost everywhere, then g is measurable.
- *Littlewood's Three Principles.* Every measurable set is nearly a union of intervals. Every measurable function is nearly continuous. Every convergent sequence of measurable functions is nearly uniformly convergent.
- *Definition.* A simple function, φ , is defined by $\varphi(x) = \sum_{i=1}^{n} a_i \chi_{Ei}(x)$, where χ_{Ei} is the characteristic function of E_i (1 on E_i , 0 elsewhere).

Note. φ is simple if and only if it is measurable and takes on a finite number of values. *Definition.* The canonical representation of φ is $\varphi(x) = \sum a_i \chi_{Ei}(x)$ and $E_i = \{x \mid \varphi(x) = a_i\}$.

Definition. Let $\varphi = \sum a_i \chi_{Ei}$. We define $\int \varphi = \sum a_i mE_i$.

- *Proposition.* Let f be a bounded function on a set E of finite measure. $\inf_{\psi \ge f} \int_{E} \psi = \sup_{\varphi \le f} \int_{E} \phi$ if and only if f is measurable.
- *Proof.* Suppose $|f| \le M$. For a fixed n, let $E_k = \{x \mid kM/n \ge f(x) \ge (k-1)M/n\}$. Choose step functions $\psi_n = (M/n) \sum k\chi_{Ek}(x)$ and $\phi_n = (M/n) \sum (k-1)\chi_{Ek}(x)$. With the proper choice of n, the difference in their integrals can be as small as we want. Conversely, choose ψ_n and ϕ_n so that $\int_E \psi_n \int_E \phi_n < 1/n$. We show $m\{x \mid \phi_n(x) < \psi_n(x) 1/v\} < v/n$. We may choose ψ^* and ϕ^* as the sup and inf of these sequences. They must agree with f almost everywhere. So f is measurable.
- *Definition.* If f is bounded and measurable on a set E of finite measure, we define $\int_E f = \inf_{\psi \ge f} \int_E \psi = \sup_{\phi \le f} \int_E \phi$.
- *Proposition.* If f and g are bounded, measurable functions defined on a set E of finite measure, then:
 - $\int_E (af + bg) = a \int_E f + b \int_E g.$
 - If g = f almost everywhere then $\int_E g = \int_E f$.
 - If $g \le f$ almost everywhere, then $\int_E g \le \int_E f$.
 - If $A \le f(x) \le B$ almost everywhere, then $A(mE) \le \int_E f \le B(mE)$.
 - If $A \cap B = \emptyset$ and A, B have finite measure, $\int_{A \cup B} f = \int_A f + \int_B f$.
- *Definition.* If f is non-negative and measurable on any measurable set E, we define $\int_E f = \sup_{h \le f} \int_E h$ where h is bounded, measurable, and non-zero only on a set of finite measure.

Definition. f is <u>integrable</u> over the measurable set E if $\int_E f < \infty$.

Definition. Let f be any function. Define $f^+(x) = \max\{f(x), 0\}$ and $f(x) = -\min\{f(x), 0\} = \max\{-f(x), 0\}$.

Note. $f = f^+ - f$. $|f| = f^+ + f$.

Definition. Let f be measurable. f is <u>integrable</u> over E if f^+ and f are integrable. Then, $\int_E f = \int_E f^+ - \int_E f$.

Proposition. The following properties hold for the general Lebesgue integral:

- $\int_E (af + bg) = a \int_E f + b \int_E g.$
- If g = f almost everywhere then $\int_E g = \int_E f$.
- If $g \le f$ almost everywhere, then $\int_E g \le \int_E f$.
- If $A \cap B = \emptyset$ and A, B have finite measure, $\int_{A \cup B} f = \int_A f + \int_B f$.

- *Bounded Convergence Theorem.* Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a set E of finite measure. Suppose there is some real number M such that $|f_n(x)| \leq M$ for all n, x. If $f(x) = \lim f_n(x)$ almost everywhere in E, then $\int_E f = \lim \int_E f_n$.
- *Proof.* Given $\varepsilon > 0$ there exists N and a measurable set $A \subset E$ such that $mA < \varepsilon/4M$ and for all n > N and $x \in E A$, $|f_n(x) f(x)| < \varepsilon / 2mE$. Then, $|\int_E f_n \int_E f| \le \int_E |f_n f| = \int_{E-A} |f_n f| + \int_A |f_n f| < \varepsilon$.
- *Fatou's Lemma.* Let $\langle f_n \rangle$ be a sequence of non-negative, measurable functions with $\lim_{h \to \infty} f_n(x) = f(x)$ almost everywhere on a measurable set E. Then, $\int_E f \leq \underline{\lim} \int_E f_n$.
- *Proof.* Let h be a non-negative, bounded, measurable function with $h(x) \le f(x)$ and h(x) = 0 outside a measurable set $E' \subset E$ of finite measure. Let $h_n(x) = \min\{h(x), f_n(x)\}$. Then, h_n is bounded, vanishes outside E', and converges everywhere to h. So we can apply the bounded convergence theorem to find $\int_E h = \int_{E'} h = \lim \int_{E'} h_n \le \lim \int_E f_n$, for all $h \le f$. So $\int_E f = \sup \int_E h \le \lim \int_E f_n$.
- *Monotone Convergence Theorem.* Let $\langle f_n \rangle$ be an increasing sequence of non-negative, measurable functions with $f(x) = \lim f_n(x)$ almost everywhere. Then, $\int f = \lim \int f_n$.
- *Proof.* We know $\int f \leq \underline{\lim} \int f_n$. Since $f_n \leq f$ for all n, $\lim \sup \int f_n \leq \int f$. So $\int f = \lim \int f_n$.
- *Lebesgue Convergence Theorem.* Let g be integrable over E and $\langle f_n \rangle$ a sequence of measurable functions with $|f_n| \leq g$ everywhere on E. Let $\lim f_n(x) = f(x)$ almost everywhere on E. Then, $\int_E f = \lim \int_E f_n$.
- *Proof.* Apply Fatou's Lemma to $\langle g f_n \rangle$ and $\langle g + f_n \rangle$ to show that $\int_E f \ge \lim \sup \int_E f_n$ and $\int_E f \le \lim \int_E f_n$. So, $\int_E f = \lim \int_E f_n$.
- *Theorem.* Let $\langle g_n \rangle$ be a sequence of measurable functions over E that converge almost everywhere to an integrable function g. Let $\langle f_n \rangle$ be a sequence of measurable functions with $|f_n| \leq g_n$ and $\lim f_n(x) = f(x)$ almost everywhere. If $\int_E g = \lim \int_E g_n$ then $\int_E f = \lim \int_E f_n$.
- *Corollary.* Let $\{u_n\}$ be a sequence of non-negative measurable functions with $f = \sum u_n$. Then, $\int_E f = \sum \int_E u_n$.
- *Definition.* A sequence $\langle f_n \rangle$ converges to f in measure if, given $\varepsilon > 0$, there exists N such that, for all n > N, $m\{x \mid |f(x) f_n(x)| \ge \varepsilon\} < \varepsilon$.
- *Example.* Consider the sequence of functions with a bump of height 1 that moves across [0, 1] but gets progressively narrower $(1/2^k \text{ for } 2^k \text{ consecutive functions})$. This functions converges in measure, but converges pointwise nowhere.
- *Proposition.* Suppose $\langle f_n \rangle$ converges to f in measure and all the f_n are measurable. Then there is a subsequence $\langle f_{nk} \rangle$ that converges to f almost everywhere.

Proof. For each v, choose n_v such that $m\{x: |f_n - f(x)| > 2^{-v}\} < 2^{-v}$. Let $E_v = \{x: |f_n(x) - f(x)| > 2^{-v}\}$. If x is not in $\cup_{v=k} E_v$ then $|f_{nv}(x) - f(x)| < 2^{-v}$ for all v > k, and $\lim f_{nv}(x) = f(x)$. Let $A = \bigcap_k (\bigcup_{v=k} E_v)$. $\lim f_{nv}(x) = f(x)$ for all x not in A. Since A is an intersection of sets of progressively smaller measure $(2^{-v+1} \text{ each union})$, mA = 0. So this subsequence converges almost everywhere.

- *Corollary.* Let $\langle f_n \rangle$ be a sequence of measurable functions defined on a set E of finite measure. Then f_n converges to f in measure if and only if every subsequence of $\langle f_n \rangle$ has in turn a subsequence that converges to f almost everywhere.
- *Proposition.* The convergence theorems stated above hold if "convergence almost everywhere" is replaced by "convergence in measure."

- *Proof.* (Fatou's Lemma). Suppose f_n converges to f in measure. Then, $\lim_{k \to \infty} \int_E f_n = \lim_{k \to \infty} \int_E f_{nk}$ for some subsequence $\langle f_{nk} \rangle$, that also converges to f in measure. So there is a subsequence $\langle f_{nkj} \rangle$ that converges to f almost everywhere. So by the previous Fatou's Lemma, $\int_E f \leq \lim_{k \to \infty} \int_E f_{nki} = \lim_{k \to \infty} \int_E f_{nk} = \lim_{k \to \infty} \int_E f_n$.
- (Monotone Convergence). Suppose $\langle f_n \rangle$ is an increasing sequence of non-negative functions that converge to f in measure. Note that $x = \lim x_n$ if and only if every subsequence of $\langle x_n \rangle$ has a subsequence of converges to x. Let $x_n = \int_E f_n$. Every subsequence $\langle f_{nk} \rangle$ has a subsequence, $\langle f_{nkj} \rangle$ that converges almost everywhere. So, $\int_E f_n = \lim_{k \to \infty} \int_E f_k$ and $\int_E f_k = \lim_{k \to \infty} \int_E f_k$.

L^p Spaces

- Definition. $f \in L^p$ if $\int_{[0,1]} |f|^p < \infty$.
- *Definition*. $||f||_p = (\int_{[0,1]} |f|^p)^{1/p}$.
- *Definition.* A <u>norm</u>, || ||, must satisfy: ||af|| = |a| ||f||, $||f + g|| \le ||f|| + ||g||$, and ||f|| = 0 if and only if f = 0.
- *Note.* If we consider functions equivalent when they are equal almost everywhere, then L^{p} is a normed linear space.
- *Definition.* $f \in L^{\infty}$ if f is bounded almost everywhere and measurable. $||f||_{\infty} = ess \sup |f(x)| = inf \{M \mid m\{t \mid f(t) > M\} = 0\}.$
- *Proposition.* $\lim_{p\to\infty} ||f||_p = ||f||_{\infty}$.
- *Definition.* φ on (a, b) is <u>convex</u> (concave up) if for all x, y \in (a, b) and $\lambda \in [0, 1]$, $\varphi(\lambda x + (1 \lambda)y) \le \lambda \varphi(x) + (1 \lambda) \varphi(y)$.
- *Minkowski Inequality.* Given f, $g \in L^p$, for $1 \le p \le \infty$, $||f + g||_p \le ||f||_p + ||g||_p$.

Note. If $0 \le p \le 1$, then $||f + g||_p \ge ||f||_p + ||g||_p$.

Holder's Inequality. Let p, q >0 and 1/p + 1/q = 1. If $f \in L^p$ and $g \in L^q$, then $fg \in L^1$ and $||fg||_1 = \int_{[0,1]} |fg| \le ||f||_p ||g||_p$.

- *Riesz-Fischer Theorem.* L^p is complete for $1 \le p < \infty$.
- *Definition.* A linear functional on a normed linear space, X, is a mapping $F: X \to \mathbf{R}$ such that F(af + bg) = a F(f) + b F(g).
- *Definition.* A linear functional is <u>bounded</u> if there exists M such that $|F(f)| \le M ||f||$ for all $f \in X$.

Definition. The <u>norm</u> of a functional, F, is given by $||F|| = \sup_{f \neq 0} |F(f)|/||f||$.

- *Proposition.* If $g \in L^q$ and 1/p + 1/q = 1, a bounded linear functional on L^p is $F(f) = \int_{[0,1]} fg$.
- *Riesz Representation Theorem.* Let F be any bounded linear functional on L^p , $1 \le p < \infty$. Then there is a function $g \in L^q$, 1/q + 1/p = 1, such that, for all $f \in L^p$, $F(f) = \int_{[0,1]} fg$. In addition, $||F|| = ||g||_q$.