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1 Heterogeneity in Complete Markets

1.1 Aggregation

Definition An economy admits aggregation if the behavior of aggregate quantities and
prices does not depend on the distribution of individual choices and states. There is
aggregation if we can define a representative agent who behaves in equilibrium as the sum
of all the individual agents.

When an economy admits aggregation, calculation is generally easier. If every agent
makes choices in the same ratio (capital to labor, or consumption to leisure), an economy
is likely to admit aggregation.

Proposition 1.1 In a neoclassical growth model with capital, suppose that every firm has
the same technology which has constant returns to scale and is strictly increasing, strictly
concave, and differentiable. Then, there is a representative firm.

Proof Suppose there are i = 1, ...,m firms, each of which produces according to Zf(ki, ni),
where f has the properties above. Then, the firm’s problem is to maximize Zf(ki, ni) −
(r + δ)ki − wni. This yields the first order conditions for each firm:

Zfk(ki, ni) = r + δ

Zfn(ki, ni) = w

By the linear homogeneity of the constant returns to scale, we may rewrite the conditions
in terms of the capital-labor ratio:

Zfk

(
ki

ni

)
= r + δ

Zfn

(
ki

ni

)
= w

fk

(
ki

ni

)
fn

(
ki

ni

) =
r + δ

w
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By strict concavity, fk

(
k
n

)
is strictly decreasing and fn

(
k
n

)
is strictly increasing. Thus, their

ratio is decreasing. This means that k
n is uniquely determined by r+δ

w , and all firms must
choose the same capital-labor ratio. This means that the technology can be represented
by a single firm with production technology, f(K, N), with K =

∑m
i=1 ki, N =

∑m
i=1 ni,

and K
N = ki

ni .

Proposition 1.2 In a neoclassical growth model with capital, suppose every consumer has
the same endowment and the same strictly concave preferences. Then, there is a formula-
tion of the economy with a representative agent.

Proof Suppose there are i = 1, ..., n agents with identical endowments, ki
0 = k0, and

preferences of the form
∑∞

t=0 βtu(ci
t). If u is strictly concave, then each agent will make

exactly the same decision. This will lead to a representative agent.

1.2 Neoclassical growth model with heterogeneous endowments of wealth

Suppose there are i = 1, ..., N types of agents, each with measure µi, so that
∑N

i=1 µi = 1.

• Preferences are given by
∑∞

t=0 βtu(ci
t) with u strictly concave and identical across

all types of people. In particular, we assume that utility function is in one of the
following classes:

u(c) = γ ln(c + c), c + c > 0
u(c) = γ(c + c)σ, c + c > 0
u(c) = −c exp(−ηc)

where the three utility types are called log utility, power utility, and exponential
utility ; all lead to homothetic preferences with a subsistence level of consumption,
−c ≥ 0.

• Technology is given by Y = f(Kt), where f is strictly increasing, strictly concave
and differentiable (not necessarily CRS). The firm owns the capital and households
own shares of the firm. The representative firm solves

At = max
{Iτ}

∞∑
τ=t

(
pτ

pt

)
(f(Kτ )− Iτ )

subject to Kτ+1 = (1−δ)Kτ +Iτ . This is the sequence of investment that maximizes
the present discounted value of profits, πt, since pτ

pt
is the inverse of the interest rate

from time t to τ . At is the value of the firm at time t, which is equivalent to the
aggregate wealth; each individual is entitled to a proportion of the wealth according
to their share in the firm.
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• Markets are all competitive and complete, with time 0, Arrow-Debreu trading (se-
quential trading would lead to an equivalent result).

The household problem for a household of type i is to choose {ct} to maximize
∑∞

t=0 βtu(ct)
subject to

∑∞
t=0 ptc

i
t ≤ p0a

i
0 = si

0A0, where ai
0 is time 0 wealth, which is exogenous. ai

0

varies across i = 1, ..., N . For any t, pta
i
t = si

t

∑∞
τ=t pτπτ , so that ai

t = si
tAt, where si

t is the
share of the firm that agent i owns at time t. Using the first order conditions for ct from the
Lagrangian, we find that βtu′(ci

t) = λipt. In particular, for log preferences, ci
t = βtγ

λipt
− c.

Substituting this into the lifetime budget constraint, we find that:

∞∑
t=0

pt

(
βtγ

λipt
− c

)
= p0a

i
0

γ

λi

( ∞∑
t=0

βt

)
− c

∞∑
t=0

pt = p0a
i
0

γ

λi(1− β)
− c

∞∑
t=0

pt = p0a
i
0

γ

λi
= (1− β)p0a

i
0 + (1− β)c

∞∑
t=0

pt

Substituting the last line into the first order condition at time 0 and time t yields:

ci
0 =

γ

λip0
− c

=
1
p0

(
(1− β)p0a

i
0 + c(1− β)

∞∑
t=0

pt

)
− c

= c(1− β)

( ∞∑
t=0

pt

p0
− 1

)
+ (1− β)ai

0

ci
t = c(1− β)

( ∞∑
τ=t

pτ

pt
− 1

)
+ (1− β)ai

t

This shows that the optimal consumption choice depends first on θ(pt, c) = c(1−β)(
∑∞

τ=t
pτ

pt
−

1), which depends on the future path of prices and on the subsistence level, and then on a
term which is linear in wealth. Each of these utility functions leads to linear Engle curves
in wealth, where the marginal propensity to save is β. If θ > 0, then the consumption with
no wealth will be positive, so that the average propensity to save is increasing in wealth.

In general, to check if aggregation holds, we try to write ci
t = θai

t + f(t) where θ does
not depend on i and f(t) does not depend on wealth and can also be aggregated. Then,
we may aggregate up to Ct = θ

∑
i a

i
t + F (t) = θAt + F (t).
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We may use linearity to find the aggregate dynamics:

Ct = θ(pt, c) + (1− β)At

where no term depends on i. Thus, aggregate consumption does not depend on the dis-
tribution of wealth. (Such a result would fail if ci

t depended on ai
t in a non-linear way.)

Thus, under homothetic preferences, when agents differ only in their initial endowments
and there are complete markets, there exists a representative agent representation because
of the linearity of the policy function.

The aggregate competitive equilibrium of this model is the maximization of
∑∞

t=0 βtu(Ct)
subject to Ct + Kt+1 ≤ F (Kt) + (1− δ)Kt with K0 given. This model is equivalent to the
competitive equilibrium where households own the capital, which in turn is equivalent to
the social planner problem. (The social planner problem computes the quantities, which
imply the prices.)

In the steady state,

u′(C∗) = βu′(C∗)(f ′(K∗) + 1− δ)
1
β

= f ′(K∗) + 1− δ

By the agents’ first order conditions, βtu′(ci
t) = λipt, so we may compute the interest rate:

1 + r∗ =
pt

pt+1
=

βtu′(C∗)/λi

βt+1u′(C∗)/λi
=

1
β

This simplifies the consumption function to

c∗i = c(1− β)

( ∞∑
t=τ

1
β
− 1

)
+ (1− β)ai

t = (1− β)a∗i

so that, in the steady state, agents consume a fixed fraction of their wealth each period;
this keeps the wealth distribution constant in the steady state.
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The dynamics of the wealth distribution depend on the dynamics of the aggregate
variables. At time t,

pta
i
t = ptc

i
t +

∞∑
τ=t+1

pτc
i
τ

= ptc
i
t + pt+1a

i
t+1

ci
t

ai
t

= 1− pt+1

pt

ai
t+1

ai
t

=
pt

pt+1

(
1− ci

t

ai
t

)
ci
t

ai
t

=
θ(pt, c)

ai
t

+ 1− β

Ct

At
=

θ(pt, c)
At

+ 1− β

This shows that θ(pt, c)(ai
t − At) > 0 if and only if ci

t

ai
t

< Ct
At

, which happens if and only if
ai

t+1

at
> At+1

At
. That is, if θ > 0 and an individual is wealthier than average, then their share

of wealth grows faster than the growth of aggregate wealth. Equivalently, rich people save
more. If c = 0, then θ(pt, c) = 0 and the wealth distribution is constant. In this case, the
initial wealth distribution perpetuates itself.

Theorem 1.3 (Chatterjee, 1994.) θ(pt, c) > 0 if and only if c(Kt−K∗) > 0. In a growing
economy, Kt < K∗, and since c < 0, we have θ(pt, c) > 0. That is, the wealth distribution
becomes more unequal as the economy grows.

Proof (Sketch.) In a growing economy, Kt+1 > Kt. Then, pt

pt+1
= f ′(Kt+1) + 1− δ. Thus,

pt+1

pt
increases over time as f ′(Kt) declines. The limit of pt+1

pt
is β. Thus, pt+1

pt
< β for at

some t along the transition. Then, remembering that c < 0,

θ(pt, c) = c

(
(1− β)

∞∑
τ=t

pτ

pt
− 1

)

> c

(
(1− β)

∑
τ=t

βτ−t − 1

)
= 0

All of these results rely on certain assumptions:

• All agents have the same β. If this fails, not only is there no aggregation result, but
the more patient agents will save more each period until the agents with the highest
βi hold all the wealth in the steady state. (This is a degenerate wealth distribution.)
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• Complete markets. On the other end of the spectrum, if there were autarky, each
agent would maximize using his own production function. Since the agents are iden-
tical except for their initial ki

0 > 0, they will all converge to the same k∗ which leads
to perfect equality in the steady state. If instead they can trade, each person has the
same return on capital instead. If people own capital individually and cannot trade
it, all people will converge to owning the same amount of capital, but the initially
poor must borrow from the initially wealthy to do this.

• We may add labor and have the same aggregation results if preferences are of the
form u(cit, hit) = 1

1−σ (cα
it(1− hit)1−α)1−σ.

Definition The steady state is indeterminate if observing the aggregates is not sufficient
to determine the distribution. Equivalently, there are many possible steady states for the
distribution, depending on the initial distribution.

It is also possible for there to be indeterminacy of the transition path, even if the
eventual steady state is unique; that is not true in this particular model.

Theorem 1.4 The wealth distribution in the steady state is indeterminate. That is, the
wealth distribution depends on the initial conditions.

Proof In the steady state, θ = 0, so the wealth distribution is characterized by:

ci = (1− β)ai, i = 1, ..., N

ai = si 1
1− β

(f(K∗)− δK∗), 1 = 1, ..., N

A∗ =
∞∑

τ=t

βτ−t(f(K∗)− δK∗) =
1

1− β
(f(K∗)− δK∗)

fK(K∗) + 1− δ =
1
β

N∑
i=1

µis
i = 1

This yields 2N+2 equations for 3N+1 variables, so that there is indeterminacy of dimension
N − 1. Since K∗ (and therefore A∗) is pinned down by fK , it must be (ci, ai, si) that are
indeterminate. That is, there is a continuum of steady states of dimension N − 1 that is
consistent with K∗.

Given the initial conditions, a1
0, ..., a

N
0 , the equilibrium wealth distribution is uniquely

determined for all t, including the steady state.
Suppose productivity shifts from zLf(K) to zHf(K), with zL < zH . Then, K∗, A∗

increase, which shifts the simplex of possible wealth distributions outward (but parallel).
Since the economy grows after this shift, the resulting steady state wealth distribution will
be less equal.
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1.3 Negishi Approach

Suppose there are heterogeneous agents in a complete market. We may then use a modified
planner problem to compute prices and quantities in a competitive equilibrium without
requiring an aggregation result:

• each agent receives a time-constant weight in the utility function, and

• the weights are adjusted so that the initial endowments work out with no transfers
needed to balance their budgets.

This uses the first welfare theorem which implies that every competitive equilibrium solves
the social planner problem for some weights. This provides a mapping from the weights in
the planner problem to initial endowments in competitive equilibrium. The Pareto weights
now vary because the individual endowments differ.

If α1 and α2 are the weights on the agents, then the ratio of marginal utilities is
constant and satisfies u′(c1t )

u′(c2t )
= α2

α1 . The weights in the planner problem are the inverses of
the multipliers on the individuals’ budget constraints; if the multiplier is small, this means
that the shadow price of that agent’s wealth is small, so that that agent has more wealth
and therefore must have a high weight. For CRRA preferences, αi will be a power of si

0.
If there is no closed form, we use the Negishi algorithm.

Algorithm: Negishi algorithm. For an economy with N agents and initial endowments
a1

0, ..., a
N
0 :

1. Guess a vector of weights, α = (α1, ..., αN ).

2. Compute the corresponding allocations by solving, for each t:

αiβtu′(ci
t) = θt, i = 1, ..., N

N∑
i=1

ci
t + Kt+1 = f(Kt) + (1− δ)Kt

θt

θt+1
= fK(Kt+1) + 1− δ

where Kt and θt are given each period since K0 is known and θ0 can be normalized
to 1.

3. Define a transfer function, τ i(α), i = 1, ..., N , by

τ i(α) =
∞∑

t=0

θtc
i
t(α)− θ0a

i
0

Since θt is proportional to pt, this checks whether each agent’s budget is balanced. If
τ i(α) > 0, then αi must be reduced. If τ i(α) < 0, then αi must be increased.
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4. Use the newly adjusted weights in step 2. Continue until all agents’ budgets are
balanced.

2 Income Fluctuation Problem

In the income fluctuation problem, an individual agent faces uncertainty in income and
wants to allocate consumption. Throughout this section, we assume that R = 1 + r is
constant and exogenous, because this agent is too small to affect the economy and the
economy is an a steady state overall.

Let st ∈ St be the state of the economy at time t and st = (s0, ..., st) ∈ St = S0× ...×St

be the history up to time t. Let π(st) be the probability of history st and yi
t(s

t) be the
endowment or income of the individual i upon the realization of history st. Then, the
aggregate endowment is Yt(st) =

∑I
i=1 yi

t(s
t). If this is time-varying, then there is aggregate

uncertainty.
In autarky, ci

t(s
t) = yi

t(s
t) for all i, t, st.

If markets are complete, then we have the time 0 budget constraint:
∞∑

t=0

∑
st∈St

pt(st)(ci
t(s

t)− yi
t(s

t)) = 0

Solving the planner problem by maximizing
∑∞

t=0

∑
st∈St βtπt(st)

∑I
i=1 αiu(ci

t(s
t)) subject

to
∑I

i=1 ci
t(s

t) = yt(st) yields ci
t(s

t), according to the first order conditions

αiβtπt(st)u′(ci
t(s

t)) = θt(st)

For any agents, i, j, the marginal utilities satisfy u′(ci
t(s

t))

u′(cj
t (s

t))
= αj

αi ; this shows that there is

full risk sharing or complete insurance across all times and histories.
For complete markets with log utility, the ratio of consumption will be constant, so

that cj
t (s

t) = αj
PN

i=1 αi
Ct(st). Thus, ∆cj

t = ∆Ct, and the percentage change in individual
consumption depends only on the change in aggregate consumption. In autarky, the per-
centage change in individual consumption depends only on the change in individual income.
These two facts suggest an empirical test (assuming log utility) in which we estimate the
model:

∆cj
t = β1∆Ct + β2∆yj

t + εj
t

Under autarky, β1 = 0, β2 = 1, while under full insurance, β1 = 1, β2 = 0. Empirically,
autarky is strongly rejected and full insurance is rejected, but less strongly. Thus, the truth
probably lies somewhere in between.

In the income fluctuation problem, the asset space is limited to a single risk-free asset.
Then, the budget constraint becomes:

ci
t(s

t) + qt(st)ai
t+1(s

t) = yi
t(s

t) + ai
t(s

t−1)
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where qt(st) is the price of the single asset which pays one unit of consumption in the
next period in any state. Because there are not complete markets, individuals cannot
directly insure against bad income shocks; instead they hold extra assets as self-insurance
or precautionary savings. For now, we assume that there are no aggregate fluctuations,
which means that qt(st) = q = 1

1+r for all histories. This leads to the simplified budget
constraint:

at+1 = (1 + r)(yt + at − ct)

We also impose the No-Ponzi Scheme condition that E0

(
limt→∞( 1

1+r )tat

)
≥ 0.

2.1 Permanent Income Hypothesis

Theorem 2.1 Permanent Income Hypothesis. If preferences are quadratic and β(1+r) =
1, then consumptions follows a martingale process and equals the annuity value of human
and financial wealth.

Proof Suppose u(ct) = b1ct − b2
2 c2

t and β(1 + r) = 1. Then, by the Euler equation:

b1 − b2ct = β(1 + r)Et(b1 − b2ct+1)
ct = Et(ct+1)

If we then iterate on the budget constraint, we find that:

∞∑
j=0

(
1

1 + r

)j

= at +
∞∑

j=0

Et(yt+j) = at + Ht

ct =
r

1 + r
(at + Ht)

which is the annuity value of the sum of current financial wealth and human wealth (which
is the expected discount value of future income).

Definition A policy function satisfies certainty equivalence if the solution to the stochastic
problem is the same as a the solution of the non-stochastic problem with expectations of
the exogenous variables substituted for the future values.

In the non-stochastic case,

ct =
r

1 + r

at +
∞∑

j=0

(
1

1 + r

)j

yt+j


This shows that certainty equivalence holds in this case; this happens because of the linear-
quadratic utility.
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Theorem 2.2 Under the permanent income hypothesis, consumption growth from periods
t to t + 1 is proportional to the change in expected earnings due to new information.

Proof Let Wt = at + Ht. Then,

Wt+1 − Et(Wt+1) = at+1 − Et(at+1) +
∞∑

j=0

(
1

1 + r

)j

(Et+1(yt+j)− Et(yt+j+1))

=
∞∑

j=0

(
1

1 + r

)j

(Et+1(yt+j)− Et(yt+j+1))

since there is no uncertainty today about next period’s assets. Then,

∆ct+1 = ct+1 − ct = ct+1 − Et(ct+1)

=
r

1 + r
(Wt+1 − Et(Wt+1))

=
r

1 + r

∞∑
j=0

(
1

1 + r

)j

(Et+1(yt+j)− Et(yt+j+1))

Suppose that yt depends on a martingale permanent component and an independent
and identically distributed temporary component, so that:

yt = yp
t + ut

yp
t = yp

t−1 + vt

Then, yt = yt−1 +ut−ut−1 + vt, and we may compute the change in expectations of future
income for all future periods:

Et(yt)− Et−1(yt) = yt − (yt−1 − ut−1)
= (yt−1 + ut − ut−1 + vt)− (yt−1 − ut−1)
= ut + vt

Et(yt+j)− Et−1(yt+j) = vt

Then, the change in consumption is:

∆ct =
r

1 + r

ut + vt

∞∑
j=0

(
1

1 + r

)j


=
r

1 + r
ut + vt
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Thus, households respond weakly to transitory shocks and strongly to permanent shocks,
since the latter shocks have a larger effect on permanent income. Though this model is
very specific, we assume that, in general, consumption responds more to permanent income
shocks than the transitory income shocks.

If this model held empirically, then we could compute:

V art(∆ct) =
(

r

1 + r

)2

V ar(ut) + V ar(vt) ≈ V ar(vt)

V art(∆yt) = V ar(vt) + 2V ar(ut)

which would allow us to estimate the sizes of the two components.

2.2 Prudence in Finite Time Horizons

Definition The convexity of marginal utility, that is, the fact that u′′′ > 0, is called
prudence. The index of relative prudence is given by −u′′′(c)c

u′′(c) .

If a utility function has decreasing absolute risk aversion (DARA), then it has a positive
third derivative and will show prudence.

Theorem 2.3 If the individual is “prudent”, then a rise in future income uncertainty leads
to an increase in current saving and a decline in current consumption.

Proof Consider the two-period consumption problem of maximizing u(c0) + βE(u(c1))
according to the budget constraints:

c0 + a1 = a0 + y0

c1 = Ra1 + y1

where a0, y0 are known, but y1 is stochastic and exogenous. If we assume that βR = 1,
then the Euler equation becomes:

u′(a0 + y0 − a1) = E
(
u′(Ra1 + y1)

)
As long as utility is concave, the left-hand-side is increasing in a1 while the right-hand-side
is decreasing in a1, so that there is a unique solution for a1. Higher saving implies lower
period-zero consumption.

Consider a mean-preserving spread of y1, ỹ1 = y1 + ε1, with E(ε1) = 0, V ar(ε1) = σ2
ε ,

and ε1 independent of y1. Then, the Euler equation becomes:

u′(a0 + y0 − a1) = E
(
u′(Ra1 + y1 + ε1)

)
If u′ is convex, then we may apply Jensen’s inequality (after using the law of iterated
expectations to condition on y1) to show that adding ε1 will increase the value of the
right-hand-side, so that the optimal a1 will increase while the optimal c0 will fall.
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The additional savings induced by prudence are called precautionary savings or self-
insurance. The amount of precautionary savings can be measured by comparing asset
holdings under no uncertainty to the computed asset holdings.

This method may be extended to the multiple period case using the following dynamic
programming formulation:

V t(a, y) = max
ct,at+1

(
u(ct) + βE

(
V t+1(at+1, yt+1)

))
ct + at+1 = Rat + yt

If yt is independent and identically distributed (so that knowing y gives no information
about y′), then we may reduce the state space by using only the state variable cash-in-hand,
xt = Rat + yt, which leads to the formulation:

V t(x) = max
ct,xt+1

(
u(ct) + βE

(
V t+1(xt+1)

))
xt = ct + at+1

xt+1 = R(xt − ct) + yt+1

Using cash-in-hand, the Euler equation is:

u1(ct) = E
(
V t+1

1 (R(xt − ct) + yt+1)
)

Then, precautionary savings will occur if d3

dx3 V t+1 > 0. If T is finite, then one can show
that u′′′ > 0 implies that d3

dx3 V t+1 > 0.

2.3 Borrowing Constraints

Definition Let φ be any non-negative fixed number. The requirement that at+1 ≥ −φ is
an ad-hoc borrowing constraint.

There will be precautionary saving with quadratic utility and borrowing constraints.
In this case, assets can be computed using:

∆at = −
∞∑

j=1

(
1

1 + r

)j−1

Et(∆yt+j)

If ∆yt+j = εt+j , so that income is a random walk, then ∆at = 0, and agents will have
constant financial wealth (always consuming only the interest). However, if yt+j = εt+j ,
so that income is independent and identically distributed, then ∆yt+j = εt+j − εt+j−1 and
∆at = εt and wealth is a random walk. Then, there is a positive probability of hitting any
exogenous borrowing constraint. This means that the agent cannot always act optimally,
and will save in anticipation of this.
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Suppose the borrowing constraint is at+1 ≥ 0, and we use the budget constraint at+1 =
R(at + yt − ct). When the constraint binds, we know that at+1 = 0 and ct = at + yt, so
that the Euler equation must be:

ct =
{

Et(ct+1) at+1 > 0
yt + at at+1 = 0

ct = min{yt + at, Et(ct+1)}
= min{yt + at, Et(min{yt+1 + at+1, Et+1(ct+2)})}

If there is a mean-preserving spread of yt+1, then ct will decrease in some cases, because
ct+1 = yt+1 + at+1 is more likely to be binding, which will lead to lower consumption with
a positive probability. Thus, the agent will consume less and save more in the present to
self-insure against bad income shocks.

Definition Suppose {yt}∞t=0 is deterministic. Then, the natural borrowing constraint sets
consumption to 0 in all future periods:

at ≥ −yt +
at+1

R
≥ ...

≥ −
∞∑

j=0

(
1
R

)j

yt+j

That is, the individual cannot borrow more than can be paid back, using the discounted
income stream. If {yt}∞t=0 is stochastic, then the borrowing constraint ensures that the
individual can repay the debt in the worst state of the world. Let ymin be the minimum
realization of income (which we assume is constant through time). Then, the borrowing
constraint is:

at ≥ −
∞∑

j=0

(
1
R

)j

ymin = −1 + r

r
ymin

(the timing of interest may change 1+r
r to 1

r ). If the agent also chooses a labor supply, the
natural borrowing constraint also assumes that they work as much as possible to maximize
their income.

As long as u(0) = −∞, the natural borrowing constraint is never binding, since the
agent would never allow ct = 0 to occur with positive probability. Many bad realizations
of yt will push the agent closer to the natural borrowing constraint.

2.4 The General Infinite Horizon Income Fluctuation Problem

For more general utility functions, let {c∗t } be the optimal consumption sequence, with the
no-borrowing constraint, at ≥ 0. We assume that yt doesn’t go to ∞. Then, if c∗t diverges,
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at must diverge as well, in order to finance the consumption. If there were a continuum of
agents in the economy making the same decision, this result could not be an equilibrium,
and r would not be an equilibrium interest rate. Conversely, if c∗t is bounded above, then
at+1 ∈ [0, a], and the domain of asset holdings is bounded above.

The general income fluctuation problem is to maximize E0(
∑∞

t=0 βtu(ct)) subject to
ct + at+1 = (1 + r)at + yt (the timing of interest changes here a little) and at+1 ≥ 0. We
assume that u′ > 0, u′′ < 0 and that the Inada conditions hold for the utility function.
Then, the Euler equation at each period is:

u′(ct) = β(1 + r)Et(u′(ct+1)) + λt

where λt ≥ 0 is the multiplier on the borrowing constraint. Equivalently, we could write
u′(ct) ≥ β(1 + r)Et(u′(ct+1)), with equality when the borrowing constraint is not binding.

We consider three cases for β(1 + r) and {yt} non-stochastic:

• Case β(1+r) > 1: Then, u′(ct) > u′(ct+1), and we must have ct+1 > ct by decreasing
marginal utility. Then, at+1 > at for all t; agents are saving because the interest rate
(and therefore the return on saving) is high, relative to their impatience (as measured
by β).

• Case β(1 + r) = 1: Then, u′(ct) ≥ u′(ct+1), and we must have ct+1 ≥ ct so that
consumption is a non-decreasing sequence, which is increasing if and only if the
borrowing constraint is binding. Then, there must be some τ such that ct is flat
for all t > τ , and the budget constraint will be active only up to time τ . Let

Ht =
∑∞

j=0

(
1

1+r

)j
yt+j , which is human wealth. Then, τ is the date when xt is

maximized; this occurs because people want to borrow and spend in anticipation of
future wealth, which causes the borrowing constraint to be binding.

• Case β(1 + r) < 1: In this case, the consumption sequence will converge.

As a special case, suppose yt = y is constant. It does not necessarily follow that consump-
tion is constant. Let x = (1 + r)a + y. Then, using dynamic programming:

V (x) = max
c,a′

(u(c) + βV (x′))

c + a′ = x

x′ = (1 + r)(x− c) + y

a′ ≥ 0

By the envelope theorem, uc(c) = Vx(x). Assuming that the value function is twice-
differentiable and concave:

ucc(c)
dc

dx
= Vxx(x)

dc∗

dx
=

Vxx(x)
ucc(c)

14



This means that dc∗

dx > 0 (since both second derivatives are negative), and consumption is
increasing in cash-in-hand. Using the first order conditions and the envelope theorem, we
find that:

uc(c) = β(1 + r)Vx(x′)
Vx(x) = β(1 + r)Vx(x′) < Vx(x′)

Then, x′ < x by the strict concavity of V . Therefore, then a > 0, cash-in-hand will fall
over time and consumption must fall, too, since consumption is increasing in cash-in-hand.
Suppose that x = y (that is, a = 0) but a′(x) > 0. Then, a′(x) = a′(y) > 0 and the Euler
equation holds with equality since the borrowing constraint is not binding. Then:

u′(c) = β(1 + r)Vx(x′)
Vx(y) = β(1 + r)Vx

(
(1 + r)a′(y) + y

)
< Vx

(
(1 + r)a′(y) + y

)
< Vx(y)

(since a′(y) > 0, β(1 + r) < 1) which is a contradiction. Thus, when x = y, a′(y) = 0
and c(y) = y. Combining the two results shows that if a > 0, consumption will start high
and then decline until it is constant at c = y. This completely describes the consumption
sequence. This shows that if a0 > 0, assets are decumulated until a = 0; then the agent
consumes only income.

Definition A supermartingale is a random variable, {Mt}, that satisfies Mt ≥ Et(Mt+1).

Theorem 2.4 Supermartingale Convergence Theorem (Doob). A non-negative super-
martinagle converges almost surely to a non-negative random variable with bounded support,
M , with E(|M |) < ∞.

In the stochastic case, income uncertainty may lead to additional savings for precaution-
ary reasons. This will lead to more stringent requirements for r. Let Mt = (β(1+r))tu′(ct).
This is a non-negative supermartingale, since Mt ≥ Et(Mt+1) by the Euler equation.

• Case β(1 + r) > 1: By the supermartingale theorem, (β(1 + r))tu′(ct) has a finite
limit. Since (β(1 + r))t →∞, u′(ct) → 0, so that ct →∞ (and at →∞).

• Case β(1 + r) = 1: Assume that u′′′(c) > 0. Then, by Jensen’s inequality, u′(ct) =
Et(u′(ct+1)) > u′(Et(ct+1)) and Et(ct+1) > ct. Thus, expected consumption diverges
in this case. In general, it can be shown that consumption diverges as well.

• Case β(1+r) < 1: There are not general conditions for the asset space to be bounded.
One that is sufficient is for the shocks to be IID when the agent has decreasing
absolute risk aversion.
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Proposition 2.5 For IID shocks, β(1 + r) < 1 is a necessary but not sufficient condition
to ensure that consumption converges. If β(1 + r) < 1 and there is decreasing absolute risk
aversion (equivalently, prudence), then consumption converges.

Proof Let x be cash-in-hand. By the Euler equation:

uc(c(x)) = βRE(uc(c(x′)))

= βR
E(uc(c(x′)))
uc(cmax(x))

uc(cmax(x))

where cmax(x) = c(Ra′(x)+ymax) is the consumption choice associated with the best shock
next period. Suppose that limx→∞

E(uc(c′(x′)))
uc(cmax(x)) ≤ 1. Then, for large enough x,

u′c(c(x)) = βRu′c(cmax) < u′c(cmax(x))

so that cmax(x) < c(x) implies that xmax < x by the concavity of u. This leads to an upper
bound on the asset space, x, since cash-in-hand does not increase forever. We assume that
x exists (?) such that

E(uc(c′(x)))
uc(cmax(x))

≤ 1

Thus implies an x′max. Using a Taylor series approximation of uc(c(x′)) about x′max, taking
expectations, and manipulating, we find that:

uc(c′(x′)) ≈ uc(c(x′max)) + ucc(c(x′max))c(x′max)(x′ − x′max)
E(uc(c′(x′))) ≈ uc(c(x′max)) + ucc(c(x′max))c(x′max)E(x′ − x′max)
E(uc(c′(x′)))
uc(c(x′max))

≈ 1− ucc(c(x′max))
uc(c(x′max))

c(x′max)E(x′ − x′max)

Note that E(x′ − x′max) is positive and finite because it is simply E(y′ − y′max) and the
distribution of y has a finite mean. Also, c(x′max) is positive and finite. Taking the limit
as x →∞, we find that the limit will be 1 if ucc(c(x′

max))
uc(c(x′

max)) → 0; this term is the coefficient of
absolute risk aversion. In this case, consumption will converge.

With DARA, the individual becomes less risk averse with more wealth accumulation
and therefore needs less precautionary saving. The faster this coefficient falls, the lower
the bound on the asset space (which is good for numerical solution methods).

There are other kinds of savings in reality, such as savings for life-cycle reasons.
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2.5 Numerical Solution Methods

2.5.1 State Space Discretization

Suppose we have a Markov process for income in which the logarithm is an AR(1) process:

yt = log(Yt)
yt = ρtyt−1 + εt

εt ∼ G(0, σ2
ε )

Instead of using a continuous state space for income (which makes computation more
difficult), we discretize the state space and use a Markov chain for income with a finite
number of values.

Let F be the standardized version of G, so that G(ε) = F ( ε
σε

).
We first choose N values, y1, ..., yN , to make up the Markov chain. Larger values of N

lead to better approximations, but even N = 9 can be good enough. To choose the values
once N has been chosen:

• Choose yN = m
√

σ2
ε

1−ρ2 , with m large enough to capture most of the total mass of
the distribution; m = 3 is reasonable for a normal distirbution.

• Set y1 = −yN (assuming that the distribution is symmetric).

• Set y2, ..., yN−1 to be equidistant between the two endpoints. (One could also use
Gaussian quadrature or the collocation method to choose the point spacing.)

Set d to be the distance between points. We then compute the transition probabilities for
interior k as:

πjk = P

(
yk −

d

2
≤ ρyj + εt+1 ≤ yk +

d

2

)
= F

(
yk + d

2 − ρyj

σε

)
− F

(
yk − d

2 − ρyj

σε

)

At the endpoints, we have the transition probabilities:

πj1 = F

(
y1 + d

2 − ρyj

σε

)

πjN = 1− F

(
yN − d

2 − ρyj

σε

)

As N →∞ and d → 0, this converges to the original continuous process.
To assess the accuracy of this approximation:
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• Simulate from the process and compute moments such as the unconditional variance,
the covariances. Compare them to the moments of the continuous process. If the
moments do not match closely enough, increase N or adjust the spacing of the points.

• Let P be the transition matrix. Then, we may compute the stationary distribution,
π∗, as the vector that solves π∗ = Pπ∗. From the invariant distribution and the tran-
sition matrix, one can compute moments exactly and compare them to the moments
of the original process.

2.5.2 Policy Function Iteration

Since the income fluctuation problem must have a bounded solution for certain interest
rates, numerical solution methods are feasible.

To solve the problem, we must find policy functions, c, a′, in terms of the state variables
of assets and income. In general, we discretize the income process using the method above,
so that there is only one continuous variable.

The discretized recursive formulation of the agent’s problem is:

V (a, y) = max
c,a′:c+a′=Ra+y,a′≥−φ

(
u(c) + β

N∑
i=1

π(yi, y)V (a′, yi)

)

This solution is in the form a′(a, y), which implies c(a, y).
In general, there are three options for function approximation:

• Local Approximation: This approximates the function in the neighborhood of a point.
This works well for a stochastic growth model where there is an obvious point to
approximate about (the steady state), where deviations from that point tend to be
relatively small, and where u′′′ doesn’t matter. This is done with log-linearization or
a linear-quadratic approximation. It is generally not appropriate for this problem,
since there is no obvious base point, income tends to vary more, and u′′′ matters.

• Global Approximation: This approximates a function over a range. One way is
through pure discretization, in which the asset space is discretized into a1, ..., am and
the policy function is undefined anywhere that is not those points. Alternatively,
one can use local linear interpolation in which the policy function is approximated
by a line (or higher order polynomial) between grid points. Both approximations
work better if there are more points where the function is most curved (in this case,
near the borrowing constraint). In either case, a larger M is more accurate but more
time-consuming.

• Global Interpolation: One can approximate the entire function with a single high-
degree polynomial (such as a Chebyshev polynomial). This method will lead to a
smooth policy function, but the function might not be concave.
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The approximation can be applied to either the value function or the policy function; we
use the policy function.

Recall that the Euler equation is:

u′(Ra + y − a′)− βR
N∑

i=1

π(yi, y)u′(Ra′ + y′ − a′′) ≥ 0

where equality holds if a′ > −φ. In this algorithm, we guess a′′(a, y), solve for the a′(a, y)
implied by this guess, then set a′′ = a′ and iterate until the function converges.
Algorithm: Pure Discretization Policy Function Approximation

1. Construct a grid on the asset space, a1, ..., aM , with a1 = −φ, aM large enough that
it is likely to contain all the possible asset values, and the intermediate points spaced
so that they are closer together near a1.

2. Guess a policy function a′′(a, y) = â0(ai, yj), i = 1, ...,M ; j = 1, ..., N , where â0(ai, yj)
is always on the grid. (For example, one could guess that â0(ai, yj) = ai.)

3. At each (ai, yj), check if

u′(Rai + yj − a1)− βR
∑
y′∈Y

π(y′, yj)u′
(
Ra1 + y′ − â0(a1, y

′)
)

> 0

If the above equation is true, then the budget constraint is binding at this point, and
we set â1(ai, yj) = a1.

4. Otherwise, we know that the budget constraint is not binding, and we search for a
consecutive pair, (ak, ak+1), such that:

δ(ak) = u′(Rai + yj − ak)− βR
∑
y′∈Y

π(y′, y′)u
(
Rak + y′ − â0(ak, y

′)
)

< 0

and δ(ak+1) > 0. By the monotonicity of this problem, the pair will be unique. Set
â1(ai, yj) = arg min{|δ(ak)|, δ(ak+1)} (this is the asset choice that is closer to exactly
satisfying the Euler equation).

5. Check for convergence by checking whether â1(ai, jj) = â0(ai, yj) for all i, j (since
the problem is discrete, equality is a reasonable thing to require). If the two are not
equal, set â0 = â1 and return to step 3.

Algorithm: Piecewise Linear Policy Function Approximation

1. Construct a grid on the asset space, a1, ..., aM , with a1 = −φ, aM large enough that
it is likely to contain all the possible asset values, and the intermediate points spaced
so that they are closer together near a1.
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2. Guess a policy function a′′(a, y) = â0(ai, yj), i = 1, ...,M ; j = 1, ..., N , where â0(ai, yj) ∈
[−φ, aM ] can be any value (not necessarily on the grid).

3. At each (ai, yj), check if

u′(Rai + yj − a1)− βR
∑
y′∈Y

π(y′, yj)u′
(
Ra1 + y′ − â0(a1, y

′)
)

> 0

If the above equation is true, then the budget constraint is binding at this point, and
we set â1(ai, yj) = a1.

4. Otherwise, we know that the budget constraint is not binding, and we solve the
non-linear Euler equation for a∗, the optimal savings today:

u′(Rai + yj − a∗)− βR
∑
y′∈Y

π(y′, y)u′
(
Ra∗ + y′ − â0(a∗, y′)

)
= 0

where we assume that â0 is piecewise linear in a between the gridpoints. That is,
if ak < a < ak+1 then â0(a, y) = â0(ak, y) + (a − ak)

â0(ak+1)−â0(ak)
ak+1−ak

. Then, set
â1(ai, yj) = a∗.

5. Check for convergence by checking whether maxi,j |â1(ai, yj)− â0(ai, yj)| < ε for some
small ε. If the two are not equal, set â0 = â1 and return to step 3.

If the solution is not accurate enough, one may need to add more points to the grid of
assets or increase the order of the approximating polynomial.

One way to assess the accuracy (Denhaan and Marcet, 1994) is to note that:

u′(ct) = βREt(u′(ct+1))
= βRu′(ct+1) + εt+1

where εt is the expectation error. Then, εt+1 should be uncorrelated with any variable
known at time t, such as ys, cs, as or any function of these variables for any s ≤ t. We
write these functions of predetermined variables as the r × 1 vector, h(zt). Then, at the
exact solution, Et(εt+1 ⊗ h(zt)) = 0, where ⊗ is element-by-element multiplication. We
may simulate to compute the expectation. Let B̂S = 1

S

∑S
s=1 ε̂s+1 ⊗ h(ẑs), where S is

the number of simulations, ε̂s+1 is the error from the approximate Euler equation, and zs

are the realizations of the variables from the simulation. If there is truly independence,
then

√
SB̂S →D Normal(0, V ), so that we may apply a ξ2

r test to SB̂SV̂ −1
S B̂S to check

if BS differs from 0. However, as S → ∞, the approximation will be rejected almost
surely (because it is never exact); choosing S to be a multiple of r is usually more realistic.
Comparing SB̂SV̂ −1

S B̂S across different solution methods can also be helpful in assessing
relative accuracy.
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Alternatively, we may use the Euler equation errors directly. At the solution, u′(ct) =
βREt(u′(ct+1)). For each t, we may express the error as a fraction of consumption:

u′ (ct(1− εt)) = βREt

(
u′(ct+1)

)
εt = 1− (u′)−1 (βREt(u′(ct+1)))

ct

Then, εt is the error that the agent would be making, in terms of percent of consumption, by
using the computed policy function. We compute Et(u′(ct+1)) =

∑
y′∈Y u′(c(y′))π(y′|yt).

We may simulate for S periods and analyze the properties of εt. In general, the average |εt|
should be less than 10−4. Another statistic of interest may be max(εt). Ideally, εt should
be white noise.

3 Measure Theory

Definition Let S be a set and S be a family of subsets of S. We call S a σ-algebra if:

• ∅, S ∈ S,

• if A ∈ S then AC ∈ S, and

• if An ∈ S for n = 1, ..., N , then
⋃N

n=1 An ∈ S.

Then, (S,S) is called a measurable space and each A ∈ S is called a measurable set.

Definition Let A be the collection of all open intervals in R, that is, all intervals of the
form (a, b), (−∞, b), (a,∞), (−∞,∞). The smallest σ-algebra that contains A is the Borel
σ-algebra. In Rn, the Borel σ-algebra is generated by the open balls.

Definition Let (S,S) be a measurable space. A measure is a function, λ : S → R, such
that:

• λ(∅) = 0,

• λ(A) ≥ 0 for all a ∈ S, and

• if {An}∞n=1 are in S and are disjoint, then λ (
⋃∞

n=1 An) =
∑∞

n=1 λ(An).

We call (S,S, λ) a measure space. If λ(S) = 1, then we call λ a probability measure.

Definition We call f : S → R a measurable function if, for all a ∈ R, {s ∈ S : f(s) <
a} ∈ S.

Definition A transition function is a function, Q : S × S → [0, 1] that satisfies:
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• for each s ∈ S, Q(s, .) is a probability measure on (S,S), and

• for each A ∈ S, Q(., A) is a measurable function.

We think of Q(s∗, A) as a conditional probability function, with

Q(s∗, A) = P (s′ ∈ A|s = s∗)

so that Q measures the probability of moving from s∗ to an element of A.

In macro models, Q depends on the exogenous law of motion, π, and the endogenous
policy function, a′. For example, we might have:

Q ((a∗, y∗), (A, ŷ)) = π(ŷ|y∗)1
(
a′(a∗, y∗ ∈ A)

)
Definition Let f be measurable and non-negative. We define the associated Markov
operator of f by:

Tf(s) =
∫

S
f(s′)Q(s, ds′)

Notice that Tf(s) = E(f(s′)|s).

Definition For any probability measure, λ, define:

T ∗λ(A) =
∫

S
Q(s,A)dλ(s)

Then, T ∗λ is the probability measure one period ahead, given the transition function and
the probability measure today.

Definition A transition function, Q, has the Feller property if the associated Markov
operator, T maps the space of continuous and bounded functions, C(S,S), to itself. That
is, T preserves boundedness and continuity.

Definition Q on (S,S) is monotone if whenever f is increasing, Tf is also increasing.
That is, T preserves monotonicity.

Definition λ is an invariant distribution if λ = T ∗λ. That is, λ(A) =
∫
S Q(s,A)λ(ds) for

all A ∈ S.

Theorem 3.1 If S is compact and Q has the Feller property, then there is at least one
invariant distribution.

This theorem does not imply uniqueness. There may be multiple ergodic sets. Also,
the theorem does not give any indication about the speed of convergence.
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Definition Let {λn}∞n=0 be a sequence of probability measures with λ0 and λn+1 = T ∗λn.
(That is, λn(A) =

∫
S Q(s,A)λn−1(ds), for a given and fixed Q.) We say that {λn}∞n=0

converges weakly to λ if

lim
n→∞

∫
fdλn(A) →

∫
fdλ(A)

for all f ∈ C(S,S).

Definition Let S = [a, b] be a bounded interval. We say that Q satisfies the monotone
mixing condition if there exists ŝ ∈ S, ε > 0, N > 0 such that QN (a, [ŝ, b]) ≥ ε and
QN (b, [a, ŝ]) ≥ ε, where QN is the application of Q N times. That is, there is a positive
probability of going from the minimum or maximum of any bounded interval to the other
end of the interval.

In the context of income fluctuation, this is sometimes called the American Dream-
American Nightmare condition.

Theorem 3.2 Let S = [a, b] be a bounded interval and S the associated Borel σ-algebra. If
Q satisfies the Feller property, is monotone, and satisfies the monotone mixing condition,
then:

• Q admits a unique invariant probability measure, λ, and

• (T ∗)nλ0 weakly converges to λ for any λ0.

This theorem yields a way to compute the invariant distribution, λ. In practice, it is
helpful to try multiple initial distributions for the computation, especially if some of the
conditions are too hard to prove.

4 Equilibrium with a Continuum of Agents and Idiosyn-
cratic Risk

This model combines the income fluctuation problem with an aggregate production function
to compute an equilibrium in the asset market. Most of the model is based on Aiyagari
(1994). The model is called the Standard Incomplete Market (SIM) model, the Aiyagari
model, the Imrohoroghu-Huggett-Aiyagari model, or the Bewley model.

In this economy:

• Demographics: There is a continuum of agents of measure 1, infinitely lived and
identical ex ante.

• Preferences are given by E0
∑∞

t=0 βtu(ct) with 0 < β < 1, u′ > 0, and u′′ < 0.
These preferences assume that labor supply is inelastic (this can be generalized).
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• Endowments: Individuals start with no assets. Each period, they have a stochastic
endowment of εit efficiency units of labor, according to the Markov chain on the set
E = {ε1, ..., εN} with transition probabilities, π(ε′|ε). Shocks are independent and
identically distributed across individuals (but not across time), so that π(ε′|ε) is the
fraction of agents moving from ε to ε′ each period. (If there were correlation across
agents, this would lead to aggregate shocks and therefore aggregate uncertainty.) We
assume that the Markov chain has a unique invariant distribution, π∗(ε), which gives
the fraction of agents at each efficiency level in the stationary state. This means that
the aggregate labor supply in terms of efficiency units is:

Ht =
N∑

j=1

εjπ
∗(εj) = H

which is constant in the stationary state.

• Budget Constraint:

ct + at+1 = (1 + rt)at + wtεt

at+1 ≥ −b

Note that agents have both capital and labor income, and there is a borrowing con-
straint.

• Aggregate technology is given by the constant return to scale production function
F (Kt,Ht). Capital depreciates at rate 0 < δ < 1.

• Market structure: All markets are competitive.

– In the labor market, the wage will adjust so that firms will always demand the
aggregate supply of labor, H.

– In the goods market, we normalize the price of the good to 1.
– There is an assets market in which households save and in which firms get assets

to buy capital.

• The aggregate resource constraint is

F (Kt,Ht) = Ct + It = Ct + Kt+1 − (1− δ)Kt

In this model, we assume that there is an upper limit, a, on assets. Then, individuals
are distributed over the state space, S = [−b, a] × E. We define BS to be the Borel σ-
algebra on S, so that (S, BS) is a measurable space. Then, for any measurable set, A× E ,
we define the transition function, Q, by:

Q((a, ε),A× E) =
∑
ε′∈E

π(ε′|ε)1
(
a′(a, ε) ∈ A

)
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This model can be used to answer questions about wealth inequality due to income
fluctuations, the proportion of the capital stock due to precautionary savings, the redis-
tributive effects of policies (and the tradeoff between insurance and inefficiency), the equity
premium puzzle, and the role of labor supply in self-insurance.

4.1 The Steady State

Definition A stationary recursive competitive equilibrium consists of:

• a value function, v : S → R, and associated household policy functions, a′ : S → R
and c : S → R+,

• policies for the firm, H,K,

• prices, r, w, and

• a stationary measure, λ∗, on A× E,

such that:

• v is the solution to the household problem, given r, w, λ:

v(a, ε) = max
c,a′

(
u(c) + β

∑
ε′∈E

v(a′, ε′)π(ε′|ε)

)
c + a′ = Ra + wε

a′ ≥ −b

and a′, c are the associated policy functions,

• given r and w, K and H are the optimal choices of the capital and labor input for
the firm, so that:

FK(K, H) = r + δ

FH(K, H) = w

• the labor market clears:
∑

ε∈E π∗(ε) = F−1
H (w;K) = H,

• the goods market clears: F (K, H) = δK +
∫
A×E c(a, ε)dλ∗(a, ε) (we have embedded

the steady state result that investment always equals depreciation in the steady state),

• the asset market clears:

K(r) = F−1
K (r + δ;H) =

∫
A×E

a′(a, ε)dλ∗(a, ε) = A(r)
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• the distribution of assets and endowments is stationary, so that, for all A× E ∈ BS ,

λ∗(A× E) =
∫

A×E
Q((a, ε),A× E)dλ∗(a, ε)

In this model, the distribution of individuals is constant, but each individual is moving
around.

To check these conditions, we note that equilibrium in the labor market is trivial when
households have an inelastic labor supply and that equilibrium in the assets market implies
equilibrium in the goods market. Thus, it is sufficient to find an equilibrium in the asset
market.

We may take a graphical approach. Consider A(r) =
∫
A×E a′(a, ε)dλ∗(a, ε) and K(r) =

F−1
K (r + δ;H). Both are functions of the interest rate; equilibrium occurs at r∗ such that

K(r∗) = A(r∗). We know the following facts about these functions:

• As r → −δ, K(r) →∞, since the required return on capital, r + δ is going to 0.

• As r →∞, K(r) → 0, since the required return on capital is infinite.

• As r → 1
β − 1, the income fluctuation problem tells us that each individual’s assets

are unbounded, so A(r) →∞.

• As r → −1, all loans and savings disappear, and A(r) will go to the ad hoc borrowing
constraint.

Under reasonable assumptions, K(r) is continuous and monotonic, since it can be written
as F−1

K (r + δ;H). If A(r) is continuous, then an equilibrium must exist, since the two
curves must intersect. If A(r) is also monotonic, then the steady state is unique.

To show that A(r) is continuous and monotonic, we must consider λ∗:

• First, we must show that λ∗ is unique using the theorem from measure theory:

– Compactness: If (1 + r)β < 1 and preferences are CRRA, then the income
fluctuation problem shows that there is always an upper bound, a, on the asset
space. The lower bound is provided by the borrowing constraint, and the state
space of any Markov chain is compact.

– Feller property: a′ is bounded (since the asset space is bounded) and continu-
ous (by the Theorem of the Maximum). This implies that Q((a, ε),A × E) =∑

ε′∈E π(ε′|ε)1(a′(a, ε) ∈ A) maps the set of bounded and continuous functions
to itself.

– Monotonicty : Note that a′ is increasing. In general, a sufficient condition for
monotonicity is positive autocorrelation in ε.
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– Monotone Mixing Condition: Suppose the agent starts at a. Then, for any â,
there is some K such that K consecutive shocks that are ε1 will lead to an
asset choice in [−b, â], because of consumption smoothing. Similarly, starting
at −b there is some K such that receiving K shocks equal to εN will lead to the
range [â, a]. Since the sequences (ε1, ε1, ..., ε1) and (εN , εN , ..., εN ) have positive
probabilities of occurring, this shows that the MMC holds.

• Then, we must show that λ∗ is continuous with respect to r. Combining this with
the fact that a′(a, ε; r) is continuous is r implies that A(r) is continuous as well.

• We then wish to show that A(r) is monotonic. There is no general proof of this,
but it can be verified numerically. (Monotonicity implies that the substitution effect
always dominates the income effect in [−b, a].)

Algorithm: Computing the Steady State

1. Choose r0 ∈ (−δ, 1
β − 1) to be the initial guess of the interest rate.

2. Given r0 (and, implicitly, H, since it is fixed), obtain w0 and K0 from the production
function, using the system of equations:

FH(K0,H) = w0

FK(K0,H) = r0 + δ

3. Solve the household problem given the prices, r0, w0, using policy function iteration.
This will yield the policy functions, c(a, ε; r0) and a′(a, ε; r0).

4. Given π(ε′|ε) and a′(a, ε; r0), compute Q(r0) and then λ∗(r0) using simulation:

• Simulate histories of a′(at, εt) for M individuals, starting at any (a0, ε0) and
using π, a′ to update their states each period, t.

• At each t, compute a vector, Jt, of summary statistics (mean, standard devia-
tion, Gini coefficient, percentiles) of the wealth distribution of the M people.

• When ‖Jt − Jt−1‖ is sufficiently small, declare that the wealth distribution has
converged and use the computed distribution of (at, εt) to approximate the dis-
tribution, λ∗.

5. Compute A(r0) =
∫
A×E a′(a, ε; r0)dλ∗(a, ε; r0) as the mean asset holdings from the

last step of the simulation.

6. Compare A(r0) and K(r0). If they are equal, r0 and the other computed quantities
define the steady state. If A(r0) > K(r0), then the next r0 should be lower; other-
wise, the next r0 should be higher. One way to choose the next r0 is to compute
FK(A(r0),H)− δ and average the resulting interest rate with r0.
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To compute the steady state with endogenous labor choice, we must choose both r0

and H0 and adjust both until there is convergence.
This model explains wealth inequality by past earnings shocks and the resulting optimal

savings behavior. Since earnings are exogenous, there is no theory of earnings inequality.
Instead, luck determines wealth. To extend the model for additional inequality, agents
could have different innate ability levels, so with the means, autocorrelations, and standard
deviations of their income processes depends on the ability level. This comes only from
initial heterogeneity. Empirically (from the Survey of Consumer Finances), there is more
inequality in wealth than in earnings. The results of these models agree with that. However,
the usual model generates too low a concentration of wealth for the rich and too much
wealth accumulation for the poor. Ways to fix this include:

• Modifying the income process: Add a very high income realization that can occur
with very small probability or add a model of entrepreneurship, in which there are
increasing returns to good ideas, but this a is a more risky source of income.

• Introducing additional incentives for capital accumulation among the rich: bequest
motives.

• Reducing incentives for capital accumulation among the poor: adding means-tested
benefits for the poor or bankruptcy laws (which actually make the market more
complete for the poor).

• Stochastic β or a bliss point in consumption.

4.1.1 Precautionary savings rate

Definition The aggregate savings rate is s = I
Y ; in equilibrium, when I = δK, this is

s = δK
Y . The individual savings rate is s(a, ε) = y−c(a,ε)

y where y = ra + wε.

To quantify precautionary wealth, we note that under complete markets, r = 1
β − 1,

which implies the complete market capital stock. Then, K(r∗) − K( 1
β − 1) is the excess

capital stock associated with precautionary savings. Alternatively, we could compute the
difference in aggregate equilibrium savings rate. For a Cobb-Douglas production function,
Y = KαH1−α, this has the closed-form expression:

r + δ = FK(K, H) = α
Y

K

= αδ
Y

δK
=

αδ

s

s =
αδ

r + δ
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This allows us to compute the savings rate at the complete and incomplete markets equi-
libria. The difference is the savings rates is called the precautionary savings rate. If the
uncertainty increases, then the capital stock and aggregate savings rate increase, which
will increase the level of output, but will lead to a consumption decline in order to do
this; during the transition to a steady state with increased uncertainty, the economy would
grow, but consumption would fall.

4.1.2 Comparative Statics

If the variance of income shocks increases, FK is unchanged at each K, but A(r) increases
at each interest rate. This means that the equilibrium interest rate is lower and the capital
stock is higher. An increase in risk aversion has the same result.

If an ad hoc borrowing limit increases, then in times of bad shocks, there is more slack
and the agent can borrow more if needed. This shifts the A(r) curve to the left. This leads
to a result that is closer to complete markets. However, the increased potential borrowing
will increase the interest rate, which will mitigate the amount of new borrowing. As the
borrowing constraint approaches the natural borrowing limit, the constraint becomes less
important.

To calibrate parameters to test the size of effects:

• The CRRA coefficient is usually considered to be between 1 and 3.

• The autocorrelation, ρ, in εt can be estimated from individual-level panel data on
earnings (not in total income); the autocorrelation usually depends on the frequency
of the data.

• β is usually chosen to match K
Y . If K is based only on financial wealth, then K

Y ≈ 2.5.
If K includes both financial wealth and housing wealth, then K

Y ≈ 4. If β is higher,
then agents are more patient and save more, so that K

Y is higher as well.

• Empirically, for the Cobb-Douglas production function, α ≈ 0.3. Empirically, δ ≈
0.05%.

• It is hard to choose which interest rate the result of a calibration should match.

General empirical results include:

• With log utility and IID shocks, precautionary savings are almost 0, since there is
low risk aversion and shocks are not persistent.

• With the CRRA parameter equal to 5 and ρ = 0.9, the precautionary savings rate is
about 14%, since there is more risk aversion and more persistence in shocks. If the
CRRA parameter is only 2, then the precautionary savings rate drops to 5%.
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4.1.3 Optimal Taxation

With incomplete markets, there is a role for government taxation in order to provide
insurance. Suppose the government taxes labor and transfers it lump sum to agents, so
that the budget constraint is:

c + a′ = Ra + (1− τ)wε + t

If labor supply is inelastic, we may set τ = 1 with no distortions, which leads to perfect
insurance.

In order to add a labor supply decision, preferences become E0(
∑∞

t=0 βtu(ct, 1 − ht)),
where ht is hours worked. Then, the budget constraint is:

c + a′ = Ra + (1− τ)whε + t

Now, the agent’s decision consists of three policy functions, c(a, ε), a′(a, ε), h(a, ε). The
equilibrium labor supply must satisfy:

H =
∫

A×E
εh(a, ε)dλ∗(a, ε)

while the government budget constraint is:

t =
∫

A×E
τwh(a, ε)εdλ∗(a, ε) = τwH

We define the welfare function, indexed by τ , as:

w(τ) =
∫

A×E
u (c∗(a, ε; τ), 1− h∗(a, ε; τ)) dλ∗(a, ε; τ)

(since the integral of utility over all agents is constant over time in the steady state). We
could then find the Ramsey equilibrium as the optimal choice of τ∗. If τ < τ∗, then there
is too little insurance; if τ > τ∗, then there is too much distortion.

This assumes the simplest form of tax policy. Extensions could include progressive
labor tax rates, T (wh), or lump sum transfers that go only to the poor.

4.2 Transitional Dynamics

A policy change will not only change the steady state but will have welfare effects along
the transition as well.

When we are not in the steady state, the household problem is:

vt(a, ε) = max
ct,at+1

u(ct(a, ε)) + β
∑

εt+1∈E

vt+1(at+1(a, ε), εt+1)π(εt+1|ε)
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subject to:

ct(a, ε) + at+1(a, ε) = Rta + wtε(1− τt) + φt

where τt is the labor tax rate in period t and φt is the lump sum transfer. We assume that
agents take τt as given and that φt adjusts to balance the government budget:

φt =
∫

A×E
τtwtht(a, ε)εdλt(a, ε) = τtwtHt

The value function depends on time because the equilibrium is not stationary and therefore
taxes, wages, and interest rates vary over time.

Definition Given an initial distribution, λ0, and a tax sequence, {τt}∞t=1, a competitive
equilibrium consists of:

• a sequence of value functions, {vt(a, ε)}∞t=1 and associated optimal decision rules,
{ct(a, ε), at+1(a, ε)}∞t=1,

• a sequence of firm choices of labor and capital, {Kt,Ht}∞t=1,

• a sequence of prices, {wt, Rt}∞t=1,

• a sequence of transfers, {φt}∞t=1, and

• a sequence of distributions, {λt}∞t=1,

such that, for all t,

• given prices, taxes and transfers, wt, Rt, φt, τt, the value function, vt, solves the house-
hold problem with associated policy functions, ct, at+1,

• given prices, wt, Rt, firms are optimizing, so that wt = FH(Kt,Ht) and Rt + δ =
FK(Kt,Ht),

• the labor market clears:

Ht =
∫

A×E
εht(a, ε)dλt(a, ε)

(if λ0 is already a steady state and the labor supply is inelastic, this is constant),

• the asset market clears:

Kt+1 =
∫

A×E
at+1(a, ε)dλt(a, ε)
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• the goods market clears:∫
A×E

ct(a, ε)dλt(a, ε) + (Kt+1 − (1− δ)Kt) = F (Kt,Ht)

• the government budget constraint holds:

τtwtHt = φt

• for all A× E ∈ B(A× E), {λt}∞t=0 satisfies:

λt+1(A× E) =
∫

A×E
Qt((a, ε),A× E)dλt(a, ε)

Qt((a, ε),A× E) =
∑

εt+1∈E
1(at+1(a, ε) ∈ A)π(εt+1, ε)

This model assumes that the transition in taxes is completely unexpected up to time t
and then is known with certainty after that.
Algorithm: Computing the Transition

1. For the initial tax rate, τ0, and the final tax rate, τ∞, compute the steady states, along
with the corresponding household and firm functions, v0, c0, a

′
0,K0 and v∞, c∞, a′∞,K∞,

using the previous algorithm.

2. Fix T at an arbitrary large number (such as 200), for which it is plausible that the
economy will be at the new steady state in T periods.

3. Guess a sequence of aggregate capital stock, {K̂t}T
t=0, such that K̂0 = K0 and K̂T =

K∞. This choice, together with H, implies paths for wages, interest rates, and
transfers:

ŵt = FH(K̂t,Ht)
R̂t + δ = FK(K̂t,Ht)

φ̂t = ŵtτtHt

4. By assumption, v̂T (a, ε) = v∞(a, ε). Use backward induction to compute the policy
functions, v̂t, ĉt, â

′
t+1, for t = T − 1, ..., 0.

5. Given the sequence of decision rules, compute Q̂t for each t, based on π and at+1.
Use this to obtain {λ̂t}T

t=0 where λ̂0 = λ0.

6. Check that the asset market clears by computing Ât+1 =
∫
A×E ât+1(a, ε)dλ̂t(a, ε). If

supt |Ât−K̂t| < η, for a small η, then the sequence has converged. Otherwise, update
the guess for K̂t, using Ât, and return to step 3.
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7. Check that ÂT = K∞. If not, return to step 2, guess a larger T and try again.

If the labor supply decision is endogenous, then we must guess a path of {Ht}∞t=0 as
well as a path for the capital stock.

Because we generally cannot prove that the steady state exists or is unique or that the
transition path is unique, we should follow this with a stability analysis; one way is to start
with a different guess for the path and see if the result is the same. The algorithm will
have problems if the steady state or points along the path are unstable.

We may compute the welfare effect of the transition by comparing

v∗(a, ε) = E0

( ∞∑
t=0

βtu(ct,0)|a0 = a, ε0 = ε

)

which is the expected discounted utility of living in the initial steady state forever, to

ṽ(a, ε) = E0

( ∞∑
t=0

βtu(ct)|a0 = a, ε0 = ε

)

which is the expected discounted utility along the transition.

Definition For a particular a, ε, choose ω(a, ε) so that

E0

( ∞∑
t=0

βtu(ct)

)
= E0

( ∞∑
t=0

βtu((1 + ω(a, ε))ct,0)

)

We define ω(a, ε) to be the conditional welfare change associated with the transition. It
is the percentage change in initial steady state consumption required to make the agent
indifference between living in the original (rescaled) steady state and living through the
transition to the new steady state. Note that the conditional welfare change is conditional
on the initial values, a, ε. In the case of power utility, u(c) = c−σ, we can find that:

ω(a, ε) =
(

ṽ(a, ε)
v∗(a, ε)

)1/σ

− 1

since we may factor (1 + ω(a, ε))σ out of the expectation.

Definition The ex ante welfare change, ω, is the change in consumption that would be
necessary if all agents begin with a = a0 and have ε0 coming from the stationary distribu-
tion, π∗(ε). In general, this is given by the formula:

N∑
i=1

E0

( ∞∑
t=0

βtu ((1 + ω)ct,0) |a0 = a0, ε0 = εi

)
π∗(εi) =

N∑
i=1

E0

( ∞∑
t=0

βtu (ct) |a0 = a0, ε0 = εi

)
π∗(εi)
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In the case of power utility, this is given by

ω(a, ε) =

(∑
εi∈E ṽ(a, εi)π∗(εi)∑
εi∈E v∗(a, ε)π∗(εi)

)1/σ

− 1

This gives a single number for all agents, but depends on a0.

Definition The utilitarian social welfare function is the change in welfare assuming that
all agents have equal weights and are distributed according to the initial stationary distri-
bution, λ∗. In the case of power utility, this is given by:

ω(a, ε) =

( ∫
A×E ṽ(a, ε)dλ∗(a, ε)∫
A×E v∗(a, ε)dλ∗(a, ε)

)1/σ

− 1

The conditional welfare function gives the most complete description of what happens
to agents; it can be used to see if the majority is better off, for example. However, the
other measures are useful summaries.

With power utility, ex ante welfare can be decomposed into level and volatility effects:

ω = (1 + ωLEV )(1 + ωV OL)

The volatility effect measures how the policy affects the volatility of consumption; if in-
surance increases, then the consumption will be less volatile, which is a positive volatility
effect. The level effect measures how the policy affects average consumption. If insurance
increases, the savings and therefore capital will decrease, so that the effect on consumption
is ambiguous. If the labor supply is endogenous, the level effect is likely to be negative
when the tax increases.

4.3 Aggregate Uncertainty

One model with aggregate uncertainty is given by:

• Aggregate uncertainty is provided by an aggegrate TFP shock, so that Yt = ZtF (Kt,Ht),
where Zt follows a two state Markov chain with Zb < Zg. The aggregate state space
is given by (z, λ) ∈ Z×Λ, where λ is the distribution of agents of the individual state
space.

• Individual level uncertainty is given by εt, which also follows a two-state Markov
chain, with 0 = εb < εg; we consider εb to be unemployment. The individual state
space is given by (a, ε) ∈ A× E.

• The two types of uncertainty follow a joint Markov chain; this allows the probability
of unemployment to vary with the overall state of the economy.
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The household problem is given by:

v(a, ε; z, λ) = max
c,a′

u(c) + β
∑

ε′∈E,z∈Z

v(a′, ε′; z′, λ′)π(ε′, z′|ε, z)


c + a′ = w(z,K)ε + r(z,K)a

a′ > 0

K =
∫

A×E
a dλ(a, ε)

λ′ = G(z, λ, z′)

When we model aggregate risk, we must include λ(a, ε) as part of the state of the problem,
since it determines all of the aggregate variables and changes each period. Note that the
agent needs to know λ in order to compute K ′ next period (by way of computing λ′).

Definition A recursive competitive equilibrium with aggregate uncertainty consists of

• a value function, v, and policy functions, a′, c,

• firm policies, H,K,

• prices, r, w, and

• a law of motion, G,

such that

• given pricing functions, r(z,K),w(z,K), the policy functions, a′, c solve the house-
hold’s problem given by the value function, v,

• given r(z,K) and w(z,K), the firm optimally chooses K, H, so that r(z,K) + δ =
zFK(K, H) and w(z, K) = zFH(H,K),

• the labor market clears: H =
∫
A×E εdλ,

• the asset market clears: K =
∫
A×E a dλ,

• the goods market clears:∫
A×E

(
c(a, ε; z, λ) + a′(a, ε; z, λ)

)
dλ = zF (K, H) + (1− δ)K
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• the aggregate law of motion is generated by the Markov chain, π, and the policy
function, a′:

λ′(A× E) = G(z, λ, z′) =
∫

A×E
Qz,z′((a, ε),A× E)dλ(a, ε)

Qz,z′((a, ε),A× E) =
∑
ε∈E

1
(
a′(a, ε; z, λ) ∈ A

)
π(z′, ε|z, ε)

Including λ as part of the state is a problem, since it is an infinite-dimensional object.
As an alternative, we look for a finite-dimensional approximation (which suggests that
agents have partial information or bounded rationality) and show that this approximation
is good enough. It would be enough if agents could find a law of motion for K directly, so
that they could form expectations of prices next period.

Let m be an n × 1 vector of moments of λ. Then, an approximation of the aggregate
state is given by (z,m1, ...,mn). As n →∞, the representation of λ is exact; if n is finite and
agents use this approximation, then they have partial information or bounded rationality.
In this case, it is sufficient to specify a law of motion for m, m′ = Gn(z,m, z′); since agents
decide on their next-period assets before z′ is known, z′ affects only the distribution of ε
in the next period. Then, we use m to approximate K. One functional form is:

lnK ′ = bz0 + bz1 lnK + bz2(lnK)2 + ...

which is a log-linear representation in which the coefficients depend on the current aggregate
state, z; empirically, the first two terms are sufficient. This reduces the agents’ state
variables to (a, ε; z, K) with a simple law of motion, which reduces the household problem
to:

v(a, ε; z,K) = max
c,a′

u(c) + β
∑

ε′∈E,z∈Z

v(a′, ε′; z′,K ′)π(ε′, z′|ε, z)


c + a′ = w(z,K)ε + r(z, K)a

a′ > 0
lnK ′ = bz0 + bz1 lnK

Definition The aggregate consistency condition is that, in equilibrium, the agents’ law of
motion for the aggregate variables leads to decisions that create the same aggregate law of
motion.

Once we have found an equilibrium for an equilibrium with a certain approximation,
we may add a term and recalculate to check if there are sizeable gains in utility for using
a better approximation.
Algorithm: Finding an Approximate Equilibrium
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1. Guess bz0, bz1.

2. Solve the household problem with these coefficients to find a′(a, ε; z,K) and c(a, ε; z,K).

3. Simulate histories of length T for I individuals to create a wide, long artificial panel,
keeping track of asset holdings in each period.

4. At each t, compute Kt = 1
I

∑I
i=1 ai

t to find the sequence {Kt}T
t=1.

5. Estimate the coefficients on the implied law of motion with OLS:

lnKt+1 = βz0 + βz1 lnKt

for each z.

6. Check if bz0, bz1 is close enough to βz0, βz1 for each z. If not, return to step 1 with
bz0 = βz0 and bz1 = βz1 (or something between the two of them).

7. After convergence, check the success of the approximation by looking at R2 from the
regression.

8. Add another term to the approximation and return to Step 1, to see how much the
second term improves the approximation; stop when there is little improvement in
R2.

Alternative approximation methods include other functional forms, finding law of mo-
tion for R,w directly, and assuming a particular parametric form for λ with unknown
parameters. Empirically (Krusell and Smith), the linear term leads to R2 = 0.999998,
which is good enough.

This provides a near-aggregation result. Suppose that the asset policy function is of the
form:

a′(a, ε; z, λ) ≈ bz0 + bz1a + bz2ε

Then, we find that:

K ′ =
∫

A×E
a′(a, ε; z, λ)dλ(a, ε)

=
∫

A×E
(bz0 + bz1a + bz2ε)dλ(a, ε)

= bz0 + bz1K + bz2H

Since H is constant once z is known, this gives the law of motion K ′ = b̃0z + b1zK. Since
the law of motion in terms of logs can be approximated by a linear function, this shows
that the decision rule is approximately linear in a, ε, so that there is near-aggregation.
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This also shows that the policy function is very linear, except near the borrowing
constraint. The curvature near the borrowing constraint is not very important because,
first, not many people are near the extremes (λ has thin tails) and, second, because the
people with very little capital have less effect on the aggregate capital. Thus, we have
near aggregation because the policy function is linear in the area that matters most for
the aggregation. This shows that market incompleteness is not very important for the
evolution of aggregate variables, Y, K,H, C, and that the representative agent model is
robust to some market incompleteness. However, the inequality in the model would still
matter for the agents.

Near-aggregation continues to hold with more shocks. However, aggregates such as asset
prices and the welfare cost of business cycles will be more affected by market structure.

4.4 Constrained Efficiency in Aiyagari Models

We usually compare the outcomes with incomplete markets to the outcome with a complete
market. However, we can also compare them to the result if a social planner was constrained
to the same asset structure, which may give a different result.

Definition Constrained efficiency is measured by comparing the social planner’s decision
rules for households to their own decision rules, when the available assets are identical.

The competitive equilibrium decision rule depends on the prices in the stationary equi-
librium, which in turn depend on the steady state distribution in that equilibrium; the
distribution and therefore the prices may change in the social planner allocation. That is,
the agent’s Euler equation can be written more completely as:

u′(R(λ∗)a + w(λ∗)ε− a′(a, ε)) ≥ Rβ
∑
ε′∈E

π(ε′, ε)u′
(
R(λ∗) + w(λ∗)ε′ − a′(a′(a, ε), ε′)

)
The constrained planner problem is given by the planner value function and constraints:

Ω(λ̃) = max
ã(a,ε)

(∫
A×E

u
(
R(λ̃)a + w(λ̃)ε− ã(a, ε)

)
dλ̃(a, ε) + βΩ(λ̃)

)
λ̃(A× E) =

∫
A×E

1 (ã(a, ε) ∈ A) π(ε′|ε)dλ̃(a, ε)

R(λ̃) = FK(K, H)− δ

w(λ̃) = FH(K, H)

K =
∫

A×E
ã(a, ε)dλ̃(a, ε)

H =
∫

A×E
εdλ̃(a, ε)
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The welfare theorems no longer hold, so the equilibrium and the constrained planner
solution need not agree. Instead, incomplete markets lead to a sort of externality, where
the agents’ actions have effects that are not reflected in prices (in this case, it is their effect
on aggregate capital).

The first order condition for the social planner is:

u′(c) ≥ R(λ̃)β
∑
ε′∈E

π(ε′|ε)u′(c′) +
∫

A×E
(ε′FHK + a′FKK)u′(c′)dλ̃

The first term on the right-hand side corresponds to the agent’s Euler equation. The second
term is the effect of saving an additional unit of capital on income, through wages, ε′FHK ,
and interest rates, a′FKK , weighted by marginal utility and integrated over all agents. This
shows that the planner can use price manipulation as a transfer to the poor. If the poor
have labor income but little capital income, then ε′FHK > 0 and a′FKK ≈ 0, since they
have the largest u′(c′), the second term will be larger. Then every agent should save more.
This leads to more capital and therefore higher wages, which redistributes income to the
poor.

Compared to the constrained efficient allocation, the competitive equilibrium has too
little savings; compared to the complete markets equilibrium, people are saving too much.
Thus the belief about whether people should save more or less (and policy consequences of
that belief) depends on the choice of benchmark.

Depending on the types of shocks, the sign of the second term may change (for example,
if the poor are living off of savings only, because they are unemployed).

5 Beyond the Bond Economy

5.1 Limited Enforcement Models

Suppose we have an Arrow-Debreu economy with time 0 trading. We now assume that if
an individual fails to carry out his promised trades, then he must live in autarky forever
after. Then, in equilibrium, contracts will be made only if the value of the contract at that
time exceeds the value of default. This limits the contracts that are made, but eliminates
default.

If there were complete markets, marginal utility and value functions would be equal
across all agents in all periods:

c(ht) = cCM =
S∑

s=1

πsys

V CM = u(cCM ) + βV CM

=
1

1− β
u(cCM )
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That is, each agent consumes the average income. If there were autarky, each individual
would consume his own endowment, so that:

c(ht) = yt

V AUT =
1

1− β
E(u(yt))

=
1

1− β

S∑
s=1

u(ys)πs

< V CM

(The last inequality follows from Jensen’s inequality.)
One model is the village/money-lender model:

• There is a continuum of infinitely-lived households of measure one, with discount rate
β, preferences ordered by E0(

∑∞
t=0 βtu(ct)), with u strictly increasing and strictly

concave.

• Each household is subject to independent and identically distributed endowment
shocks, yt ∈ {y1, ..., yS}, with probabilities given by π1, ..., πS . We let ht = (y0, ..., yt)
be an individual’s history of shocks.

• There is a unique individual called the money-lender, who has access to markets and
storage at rate R = 1

β . This individual is risk-neutral.

• All contracts between individuals and the money lender have one-sided commitment,
in which the money-lender commits but a household can default and then be barred
from any future trading.

• The contract is agreed on at time 0 and given by K0 = {ct}∞t=0, where ct = ft(ht).
That is, the household gives yt to the money-lender at each time and consumes ct

which may depend on the previous payments. The value of the contract for the
household is:

V (K0) = E0

( ∞∑
t=0

βtu(ct)

)
while the value (expected profits) for the money-lender is:

P (K0) = E0

( ∞∑
t=0

βt(yt − ct)

)

Because of the differing utility functions, the agent is willing to pay more in order to
smooth consumption, and the money-lender makes a profit.
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• The money-lender’s problem is to maximize profits while giving enough utility to the
agent so that the agent won’t default:

P ∗(V0) = max
K0

P (K0)

V (K0) ≥ V0

where V0 is the minimum value the agent must receive in order not to default; in this
case, V0 = AAUT .

Since the profit is decreasing in the agent’s utility, the constraint will hold with equality.
Let K0/1 be the period 1 continuation of the contract K0 chosen at time 0. Then,

P (K0) = E0

(
(y0 − c0) + βE1

( ∞∑
t=0

βj(yj+1 − cj+1)

))
= E0

(
(y0 − c0) + βP (K0/1)

)
V (K0) = E0

u(c0) + βE1

 ∞∑
j=0

βju(cj+1)


= E0

(
u(c0) + βV (K0/1)

)
Then, the money-lender’s problem is:

P ∗ (V0) = max
{c0,K0/1}

E0

(
(y0 − c0) + βP (K0/1)

)
E0

(
u(c0) + βV (K0/1)

)
= V0

Let (c∗0,K
∗
0/1) solve the money-lender’s problem. Let ω = V (K∗

0/1). Consider the agent’s
problem at time 1:

P ∗(ω) = max
K1

P (K1)

V (K1) ≥ ω

We must have P (K∗
0/1) ≤ P ∗(ω), since the agent is fully optimized in the first period and

therefore must do at least as well; that is, K∗
1 was one of the possible choices for K∗

0/1.
This means that we may separate the maximization operator:

P ∗(V0) = max
c0

E0

(
(y0 − c0) + β max

K0/1

P (K0/1)
)

E0

(
u(c0) + βV (K0/1)

)
= V0
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In addition, P (K0/1) = P ∗(ω). (If we instead had P ∗(ω) > P (K∗
0/1), then the contract,

K∗
1 , chosen for P ∗(ω) would be feasible for the money lender and would yield a bigger

profit, which is contrary to our assumptions.) This yields the recursive formulation:

P ∗(V0) = max
c0

E0 ((y0 − c0) + βP ∗(ω))

E0 (u(c0) + βω) = V0

This means that choosing the entire sequence of contingent payments is equivalent to
choosing the level of continuation utility, ω, for the agent. The problem next period is:

P ∗(ω) = max
c

E0

(
(y − c) + βP ∗(ω′)

)
E0

(
u(c) + βω′

)
= ω

The constraint is called the promise-keeping constraint, and yields a law of motion for the
state variable, ω. This shows that there are two ways to deliver utility to the agent: current
utility (u(c)) and future utility (ω′). Since the payoff depends on the current payment of
the household, the money lender can give more total utility during good income shocks, to
prevent default. However, the choices will still smooth consumption.

Combining this gives the recursive formulation of the money-lender’s problem:

P (v) = max
{cs,ωs}

S∑
s=1

(ys − cs + βP (ωs))πs

such that

S∑
s=1

(u(cs) + βωs) πs = v

u(cs) + βωs ≥ u(ys) + βV AUT , s = 1, ..., S

cs ∈ [cmin, cmax]
ωs ∈ [ωmin, ωmax]

Payments and continuation utilities are state-contingent, since they are chosen before ys

is known. We assume boundedness here, to ensure that the maximization is well-behaved.
However, it is easy to see that ωmin = V AUT and ωmax = 1

1−β yS work as bounds.
The Lagrangian is:

L =
S∑

s=1

(ys−cs+βP (ωs))πs+µ

(
S∑

s=1

(u(cs) + βωs) πs − v

)
+

S∑
s=1

λs

(
u(cs) + βωs − u(ys)− βV AUT

)
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The first order conditions and envelope theorem yield:

−πs + µu′(cs)πs + λsu
′(cs) = 0

πsβP ′(ωs) + µβπs + βλs = 0
P ′(v) = −µ

Rearranging and solving shows that u′(cs)
β = − 1

βP ′(ωs)
. The left-hand-side is the marginal

rate of substitution between today’s utility and future utility, since the total utility is simple
u(ct)+βωt. The right-hand-side is the marginal rate of transformation for the money-lender
between ct and ωt, since consumption costs 1 and future utility costs βP ′(ωt).

We may also use the envelope theorem and first order conditions to find that P ′(ωs) =
P ′(v)− λs

πs
. This yields two cases:

• Case λs = 0: In this case, the participation constraint does not bind, and ωs = v
by the strict concavity of P . Then, the first order conditions imply that cs = f1(v),
and the consumption level depends only on v, not on ys. This is full insurance, since
the endowment shock does not affect consumption; a sequence of low values of the
endowment shock lead to a sequence of identical (c, ω).

• Case λs > 0: In this case, the participation constrain binds, which means that
P ′(ωs) < P ′(v) and ωs > v by concavity. This means that the money-lender must
promise more future utility to the household. Differentiating the first order condition
also shows that:

u′′(cs)dcs = P ′(ωs)−2P ′′(ωs)dωs

dcs

dωs
=

P ′′(ωs)
P ′(ωs)2u′′(cs)

> 0

(The sign follows from the concavity of P and u.) This shows that consumption
increases with ωs. Furthermore, we may compute:

u(cs) + βωs = u(ys) + βV AUT

u′(cs) = −P ′(ωs)−1

This shows that cs, ωs do not depend on v but only on ys, so that cs = f2(ys) and
ωs = gs(ys). This is the “amnesia property of the optimal contract”, because the
previous history of the contract stops mattering once the participation constraint
binds.

Combining these two cases shows that consumption is an increasing step function over
time. If yT < max(y1, ..., yT−1), then consumption stays constant; otherwise, consumption
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and ω increase. After the first time that yT = yS , consumption and ω are constant forever.
However, the level is lower than consuming yS forever. At the maximum level,

ωs =
u(cs)
1− β

= βV AUT + (1− β)
u(yS)
1− β

which is the weighted average of autarky and getting the best consumption level forever.
In the limit, the distribution of consumption over households is degenerate (though it

is non-trivial at any finite period). Some models have finite-lived agents where the new
agents begin at the low level; this leads to a non-degenerate steady state distribution of
consumption.

5.2 Other Models

One way to extend the standard incomplete markets model is to add assets that have
appeared in reality. This includes models with equity markets, bankruptcy, unemployment
insurance, families and networks, social security, annuities, life insurance, and government
debt. However, this does not give an endogenous explanation of why such instruments
appear.

Alternatively, one can endogenize the market structure and amount of insurance. Be-
sides the imperfect enforcement model of the previous section, there might be private
information constraints; this leads to the contract theory literature. Private information
models, unlike limited enforcement models, lead to dispersion growing forever.
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