Analysis Seminar Summary

Inverse and Implicit Function Theorems

Definition. C(a, r) isthe open cubein R" about a of side length 2r. It isthe set of points
where each coordinate differs from any coordinate of a by at most r.

Lemma. Let A beopeninR", f: A > R"beCh. If Df(a) is non-singular then there exists
a>0ande>0such that [f(x1) —f(x2)| 2 a [x1 —xXz| for dl x4, X2 in C(a, €).

Note. Thislemmaimpliesthat f is 1-1 in a neighborhood of a.

Lemma. Let A beopeninR"andf: A > R"beC'. Let B =f(A). If fis1-1 and Df(x) is
non-singular for all x T A then Bisopenin R"and f*isC".

Proof. Step 1: If afunction has alocal minimum or maximum, then the derivativeis O
there.

Step 2: B =f(A) isopen.
Step 3: fis continuous.
Step 4: fisdifferentiable.
Step 5: ftisC".

Inverse Function Theorem. Let A beopeninR"and f: A = R"beC'. If Df(X) is non-
singular then there is a neighborhood, U, about x and a neighborhood, V, about f(x)
suchthat f: U > Visonto V. ThenftisC".

Lemma. Let A beopenin R™*. Letf: A > R"bedifferentiable. Suppose there exists g:
R¥ > R"such that f(x, g(x)) = 0 for al xi R¥. Then, f/fix + /My * fg/fx = O.

Implicit Function Theorem. Let A beopenin R™. Letf: A > R"beC". Writef asf(x,
y), wherex] R¥andyi R". Let(a b)1 A withf(a, b) = 0and det Tf/fy (a, b) * 0.
Then, there existsaunique g: R > R" such that f(a, g(a)) = 0.

Proof. Apply the inverse function theorem to F(x, y) = (X, f(X, y)).

Integration Theory

Definition. A rectangle, Q, inR"isQ =[a;, by "~ ... " [an, by).

Definition. The volume of Q isgiven by v(Q) = (b1 — &) ... (bh—a&).

Definition. A partition, P, of Q isan n-tuple of partitions of [&, bj]. The parts of the
partition are called subrectangles.

Definition. If f: Q = R isbounded, then we define m(f) = inf{f(x) | x T R}, whereR is
a subrectangle of Q.

Definition. Under the same conditions, Mg(f) = sup{f(x) | x T R}.

Definition. The lower and upper sums of a partition, P, where each R is a subrectangle of
PareL(f; P) = Agr mgv(R) and U(f; P) = ar MrV(R).

Definition. The upper and lower integralsand @, f = sup{L(f; P)} and" &, f = inf{ U(f;P)}.

Definition. fisintegrableover Qif & f= & f. Weset @, f equal to this value.

Theorem. Suppose that given e > 0 there exists d > 0 such that if P is any partition of
mesh lessthan d with xg T R then |Sg f(xg)V(R) —A| < e. Then, f isintegrable over Q
with @ f = A.

Definition. Let A1 R". A has measure zero if, for al e > 0, there exists a covering { Q}
of A by countable many rectangles such that & v(Q) < e.

Theorem. Let Q1 R"andf: Q > R be bounded. Let D be the set of discontinuities of f
on Q. Then, fisintegrable over Q if and only if D has measure O.




Definition. Let ST R" be bounded and f: S > R be bounded. Let fs: R" > R be defined
by f(x) = f(x) if x1 Sandf(x) = 0 elsewhere. We define & f by & fs where Q is any
rectangle containing S.

Lemma. & fiswell-defined.

Theorem. Under the conditions of boundedness, the following conditions about the
integral hold:

- Linearity: & (af + bg) = ag f + b@ g provided the right-hand integral s exist.
Comparison: If f(x) £ g(x) for al xT Sthen&f £ &g. In particular, [f|is
integrable if f isintegrable, and |& f| £ & |[f].

Monotonicity: Suppose T S, f(x) is non-negative on S, and both & f and & f
exist. Then, & f £ & f.

Additivity: Let S=S,E S,. If fisintegrable over S; and S; then it is integrable
over their union and intersection, with & f =G f + G2 f - Gucs2 f.

Definition. Let Sbe bounded in R". If the constant function 1 is integrable over S, we
say Sisrectifiable.

Definition. We define the (Jordan) volume of Sby v(S) = & 1.

Theorem. Sisrectifiableif and only if Sisbounded and Bd S has measure 0.

Proof (sketch). The function that is 1 on S and O elsewhere can be integrated unless the
set of discontinuities, which is Bd S, has measure greater than O.

Theorem. Let ST R"berectifiable. Let f: S=> R be bounded and discontinuous only on
aset of measure 0. Then, & f.

Lemma. Let A beopeninR". Letf: A > R becontinuous. If Ci A iscompact and f
vanishesoutside Ctheq f =@ f.

Theorem. Let A beopeninR". Letf: A = R be continuous. Choose a sequence, { C,}
of compact rectifiable subsets of A whose unionis A, suchthat C,1 Int Cyey. fis
integrable over A if and only if {&y [f| } isbounded. Then, & f =lim &, f.

Partitions of Unity

Lemma. Let Qi R"bearectangle. Then, thereexistsa C* function, f: R" > R, such
that f (x) > 0for x1 Int Q and f (x) = O elsewhere.

Proof. Let f(x) = e e Thisfunction works for [0, 1].

Lemma. Let A beacollection of open setsinR". Let A = EA. Then, there exists a
countable collection, { Q;} of rectangles contained in A such that
1. E Q coversA
2. Each Q iscontained in some element of A.

3. Eachal A hasaneighborhood that intersects finitely many Q.

Proof (outline). Cover A by compact nested subsets, D;. Let B; = D; —Int Di;. Cover
each B; by closed cubes that do not intersect D;.,, and thus by afinite subcover. These
arethe Q.

Definition. If f: R" = R the support of f isthe closure of {x | f(x)  0}.

Theorem. Let A beacollection of setsin R". Let A betheir union. There exists{f}, fi:
R" = R which fulfill the following conditions:

1. f(x)3 Ofordl x.
2. S =Supportf;l Aforallf;.
3. Ifx1 A thenx iscontained in afinite number of S.




afti(x)=1foral x1 A.

Eachf;isC".

The S are compact.

Each S is contained in one element of A.

Proof Use the previously constructed { Q;} and f for each Qj;, normalizing so that they
sum to one.

Definition. A set of functions fulfilling the first four conditions is called a partition of
unity.

Theorem. Let Al R"beopen. Letf: A > R becontinuous. Let {f;} be apartition of
unity on A with compact supports. Theintegral o f existsif and only if & (& f [f])
converges. Inthiscase, @ f= & (& f; f).

No ok

Change of Variables Theorem

Definition. Let A be openinR", g: A & R" be one-to-one and of class C', with det Dg(x)
1 O0fordl x1 A. Then, gis called a change of variables or a diffeomorphism.

Lemma. Let A beopeninR"andg: A > R"beC". If EI A hasmeasure0inR" then
g(E) has measure 0 in R" as well.

Proof. Cover E by cubes. Show that g sends each cube to the interior of a cube with
width nMw, where w was the width of the old cube and M is the largest absolute value
in the matrix det Dg. Cover A with nested compact sets and let Ex be the intersection of
E with each. Cover Ei by finitely may cubes with total volume less than &/(nM)".
Show that g(E) has measure less than e.

Theorem. Let g: A = B beadiffeomorphism of class C' of open setsinR". Let D, Bd
DI AandE=g(D). Then g(Int D) = Int E and g(Bd D) = Bd E. If D isrectifiable, sp
iISE.

Definition. Let h: A = B be adiffeomorphism of open setsin R", n3 2, with h(x) =
(hl(xz, ... h(X)). h preservesthe ™ coordinate if hi(x) = x; for al xT A. If h preserves
thei™ coordinate for any i, then h is a primitive diffeomorphism.

Theorem. Let g: A = B be adiffeomorphism of open setsin R", n3 2. Then, thereisa
neighborhood Uy of a and a sequence of primitive diffeomorphisms, hy: U; =2 Uy, hy:
Uz > Uy, ..., e Ug 2 Upg such that hy © ... ° hy © ho(X) = g(x) for al x T U.

Theorem (Substitution Rule). Let| =[a b], g:1 > RbeCywithg (x)* Ofordl x1 (a,
b). Then, g(l) = Jisaclosed interval with endpoints g(a) and g(b), I1f f: 3> Ris
continuous then g™ f=a° (F° g) g and 6 f =G (f ° g)|g'|.

Change of Variables Theorem. Let g: A > B be a diffeomorphism of open setsin R".
Let f: B > R be continuous. Then, f isintegrable over B if and only if (f -g)|det Dg| is
integrable over A. Inthat case, @ f = Q. (f -g)|det Dg|.

Proof. Step 1. Provethe case wheren = 1, only in a neighborhood of a point. (Usethe
substitution rule on an interval with x in the interior and the support of f
contained in the interval.)

Sep 2: The case for primitive diffeomorphisms withn > 1, locally. (Using
primitive-ness, reduce the problem to a question of n—1.)

Sep 3: Composing primitive diffeomorphism, using the chain rule.

Sep 4: Using a partition of unity to extend local to global.




Manifolds

Theorem. Let W1 R"be alinear subspace of dimension k. Then there is an orthogonal
basis of R" in which the first k vectors are a basis for W.

Theorem. Thereis an isometry (orthogonal transformation) from any k-dimensional
linear subspace of dimension k to R*~ 0™.

Theorem. Thereisaunique function, V, that assignsto every k-tuple of elementsin R" a
non-negative number such that (1) If h: R" = R"isan isometry then V(h(xy), ...,
h(xn) = V(X1, ..., X), and (2) Ifys, ...,y 1 R 0™ 1 R" sothaty; =[z 0] then
V(y1, ..., Yk) = |det [z ... z)]|- Inaddition, V(Xa, ..., Xn) = 0if and only if {xa, ..., Xk}
are dependent. Noticethat V is defined by V = (det X X)"? where X =[x ... x]. We
call this volume.

Definition. Let (xq, ..., x) T (RN, KEn. LetX =[x ... x], | = (ix, ..., ix) bean
ascending k-tuple of integers, LE iy <...<ix£n. Let X, beak ™ k matrix with the first
row thei,™ row of X, ..., the k™ row the i, " row of X.

Theorem. Let X beann” k matrix, k £n. Then, V(X) = (& (det X,))Y? where[l] is
the set of all ascending k-tuplesfrom {1, 2, ..., n}.

Definition. Letk £n, A beopeninR* a: A > R"of classC". ThenY =a(A) isak-
dimensional parameterized manifold.

Definition. The volume of a parameterized manifold isv(Y,) = @ V(Da).

Definition. Letf: Y, 2 R. Wedefinetheintegral of f over Y, asa, fdV =@ (f °a)
V(Da).

Theorem. Letg: A > B be adiffeomorphism of open setsin R¥. Letb: B > R"be C'
andY =b(B). Leta =b°g. Then,a: A > R"withY =a(A). Then, . fdV =Gy f
dv.

Proof. Apply the Chain Rule and the Change of Variables Theorem.

Definition. Letk>0. LetM I R". Supposethat for any p1 M there exists V
containing p such that V is open in M and there existsan open set U1 R* and a one-to-
oneand onto a: U > V such that (1) a isC', (2) a™: V > U is continuous, and (3) Da
has rank k everywhere on U. Then we call a a coordinate patch and M is a k-manifold
without boundary.

Note. Manifolds are defined locally. The second condition ensures that manifolds do not
cross themselves, and the third condition ensures that there are no singularities.

Definition. Let ST R* f: S> R". fisC on Sif f may be extended to afunction g: U >
R" that is C" on an open set U containing S.

Lemma. If Si R¥ f: S> R" andif for all x1 S there exists a neighborhood, Uy, around
X, and gx: Ux = R"that is C" with compact support contained in SC Uy then f is C'.

Definition. H¥isthe upper half-spacein R*. H*={xT R*|x(3 0}. H* ={xT R*|x
>0}.

Theorem. Let U be openinH* but not R“anda: U C H* > R. Letb: U > R beany
extension of a. Then Da = Db everywhere on U G H¥.

Lemma. If M isamanifoldin R" and a is a coordinate patch on M then the restriction of
a to H* is also amanifold.

Theorem. Let M be ak-manifold in R" of classC". Let ao: Up = Vo, a1: U1 = Vi be
coordinate patcheson M withW =V, C V11 /£ LetW; =a;}(W). Thenai™° ag: Wo
> W, isC and D(a:™ ° ag) isnon-singular.




Proof. Apply the change of variable theorem.

Definition. Let M be ak-manifoldinR". Letp1 M. If thereisa coordinate patch, a: U
= V on M about p that is open in R then p is an interior point. If thereisno such
coordinate patch, then p is a boundary point. The set of al boundary pointsis M.

Lemma. Let M be ak-manifoldin R", a: U = V acoordinate patch on M about p. If U
is open in R then p isan interior point. If U isopeninH* and p = a(x) for some x 1
H.¥, thep isan interior point of M. If U isopenin H* and p = a(x) from somex1 R*
170, then p is aboundary point.

Proof. In the second case, noticethat U C HX, is open and therefore may be used as a
coordinate patch to show that p isin interior point. Inthethird case, if there were any
open coordinate patch, b, in R¥, then b™ ° a isinvertible and would take open sets to
open sets. Thisleads to a contradiction.

Scalar Functions on Manifolds.

Definition. Let M be ak-manifoldin R". Let f: M = R. Suppose Support(f) 1 V and a:
U - V isacoordinate patch. Them, wedefinea, f =@ (f °a) V(Da).

Note. If M isa2-manifold in R® this correspondsto & f = & (f °a) ||[fa/fu "~ fa/v|| du
dv.

Note. Aswith parameterized manifolds, we may use the change of variables theorem to
show that the parameterization does not matter.

Definition. Let M be ak-manifoldin R"and f: M = R. Let V be acollection of
coordinate patches on M. Choose a partition of unity on R" dominated by V (by
extendingeach V1 Vto an open setin R"). Since M is compact, all but finitely many
f; vanish at any point of M. Then, &, f =a & fif.

Note. The choice of partition of unity does not change the value of the integral .

Note. To find integrals over manifolds that are not compact, take the limit of compact
manifolds whose union is M.

Tensors

Definition. Let V be avector space. If f: V = R islinear, f isalinear functional.

Definition. The set of al linear functionals corresponding to some vector spaceisaso a
vector space. Thisisthe dual of the vector space.

Note. A basisof thedual is{fs, ..., fn} suchthat fi(l) = 1if i =], O otherwise, where { by,
..., bn} isabasis for the vector space.

Note. In afinite dimensional vector space, the dual of the dual isthe original vector
Space.

Definition. f: V¥ > R isatensor if f is multi-linear (linear in the i™ coordinate, when all
other coordinates are fixed, for all i). The set of al k-tensorson V isL(V).

Theorem. The set of al k-tensorsis a vector space.

Lemma. Letay, ..., a,beabasisof V. If f, g: V¥ > R arek-tensorson V and f(a, ...,
aw) = 9@, ..., ax) forall=(iy, ..., ix) chosenfrom{1, 2, ..., n}, thenf = g.

Theorem. Thereisauniquef: V¥ > R such that for all J= (v - Ji)s F1(E1, -y @) =1
if | =J,0if 1 J {f} isabassfor L\V).

Definition. Let f be ak-tensor and g an |-tensor over the same vector space. The tensor
product isdefined by f A g (V1, ..., Vk, Vke1, ++vy Vist) = F(V1, oovy Vi) O(Viet, -ovy Vi)

Theorem. If f| isak-tensor with | = (iy, ..., ix), thenf, =f ;A ...Afy, wheref j isal-
tensor.




Theorem. The tensor product is associative, homogeneous ((cf) A g=f A (cg) = c(f A
g)), and distributive.

Definition. An elementary permutation is a permutation that switchesi and i+1, for some
i

Note. All permutations are the product of elementary permutations.

Definition. A k-tensor on V is alternating if f(va, ..., Via, Vis1, Vi, Vis2, ..., V) = - (v, ...,
Vn). Theset of all alternating k-tensors is A“(V).

Note. A“(V) isasubspace of LX(V).

Theorem. Let V be avector space with basis{ay, ..., a,}. Letl =(iy, ..., ix) bean
ascending k-tuple. There exists a unique k-tensor, Y|, on V, such that for all ascending
k-ktuples, J, Yi(a1, ..., ax) = 1if | =Jand O otherwise. These tensors form a basis for
AY(V).

Note. We may also define Y| = &s (sgn's) (f)°, foral s T S, where (f|)° appliesf, to
the permutation s of the vectors.

Note. Y|(X1, veey Xk) = det X.

Example. The aternating 2-tensorson R*are’Y (1,2 = (1,2 - f 2.1 = Xay2 = XaY1, Y (1.3 =
X1Y3 —Xay1, and Y (2, 3) = XaY3 — X3Yo.

Note. The number of k-tensors on R" is n. The number of aternati ng k-tensorson R" is
(")

Definition. We define alinear transformation A: LX(V) > L¥(V) by Af = &, (sgn s) f°.
If f is an alternating k-tensor and g is an aternating |-tensor on V, we define the wedge
product, an alternating k+l tensor on vV, by f A g=A(f A g)/ k! I!.

Note. Yi = Af .

Note. For 1-tensors, fi A f;=f; A f;.

Theorem. The wedge product is associative, homogeneous, and distributive. In addition,
g™ = (-1)“ f ~ g. The wedge product is preserved under the pullback: T*(f Ag) = (T*f)
" (T*9).

Note. Sincefi"f,- :-fj/\fi,fi/\fi =0.

Theorem. Y, :filA Afik.

Definition. LetxT R". A tangent vector to R" at x is (x; v), wherevi R". We define:
(X; V) + (x; w) = (x; v +w) and ¢(x; V) = (X; cv). The set of all tangent vectorsto R" at
X is called the tangent space to R" at X, or Tx(R").

Definition. Let A beopeninR* or H* a: A > R"beof classC". LetxT Aandp =
a(x). Wedefinea-: T(R") > To(R") by a+(x; v) = (p; Da(x) - v). Thisisthe
transformation induced by a and a push-forward.

Definition. Let (3, b)1 R. Letg (a b) > R"beC'. We define the velocity vector of g
corresponding to t to be (g(t); Dg(t)).

Note. Velocity vectors are special cases of push-forwards.

Lemma. Let A beopeninR¥or H*. Leta: A > R™beC'. Let B beopenin R™or H™,
witha(A) 1 B. Letb: B> R"beC'". Then, (b°a)-=b-°a-.

Definition. Let M be ak-manifold of classC'inR". If pT M, choose a coordinate patch
a:U-> Vaboutp. LetxT U suchthat a(x) =p. Then we define the tangent space to
M at p by Ty(M) = a-(T(R) = {a-(x; v) |[vT R.

Note. To(M) isalinear subspace of Ty(R").

Definition. The union of To(M) over al pT M is called the tangent bundle of M.




Definition. Let A1 R" beopen. A tangent vector field in A is a continuous function F:
A > R" R"suchthat F(x) T T«(R"). Thus, we may write F(x) = (x; f(x)) where f: A
- R". If Fisof class C" we say the tangent vector field is of class C'. The tangent
vector field to amanifoldisF: M = T(M).

Definition. Let AT R"beopen. A k-tensor field. in A isw: x > L¥(Tx(R"); in other
words, w assigns a k-tensor defined on T,(R") to each x T A. Notice that W(x)((X; V1),
..., (X; vk)) must be continuous as afunction of X, vi, ..., Vk. If W(x) is an dternating k-
tensor for all x, we call w adifferential form of order k on A.

Definition. The elementary 1-forms on R" are given by fi(x)(x; g) = 1if i =j, 0
otherwise. The elementary k-forms on R" are given by y (X) = fi1(X) * ... * fix(X),
wherel = (iy, ..., ix) is an ascending k-tuple.

Note. If wisak-form on A, we may write w(x) = a; bi(x) y (x), where the b, are scalar
functions and are called the components of w.

Lemma. Let wbe ak-formon A openinR". ThewisC'if and only if all its components
are C',

Lemma. Letw, h bek-formsand g bean|-formon A. If they areal C', so are aw + bh
and h " q.

Definition. Let A beopeninR". Iff: A > RisC/, fiscalled ascalar fieldin A and a
differential form of order O.

Note. W(x) ™ f(x) = f(x) W(X).

Definition. Let A beopenin R"and f: A > R be C*. The, d(f(x; v)) = Df(x)-v. Wecall
this the differential of f.

Lemma. Let pi: R" > R, where pi(x) = x; (thei™ projection function). Then, dp; = f 1.
(We generally write this as dx;.)

Theorem. Let A beopeninR"and f: A > R be C¥. Then, df = (Dsf)dxy + ... +
(Dnf)dXn.

Theorem. dislinear on O-forms.

Note. dx; =dxi1 " ... *dxik =y 1. dXi(X)((X; V1), ..., (X, Vk)) = det V.

Definition. We define W(A) to be the set of all k-formson A.

Definition. Letwi WA),j>0. Letw= &y, f; dx.. We define dw = &y df; ~ dx;.

Theorem. Let d: W{(A) > WYA).

dislinear (d(aw + bh) = a(dw) + b(dh).).

af(x)(x; v) = Df(x)v if f isaO-form.

d(w” h) =dw” h + (-1) w” dh, where wis ak-form and h is any form.
d(dw) = O for al forms.

Definition. A form, w, isclosed if dw = 0.

Definition. A form, w, isexact if w=dq for some k-1 form q.

Proposition. Every exact form is closed.

Definition. Let A beopeninR". Letf: A > R beascaar field. We define the gradient
of f by (grad f)(x) = (x; Dif(X)er + ... + Dnf(X)en). Let G(x) = (X; g(x)) be a vector field
on A, with g(x) = gi(X)e1 + ... + ga(X)en. We define the divergence of G by (div G) =
D1gi(X) + ... + Dngn(X).

Theorem. Let A be openin R". Then we have the following vector space isomorphisms:

ao: Scalar fildsin A > WP(A).
a1 Vector fiddsin A > WA(A)




b1 Vector fiddsin A > WH(A)
bn: Scalar fieldin A > W'(A)
sothatd®ap=a;°gradandd ° bn; = b, ° div.
Proof. ag(f) =f
al(F) =a fi dXi _
bni (G) = a (-:I.)I-l g dxg M. M dXi N dXer N L. dXn
bn(h) =hdxy ... ~dxy,

Definition. Let AT R®beopen. Let F(x) = (x; & fi(x)e) be avector fieldin A. We
define the vector field, curl F, by (curl F)(X) = (X; (D2fs — Dsf2)(X)er + (Dsf1 — Difs)(X)ex
+ (lez — szl)(X)e;g).

Theorem. Let A be openin R®. Then, in addition to the isomorphisms in the previous
theorem, we find that d ° a1 = b, ° curl.

Corollary. Since d(dw) =0, curl(grad f) = 0 and div(curl F) = 0.

Definition. Let B beopen inR"anda(A) 1 B. A dual transformation of forms
(pullback) is given by (a*f)(x) = f(a(x)) if f isa0 form, and ((a* w)(x))(v1, ..., Vk) =
w(a(x))(@+(x; vi), ..., a+(X; vn)).

Note. w(y) T A*(Ty(R") and T*(w(y)) = (a*W)(x).

Proposition. Let w, h, and q be forms, with w and h having the same order. Then:

a*(aw+ bh) =aa*(w) + ba*(h) [linear]
a*(w”q)=a*(w)"a*(q)
(b °a)* =a* ° b*.

Theorem. Let A beopeninR¥. Leta: A > R"beC*. Letx1 R*andy1 R"witha(x)
=y. If 1 =(iy, ..., ij) isan ascending |-tuple from {1, 2, ..., n} then a*(dy,) = &y det
('ﬂa| / ﬂXJ) dx,.

Proof. a*(dy,) = &g by dx; for some scalar functions b;. For any specific J, by(x) =
a*(dy)()((x; §1), ..., (x; 1)) = dyi(Y)((y; Ta(x)/ M%), ..., (y; Ta(x)/1x;)) = det
[Tau /x4

Theorem. Let w be an |-form defined on an open set containing a(A). Then, a* (dw) =
d(a*w).

Proof. Usethe chain rule to prove for O-forms. By linearity, only w=f dy, (for onel)
needs to be proven.

I ntegrating over a Parameterized Manifold.

Definition. Let A beopeninR*. Leta: A > R"beC¥, sothat Y =a(A) isa
parameterized manifold. If wisak-form defined onanopensetB,Y | B, then we
define @ w= @ a*wif thelatter integral exists.

Note. O\ foxs”..dx, = f, for AT R".

Theorem. Let g: A > B be adiffeomorphism of setsin RX. Assume that det Dg is of
constant signon A. Letb: B> R"beC¥. LetY =b(B). Leta =b° g, sothat a: R
> R"andY =a(A). If wisak-form on R" defined on an open set containing Y, the w
isintegrable over Yy, if and only if it isintegrable over Y,. Also, G2 W= % &, W, where
the sign corresponds to the sign of det Dg.

Proof. Use the change of variables theorem to show @ (b ° g)*w=Q b*w.

Theorem. Letw=fdz. Then, g, w=q a*w=q (f ° a) det (fa,/x).

Definition. A frame, (ay, ..., an), with a;1 R"isright-handed if det [&; ... a;] > O.




Definition. Let g: A = B be adiffeomorphism of open setsin R". g is orientation-
preserving if det Dg is right-handed.

Note. If A isconnected and g is a diffeomorphism, then det Dg has constant sign.

Definition. Let M be ak-manifold in R". Let ag: Up > Voandas: U; = Vi be
coordinate patcheson M. If Vo C V1 isnon-empty, then ap and a; overlap. If agand
a, overlap and a;™ ° ay is orientation-preserving, then ao and a; overlap positively. If
ao and a; overlap and a;™ ° ag is not orientation-preserving, then ao and a; overlap
negatively.

Definition. If we may cover M by coordinate patches that overlap positively or not at al,
we call M orientable.

Definition. The collection of coordinate patches that cover M and overlap positively is
called an orientation of M. M, together with an orientation, is called an oriented
manifold.

Definition. Let M be a compact oriented k-manifold in R". Let w be a k-form defined in
an open set of R" containing M. Let C =M C Support w; note that C is compact.
Suppose there is a coordinate patch a: U - V on M belonging to the orientation of M
withC1 V. Assume U isbounded. We define the integral of wover M as Gy W = Gnt u
a*(w).

Definition. Let M be a compact oriented k-manifold in R". Let w be ak-form defined in
an open set of R" containing M. Cover M by coordinate patches belonging to the
orientation of M; choose a partition of unity on M dominated by these coordinate
patches. Wedefinedy w=2a (& fi w).

Definition. Let M be a 1-manifold. The unit tangent vector atp T M if given by T(p) =
(p; Da(t)/[|Da(to)|]) where a(to) = p.

Definition. So that we may have outward-pointing unit tangent vectors, we define the
left-half-line, L = {x | x £ O} and allow coordinate patchesa: L > R".

Definition. Let M be an n-1 manifoldinR™. Letp1 M. Let (p; n) be atangent vector to
R" that is orthogonal to the tangent spaceto M at p. Let ||n||=1. If nisaways
pointing the “same” direction, thisis called a normal vector field to M and defines an
orientation.

Definition. Let M be an n-manifold in R". The natural orientation of M is the set of all
coordinate patches a: R" = R" with det Da > 0.

Theorem. Letk > 1. If M isan oriented k-manifold in R" with M non-empty, then M
isorientable.

Proof. Defineb(xy, ..., Xk-1 = (X1, ..., Xk-1, 0). Then the restricted patches for M area °
b. These define an orientation.

Definition. Let M be an orientable k-manifold in R", with M non-empty. Given an
orientation of M, the induced orientation of M is defined by the orientation of the
restricted coordinate patch if k is even and the opposite orientation if k is odd.

Note. The induced orientation of an n-1 manifold that is the boundary of a naturally
oriented n-manifold aways points outward from the manifold.

Lemma. Let h beak-1formin R* defined on an open set containing I = [0, 1]%, where h
vanishes on Bd 1¥, except possibly on R“* * 0 (the bottom face). Let b: R*! > R¥ be
given by b(x) = (x, 0). Then, & dh = (-1) & 1k-1) B*h.




Proof. By linearity, let h =f dx;;, wherel; = (1, ..., j-1, j+1, ...,K) sodh = (-1 Dif fxi,
wherel = (1, ..., k). Then,

o dh = (-1) gery Goy DiF(Xa, -y i)
= (-:I.)J-l 1) F(Xay «ony X1, 1y Koy ooey Xi) - F(X1, -y X1y O, Xja1, vy Xi)
= (-1 Qgery — F(X, -..) X1, O)

[if ] = k since f vanishes on other boundaries, O otherwise]

= (-1)* §pny f°bor 0.

Since b*(dX|j) = det (Db)” axi .. M X = dxg ML X j:k, 0 otherwise,

@nt 1(k-1) b*h = @nt I(k-1) febif j:k, 0 otherwise = (-1)k @nt 1(k) dh.

Stokes Theorem. Let M be an oriented k manifold in R". Let M have the induced
orientation. Let wbe ak-1 form on an open set containing M. Then, G dw = Gum W.

Proof. (For k > 1.) Choose coordinate patches contained in I¥, such that boundary points
arein (Int 1Y) © 0. Use partitions of unity and linearity.

Definition. A 0-manifold is afinite collection of points, {X1, ..., X} in R". We define an
orientation on such amanifold by afunctione: {x, ..., x,} 2 {-1,1}. mf=2a
e(xi)f(xi).

Definition. Let M be an oriented 1-manifold in R". We define the orientation of M by
e(p) = -1if thereexistsa: U > V, about p, withU 1 H* and e(p) = 1 otherwise.

Note. With this definition, Stokes' theorem holds in this case as well.

Classical Siokes Theorem. Let F be avector fieldin R®. Then, @ N" F dA = s F dS.

Theorem. Let M be a compact, oriented n-1 manifold in R". Let N be the unit normal
field (corresponding to the induced orientation). Let G be avector field on an open set
containing M, so that G(y) = (y; g(y)) = (v; & gi(y) @). Letw=4& (-1)"gidys " ... »
dyi-l A dyi+1 NN dyn. Then, Gy w= Gy <G, N> dV.

Theorem. Let M be an n-manifoldinR". Letw=hdx; " ... *dx,. Then, & w=a h
dv.

Divergence Theorem. Let M be a compact, oriented n-manifold in R". Let N be the unit
normal field. If Gisavector field, then g (div G) dV = gu <G, N> dV.

Classical Sokes Theorem. Let M be a compact, oriented 2-manifold in R>. Let N bethe
unit normal field. Let F beaC¥ function. Then, if M = /& then & <curl F, N> dV =
0. Otherwise, @y <curl F, N>dV = gu <F, T> dV, where T isthe unit tangent field to
M with the induced orientation.

L ebesgue M easure and the L ebesgue I ntegral

Definition. A s-algebra, or aBordl field, is an algebra of setsthat is closed under
countable union (and therefore countable intersection).

Definition. A Borel set isthe smallest s-algebra that contains the closed and open
intervals.

Definition. The outer measure of aset E1 Rism*E=inf gi g1 & 1(In) (Wherel(l) is
the length of the interval), so that {I,} isaset of intervals that covers E.

Proposition. The outer measure of an interval isits length.

Proposition. Let {A,} be any countable collection of sets. Then, m*(E A,) £& m*A,.
(Thisis called countable subadditivity.)

Proof. Usethe e/2" trick.

Corollary. If A isacountable set, then m*A = 0.




Coroallary. [0, 1] isuncountable.

Proposition. Given any set A and e > 0, there exists an open set O suchthat A1 O and
m*O £ m*A +e. ThereisaGl Ggsuchthat Al Gand m*A = m*G.

Proof. Since m* is defined as an infimum, we may choose O = E |, whose measure is at
most e more that m*A. Take the countable intersection of the O corresponding to 1/n
for each n to make G.

Definition. E ismeasurableif, for dl A, m*A = m*(A C E) + m*(A C E°).

Note. If E ismeasurable, soisE®. A and R are measurable.

Note. By countable subadditivity, m*A £ m*(A C E) + m*(A C E®). Thus, we need
only prove the other direction to show that something is measurable.

Lemma. If m*E =0, E ismeasurable.

Lemma. If E; and E, are measurable, so are E; E E; and E; C E,.

Corollary. The measurable sets are an algebra (closed under complement, intersection,
and union.)

Lemma. Let A beany set. Let E, ..., E, be afinite sequence of digoint measurable sets.
Then, m*(A C (E E)) =& m*(A C E).

Theorem. The set of measurable setsisas-algebra (since it is closed under countable
union as well).

Lemma. (a, ¥) ismeasurable.

Theorem. Every Borel set is measurable.

Proof. All the open sets are measurable and the measurable sets form an algebra.

Proposition. Let {E} be aninfinite, decreasing (ie. Eix1 1 E;) sequence of measurable
sets. Let mE; <¥. Then, m(CE) = lim mE..

Proof. Construct a sequence of F = E; — Ej+1.

Proposition. Let E beaset. The following are equivalent:

i E is measurable.

ii. Given e > 0 there exists an open set O E E withm*(O—E) <e.

iii. Givene>Othereexistsaclosed set FI Ewithm*(E—-F)<e.

iv.  ThereisaGl GgwithEl G suchthat m*(G—E)=0.

2 Thereisan F1 Fs with F1 E such that m*(E —F) = 0.

Vi (If m*E < ¥, then) If e> 0 there exists afinite union U = E |; such that m* ((U —
E)E (E-U))<e

Proof. (i = ii = vi 2 ii inthefinite case, theni = ii > iv > i, theni 2> iii > v > 1)

Proposition. The measure of a set istrandation invariant.

Proposition. Let f beany function. Letal R. The following are equivalent:

i {x|f(x) >a} ismeasurable.
ii. {x|f(x) < a ismeasurable.
iii. {x|f(x) £ a is measurable.
iv. {x|f(x) 3 a} is measurable.

Definition. A function is measurable if its domain is measurable and the conditions
above hold.

Proposition. LetcT R and f, g be measurable functions on the same domain. Then, f +
c, cf, f + g, and fg are measurable.



Theorem. Let {f} be asequence of measurable functions defined on the same domain.
Then the functions sup{fs, ..., fo}, Inf{f4, ..., T}, supn fn, inf, fn, lim sup f,,, and lim inf
fn are also measurable.

Theorem. If f ismeasurable and f = g amost everywhere, then g is measurable.

Littlewood' s Three Principles. Every measurable set is nearly a union of intervals.
Every measurable function is nearly continuous. Every convergent sequence of
measurable functions is nearly uniformly convergent.

Definition. A simple function, j , isdefined by j (x) = &i=1" & ce(X), where cg isthe
characteristic function of E; (1 on E;, O elsewhere).

Note. j issimpleif and only if it is measurable and takes on afinite number of values.

Definition. The canonical representation of j isj (xX) =a a cg(X) and E ={x|j (X) =
a}-

Definition. Letj =& a cg. Wedefinedj =a a mE,.

Proposition. Let f be a bounded function on a set E of finite measure. infy s ¢ @&y = sup
g1 @] if andonly if f is measurable.

Proof. Suppose [f|£ M. For afixed n, let Ex = {x | kM/n 3 f(x) 2 (k-1)M/n}. Choose
step functionsy , = (M/n) & keek(X) andj n = (M/n) & (k-1)cex(x). With the proper
choice of n, the difference in their integrals can be as small aswe want. Conversely,
chooseynandj nsothat @ yn-@&j n<1/n. Weshow m{x |j n(X) <yn(X) - 1V} <v/n,
We may choosey * and | * asthe sup and inf of these sequences. They must agree
with f almost everywhere. So f is measurable.

Definition. If f isbounded and measurable on a set E of finite measure, we define ¢ f =
infyss &Yy =Supjer G .

Proposition. If f and g are bounded, measurable functions defined on a set E of finite
measure, then:

- @ (af +bg)=akf+beg
If g =f almost everywherethen ¢ g = ¢ f.
If g £ f dmost everywhere, then @ g £ G f.
If A £ f(x) £ B amost everywhere, then A(mE) £ ¢ f £ B(mE).
If AC B=/andA, B havefinite measure, Qeg f = Q. f + & f.

Defl nition. If f is non-negative and measurable on any measurable set E, we define ¢ f =
Suprer @ h where h is bounded, measurable, and non-zero only on a set of finite
measure.

Definition. f isintegrable over the measurable set E if ¢ f < ¥.

Definition. Let f be any function. Define f(x) = max{f(x), 0} and ' (x) = -min{f(x), O} =
max{ -f(x), O}.

Note. f=f"-f. [f|=f" +f.

Definition. Let f be measurable. fisintegrable over E if f* and f~ are integrable. Then, ¢
f=¢f -af.

Proposition. The following properties hold for the general Lebesgue integral:

G (af +bg) =ag f + ba g.

If g =f amost everywhere then ¢ g = ¢ f.

If g £ f dmost everywhere, then @ g £ G f.

If AC B=/andA, B havefinite measure, Qeg f = Q. f + & f.




Bounded Convergence Theorem. Let <f,> be a sequence of measurable functions defined
on aset E of finite measure. Suppose there is some real number M such that [f,(x)| £ M
for dl n, x. If f(x) = lim f,(x) amost everywherein E, then ¢ f = lim @ f,.

Proof. Givene> 0there exists N and ameasurable set A | E such that mA < &/4M and
foradln>Nandx1 E—A, [fo(X) —f(X)]<e/2mE. Then, |& fo- & f|£ & [fn—f|=&a
fn—fl+aQ[fn—f|<e

Fatou's Lemma. Let <f,> be a sequence of non-negative, measurable functions with lim
fa(X) = f(X) amost everywhere on ameasurable set E. Then, ¢ f £ lim ¢ f,..

Proof. Let h be anon-negative, bounded, measurable function with h(x) £ f(x) and h(x) =
0 outside ameasurable set E' | E of finite measure. Let hy(x) = min{h(x). f(X)}.
Then, hy, is bounded, vanishes outside E’, and converges everywhereto h. So we can
apply the bounded convergence theoremtofind @ h=@ h=Ilim@ h, £ lim & f,, for
dlhE£f. Soef=sup@h£limaf.

Monotone Convergence Theorem. Let <f,> be an increasing sequence of non-negative,
measurable functions with f(x) = lim f,(x) aimost everywhere. Then, of = lim of,.

Proof. Weknow of £ lim of,. Sincef, £ f for al n, lim sup of, £ of. So of = lim of,.

Lebesgue Convergence Theorem. Let g be integrable over E and <f,> a sequence of
measurable functions with |f,| £ g everywhereon E. Let lim fy(x) = f(x) almost
everywhereon E. Then, ¢ f =1lim & f,.

Proof. Apply Fatou’s Lemmato <g —f,> and <g + f,> to show that ¢ f 3 lim sup & f,
andgfElimaf, So, &f=Ilimdaf,.

Theorem. Let <g,> be a sequence of measurable functions over E that converge almost
everywhere to an integrable function g. Let <f> be a sequence of measurable
functions with |fn| £ g, and lim f,(x) = f(x) amost everywhere. If & g =1im @ g, then &
f=1lim & f.

Corollary. Let {un} be asequence of non-negative measurable functions with f = & up.
Then, & f =4 G un.

Definition. A sequence <f,> convergesto f in measure if, given e > 0, there exists N such
that, for all n> N, m{x | [f(X) —fa(X)|® €} <e.

Example. Consider the sequence of functions with a bump of height 1 that moves across
[0, 1] but gets progressively narrower (1/2% for 2 consecutive functions). This
functions converges in measure, but converges pointwise nowhere.

Proposition. Suppose <f,> convergesto f in measure and all the f,, are measurable. Then
there is a subsequence <fn> that converges to f amost everywhere.

Proof. For each v, choose n, such that m{x: [f,—f(x)| > 2"} <2V. Let E, = {x: [fn(X) —
f(x)|>2"}. If xisnotin Ey=* Ey then [fa(X) —f(x)| < 2" for al v >k, and lim foy(x) =
f(x). Let A =Cyk (Ev=’ Ey). limfa(x) = f(x) for al x notin A. Since A isan
intersection of sets of progressively smaller measure (2"** each union), mA = 0. So
this subsequence converges aimost everywhere.

Corollary. Let <f,> be a sequence of measurable functions defined on a set E of finite
measure. Then f, convergesto f in measure if and only if every subsequence of <f,>
has in turn a subsegquence that converges to f aimost everywhere.

Proposition. The convergence theorems stated above hold if “convergence amost
everywhere’ is replaced by “convergence in measure.”




Proof. (Fatou’'sLemma). Suppose f, convergesto f in measure. Then, lim ¢ f, =1lim ¢
fok for some subsequence <f>, that also convergesto f in measure. So thereisa
subseguence <f;> that converges to f almost everywhere. So by the previous Fatou's
Lemma, & f £ lim & frg = lim & fric = lim @ fn.

(Monotone Convergence). Suppose <f,> is an increasing sequence of non-negative
functions that convergeto f in measure. Note that x = lim x,, if and only if every
subsequence of <x,> has a subsequence of convergesto x. Let x, =& f,. Every
subsequence <fn> has a subsequence, <f.;> that converges almost everywhere. So, ¢
f =lim Of g, and @& f = lim & fi.

LP Spaces

Definition. fT LPif goy [fP <¥.

Definition. |f|lp = (Go,1 IfP)YP.

Definition. A norm, || ||, must satisfy: [laf|| = [a] [[f[l, [If + gl £ Ifl| + [lgll, and |if] = O if and
only if f =0.

Note. If we consider functions equivalent when they are equal amost everywhere, then
LPisanormed linear space.

Definition. fT L¥ if f is bounded almost everywhere and measurable. |[f|ly = esssup
[FO)| = inf {M | m{t|f(t) >M} =0}.

Proposition. limpe v |[fllo = [If[«-

Definition. j on (a, b) is convex (concave up) if for all x,y T (a b)and! T [0,1],j (I x
+@-DETJ)+@-1)] ().

Minkowski Inequality. Givenf, gl LP,for LEp£E£¥, |f + dllp £ |[fllp + [I9llp-

Note. 1f 0£p£ 1, then [ff + glly * [Ifll, + llalle

Holder’s Inequality. Letp, q>0and U/p+ L/q=1. If f1 LPandgil LY thenfgl L*
and [ffglh = Qo.y fal £ [l llgll

Riesz-Fischer Theorem. LPiscompletefor 1£p<¥.

Definition. A linear functional on a normed linear space, X, isamapping F: X ® R such
that F(af + bg) = aF(f) + b F(g).

Definition. A linear functional isbounded if there exists M such that |F(f)| £ M ||f|| for al
fl X.

Definition. The norm of afunctional, F, is given by ||F|| = sups: o [F(F))/|If]I-

Proposition. 1f gT L%and /p + 1/q = 1, abounded linear functional on L is F(f) = g 1
fg.

Riesz Representation Theorem. Let F be any bounded linear functional onLP, 1 £ p < ¥.
Then thereisafunctiongi LY 1/q+ Up =1, suchthat, for all f T LP, F(f) = Goyy fg. In
addition, |F|| = iglle:




