
Analysis Seminar Summary 
 
Inverse and Implicit Function Theorems 
Definition.  C(a, r) is the open cube in Rn about a of side length 2r.  It is the set of points 

where each coordinate differs from any coordinate of a by at most r. 
Lemma.  Let A be open in Rn, f: A à Rn be C1.  If Df(a) is non-singular then there exists 

α > 0 and ε > 0 such  that |f(x1) – f(x2)| ≥ α |x1 – x2| for all x1, x2 in C(a, ε). 
Note.  This lemma implies that f is 1-1 in a neighborhood of a. 
Lemma.  Let A be open in Rn and f: A à Rn be Cr.  Let B = f(A).  If f is 1-1 and Df(x) is 

non-singular for all x ∈ A then B is open in Rn and f-1 is Cr. 
Proof.  Step 1:  If a function has a local minimum or maximum, then the derivative is 0 

there. 
  Step 2:  B = f(A) is open. 
  Step 3:  f-1 is continuous. 
  Step 4:  f-1 is differentiable. 
  Step 5:  f-1 is Cr. 
Inverse Function Theorem.  Let A be open in Rn and f: A à Rn be Cr.  If Df(x) is non-

singular then there is a neighborhood, U, about x and a neighborhood, V, about f(x) 
such that f: U à V is onto V.  Then f-1 is Cr. 

Lemma.  Let A be open in Rn+k.  Let f: A à Rn be differentiable.  Suppose there exists g: 
Rk à Rn such that f(x, g(x)) = 0 for all x∈ Rk.  Then, ∂f/∂x + ∂f/∂y * ∂g/∂x = 0. 

Implicit Function Theorem.  Let A be open in Rn+k.  Let f: A à Rn be Cr.  Write f as f(x, 
y), where x ∈ Rk and y ∈ Rn.  Let (a, b) ∈ A with f(a, b) = 0 and det ∂f/∂y (a, b) ≠ 0.  
Then, there exists a unique g:  Rk à Rn such that f(a, g(a)) = 0. 

Proof.  Apply the inverse function theorem to F(x, y) = (x, f(x, y)). 
 
Integration Theory 
Definition.  A rectangle, Q, in Rn is Q = [a1, b1] × … × [an, bn]. 
Definition.  The volume of Q is given by v(Q) = (b1 – a1) … (bn – an). 
Definition.  A partition, P, of Q is an n-tuple of partitions of [ai, bi].  The parts of the 

partition are called subrectangles. 
Definition.  If f: Q à R is bounded, then we define mR(f) = inf{f(x) | x ∈ R}, where R is 

a subrectangle of Q. 
Definition.  Under the same conditions, MR(f) = sup{f(x) | x ∈ R}. 
Definition.  The lower and upper sums of a partition, P, where each R is a subrectangle of 

P are L(f; P) = ∑R mRv(R) and U(f; P) = ∑R MRv(R). 
Definition.  The upper and lower integrals and ∫Q f = sup{L(f; P)} and∫Q f = inf{U(f;P)}. 
Definition.  f is integrable over Q if ∫Q f =∫Q f.  We set ∫Q f equal to this value. 
Theorem.  Suppose that given ε > 0 there exists δ > 0 such that if P is any partition of 

mesh less than δ with xR ∈ R then |ΣR f(xR)v(R) – A| < ε.  Then, f is integrable over Q 
with ∫Q f = A. 

Definition.  Let A ⊂ Rn.  A has measure zero if, for all ε > 0, there exists a covering {Qi} 
of A by countable many rectangles such that ∑ v(Qi) < ε. 

Theorem.  Let Q ⊂ Rn and f: Q à R be bounded.  Let D be the set of discontinuities of f 
on Q.  Then, f is integrable over Q if and only if D has measure 0. 



Definition.  Let S ⊂ Rn be bounded and f: S à R be bounded.  Let fS: Rn à R be defined 
by f(x) = f(x) if x ∈ S and f(x) = 0 elsewhere.  We define ∫S f by ∫Q fS where Q is any 
rectangle containing S. 

Lemma.  ∫S f is well-defined. 
Theorem.  Under the conditions of boundedness, the following conditions about the 

integral hold: 
• Linearity:  ∫S (af + bg) = a∫S f + b∫s g provided the right-hand integrals exist. 
• Comparison:  If f(x) ≤ g(x) for all x ∈ S then ∫S f ≤ ∫S g.  In particular, |f| is 

integrable if f is integrable, and |∫S f| ≤ ∫S |f|. 
• Monotonicity:  Suppose T ⊂ S, f(x) is non-negative on S, and both ∫S f and ∫T f 

exist.  Then, ∫T f ≤ ∫S f. 
• Additivity:  Let S = S1 ∪ S2.  If f is integrable over S1 and S2 then it is integrable 

over their union and intersection, with ∫S f = ∫S1 f + ∫S2 f - ∫S1∩S2 f. 
Definition.  Let S be bounded in Rn.  If the constant function 1 is integrable over S, we 

say S is rectifiable. 
Definition.  We define the (Jordan) volume of S by v(S) = ∫S 1. 
Theorem.  S is rectifiable if and only if S is bounded and Bd S has measure 0. 
Proof (sketch).  The function that is 1 on S and 0 elsewhere can be integrated unless the 

set of discontinuities, which is Bd S, has measure greater than 0. 
Theorem.  Let S ⊂ Rn be rectifiable.  Let f: S à R be bounded and discontinuous only on 

a set of measure 0.  Then, ∫S f. 
Lemma.  Let A be open in Rn.  Let f: A à R be continuous.  If C ⊂ A is compact and f 

vanishes outside C the ∫A f = ∫C f. 
Theorem.  Let A be open in Rn.  Let f: A à R be continuous.  Choose a sequence, {Cn} 

of compact rectifiable subsets of A whose union is A, such that Cn ⊂ Int Cn+1.  f is 
integrable over A if and only if {∫Cn |f| } is bounded.  Then, ∫A f = lim ∫Cn f. 

 
Partitions of Unity   
Lemma.  Let Q ⊂ Rn be a rectangle.  Then, there exists a C∞ function, φ: Rn à R, such 

that φ(x) > 0 for x ∈ Int Q and φ(x) = 0 elsewhere. 
Proof.  Let f(x) = e-1/xe-1/(1-x).   This function works for [0, 1]. 
Lemma.  Let A be a collection of open sets in Rn.  Let A = ∪A.  Then, there exists a 

countable collection, {Qi} of rectangles contained in A such that  
1. ∪ Qi covers A 
2. Each Qi is contained in some element of A. 
3. Each a ∈ A has a neighborhood that intersects finitely many Qi. 

Proof (outline).  Cover A by compact nested subsets, Di.  Let Bi = Di – Int Di-1.  Cover 
each Bi by closed cubes that do not intersect Di-2, and thus by a finite subcover.  These 
are the Qi. 

Definition.  If φ: Rn à R the support of φ is the closure of {x | φ(x) ≠ 0}. 
Theorem.  Let A be a collection of sets in Rn.  Let A be their union.  There exists {φi}, φi: 

Rn à R which fulfill the following conditions: 
1. φ(x) ≥ 0 for all x. 
2. Si = Support φi ⊂ A for all φi. 
3. If x ∈ A then x is contained in a finite number of Si. 



4. ∑φi(x) = 1 for all x ∈ A. 
5. Each φi is C∞. 
6. The Si are compact. 
7. Each Si is contained in one element of A. 

Proof.  Use the previously constructed {Qi} and φ for each Qi, normalizing so that they 
sum to one. 

Definition.  A set of functions fulfilling the first four conditions is called a partition of 
unity.   

Theorem.  Let A ⊂ Rn be open.  Let f: A à R be continuous.  Let {φi} be a partition of 
unity on A with compact supports.  The integral ∫A f exists if and only if ∑ (∫A φi |f|) 
converges.  In this case, ∫A f =  ∑ (∫A φi f). 

 
Change of Variables Theorem 
Definition.  Let A be open in Rn, g: A à Rn be one-to-one and of class Cr, with det Dg(x) 

≠ 0 for all x ∈ A.  Then, g is called a change of variables or a diffeomorphism. 
Lemma.  Let A be open in Rn and g: A à Rn be Cr.  If E ⊂ A has measure 0 in Rn then 

g(E) has measure 0 in Rn as well. 
Proof.  Cover E by cubes.  Show that g sends each cube to the interior of a cube with 

width nMw, where w was the width of the old cube and M is the largest absolute value 
in the matrix det Dg.  Cover A with nested compact sets and let Ek be the intersection of 
E with each.  Cover Ek by finitely may cubes with total volume less than ε/(nM)n.  
Show that g(E) has measure less than ε. 

Theorem.  Let g: A à B be a diffeomorphism of  class Cr of open sets in Rn.  Let D, Bd 
D ⊂ A and E = g(D).  Then, g(Int D) = Int E and g(Bd D) = Bd E.  If D is rectifiable, sp 
is E. 

Definition.  Let h: A à B be a diffeomorphism of open sets in Rn, n ≥ 2, with h(x) = 
(h1(x), … hn(x)).  h preserves the ith coordinate if hi(x) = xi for all x ∈ A.  If h preserves 
the ith coordinate for any i, then h is a primitive diffeomorphism. 

Theorem.  Let g: A à B be a diffeomorphism of open sets in Rn, n ≥ 2.  Then, there is a 
neighborhood U0 of a and a sequence of primitive diffeomorphisms, h1: U1 à U0, h2: 
U2 à U1, …, hk: Uk à Uk-1 such that hk ° … ° h1 ° h0(x) = g(x) for all x ∈ U0. 

Theorem (Substitution Rule).  Let I = [a, b], g: I à R be C1 with g’(x) ≠ 0 for all x ∈ (a, 
b).  Then, g(I) = J is a closed interval with endpoints g(a) and g(b),  If f: J à R is 
continuous then ∫g(a)

g(b) f = ∫ab (f ° g) g’ and ∫J f = ∫I (f ° g)|g’|.  
Change of Variables Theorem.  Let g: A à B be a diffeomorphism of open sets in Rn.  

Let f: B à R be continuous.  Then, f is integrable over B if and only if (f °g)|det Dg| is 
integrable over A.  In that case, ∫B f = ∫A (f °g)|det Dg|.  

Proof.  Step 1:  Prove the case where n = 1, only in a neighborhood of a point.  (Use the 
substitution rule on an interval with x in the interior and the support of f 
contained in the interval.) 

Step 2:  The case for primitive diffeomorphisms with n > 1, locally.  (Using 
primitive-ness, reduce the problem to a question of n – 1.) 

  Step 3:  Composing primitive diffeomorphism, using the chain rule. 
  Step 4:  Using a partition of unity to extend local to global. 



Manifolds 
Theorem.  Let W ⊂ Rn be a linear subspace of dimension k.  Then there is an orthogonal 

basis of Rn in which the first k vectors are a basis for W. 
Theorem.  There is an isometry (orthogonal transformation) from any k-dimensional 

linear subspace of dimension k to Rk × 0n-k. 
Theorem.  There is a unique function, V, that assigns to every k-tuple of elements in Rn a 

non-negative number such that (1)  If h: Rn à Rn is an isometry then V(h(x1), …, 
h(xn)) = V(x1, …, xn), and (2)  If y1, …, yk ∈ Rk × 0n-k ⊂ Rn, so that yi = [zi 0] then 
V(y1, … , yk) = |det [z1 … zn]|.  In addition, V(x1, …, xn) = 0 if and only if {x1, …, xk} 
are dependent.  Notice that V is defined by V = (det XTX)1/2 where X = [x1 … xk].  We 
call this volume. 

Definition.  Let (x1, …, xk) ∈ (Rn)k, k ≤ n.  Let X = [x1 … xk], I = (i1, …, ik) be an 
ascending k-tuple of integers, 1 ≤ i1 < … < ik ≤ n.  Let XI be a k × k matrix with the first 
row the i1

st row of X, …, the kth row the ik
th row of X. 

Theorem.  Let X be an n × k matrix, k ≤ n.  Then, V(X) = (∑[I] (det XI)
2)1/2 where [I] is 

the set of all ascending k-tuples from {1, 2, …, n}. 
Definition.  Let k ≤ n, A be open in Rk, α: A à Rn of class Cr.  Then Y = α(A) is a k-

dimensional parameterized manifold. 
Definition.  The volume of a parameterized manifold is v(Yα) = ∫A V(Dα). 
Definition.  Let f: Yα à R.  We define the integral of f over Yα as ∫Yα f dV = ∫A (f °α) 

V(Dα). 
Theorem.  Let g:  A à B be a diffeomorphism of open sets in Rk.  Let β: B à Rn be Cr 

and Y = β(B).  Let α = β°g.  Then, α: A à Rn with Y = α(A).  Then, ∫Yα f dV = ∫Yβ f 
dV. 

Proof.  Apply the Chain Rule and the Change of Variables Theorem. 
Definition.  Let k > 0.  Let M ⊂ Rn.  Suppose that for any p ∈ M there exists V 

containing p such that V is open in M and there exists an open set U ⊂ Rk and a one-to-
one and onto α: U à V such that (1) α is Cr, (2) α-1: V à U is continuous, and (3) Dα 
has rank k everywhere on U.  Then we call α a coordinate patch and M is a k-manifold 
without boundary. 

Note.  Manifolds are defined locally.  The second condition ensures that manifolds do not 
cross themselves, and the third condition ensures that there are no singularities. 

Definition.  Let S ⊂ Rk, f: S à Rn.  f is Cr on S if f may be extended to a function g: U à 
Rn that is Cr on an open set U containing S. 

Lemma.  If S ⊂ Rk, f: S à Rn, and if for all x ∈ S there exists a neighborhood, Ux, around 
x, and gx: Ux à Rn that is Cr with compact support contained in S ∩ Ux then f is Cr. 

Definition.  Hk is the upper half-space in Rk.  Hk = {x ∈ Rk | xk ≥ 0}.  Hk
+ = {x ∈ Rk | xk 

> 0}. 
Theorem.  Let U be open in Hk but not Rk and α: U ∩ Hk à R.  Let β: U à R be any 

extension of α.  Then Dα = Dβ everywhere on U ∩ Hk. 
Lemma.  If M is a manifold in Rn and α is a coordinate patch on M then the restriction of 

α to Hk is also a manifold. 
Theorem.  Let M be a k-manifold in Rn of class Cr.  Let α0: U0 à V0, α1: U1 à V1 be 

coordinate patches on M with W = V0 ∩ V1 ≠ ∅.  Let Wi = αi
-1(W).  Then α1

-1 ° α0: W0 
à W1 is C

r and D(α1
-1 ° α0)  is non-singular. 



Proof.  Apply the change of variable theorem. 
Definition.  Let M be a k-manifold in Rn.  Let p ∈ M.  If there is a coordinate patch, α: U 
à V on M about p that is open in Rk then p is an interior point.  If there is no such 
coordinate patch, then p is a boundary point.  The set of all boundary points is ∂M. 

Lemma.  Let M be a k-manifold in Rn, α: U à V a coordinate patch on M about p.  If U 
is open in Rk then p is an interior point.  If U is open in Hk and p = α(x) for some x ∈ 
H+

k, the p is an interior point of M.  If U is open in Hk and p = α(x) from some x ∈ Rk-

1 × 0, then p is a boundary point. 
Proof.  In the second case, notice that U ∩ Hk

+ is open and therefore may be used as a 
coordinate patch to show that p is in interior point.  In the third case, if there were any 
open coordinate patch, β, in Rk, then β-1 ° α is invertible and would take open sets to 
open sets.  This leads to a contradiction. 

Scalar Functions on Manifolds. 
Definition. Let M be a k-manifold in Rn.  Let f: M à R.  Suppose Support(f) ⊂ V and α: 

U à V is a coordinate patch.  Them, we define ∫M f = ∫U (f °α) V(Dα). 
Note.  If M is a 2-manifold in R3 this corresponds to ∫M f = ∫U (f °α) ||∂α/∂u × ∂α/∂v|| du 

dv. 
Note.  As with parameterized manifolds, we may use the change of variables theorem to 

show that the parameterization does not matter. 
Definition.  Let M be a k-manifold in Rn and f: M à R.  Let V be a collection of 

coordinate patches on M.  Choose a partition of unity on Rn dominated by V (by 
extending each V ∈ V to an open set in Rn).  Since M is compact, all but finitely many 
φi vanish at any point of M.  Then, ∫M f = ∑ ∫M φif. 

Note.  The choice of partition of unity does not change the value of the integral. 
Note.  To find integrals over manifolds that are not compact, take the limit of compact 

manifolds whose union is M. 
Tensors 
Definition.  Let V be a vector space.  If f: V à R is linear, f is a linear functional. 
Definition.  The set of all linear functionals corresponding to some vector space is also a 

vector space.  This is the dual of the vector space. 
Note.  A basis of the dual is {f1, …, fn} such that fi(bj) = 1 if i = j, 0 otherwise, where {b1, 

…, bn} is a basis for the vector space. 
Note.  In a finite dimensional vector space, the dual of the dual is the original vector 

space. 
Definition.  f: Vk à R is a tensor if f is multi-linear (linear in the ith coordinate, when all 

other coordinates are fixed, for all i).  The set of all k-tensors on V is Lk(V). 
Theorem.  The set of all k-tensors is a vector space. 
Lemma.  Let a1, …, an be a basis of V.  If f, g: Vk à R are k-tensors on V and f(ai1, …, 

aik) = g(ai1, …, aik)  for all I = (i1, …, ik) chosen from {1, 2, …, n}, then f = g. 
Theorem.  There is a unique φI: V

k à R such that for all J = (j1, …, jk), φI(aj1, …, ajk) = 1 
if I = J, 0 if I ≠ J.  {φI} is a basis for Lk(V). 

Definition.  Let f be a k-tensor and g an l-tensor over the same vector space.  The tensor 
product is defined by f ⊗ g (v1, …, vk, vk+1, …, vk+l) = f(v1, …, vk) g(vk+1, …, vk+l). 

Theorem.  If φI is a k-tensor with I = (i1, …, ik), then φI = φi1⊗ …⊗φik, where φij is a 1-
tensor. 



Theorem.  The tensor product is associative, homogeneous ((cf) ⊗ g = f ⊗ (cg) = c(f ⊗ 
g)), and distributive. 

Definition.  An elementary permutation is a permutation that switches i and i+1, for some 
i. 

Note.  All permutations are the product of elementary permutations. 
Definition.  A k-tensor on V is alternating if f(v1, …, vi-1, vi+1, vi, vi+2, …, vn) = - f(v1, …, 

vn).  The set of all alternating k-tensors is Ak(V). 
Note.  Ak(V) is a subspace of Lk(V).   
Theorem.  Let V be a vector space with basis {a1, …, an}.  Let I = (i1, …, ik) be an 

ascending k-tuple.  There exists a unique k-tensor, ΨI, on V, such that for all ascending 
k-tuples, J, ΨI(aj1, …, ajk) = 1 if I = J and 0 otherwise.  These tensors form a basis for 
Ak(V). 

Note.  We may also define ΨI = ∑σ (sgn σ) (φI)
σ, for all σ ∈ Sn, where (φI)

σ applies φI to 
the permutation σ of the vectors. 

Note.  ΨI(x1, …, xk) = det XI. 
Example.  The alternating 2-tensors on R3 are Ψ(1, 2) = φ(1, 2) - φ(2, 1) = x1y2 – x2y1, Ψ(1, 3) = 

x1y3 – x3y1, and Ψ(2, 3) = x2y3 – x3y2. 
Note.  The number of k-tensors on Rn is nk.  The number of alternating k-tensors on Rn is 

(n
k).     

Definition.  We define a linear transformation A: Lk(V) à Lk(V) by Af = ∑σ (sgn σ) fσ.  
If f is an alternating k-tensor and g is an alternating l-tensor on V, we define the wedge 
product, an alternating k+l tensor on V,  by f ^ g = A(f ⊗ g)/ k! l!. 

Note.  ψI = AφI. 
Note.  For 1-tensors, φi ^ φj = φi ⊗ φj. 
Theorem.  The wedge product is associative, homogeneous, and distributive.  In addition, 

g ^f = (-1)kl f ^ g.  The wedge product is preserved under the pullback:  T*(f ^g) = (T*f) 
^ (T*g). 

Note.  Since φi ^ φj = - φj ^ φi, φi ^ φi = 0. 
Theorem.  ΨI = φi1 ^ … ^ φik.  
Definition.  Let x ∈ Rn. A tangent vector to Rn at x is (x; v), where v ∈ Rn.  We define: 

(x; v) + (x; w) = (x; v + w) and c(x; v) = (x; cv).  The set of all tangent vectors to Rn at 
x is called the tangent space to Rn at x, or Tx(R

n). 
Definition.  Let A be open in Rk or Hk, α: A à Rn be of class Cr.  Let x ∈ A and p = 

α(x).  We define α*: Tx(R
k) à Tp(Rn) by α*(x; v) = (p; Dα(x) • v).  This is the 

transformation induced by α and a push-forward. 
Definition.  Let (a, b) ⊂ R.  Let γ: (a, b) à Rn be Cr.  We define the velocity vector of γ 

corresponding to t to be (γ(t); Dγ(t)). 
Note.  Velocity vectors are special cases of push-forwards. 
Lemma.  Let A be open in Rk or Hk.  Let α: A à Rm be Cr.  Let B be open in Rm or Hm, 

with α(A) ⊂ B.  Let β: B à Rn be Cr.  Then, (β ° α)* = β* ° α*. 
Definition.  Let M be a k-manifold of class Cr in Rn.  If p ∈ M, choose a coordinate patch 

α: U à V about p.  Let x ∈ U such that α(x) = p.  Then we define the tangent space to 
M at p by Tp(M) = α*(Tx(R

k)) = {α*(x; v) | v ∈ Rk}. 
Note.  Tp(M) is a linear subspace of Tx(R

n). 
Definition.  The union of Tp(M) over all p ∈ M is called the tangent bundle of M. 



Definition.  Let A ⊂ Rn be open.  A tangent vector field in A is a continuous function F: 
A à Rn × Rn such that F(x) ∈ Tx(R

n).  Thus, we may write F(x) = (x; f(x)) where f: A 
à Rn.  If F is of class Cr we say the tangent vector field is of class Cr.  The tangent 
vector field to a manifold is F: M à T(M). 

Definition.  Let A ⊂ Rn be open.  A k-tensor field. in A is ω: x à Lk(Tx(R
n)); in other 

words, ω assigns a k-tensor defined on Tx(R
n) to each x ∈ A.  Notice that ω(x)((x; v1), 

…, (x; vk)) must be continuous as a function of x, v1, …, vk.  If ω(x) is an alternating k-
tensor for all x, we call ω a differential form of order k on A. 

Definition.  The elementary 1-forms on Rn are given by φi(x)(x; ej) = 1 if i = j, 0 
otherwise.  The elementary k-forms on Rn are given by ψI(x) = φi1(x) ^ … ^ φik(x), 
where I = (i1, …, ik) is an ascending k-tuple. 

Note.  If ω is a k-form on A, we may write ω(x) = ∑[I] bI(x) ψI(x), where the bI are scalar 
functions and are called the components of ω. 

Lemma. Let ω be a k-form on A open in Rn.  The ω is Cr if and only if all its components 
are Cr. 

Lemma.  Let ω, η be k-forms and θ be an l-form on A.  If they are all Cr, so are aω + bη 
and η ^ θ. 

Definition.  Let A be open in Rn.  If f: A à R is Cr, f is called a scalar field in A and a 
differential form of order 0. 

Note.  ω(x) ^ f(x) = f(x) ω(x). 
Definition.  Let A be open in Rn and f: A à R be C∞.  The, d(f(x; v)) = Df(x)•v.  We call 

this the differential of f. 
Lemma.  Let πi: R

n à R, where πi(x) = xi (the ith projection function).  Then, dπi = φi.  
(We generally write this as dxi.) 

Theorem.  Let A be open in Rn and f: A à R be C∞.  Then, df = (D1f)dx1 + … + 
(Dnf)dxn. 

Theorem.  d is linear on 0-forms. 
Note.  dxI = dxi1 ^ … ^ dxik = ψI.  dxI(x)((x; v1), …, (x, vk)) = det VI. 
Definition.  We define Ωk(A) to be the set of all k-forms on A. 
Definition.  Let ω ∈ Ωk(A), j > 0.  Let ω = ∑[I] fI dxI.  We define dω = ∑[I] dfI ^ dxI. 
Theorem.  Let d: Ωk(A) à Ωk+1(A).   

• d is linear (d(aω + bη) = a(dω) + b(dη).).   
• df(x)(x; v) = Df(x)v if f is a 0-form.   
• d(ω ^ η) = dω ^ η + (-1)k ω ^ dη, where ω is a k-form and η is any form. 
• d(dω) = 0 for all forms. 

Definition.  A form, ω, is closed if dω = 0. 
Definition.  A form, ω, is exact if ω = dθ for some k-1 form θ. 
Proposition.  Every exact form is closed. 
Definition.  Let A be open in Rn.  Let f: A à R be a scalar field.  We define the gradient 

of f by (grad f)(x) = (x; D1f(x)e1 + … + Dnf(x)en).  Let G(x) = (x; g(x)) be a vector field 
on A, with g(x) = g1(x)e1 + … + gn(x)en.  We define the divergence of G by (div G) = 
D1g1(x) + … + Dngn(x). 

Theorem.  Let A be open in Rn.  Then we have the following vector space isomorphisms: 
   α0: Scalar fields in A à Ω0(A). 
   α1: Vector fields in A à Ω1(A) 



   βn-1: Vector fields in A à Ωn-1(A) 
   βn: Scalar field in A à Ωn(A) 
 so that d ° α0 = α1 ° grad and d ° βn-1 = βn ° div. 
Proof.  α0(f) = f  

α1(F) = ∑ fi dxi 
βn-1 (G) = ∑ (-1)i-1 gi dx1 ^ … ^ dxi-1 ^ dxi+1 ^ … dxn 
βn (h) = h dx1 ^ … ^ dxn 

Definition.  Let A ⊂ R3 be open.  Let F(x) = (x; ∑ fi(x)ei) be a vector field in A.  We 
define the vector field, curl F, by (curl F)(x) = (x; (D2f3 – D3f2)(x)e1 + (D3f1 – D1f3)(x)e2 
+ (D1f2 – D2f1)(x)e3). 

Theorem.  Let A be open in R3.  Then, in addition to the isomorphisms in the previous 
theorem, we find that d ° α1 = β2 ° curl. 

Corollary.  Since d(dω) = 0, curl(grad f) = 0 and div(curl F) = 0. 
Definition.  Let B be open  in Rn and α(A) ⊂ B.  A dual transformation of forms 

(pullback) is given by (α*f)(x) = f(α(x)) if f is a 0 form, and ((α*ω)(x))(v1, …, vk) = 
ω(α(x))(α*(x; v1), …, α*(x; vn)).   

Note.  ω(y) ∈ Ak(Ty(R
n)) and T*(ω(y)) = (α*ω)(x). 

Proposition.  Let ω, η, and θ be forms, with ω and η having the same order.  Then: 
• α*(aω + bη) = a α*(ω) + b α*(η) [linear] 
• α*(ω ^ θ) = α∗(ω) ^ α∗(θ) 
• (β ° α)* = α* ° β*. 

Theorem.  Let A be open in Rk.  Let α: A à Rn be C∞.  Let x ∈ Rk and y ∈ Rn with α(x) 
= y.  If I = (i1, …, il) is an ascending l-tuple from {1, 2, …, n} then α*(dyI) = ∑[J] det 
(∂αI / ∂xJ) dxJ. 

Proof.  α*(dyI) = ∑[J] bJ dxJ for some scalar functions bJ.  For any specific J, bJ(x) = 
α*(dyI)(x)((x; ej1), …, (x; ejl)) = dyI(y)((y; ∂α(x)/∂xj1), …, (y; ∂α(x)/∂xjl)) = det 
[∂αI/∂xJ]I. 

Theorem.  Let ω be an l-form defined on an open set containing α(A).  Then, α*(dω) = 
d(α*ω). 

Proof.  Use the chain rule to prove for 0-forms.  By linearity, only ω = f dyI (for one I) 
needs to be proven. 

Integrating over a Parameterized Manifold. 
Definition.  Let A be open in Rk.  Let α: A à Rn be C∞, so that Y = α(A) is a 

parameterized manifold.  If ω is a k-form defined on an open set B, Y ⊂ B, then we 
define ∫Y ω = ∫A α*ω if the latter integral exists. 

Note.  ∫A f dx1 ^ .. dxn = ∫A f, for A ⊂ Rn. 
Theorem.  Let g: A à B be a diffeomorphism of sets in Rk.  Assume that det Dg is of 

constant sign on A.  Let β: B à Rn be C∞.  Let Y = β(B).  Let α = β ° g, so that α: Rk 
à Rn and Y = α(A).  If ω is a k-form on Rn defined on an open set containing Y, the ω 
is integrable over Yβ if and only if it is integrable over Yα.  Also, ∫Yα ω = ± ∫Yβ ω, where 
the sign corresponds to the sign of det Dg. 

Proof.  Use the change of variables theorem to show ∫A (β ° g)*ω = ∫A β*ω. 
Theorem.  Let ω = f dzI.  Then, ∫Yα ω = ∫A α*ω = ∫A (f ° α) det (∂αI/∂x). 
Definition.  A frame, (a1, …, an), with ai ∈ Rn is right-handed if det [a1 … an] > 0. 



Definition.  Let g: A à B be a diffeomorphism of open sets in Rn.  g is orientation-
preserving if det Dg is right-handed. 

Note.  If A is connected and g is a diffeomorphism, then det Dg has constant sign. 
Definition.  Let M be a k-manifold in Rn.  Let α0: U0 à V0 and α1: U1 à V1 be 

coordinate patches on M.  If V0 ∩ V1 is non-empty, then α0 and α1 overlap.  If α0 and 
α1 overlap and α1

-1 ° α0 is orientation-preserving, then α0 and α1 overlap positively.  If 
α0 and α1 overlap and α1

-1 ° α0 is not orientation-preserving, then α0 and α1 overlap 
negatively.   

Definition.  If we may cover M by coordinate patches that overlap positively or not at all, 
we call M orientable. 

Definition.  The collection of coordinate patches that cover M and overlap positively is 
called an orientation of M.  M, together with an orientation, is called an oriented 
manifold. 

Definition.  Let M be a compact oriented k-manifold in Rn.  Let ω be a k-form defined in 
an open set of Rn containing M.  Let C = M ∩ Support ω; note that C is compact.  
Suppose there is a coordinate patch α: U à V on M belonging to the orientation of M 
with C ⊂ V.  Assume U is bounded.  We define the integral of ω over M as ∫M ω = ∫Int U 
α*(ω).   

Definition.  Let M be a compact oriented k-manifold in Rn.  Let ω be a k-form defined in 
an open set of Rn containing M.  Cover M by coordinate patches belonging to the 
orientation of M; choose a partition of unity on M dominated by these coordinate 
patches.  We define ∫M ω = ∑ (∫M φi ω). 

Definition.  Let M be a 1-manifold.  The unit tangent vector at p ∈ M if given by T(p) = 
(p; Dα(t)/||Dα(t0)||) where α(t0) = p. 

Definition.  So that we may have outward-pointing unit tangent vectors, we define the 
left-half-line, L = {x | x ≤ 0} and allow coordinate patches α: L à Rn. 

Definition.  Let M be an n-1 manifold in Rn.  Let p ∈ M.  Let (p; n) be a tangent vector to 
Rn that is orthogonal to the tangent space to M at p.  Let ||n|| = 1.  If n is always 
pointing the “same” direction, this is called a normal vector field to M and defines an 
orientation. 

Definition.  Let M be an n-manifold in Rn.  The natural orientation of M is the set of all 
coordinate patches α: Rn à Rn with det Dα > 0. 

Theorem.  Let k > 1.  If M is an oriented k-manifold in Rn with ∂M non-empty, then ∂M 
is orientable. 

Proof.  Define b(x1, …, xk-1 = (x1, …, xk-1, 0).  Then the restricted patches for ∂M are α ° 
b.  These define an orientation. 

Definition.  Let M be an orientable k-manifold in Rn, with ∂M non-empty.  Given an 
orientation of M, the induced orientation of ∂M is defined by the orientation of the 
restricted coordinate patch if k is even and the opposite orientation if k is odd. 

Note.  The induced orientation of an n-1 manifold that is the boundary of a naturally 
oriented n-manifold always points outward from the manifold. 

Lemma.  Let η be a k-1 form in Rk defined on an open set containing Ik = [0, 1]k, where η 
vanishes on Bd Ik, except possibly on Rk-1 × 0 (the bottom face).  Let b: Rk-1 à Rk be 
given by b(x) = (x, 0).  Then, ∫Ik dη = (-1)k ∫Int I(k-1) b*η. 



Proof.  By linearity, let η = f dxIj, where Ij = (1, …, j-1, j+1, …, k) so dη = (-1)j-1 Djf fxI, 
where I = (1, …, k).  Then,  

∫Int I(k) dη  = (-1)j-1 ∫I(k-1)
 ∫[0,1] Djf(x1, …, xk) 

 = (-1)j-1 ∫I(k-1) f(x1, …, xj-1, 1, xj+1, …, xk) - f(x1, …, xj-1, 0, xj+1, …, xk) 
 = (-1)k-1 ∫I(k-1) – f(x1, …, xk-1, 0)  
   [if j = k since f vanishes on other boundaries, 0 otherwise] 
 = (-1)k ∫I(k-1) f ° b or 0. 
Since b*(dxIj) = det (Db)Ij dx1 ^ … ^ dxk-1 = dx1 ^ … ^dxk-1 if j=k, 0 otherwise,  
∫Int I(k-1) b*η = ∫Int I(k-1) f ° b if j=k, 0 otherwise = (-1)k ∫Int I(k) dη. 

Stokes Theorem.  Let M be an oriented k manifold in Rn.   Let ∂M have the induced 
orientation.  Let ω be a k-1 form on an open set containing M.  Then, ∫M dω = ∫∂M ω. 

Proof. (For k > 1.)  Choose coordinate patches contained in Ik, such that boundary points 
are in (Int Ik-1) × 0.  Use partitions of unity and linearity.   

Definition.  A 0-manifold is a finite collection of points, {x1, …, xn} in Rn.  We define an 
orientation on such a manifold by a function ε: {x1, …, xn} à {-1, 1}.  ∫M f = ∑ 
ε(xi)f(xi). 

Definition.  Let M be an oriented 1-manifold in Rn.  We define the orientation of ∂M by 
ε(p) = -1 if there exists α: U à V, about p, with U ⊂ Hk and ε(p) = 1 otherwise. 

Note.  With this definition, Stokes’ theorem holds in this case as well. 
Classical Stokes’ Theorem.  Let F be a vector field in R3.  Then, ∫∫S ∇∇×F dA = ∫∂S F dS. 
Theorem.  Let M be a compact, oriented n-1 manifold in Rn.  Let N be the unit normal 

field (corresponding to the induced orientation).  Let G be a vector field on an open set 
containing M, so that G(y) = (y; g(y)) = (y; ∑ gi(y) ei).  Let ω = ∑ (-1)i-1 gi dy1 ^ … ^ 
dyi-1 ^ dyi+1 ^… ^ dyn.  Then, ∫M ω = ∫M <G, N> dV. 

Theorem.  Let M be an n-manifold in Rn.  Let ω = h dx1 ^ … ^ dxn.  Then, ∫M ω = ∫M h 
dV. 

Divergence Theorem.  Let M be a compact, oriented n-manifold in Rn.  Let N be the unit 
normal field.  If G is a vector field, then ∫M (div G) dV = ∫∂M <G, N> dV. 

Classical Stokes Theorem.  Let M be a compact, oriented 2-manifold in R3.  Let N be the 
unit normal field.  Let F be a C∞ function.  Then, if ∂M = ∅, then ∫M <curl F, N> dV = 
0.  Otherwise, ∫M <curl F, N> dV = ∫∂M <F, T> dV, where T is the unit tangent field to 
∂M with the induced orientation. 

 
Lebesgue Measure and the Lebesgue Integral 
Definition.  A σ-algebra, or a Borel field, is an algebra of sets that is closed under 

countable union  (and therefore countable intersection). 
Definition.  A Borel set is the smallest σ-algebra that contains the closed and open 

intervals. 
Definition.  The outer measure of a set E ⊂ R is m*E = inf E ⊂ ∪I(n) ∑ l(In) (where l(I) is 

the length of the interval), so that {In} is a set of intervals that covers E. 
Proposition.  The outer measure of an interval is its length. 
Proposition.  Let {An} be any countable collection of sets.  Then, m*(∪ An) ≤ ∑ m*An.  

(This is called countable subadditivity.) 
Proof.  Use the ε/2n trick. 
Corollary.  If A is a countable set, then m*A = 0. 



Corollary.  [0, 1] is uncountable. 
Proposition.  Given any set A and ε > 0, there exists an open set O such that A ⊂ O and 

m*O ≤ m*A + ε.  There is a G ∈ Gδ such that A ⊂ G and m*A = m*G. 
Proof.  Since m* is defined as an infimum, we may choose O = ∪ In whose measure is at 

most ε more that m*A.  Take the countable intersection of the O corresponding to 1/n 
for each n to make G. 

Definition.  E is measurable if, for all A, m*A = m*(A ∩ E) + m*(A ∩ EC). 
Note.  If E is measurable, so is EC.  ∅ and R are measurable. 
Note.  By countable subadditivity, m*A ≤ m*(A ∩ E) + m*(A ∩ EC).  Thus, we need 

only prove the other direction to show that something is measurable. 
Lemma.  If m*E = 0, E is measurable. 
Lemma.  If E1 and E2 are measurable, so are E1 ∪ E2 and E1 ∩ E2. 
Corollary.  The measurable sets are an algebra (closed under complement, intersection, 

and union.) 
Lemma.  Let A be any set.  Let E1, …, En be a finite sequence of disjoint measurable sets.  

Then, m*(A ∩ (∪ Ei)) = ∑ m*(A ∩ Ei). 
Theorem.  The set of measurable sets is a σ-algebra (since it is closed under countable 

union as well). 
Lemma.  (a, ∞) is measurable. 
Theorem.  Every Borel set is measurable. 
Proof.  All the open sets are measurable and the measurable sets form an algebra.   
Proposition.  Let {Ei} be an infinite, decreasing (ie. Ei+1 ⊂ Ei) sequence of measurable 

sets.  Let mE1 < ∞.  Then, m(∩Ei) = lim mEn. 
Proof.  Construct a sequence of Fi = Ei – Ei+1. 
Proposition.  Let E be a set.  The following are equivalent: 

i. E is measurable. 
ii. Given ε > 0 there exists an open set O ⊃ E with m*(O – E) < ε. 
iii. Given ε > 0 there exists a closed set F ⊂ E with m*(E – F) < ε. 
iv. There is a G ∈ Gδ with E ⊂ G such that m*(G – E) = 0. 
v. There is an F ∈ Fσ with F ⊂ E such that m*(E – F) = 0. 
vi. (If m*E < ∞, then) If ε > 0 there exists a finite union U = ∪ Ii such that m*((U – 

E) ∪ (E – U)) < ε. 
Proof.  (i à ii à vi à ii in the finite case, then i à ii à iv à i, then i à iii à v à i.) 
Proposition.  The measure of a set is translation invariant. 
Proposition.  Let f be any function.  Let a ∈ R.  The following are equivalent: 

i. {x | f(x) > a} is measurable. 
ii. {x | f(x) < a} is measurable. 
iii. {x | f(x) ≤ a} is measurable. 
iv. {x | f(x) ≥ a} is measurable. 

Definition.  A function is measurable if its domain is measurable and the conditions 
above hold. 

Proposition.  Let c ∈ R and f, g be measurable functions on the same domain.  Then, f + 
c, cf, f + g, and fg are measurable. 



Theorem.  Let {fn} be a sequence of measurable functions defined on the same domain.  
Then the functions sup{f1, …, fn}, inf{f1, …, fn}, supn fn, infn fn, lim sup fn, and lim inf 
fn are also measurable. 

Theorem.  If f is measurable and f = g almost everywhere, then g is measurable. 
Littlewood’s Three Principles.  Every measurable set is nearly a union of intervals.  

Every measurable function is nearly continuous.  Every convergent sequence of 
measurable functions is nearly uniformly convergent. 

Definition.  A simple function, ϕ, is defined by ϕ(x) = ∑i=1
n ai χEi(x), where χEi is the 

characteristic function of Ei (1 on Ei, 0 elsewhere). 
Note.  ϕ is simple if and only if it is measurable and takes on a finite number of values. 
Definition.  The canonical representation of ϕ is ϕ(x) = ∑ ai χEi(x) and Ei = {x | ϕ(x) = 

ai}. 
Definition.  Let ϕ = ∑ ai χEi.  We define ∫ ϕ = ∑ ai mEi. 
Proposition.  Let f be a bounded function on a set E of finite measure.  infψ ≥ f ∫E ψ = supϕ 

≤ f ∫E ϕ if and only if f is measurable. 
Proof.  Suppose |f| ≤ M.  For a fixed n, let Ek = {x | kM/n ≥ f(x) ≥ (k-1)M/n}.  Choose 

step functions ψn = (M/n) ∑ kχEk(x) and ϕ n = (M/n) ∑ (k-1)χEk(x).  With the proper 
choice of n, the difference in their integrals can be as small as we want.  Conversely, 
choose ψn and ϕn so that ∫E ψn - ∫E ϕn < 1/n.  We show m{x | ϕn(x) < ψn(x) -  1/v} < v/n.  
We may choose ψ* and ϕ* as the sup and inf of these sequences.  They must agree 
with f almost everywhere.  So f is measurable. 

Definition.  If f is bounded and measurable on a set E of finite measure, we define ∫E f = 
infψ≥f ∫E ψ = supϕ≤f ∫E ϕ. 

Proposition.  If f and g are bounded, measurable functions defined on a set E of finite 
measure, then: 

• ∫E (af + bg) = a∫E f + b∫E g. 
• If g = f almost everywhere then ∫E g = ∫E f. 
• If g ≤ f almost everywhere, then ∫E g ≤ ∫E f. 
• If A ≤ f(x) ≤ B almost everywhere, then A(mE) ≤ ∫E f ≤ B(mE). 
• If A ∩ B = ∅ and A, B have finite measure, ∫A∪B f = ∫A f + ∫B f. 

Definition.  If f is non-negative and measurable on any measurable set E, we define ∫E f = 
suph≤f ∫E h where h is bounded, measurable, and non-zero only on a set of finite 
measure. 

Definition.  f is integrable over the measurable set E if ∫E f < ∞. 
Definition.  Let f be any function.  Define f+(x) = max{f(x), 0} and f-(x) = -min{f(x), 0} = 

max{-f(x), 0}. 
Note.  f = f+ - f-.  |f| = f+ + f-. 
Definition.  Let f be measurable.  f is integrable over E if f+ and f- are integrable.  Then, ∫E 

f = ∫E f+ - ∫E f-. 
Proposition.  The following properties hold for the general Lebesgue integral: 

• ∫E (af + bg) = a∫E f + b∫E g. 
• If g = f almost everywhere then ∫E g = ∫E f. 
• If g ≤ f almost everywhere, then ∫E g ≤ ∫E f. 
• If A ∩ B = ∅ and A, B have finite measure, ∫A∪B f = ∫A f + ∫B f. 



Bounded Convergence Theorem.  Let <fn> be a sequence of measurable functions defined 
on a set E of finite measure.  Suppose there is some real number M such that |fn(x)| ≤ M 
for all n, x.  If f(x) = lim fn(x) almost everywhere in E, then ∫E f = lim ∫E fn. 

Proof.  Given ε > 0 there exists N and a measurable set A ⊂ E such that mA < ε/4M and 
for all n > N and x ∈ E – A, |fn(x) – f(x)| < ε / 2mE.  Then, |∫E fn - ∫E f| ≤ ∫E |fn – f| = ∫E-A 

|fn – f| + ∫A |fn – f| < ε. 
Fatou’s Lemma.  Let <fn> be a sequence of non-negative, measurable functions with lim 

fn(x) = f(x) almost everywhere on a measurable set E.  Then, ∫E f ≤ lim ∫E fn. 
Proof.  Let h be a non-negative, bounded, measurable function with h(x) ≤ f(x) and h(x) = 

0 outside a measurable set E’ ⊂ E of finite measure.  Let hn(x) = min{h(x). fn(x)}.  
Then, hn is bounded, vanishes outside E’, and converges everywhere to h.  So we can 
apply the bounded convergence theorem to find ∫E h = ∫E’ h = lim ∫E’ hn ≤ lim ∫E fn, for 
all h ≤ f.  So ∫E f = sup ∫E h ≤ lim ∫E fn. 

Monotone Convergence Theorem.  Let <fn> be an increasing sequence of non-negative, 
measurable functions with f(x) = lim fn(x) almost everywhere.  Then, ∫ f = lim ∫ fn. 

Proof.  We know ∫ f ≤ lim ∫ fn.  Since fn ≤ f for all n, lim sup ∫ fn ≤ ∫ f.  So ∫ f = lim ∫ fn. 
Lebesgue Convergence Theorem.  Let g be integrable over E and <fn> a sequence of 

measurable functions with |fn| ≤ g everywhere on E.  Let lim fn(x) = f(x) almost 
everywhere on E.  Then, ∫E f = lim ∫E fn. 

Proof.  Apply Fatou’s Lemma to <g – fn> and <g + fn> to show that ∫E f ≥ lim sup ∫E fn 
and ∫E f ≤ lim ∫E fn.  So, ∫E f = lim ∫E fn. 

Theorem.  Let <gn> be a sequence of measurable functions over E that converge almost 
everywhere to an integrable function g.  Let <fn> be a sequence of measurable 
functions with |fn| ≤ gn and lim fn(x) = f(x) almost everywhere.  If ∫E g = lim ∫E gn then ∫E 
f = lim ∫E fn. 

Corollary.  Let {un} be a sequence of non-negative measurable functions with f = ∑ un.  
Then, ∫E f = ∑ ∫E un. 

Definition.  A sequence <fn> converges to f in measure if, given ε > 0, there exists N such 
that, for all n > N, m{x | |f(x) – fn(x)| ≥ ε} < ε. 

Example.  Consider the sequence of functions with a bump of height 1 that moves across 
[0, 1] but gets progressively narrower (1/2k for 2k consecutive functions).  This 
functions converges in measure, but converges pointwise nowhere. 

Proposition.  Suppose <fn> converges to f in measure and all the fn are measurable.  Then 
there is a subsequence <fnk> that converges to f almost everywhere. 

Proof.  For each v, choose nv such that m{x: |fn – f(x)| > 2-v} < 2-v.  Let Ev = {x: |fn(x) – 
f(x)| > 2-v}.  If x is not in ∪v=k

∞ Ev then |fnv(x) – f(x)| < 2-v for all v > k, and lim fnv(x) = 
f(x).  Let A = ∩k (∪v=k

∞ Ev).  lim fnv(x) = f(x) for all x not in A.  Since A is an 
intersection of sets of progressively smaller measure (2-v+1 each union), mA = 0.  So 
this subsequence converges almost everywhere.  

Corollary.  Let <fn> be a sequence of measurable functions defined on a set E of finite 
measure.  Then fn converges to f in measure if and only if every subsequence of <fn> 
has in turn a subsequence that converges to f almost everywhere. 

Proposition.  The convergence theorems stated above hold if “convergence almost 
everywhere” is replaced by “convergence in measure.” 



Proof.  (Fatou’s Lemma).  Suppose fn converges to f in measure.  Then, lim ∫E fn = lim ∫E 
fnk for some subsequence <fnk>, that also converges to f in measure.  So there is a 
subsequence <fnkj> that converges to f almost everywhere.  So by the previous Fatou’s 
Lemma, ∫E f ≤ lim ∫E fnkj = lim ∫E fnk = lim ∫E fn. 

 (Monotone Convergence).  Suppose <fn> is an increasing sequence of non-negative 
functions that converge to f in measure.  Note that x = lim xn if and only if every 
subsequence of <xn> has a subsequence of converges to x.  Let xn = ∫E fn.  Every 
subsequence <fnk> has a subsequence, <fnkj> that converges almost everywhere.  So, ∫E 
f = lim ∫ fnkj, and ∫E f = lim ∫E fn. 

 
Lp Spaces 
Definition.  f ∈ Lp if ∫[0,1] |f|

p < ∞. 
Definition.  ||f||p = (∫[0,1] |f|

p)1/p. 
Definition.  A norm, || ||, must satisfy:  ||af|| = |a| ||f||, ||f + g|| ≤ ||f|| + ||g||, and ||f|| = 0 if and 

only if f = 0. 
Note.  If we consider functions equivalent when they are equal almost everywhere, then 

Lp is a normed linear space. 
Definition.  f ∈ L∞ if f is bounded almost everywhere and measurable.  ||f||∞ = ess sup 

|f(x)| = inf {M | m{t | f(t) > M} = 0}. 
Proposition.  lim p → ∞ ||f||p = ||f||∞. 
Definition.  ϕ on (a, b) is convex (concave up) if for all x, y ∈ (a, b) and λ ∈ [0, 1], ϕ(λx 

+ (1 - λ)y) ≤ λ ϕ(x) + (1 - λ) ϕ(y). 
Minkowski Inequality.  Given f, g ∈ Lp, for 1 ≤ p ≤ ∞, ||f + g||p ≤ ||f||p + ||g||p. 
Note.  If 0 ≤ p ≤ 1, then ||f + g||p ≥ ||f||p + ||g||p. 
Holder’s Inequality.  Let p, q >0 and 1/p + 1/q = 1.  If f ∈ Lp and g ∈ Lq, then fg ∈ L1 

and ||fg||1 = ∫[0,1] |fg| ≤ ||f||p ||g||p. 
Riesz-Fischer Theorem.  Lp is complete for 1 ≤ p < ∞. 
Definition.  A linear functional on a normed linear space, X, is a mapping F: X → R such 

that F(af + bg) = a F(f) + b F(g). 
Definition.  A linear functional is bounded if there exists M such that |F(f)| ≤ M ||f|| for all 

f ∈ X. 
Definition.  The norm of a functional, F, is given by ||F|| = supf ≠ 0 |F(f)|/||f||. 
Proposition.  If g ∈ Lq and 1/p + 1/q = 1, a bounded linear functional on Lp is F(f) = ∫[0,1] 

fg. 
Riesz Representation Theorem.  Let F be any bounded linear functional on Lp, 1 ≤ p < ∞.  

Then there is a function g ∈ Lq, 1/q + 1/p = 1, such that, for all f ∈ Lp, F(f) = ∫[0,1] fg.  In 
addition, ||F|| = ||g||q. 

 


