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In general, every model consists of preferences, endowments, technology, and demography.

When defining a competitive equilibrium, one should be sure to specify all of the conditions
for household maximization, the government budget condition, and for market clearing.

1 Asset Pricing

In asset pricing, we generally use representative agent models, in which agents are identical or
they can be aggregated. These models can either be partial equilibrium models using Euler
equations or general equilibrium models using Lucas Trees.

1.1 Partial Equilibrium and No Arbitrage Pricing

Suppose prices are exogenous and the representative agent wishes to maximize Et(
∑∞

j=0 β
ju(ct+j)),

where ct is consumption. The agent can choose wealth, At, in the form of bonds, Lt, which are
claims to one unit of the good at time t+ 1 at an interest rate Rt, and a number of shares (Nt),
each of which pays a dividend in each period. Let pt be the share price and yt be the dividend
paid on the shares owned at the beginning of the period. Then, the consumer’s Euler equations
are:

u′(ct)
Rt

= Et(βu′(ct))

u′(ct)pt = Et(β(pt+1 + yt+1)u′(ct+1))

To solve asset pricing problems in full details:

• Write the maximization problem.
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• Write the Bellman equation.

• Derive the Euler equation from the first order conditions and the envelope theorem.

• Compute asset prices from the social planner’s allocation and the Euler equation.

For arbitrage-pricing arguments, one should know what to buy and sell in order to make
money (whether one price is too high or too low). No-arbitrage arguments involve only prices,
never probabilities.

No-arbitrage pricing can be based on:

• Computing the household budget constraint (possibly in multiple periods) to ensure that
the budget set is bounded.

• Using the firm’s zero profit conditions.

• Finding two prices and relating them to ensure that there is no way to make a sure profit.
This is done by finding a redundant price (pinned down by all the others). For example,
if there is only one asset, there can be only one intertemporal price.

1.2 Lucas Tree Economy

Suppose the representative agent wishes to maximize Et(
∑∞

j=0 β
ju(ct+j)), where ct is consump-

tion. The agent can choose wealth, At, in the form of risk-free bonds, Lt, which are claims to
one unit of the good at time t+ 1 at an interest rate Rt, and a number of shares (“trees”), each
of which pays a non-storable dividend (“fruit”) in each period. Let pt be the share price and yt

be the dividend paid on the shares owned at the beginning of the period. Because this is general
equilibrium, the price now depends on the current state. We assume that yt is the function of
a Markov state, st, on a continuous state space with:

F (s′, s) = P (st+1 ≤ s′|st = s) =
∫ s′

−∞
f(z, s)dz

Generally, we normalize that each agent has one tree (Nt = 1).

Then, the budget constraint is:

ct +
Lt

Rt
+ ptNt ≤ At

At+1 = Lt + (pt+1 + yt+1)Nt

We may also have borrowing constraints (Lt ≥ L or Nt ≥ N) to ensure solvency.
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The agents’ Euler equations are:

u′(ct)
Rt

= Et(βu′(ct))

u′(ct)pt = Et(β(pt+1 + yt+1)u′(ct+1))

We also have the transversality conditions:

lim
k→∞

Et

(
βku′(ct+k)

Lt+k

Rt+k

)
= 0

lim
k→∞

Et(βku′(ct+k)pt+kNt+k) = 0

These ensure that the wealth does not increase or decrease unboundedly in the limit, which pins
down the level of consumption.

If Rt = R > 1 is constant, then 1
βRu

′(ct) = Et(u′(ct+1)), and marginal utility follows a
Markov process. If utility is quadratic, then marginal utility is linear and ct+1 = constant +
1

βRct + εt+1.

In general, we may use the second Euler equation (and the fact that E(AB) = E(A)E(B) +
Cov(A,B)) to write:

pt = Et

(
β(pt+1 + yt+1)

u′(ct+1)
u′(ct)

)
= βEt(pt+1 + yt+1)Et

(
u′(ct+1)
u′(ct)

)
+ βCovt

(
pt+1 + yt+1,

u′(ct+1)
u′(ct)

)
The covariance term is zero if agents are risk neutral (so that marginal utility is constant) or
there is no uncertainty.

We can solve the social planner’s problem (with the representative agent) to find the equi-
librium allocation (the representative agent consumes all the fruit in each period). Then, we use
the equilibrium allocation to compute prices:

1
Rt

=
Et(βu′(yt+1))

u′(yt)
u′(yt)pt = Et(β(pt+1 + yt+1)u′(yt+1))

= Et(βpt+1u
′(yt+1)) + Et(βyt+1u

′(yt+1))
= ...

= Et

 ∞∑
j=1

βju′(yt+j)yt+j

+ Et

(
lim

k→∞
βku′(yt+k)pt+k

)

where the limit term is zero by the transversality condition (and the equilibrium condition that
each agent continues to hold one tree). This yields the price of the asset as a function of the
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current state:

pt = Et

 ∞∑
j=1

βju′(yt+j)yt+j

 1
u′(yt)

This yields a stochastic process for prices that depends on the stochastic process for dividends.

Timing affects prices in this economy. We generally assume that one receives the dividends
from trees bought last period; that is, trees are traded after dividends are paid. If this were not
true, then prices and budget constraint would be:

pt = βEt

(
u′(ct+1)
u′(ct)

)
pt+1 + dt

ptNt + ct ≤ Ntyt +Nt−1pt

However, the general conclusions would not change.

(This model is in contrast to the real business cycles model, which depends on capital and
includes persistence in the technology shocks.)

1.3 Term Structure of Interest Rates

In general, to price assets, there are two options:

• Use the prices that are already known from the economy in a no-arbitrage argument.

• Add the new asset into the budget constraint and solve the general equilibrium model
again to determine its price.

Definition 1 The term structure describes the relationship between a risk-free bond’s time to
maturity and its per-period yield.

Let Rjt be the risk-free gross return between t and t + j. Let Ljt be the quantity of these
bonds. Then, the budget constraint becomes:

ct +
∞∑

j=1

Ljt

Rjt
+ ptNt ≤ At

At+1 = L1t +
∞∑

j=2

Ljt

Rj−1,t+1
+ (pt+1 + yt+1)Nt
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where A0 may be given and we impose some borrowing constraint. Since the dividends can be
described by a Markov process, we have a value function:

V (At, st) = max{u(ct) + βEt(V (At+1, st+1))}

where the maximization is taken over the constraints above. The Lagrangian yields the first
order conditions with respect to ct, Ljt:

u′(ct)− λt = 0

−βEt

(
V1(At+1, st+1)

∂At+1

∂Ljt

)
− λt

Rjt
= 0

V1(At+1, st+1) = u′(ct+1)
1
Rjt

= βEt

(
u′(ct+1)
u′(ct)

· 1
Rj−1,t+1

)
Since the social planner’s problem yields an equilibrium allocation of ct = yt, this yields the
term structure of interest rates:

1
Rjt

= βEt

(
u′(yt+1)
u′(yt)

· 1
Rj−1,t+1

)
= βjEt

(
u′(st+j)
u′(st)

)
In general, Rjt is a function of yt = (y0, ..., yt). If yt is a Markov process, the interest rate term
structure depends only on yt, not on t or the history. We may also calculate the per-period
interest rate:

R̃jt =
1
β

(
u′(st)

Et(u′(st+j))

)1/j

Suppose st is independent and identically distributed. Then:

Rj(st) =
1
βj

u′(st)
E(u′(s))

= R1(st)
1

βj−1

Definition 2 In pure expectations theory, 1
R2t

= 1
R1t

Et( 1
R1,t+1

). In this case, there is no risk
premium.

In general, we may split the expectation of the product to compute:

1
R2t

= βEt

(
u′(st+1)
u′(st)

)
Et

(
1

R1,t+1

)
+ βCovt

(
u′(st+1)
u′(st)

,
1
R

)
Pure expectations theory holds if the second term (the risk premium) is 0. This will occur if
agents are risk neutral or if there is no uncertainty. For an IID process, the second term becomes
β2 E(u′(s))

u′(st)
Cov(u′(st+1), 1

u′(st+1)), which is always negative. In this case, a two-period bond must
pay more interest than a one-period bond because gaining knowledge of the second period might
change decisions. (If there is bad news next period, then u′(st+1) will be higher, which will make
the subsequent interest rate higher.) The expression above again reduces to 1

R2t
= β 1

R1t
.

(This covariance is negative even if agents are risk-loving.)
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1.4 No-Arbitrage Pricing

Suppose {st} is Markov. Then, the pricing kernel is:

Qj(sj , s) = βj u
′(sj)
u′(s)

f j(sj , s)

where f j(z, s) =
∫
f1(z, sj−1)f j−1(sj−1, s)dsj−1 is the j-step ahead transition function.

For example, consider an insurance policy that pays one good next period if yt+1 ≤ α.
This could be added to the budget constraint to find the price. Instead, we use a no-arbitrage
argument to say that qα(s) =

∫ α
−∞ 1Q1(s′, s)ds′. We may also express Q1 in terms of primitives

(though this goes beyond a no-arbitrage argument, since no-arbitrage arguments never depend
on probabilities, only on prices):

qα(s) =
∫ α

−∞
1Q1(s′, s)ds′

=
∫ α

−∞
β
u′(s′)
u′(s)

f(s′, s)ds′

= E

(
β
u′(st+1)
u′(st)

∣∣∣∣ st+1 ≤ α, st

)
P (st+1 ≤ α|st)

If agents are risk neutral, this reduces to qα(s) = βP (s′ ≤ α), since the ratio of marginal utilities
is constant at 1. If agents are risk averse, u′(s′)

u′(s) > 1 when s′ ≤ α ≤ s, so that individuals will
pay more for insurance if the current period is better than α.

1.5 Modigliani and Miller Theorem

Suppose we wish to sell off a tree (or a firm) using B bonds that pay r each period (as long as
rB ≤ Yt; otherwise, they pay Yt

B ) and N shares that pay dividends 1
N (Yt − rB) in each period

(or 0 if rB ≥ Yt). Suppose that the equilibrium prices for the two assets are pB
t (N,B, r, st) and

pN
t (N,B, r, st). Then, the value of the tree for a particular structure is:

Γ = BpB
t (N,B, r, st) +NpN

t (N,B, r, st)

We wish to maximize the value with respect to N,B, r, assuming that markets are complete
with Arrow-Debreu trading.

Theorem 3 Modigliani-Miller. Γ depends only on st, not on B,N, r.
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Proof. Using a no arbitrage argument, we are able to price the assets according to their payment
streams, using equilibrium pricing kernels:

pB
t =

∞∑
j=1

∫
rQj(st+j , st)dst+j

pN
t =

∞∑
j=1

∫ (
Yt+j − rB

N

)
Qj(st+j , st)dst+j

Then, the value of the firm is:

BpB
t +NpN

t =
∞∑

j=1

∫ (
Br +N

(
Yt+j − rB

N

))
Qj(st+j , st)dst+j

=
∞∑

j=1

∫
Yt+jQj(st+j , st)dst+j

which does not depend on B,N, r.

Note that this is a very simple model of an economy; this theorem need not hold in other
models. Also, if it is certain that Yt ≥ rB, then the bond price depends only on r, while the
stock price depends on all three other variables.

In the IID case with log utility,

pB
t =

∞∑
j=1

Et

(
rβj u

′(yt+j)
u′(yt)

)

=
rE(u′(y))
u′(yt)

∞∑
j=1

βj

= rytE

(
1
y

)
β

1− β

= rp(yt)E
(

1
y

)
pN

t =
∞∑

j=1

Et

(
yt+j − rB

N
βj yt

yt+j

)

=
∞∑

j=1

Et

(
βjyt

1− rB(1/yt+j)
N

)
= p(yt)(1− rBE(1/y))

1
N

In general, holding an asset leads to:
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• Capital gains or losses: These are measured by pt+1

pt
.

• Interest or dividends: These are measured by dt+1

pt
.

In this model, shares, trees, and bonds all have the same capital gains. Only some have risk,

and the risk (and therefore the risk premium) varies. For bonds, the total return is
pB

t+1

pB
t

+ r
rB
t

.
As the amount paid out in bonds (called the leverage) increases, the shares become more risky,
and therefore must have a better return.

2 Stochastic Growth Model

2.1 Time 0 Trading

In the stochastic growth model, we have:

• A discrete, finite state space.

• A representative household with preferences ordered by
∑∞

t=0 β
t
∑

st∈St πt(st)u(ct(st), lt(st));
notice that decisions may depend on the entire history.

• Technology defined by ct(st) + xt(st) ≤ At(st)F (kt(st−1), nt(st)) and kt+1(st) = (1 −
δ)kt(st−1) + xt(st), where

– xt(st) is investment,

– At(st) is the exogenous productivity level, and

– kt(st−1) is this period’s capital stock, which was decided in the previous period

• Endowments of k0 and of nt(st) + lt(st) = 1 in each period.

• Production firms which hire nt(st), kP
t (st) in order to produce and sell ct(st), xt(st).

• Investment firms which own the capital and rent it to the production firms.

• Markets for:

– Labor services: The household sells and the production firms buy at price w0
t (s

t)

– Capital services: Production firms buy and investment firms sell at price r0t (s
t)

– Goods (for either consumption or investment): Households buy, production firms sell,
and investment firms either buy or sell (depending on whether investment is positive
or negative) at price q0t (s

t).

– Initial capital: Households sell, investment firms buy at price pk0
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– Firm Ownership: This turns out not to matter.

• Time 0, state-contingent trading.

Step 1: Solving the social planner’s problem.

L =
∞∑

t=1

βt
∑

st∈St

πt(st)(u(ct(st), 1− nt(st)) + µt(st)(At(st)F (kt(st−1), nt(st))

+(1− δ)kt(st−1)− ct(st)− kt+1(st)))

(Because they are multiplied by βtπt(st), the µt(st) are in terms of time t and state st prices
instead of time 0 prices.) The optimal allocation must solve:

ul(ct(st), 1− nt(st))
uc(ct(st), 1− nt(st))

= Fn(kt(st−1), nt(st))At(st)

uc(ct(st), 1− nt(st))πt(st) = β
∑

st+1|st

uc(ct+1(st+1), 1− nt+1(st+1))π(st+1)

·(Fk(kt+1(st), nt+1(st+1))At+1(st+1) + 1− δ)

where the first equations described the labor-leisure trade-off and the second equation described
the intertemporal trade-off.

Step 2: Solving the optimization problems of households and the two types of firms. (Note
that there are no risks in any of these equations because all the decisions are state-contingent
at time 0.)

Households maximize
∑∞

t=1 β
t
∑

st∈St πt(st)u(ct(st), 1−nt(st)) subject to
∑∞

t=0

∑
st∈St q0t (s

t)ct(st) ≤∑∞
t=0

∑
st∈St w0

t (s
t)nt(st) + k0pk0 . This leads to the first order conditions (if the solution is in

the interior):

βtπt(st)uc(ct(st), 1− nt(st)) = ηq0t (s
t)

−βtπt(st)ul(ct(st), 1− nt(st)) = ηw0
t (s

t)

Production firms maximize
∑∞

t=0

∑
st(q0t (s

t)(ct(st)xt(st))−r0t (st)kP
t (st)−w0

t (s
t)n0

t (s
t)) sub-

ject to ct(st) + xt(st) ≤ At(st)F (kP
t (st), nt(st)). Under constant returns to scale, F (k, n) =

nf( k
n) = nf(k̂). Then, the firms maximize

∑∞
t=0

∑
st nt(st)(q0t (s

t)At(st)f(k̂P (st))−r0t (st)k̂P (st)−
w0

t (s
t)), and the constraint is no longer needed. The optimal capital-labor ratio solves: f ′(k̂P (st)) =

r0
t (st)

q0
t (st)At(st)

. Given prices, this completely determines the coefficient on nt(st). If the coefficient is
positive, the firm would try to set nt to be infinite. If the coefficient is negative, the firm would
not produce. Thus, to ensure equilibrium with positive production, we must have the FOC’s:

w0
t (s

t) = q0t (s
t)At(st)Fn(kt(st), nt(st))

r0t (s
t) = q0t (s

t)At(st)Fk(kt(st), nt(st))
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This does not determine nt (but the rest of the economy will). Also, since there is free entry
into the market, the maximum must be at 0.

Investment firms maximize pk0k
I
o+
∑∞

t=0

∑
st∈St(r0t (s

t)kI
t (s

t−1)−q0t (st)(kI
t+1(s

t)−(1−δ)kI
t (s

t−1)))
by choosing kI

0, k
I
t+1(s

t). We rewrite this to consolidate the kt:

(−pk0+r
0
0(s

0)+(1−δ)q00(s0))kI
0+

∞∑
t=0

∑
st∈St

(r0t (s
t) + (1− δ)q0t (s

t)kI
t (s

t−1))−
∑

st−1∈St−1

q0t−1(s
t−1)kI

t (s
t−1)


Consolidating shows that the coefficient on kI

t (s
t−1) is (

∑
st|st−1 r0t (s

t)+q0t (s
t)(1−δ))−q0t−1(s

t−1),
which must be zero to ensure that the economy is in equilibrium. This yields the first order
conditions:

pk0 = r00(s
0) + (1− δ)q00

q0t−1(s
t−1) =

∑
st|st−1

r0t (s
t) + q0t (s

t)(1− δ)

Step 3: We substitute the optimal allocation into the first order conditions to compute the
(relative) equilibrium prices:

q00(s
0) = 1

q0t (s
t) = βtπt(st)uc(st)

w0
t (s

t) =
ul(st)
uc(st)

q0t (s
t) =

ul(st)
uc(s0)

βtπt(st)

r0t (s
t) = βtπt(st)uc(st)At(st)Fk(kt(st), nt(st))
pk0 = r00(s

0) + (1− δ)q00

In this model, if we re-opened markets at time t < τ , the new prices for time t goods, qt
τ (s

τ )
would simply have a new numeraire:

qt
τ (s

τ ) =
q0τ (s

t)
q0t (st)

= βτ−tuc(sτ )
uc(st)

πτ (sτ |st)

wt
τ (s

τ ) =
w0

τ (s
t)

q0t (st)

rt
τ (s

τ ) =
r0τ (s

t)
q0t (st)

The implied wealth of the household at time t is:

Υ(st) =
∞∑

τ=t

∑
sτ |st

(qt
τ (s

t)cτ (sτ )− nτ (sτ )wt
τ (s

τ ))
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which is future contingent claims less future obligations. Note that
∑∞

τ=t

∑
sτ |st qt

τ (s
t)cτ (sτ ) =

(rt
t(s

t) + 1− δ)kt(st−1), so that non-labor wealth depends on the current value of capital (even
though the households don’t own the capital in this model).

2.2 Stochastic Growth with Sequential Trading

Suppose there is a pricing kernel, Q̃t(st+1|st), together with wage and rental rates, w̃t(st), r̃t(st).
Households may choose ã, which are one-period contingent claims. Then, the household budget
constraint and first order conditions become:

c̃t(st) +
∑
st+1

ãt+1(st+1|st)Q̃(st+1|st) ≤ w̃t(st)ñt(st) + ãt(st|st−1)

Q̃t(st+1|st) = β
uc(st+1)
uc(st)

πt(st+1|st)

w̃t(st) =
ul(st)
uc(st)

The production firms now maximize c̃t(st) + x̃t(st) − r̃t(st)kP
t (st) − w̃t(st)ñt(st). For the pro-

duction firms to be in equilibrium, we have the zero profit conditions:

r̃t(st) = At(st)Fk(st)
w̃t(st) = At(st)Fn(st)

Investment firms (assuming free entry, except that if they enter they are committed for two
periods) maximize −k̃I

t+1(s
t) +

∑
st+1|st(r̃t+1(st+1) + 1 − δ)k̃I

t+1(s
t)Q̃(st+1|st). This yields the

zero profit condition:
1 =

∑
st+1

(r̃t+1(st+1) + 1− δ)Q̃(st+1|st)

We conjecture that:

Q̃t(st+1|st) = qt
t+1(s

t+1)
w̃t(st) = wt

t(s
t)

r̃t(st) = rt
t(s

t)
ãt+1(st+1|st) = (rt+1

t+1(s
t+1) + 1− δ)kt+1(st)

ã0 = k0(r00(s
0) + 1− δ)

and we could check this by verifying that they lead to the same values of the choice variables.

In this model, trading in labor and capital happens during the period, so their trades are
not state-contingent. However, assets are state-contingent.

We may also form the problem recursively, if we assume that:
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• st follows a Markov process with transition probability π(st+1|st).

• At(st) = A(At−1(st−1), st) is Markov. (That allows st to be a growth rate.)

Then, the current state of the economy is X = (s,A,K), where s is the current state, A is last
period’s productivity, and K is the capital stock at the beginning of the period. The household’s
state vector is (X, a), where a is the wealth of the household at the beginning of the period (which
does not matter to the economy if households are homogeneous).

The social planner’s value function is:

v(s,A,K) = max

(
u(C, 1−N) + β

∑
s′∈S

π(s′|s)E(V (K ′, S′, s′))

)

where the maximization is subject to the laws of motion:

K ′ + C ≤ AsF (K,N) + (1− δ)K
A′ = As

s′ ∼ π(s′|s)

This yields the optimal policy functions, defined by:

C = ΩC(X)
N = ΩN (X)
K = ΩK(X)

The only state variable that households can choose is a (though they also choose their
individual consumption and labor supply). Let a be the vector of arrow securities for next
period. The households have the value function:

J(a,X) = max
c,n,a

(
u(c, 1− n) + β

∑
x′

J(a(x′), x′)Ĥ(X ′|X)

)

subject to the constraints, c+
∑

X′ Q(X ′|X)a(X ′) ≤ w(X)n+ a and that a(X ′) is greater than
some borrowing constraint. (In equilibrium, a will depend on the value of capital.) This yields
the optimal policy functions for the household:

c = σc(a,X)
n = σn(a,X)

a(X ′) = σa(X ′, a,X)
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Production firms deal only in the spot market, and maximize c+x−r(X)k−w(X)n subject
to c+ x ≤ AsF (k, n). As before, this leads to the zero profit conditions:

r(X) = AsFk(k, n)
w(X) = AsFn(k, n)

Investment firms have stochastic future profits; however, pricing kernels completely remove
the uncertainty, since there are complete markets. That is, they must maximize k′(−1 +∑

X′ Q(X ′|X)(r(X ′) + 1− δ)). This yields the zero profit condition:

1 =
∑
X′

Q(X ′|X)(r(X ′) + 1− δ)

(This requires that the price today (which is normalized to 1) equals the payoff tomorrow,
discounted back by the pricing kernel.)

In equilibrium, markets clear, which requires equilibrium in the credit market:

a(X ′) = (r(X ′) + 1− δ)K ′

or, equivalently in the goods market:

c+ x = AsF (K,N)

Substituting from the credit market, we check that the household budget constraint holds:

c+
∑
X′

Q(X ′|X)(r(X ′) + 1− δ)K ′ = w(X)n+ (r(X) + 1− δ)K

c+K ′ = w(X)n+ (r(X) + 1− δ)K

Solving for K ′, substituting in equilibrium conditions (K = k,N = n,C = c) and decision rules,
we find that:

K ′ = w(X)n+ (r(X) + 1− δ)K − c

= AsFn(k, n)n+ (AsFk(k, n) + 1− δ)K − c

= AsF (K,N) + (1− δ)K − C

= AsF (K,σn(a,X)) + (1− δ)K − σC(a,X)
= AsF (K,σn((r(X) + 1− δ)K,X)) + (1− δ)K − σc((r(X) + 1− δ)K,X)
= G(X)

This yields a law of motion for K.

Definition 4 A recursive competitive equilibrium consists of:
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• given prices, r, w,Q and perceived laws of motion for the state variables, Ĥ(X ′|X), the
decision rules, σc, σn, σa(X ′, a,X) and the value function, J(a,X), solve the household’s
problem,

• both types of firms are maximizing profits, which implies that

r(X) = AsFK(K,N) = AsFk(K,σn((r(X) + 1− δ)K,X))
w(X) = AsFN (K,N) = AsFn(K,σn((r(X) + 1− δ)K,X))

1 =
∑
X′

Q(X ′|X)(r(X) + 1− δ)

(Note that these expressions depend only on the current state variables.)

• The laws of motion of capital, rental rate, consumption, and labor satisfy G(X) above.

• People have rational expectations about the state: π(X ′|X) = π̂(X ′|X).

3 Government Finance

3.1 Lump Sum Taxation

For these models, we assume that the government spends {gt} in each period, which yields
no utility for consumers. This is an exogenous stochastic process with gt < yt for all t. The
resource constraint is yt = ct + gt. The only tax is a lump sum tax, τt. We assume that the
government can borrow with 1-period state-contingent bonds, bt(st+1). The bond pays off one
unit of the consumption good next period if st+1 is realized. In this model, the state is described
by st = (yt, gt), which we assume is Markov. The government budget constraint in state st is:

gt + bt−1(st) = τt +
∫
Q(st+1|st)b(st+1)dst+1

where Q1 is the one period ahead pricing kernel.

To find a competitive equilibrium in this economy, we recall that lump-sum taxes are non-
distortionary (since they don’t affect the Euler equations), so we apply the welfare theorems and
solve the social planner’s problem of maximizing

∑∞
t=0E0(βtu(ct)), subject to ct ≤ yt − gt. By

non-satiability, ct = yt − gt. We then compute the representative agent’s Euler equations and
evaluate them at this allocation to compute prices and the equilibrium interest rate:

pt = Et

 ∞∑
j=1

βj u
′(yt+j − gt+j)
u′(yt − gt)

yt+j


1
Rjt

= βjEt

(
u′(yt+j − gt+j)
u′(yt − gt)

)
14



The level of government debt does not affect the interest rate (this is part of Ricardian equiva-
lence). The pricing kernel is:

Qj(st+j |st) = βj u
′(yt+j − gt+j)
u′(yt − gt)

f j(st+j , st)

If we have time 0 trading, then the prices are:

q0t+j(s
t+j) = Q1(st+j |st+j−1)...Q1(s1|s0)

= βj u
′(yt+j − gt+j)
u′(y0 − g0)

which is the price of one good in period t+ j if history st+j = (s0, ..., st, ...st+j−1, st+j) occurs.
Note that f j is not used, since the entire history is specified in time 0 trading.

Government bonds are specified by:

bt−1(st|st−1) = τt(st)− gt(st) +
∫
Q1(st+1|st)bt(st+1|st)dst+1

where taxes and bond holdings may depend on the entire history but government spending
depends only on st and the price kernel depends only on st, st+1 because the process is Markov.

To measure fiscal sustainability, we must discount the budget constraint at time t + 1 by
Q1(st+1|st); since the future state is unknown, we integrate over all possible st+1. This becomes:∫
Q1(st+1|st)bt(st+1|st)dst+1 =

∫
Q1(st+1|st)(τt+1−gt+1)dst+1−

∫ ∫
Q1(st+2|st+1)bt+1(st+2|st+1)dst+2dst+1

After continued substitution, this leads to the budget constraint:

bt−1(st|st−1) = τt − gt +
∞∑

j=1

qt
t+jτt+j(st+j)d(st+jst) +

∞∑
j=1

∫
Qj(st+j |st)g(st+j)dst+j

+ lim
k→∞

∫
qt
t+k+1(st+k+1|st+k)bt+k(st+k+1|st+k)d(st+k+1|st)

where we define
∫
x(st+jd(st+j |st) =

∫ ∫
...
∫
x(st+j)dst+j ...dst+2dst+1, which integrates over all

possible futures that start with st. Notice that τt depends on the entire history, so that the
associated prices and integrals must depend on the entire history as well, but gt is Markov, so
we can use a normal integral with a j-step pricing kernel.

In equilibrium, the limit term must be non-positive, since, otherwise, individuals would
be accumulating assets (which they would rather consume). If the limit is negative, then the
government is accumulating assets. This is not ruled out by equilibrium conditions, but we
generally assume that it does not happen.

15



The household budget constraint is:

ct(st)+τt(st)+
∞∑

j=1

∫
(ct+j(st+j)+τt+j(st+j))qt

t+j(s
t+j)d(st+j |st) ≤ (p(st)+y(st))Nt−1(st−1)+bt−1(st|st−1)+limit

Notice that intermediate bonds vanish in the present value budget constraint; initial trees and
initial bonds describe a consumer’s initial wealth. The limiting term must be non-positive by
the transversality conditions and non-negative if we do not allow Ponzi schemes.

Proposition 5 Ricardian equivalence. If the government satisfies its budget constraint, con-
sumers’ utility will not be affected by how the government finances itself through borrowing and
taxes. That is, equilibrium prices and consumption depend only on {yt, gt}

Proof. In equilibrium,

Nt−1(st−1) = 1

p(st) = Et(
∞∑

j=1

βj u
′(yt+j − gt+j)
u′(yt − gt)

yt+j

bt−1d(st|st−1) = bt−1(st|st−1)

We may replace bt−1(st|st−1) from the government budget constraint to find that the household
budget constraint is:

ct(st)+
∞∑

j=1

∫
ct+j(st+j)qt

t+jd(s
t+j |st) ≤ y(st)− g(st)+

∞∑
j=1

∫
(y(st+j)− g(st+j))Qj(st+j |st)dst+j

which does not depend on taxes or bonds.

One could try to measure fiscal sustainability by checking if debt is financed by future
surpluses:

bt−1(st) = τt − gt +
∞∑

j=1

1
Rjt

E(τt − gt)

where Rjt is the j-step ahead, risk-free interest rate. In a Lucas tree economy, the requirement
above is not right, because covariance terms should be included, or there should be integrals
over pricing kernels.

For a policy to be sustainable, the bonds must satisfy this equilibrium expression:

bt−1(st|st−1) = τt(st)− gt(st) +
∞∑

j=1

Et

(
βj u

′(yt+j − gt+j)
u′(yt − gt)

(τt+j − gt+j)
)

= τt(st)− gt(st) +
∞∑

j=1

(
1
Rjt

Et(τt+j − gt+j) + Cov

(
βj u

′(yt+j − gt+j)
u′(yt − gt)

, τt+j − gt+j

))
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Since τt+j is not uniquely determined, the covariance term can be manipulated to be non-zero.

If there are non-altruistic generations, then we instead of restricted Ricardian equivalence, in
which people are only indifferent between policies that have the same net present value during
their lifetimes.

3.1.1 Taxes and Stochastic Growth

(Based on Bohn, 1995)

Suppose preferences are given by u(c) = c1−γ−1
1−γ , and that the endowment obeys yt

yt−1
= ỹt,

and ỹt is independent and identically distributed. We assume that gt

yt
= 1− c is constant.

We consider two tax policies. In the first, τ0 > 0 and τt = 0 for all future t. In this case, τ0
may be greater than the endowment, but the government can then lend back to the people, so
this is feasible. In this case, τ0 is the present value of all government expenditures.

In the second policy, the government holds a constant debt-to-GDP ratio: b = bt/Rt

yt
. We

assume that all debt is one-period and risk free (not state contingent). The required debt will
then imply the taxes for each period. Note that any constant debt policy is sustainable; however,
discounting by the risk-free interest rate won’t work:

lim
j→∞

1
Rj+1,t

Et(bt+j) = lim
j→∞

1
Rj+1,t

Et(byt+jR1,t+j)

= lim
j→∞

1

Rj
1

Et

(
R1byt

j∏
i=1

ỹt+i

)

= byt lim
j→∞

(
E(ỹ)
R1

)j

As long as R1 > E(ỹ), this limit will be 0 (otherwise, it will be finite or infinite, either of which
is a Ponzi scheme).
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In either case, we compute the interest rate:

1
Rjt

= βjEt(
u′(yt+j − gt+j)
u′(yt − gt)

= βjEt((
cyt+j

cyt
)−γ)

= βjEt(
j∏

i=1

ỹ−γ
t+i)

= βj
j∏

i=1

Et(ỹ
−γ
t+i)

= (
1
R1t

)j

so that risk-free interest rates are deterministic.

A constant debt-to-GDP ratio leads to a positive covariance (that is, a pro-cyclical policy),
since for a lower value of ỹt,

u′(yt+1−gt+1)
u′(yt−gt)

is higher while the debt is lower (since GDP is also
lower) and taxes must be higher.

To check if a policy is sustainable, we should NOT discount future cash flows using the inter-
est rates (Rt), but rather by the pricing kernel, qt

t+j . (If you use the interest rates, this policy may
seem unsustainable.) Using the pricing kernel, we must check that limj→∞ qt

t+j(s
t+j)bt+j(st+j+1) =

0. This pricing kernel depends on both Rt and the covariance term. With a countercyclical pol-
icy, the covariance term is negative, which means that taxes seem higher than they need to
be.

Note that all of this depends on taxes being lump sum. If taxes are distortionary, all of this
may change.

In this economy, the interest rate depends on all of the primitives:

• E(ỹ) scales everything.

• If γ = V ar(ỹ) = 0, then R1 = 1
β .

• If γ = 0, then R1 = 1
β even as the variance increases.

• If V ar(ỹ) = 0, then the growth rate is constant but people want to smooth consumption,
which means that the interest rate must be higher in equilibrium (to encourage saving).

• If both are non-zero, things get more complicated.
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3.2 Optimal Distortionary Taxation

All of these strategies assume government commitment.

Suppose {gt}∞t=0 is given. The government imposes capital and labor taxes and may choose
the sequences {τn

t , τ
k
t }∞t=0. Preferences are given by

∑∞
t=0 β

tu(ct, lt). The technology is ct + gt +
kt+1 = F (kt, nt)+ (1− δ)kt, where F has constant returns to scale. Households own the capital.
The endowment is k0 and lt + nt = 1.

Households have the one-period budget constraint:

ct + kt+1 +
bt+1

Rt
≤ (1− τn

t )wtnt + (1− τk
t )rtkt + (1− δ)kt + bt

where bt are one period bonds, bought in time t − 1 that pay off in time t (since there is a
representative agent, all of the borrowing is between the household and the government). This
gives the first order conditions:

ul(ct, 1− nt)
uc(ct, 1− nt)

= (1− τn
t )wt

uc(ct, 1− nt)
βuc(ct+1, 1− nt+1)

= (1− τk
t+1)rt+1 + 1− δ = Rt

Firms have profit:

F (kt, nt)− rtkt − wtnt = (Fk(kt, nt)− rt)kt + (Fn(kt, nt)− wt)nt

by the Euler equation for constant returns to scale. In equilibrium, to ensure zero profits and
finite production, we must have Fk(kt, nt) = rt and Fn(kt, nt) = wt.

The government budget constraint is

gt + bt = τk
t rtkt + τn

t wtnt +
bt+1

Rt

In a competitive equilibrium with distortionary taxes,

• households are maximizing their utility, taking prices and government decisions as given,

• firms are maximizing profits,

• the government is obeying its budget constraint, taking household actions and all prices
as given, and

• there are no Ponzi schemes in borrowing.

19



Notice that this does not uniquely determine an allocation, because there are many possible
taxation schemes, and their distortionary nature means that there is no longer Ricardian equiv-
alence.

Definition 6 The Ramsey allocation is the competitive equilibrium with distortionary taxes that
maximizes consumer utility.

In this context, the Ramsey problem is to maximize
∑∞

t=0 β
tu(ct, 1 − nt), subject first to

feasibility conditions (both budget and resource constraints):

τk
t rtkt + τn

t wtnt +
bt+1

Rt
− bt − gt = 0

F (kt, nt) + (1− δ)kt − ct − gt − kt+1 = 0
ln + nt = 1

(1− τn
t )wtnt + (1− τk

t )rtkt + (1− δ)kt + bt − ct − kt+1 −
bt+1

Rt
= 0

Note that the last budget constraint is actually redundant; if we sum the household budget
constraint with the government budget constraint (and use the firm’s zero profit conditions),
we recover the feasibility constraint. This means we can remove any one of them. (This would
no longer be true if the budget constraints were in present value terms; then we would have to
keep the one-period feasibility constraint but could remove either of the others.) We also replace
lt = 1−nt. Because the allocation must be implementable, it must also satisfy all the first order
conditions:

ul(ct, 1− nt)− uc(ct, 1− nt)(1− τn
t )wt = 0

uc(ct, 1− nt)− βuc(ct+1, 1− nt+1)
(
(1− τk

t+1)rt+1 + 1− δ
)

= 0

Rt −
(
(1− τk

t+1)rt+1 + 1− δ
)

= 0

Fk(kt, nt)− rt = 0
Fn(kt, nt)− wt = 0

Note that the government’s only choice variables are τk
t , τ

n
t , but we maximize over ct, nt, kt+1,

rt, wt, τk
t , τn

t , bt+1, Rt, and lt (many of which are implied once others are known).

In an open economy, interest rates and rental rates are exogenously determined by the world
economy. Furthermore, the household and government budget constraints no longer imply the
usual resource constraint, since government and household bond holdings do not have to sum
to 0. Furthermore, household and firm capital now satisfy:

ct + kt+1 + gt + (kH
t+1 − kF

t+1) + (bGt − bHt ) = F (t) +
bGt+1 − bHt+1

Rt
(1− δ + r∗t )(k

H
t − kt) + (1− δ)kt
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3.2.1 Chamley Approach

Define the after-tax wage and rental rates by:

r̃t = (1− τk
t )rt

w̃t = (1− τn
t )wt

Then, the Euler equations become:

ul(ct, 1− nt)− uc(ct, 1− nt)w̃t = 0
uc(ct, 1− nt)− βuc(ct+1, 1− nt+1)(r̃t+1 + 1− δ) = 0

Rt − (r̃t+1 + 1− δ) = 0

and the tax revenues and government budget constraint become:

τk
t rtkt + τn

t wtnt = (rt − r̃t)kt + (wt − w̃)nt = F (kt, nt)− r̃tkt − w̃tnt

F (kt, nt)− r̃tkt − w̃tnt +
bt+1

Rt
− bt − gt = 0

Substituting in for rt, wt (using the zero profit conditions) and for the taxes leaves the following
constraints:

F (kt, nt)− r̃tkt − w̃tnt +
bt+1

Rt
− bt − gt = 0

F (kt, 1− nt) + (1− δ)kt − ct − gt − kt+1 = 0
ul(ct, 1− nt)− uc(ct, 1− nt)(1− τn

t )wt = 0
ul(ct, 1− nt)− uc(ct, 1− nt)w̃t = 0

uc(ct, 1− nt)− βuc(ct+1, 1− nt+1)(r̃t+1 + 1− δ) = 0
Rt − (r̃t+1 + 1− δ) = 0

We then maximize the Lagrangian:

L =
∞∑

t=0

βt(u(t) + ψt

(
F (t)− r̃tkt − w̃tnt +

bt+1

Rt
− bt − gt

)
+ θt (F (t) + (1− δ)kt − ct − gt − kt+1)

+µ1t (ul(t)− uc(t)w̃t) + µ2t (uc(t)− βuc(t+ 1)(r̃t + 1− δ)) + µ3t (Rt − (r̃t+1 + 1− δ)))

The first order condition with respect to capital is:

−βtθt + βt+1(ψt+1(Fk(t+ 1)− r̃t) + θt+1(Fk(t+ 1) + 1− δ)) = 0

With no taxation, this would simply be:

−βtθt + βt+1θt+1(Fk(t+ 1) + 1− δ) = 0
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The coefficient on the extra constraint measures the additional value of the taxes that the
government collects off of extra capital.

Suppose gt becomes constant for all t > T and that a steady state exists. Then, we must
have θt → θ and ψt → ψ, which yields the first order condition:

θ = β(ψ(r − r̃) + θ(r + 1− δ))

In the steady state, the second Euler equation tells us that:

uc = βuc(r̃ + 1− δ)
1
β
− r̃ = 1− δθ = β(ψ(r − r̃) + θ(r − r̃))

0 = β(ψ + θ)(r − r̃)

By non-satiation, θ > 0. Furthermore, β > 0, ψ ≥ 0. This means that r = r̃ in the steady state,
and the steady state capital tax must be 0 for the optimal allocation.

Zero capital taxation means that intertemporal substitution is not changed in the steady
state. It is also related to the persistence of capital (though it would still hold if δ = 1).

3.2.2 Primal Approach

To use the primal approach:

1. Obtain the first order conditions of the households and firms, and use these to solve for
the prices and taxes as functions of the allocations.

2. Use these equations to eliminate prices and taxes from the household’s present value budget
constraint. This yields the implementability constraint.

3. Solve the Ramsey problem by maximizing utility subject to the resource and imple-
mentability constraints.

4. Use this allocation to back out prices and taxes.

(This always uses present value budget constraints, which is equivalent to the previous approach,
as long as bt is not restricted.) This imposes the first order conditions from the household
and firm before optimization, which removes prices, turning the problem into a social planner
problem, with the additional implementability condition.
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The household’s present value budget constraint and first order conditions are:
∞∑

t=0

q0t ct =
∞∑

t=0

q0t ((1− τn
t )wtnt) + (1− τk

0 + 1− δ)k0 + b0

q0t =
t∏

i=0

R−1
i , q00 = 1

q0t = βt uc(t)
uc(0)

(1− τn
t )wt =

ul(t)
uc(t)

q0t (1− τn
t )wt = βt ul(t)

uc(0)

All of the capital and bond terms after time 0 cancel by the no-arbitrage conditions. For example,
combining the budget constraints across two periods:

ct + kt+1 +
bt+1

Rt
= wtnt + rtkt + (1− δ)ht + bt

ct +
1
Rt
ct+1 +

bt+1

Rt
+
bt+2

Rt+1
= wtnt +

wt+1nt+1

Rt
+
(
rt + 1− δ

Rt
− 1
)
kt+1 + rtkt + (1− δ)kt + bt

The coefficient on kt+1 must be 0 to keep the budget constraint bounded. Using similar logic
leads to only k0 appearing in the present value budget constraint.

As before, the firm has zero-profit conditions:

rt = Fk(t)
wt = Fn(t)

These equations eliminate prices and taxes.

Since k0 is given, τk
0 acts like a lump-sum tax and is not distortionary. Thus, it would be

optimal (but trivial) to choose τk
0 k0 =

∑∞
t=0 q

0
t gt. Instead, we require that τk

0 ≤ τk
0. τk

0 will
always be maximized in an optimal solution.

Substituting for prices and wages in the household budget constraint yields the imple-
mentability constraint:

∞∑
t=0

βt uc(t)
u0(t)

ct =
∞∑

t=0

ul(t)
uc(0)

βtnt + (1− τk
0 + 1− δ)k0 + b0

∞∑
t=0

βt(uc(t)ct − ul(t)nt)−A = 0

A = uc(0)(k0(1− τk
0 + 1− δ) + b0)
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Then, the Lagrangian for the Ramsey problem is:

L =
∞∑

t=0

βtu(t) +
∞∑

t=0

βtθt(F (t)− (1− δ)kt − ct − gt − kt+1) + φ

( ∞∑
t=0

βt(uc(t)ct − ul(t)nt)−A

)

=
∞∑

t=0

βt (V (ct, nt, φ) + θt(F (t) + (1− δ)kt)− ct − gt − kt+1)− φA

V (ct, nt, φ) = u(ct, 1− nt) + φ(uc(t)ct − ul(t)nt)

The first order conditions with respect to ct, nt, kt+1, c0, n0 are:

Vc(t) = θt

Vn(t) = −θtFn(t)
θt = βθt+1(Fk(t+ 1) + 1− δ)

Vc(0) = θ0 + φAc

Vn(0) = −θ0Fn(0) + φAn

which shows that the optimal allocation is characterized by:

Vc(t) = βVc(t+ 1)(Fk(t+ 1) + 1− δ)
Vn(t) = −Vc(t)Fn(t)
Vn(0) = (φAc − Vc(0))Fn(0) + φAn

We can back out prices and taxes from this.

If a steady state exists, the tax on capital satisfies:

1
β

= (1− τk)Fk + 1− δ

However, Vc = βVc(Fk + 1− δ), which means that we must have 1
β = Fk + 1− δ, and the steady

state capital must still be 0.

3.2.3 Consumption Taxes

If there is a consumption tax instead of a capital tax, the budget constraint and implementability
conditions become:

∞∑
t=0

q0t (1 + τ0
t )ct =

∞∑
t=0

q0t (1− τn
t )ntwt + (r0 + 1− δ)k0 + b0

∞∑
t=0

βt(uc(t)ct − ul(t)nt)−A = 0

A = uc(0) ((Fk(0) + 1− δ)k0 + b0)
1

1 + τ c
0
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If τ c
0 = 0, then this reduces to the problem with τk

t = 0; more generally, for any τ0
k , we can find

τ0
c that will lead to the same A (the value will depend on k0, b0, δ).

Now, we write prices as:

q0t = βt uc(t)
uc(0)

(
1 + τ c

0

1 + τ c
t

)
Rt =

uc(t)
βuc(t+ 1)

1 + τ c
t+1

1 + τ c
t

= rt+1 + 1− δ

wt =
ul(t)
uc(t)

1 + τ c
t

1− τ t
n

Comparing steady states, we see that, for any steady state in c, n, g, k, the capital tax is
given by uc

βuc
= (1 − τk

t+1)Fk + 1 − δ, which means that the capital tax is also constant. For a

consumption tax, instead, we must have uc
βuc

1+τc
t+1

1+τc
t

= Fk + 1 − δ, which means that the ratio
of consumption taxes must be constant in the steady state, and ∆(1 + τ c

t ) is constant. If τk
is positive in the steady state, this corresponds to ∆(1 + τ c

t ) > 0, so that the tax rate would
increase forever, which is not feasible. This is another reason that the steady state capital tax
is 0. In the steady state, w, ul

uc
are also constant, so 1 − τn

t must also grow at a constant rate.
This would lead to a labor subsidy to offset the growing consumption tax. In contrast, in the
optimal steady state, τc is constant (but need not be 0).

(In fact, since there are two Euler equations for the households, and two of labor, capital,
and consumption taxes can be used to achieve the same outcome.)

If human capital accrues the way capital does (that is, it disappears in present value), then
the steady state labor tax is 0 as well, which means that the government would have to tax a
lot initially.

3.2.4 Optimal Taxation Under Uncertainty

(This follows Lucas and Stokey.)

In this economy, the technology is ct(st)+gt(st) = nt(st), the endowment is nt(st)+lt(st) = 1.
We assume that there are complete credit markets, so that the government may have state-
contingent debt. (This gets tougher if all debt is risk-free.) Taxes are also state-contingent
(and government spending depends on the state but is exogenous). This yields the government
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budget constraint:

gt(st) + bt(st|st−1) = τn
t (st)wt(st)nt(st) +

∑
st+1

bt+1(st+1|st)pt(st+1|st)

We set q0t+1(s
t+1) = q0t (s

t)pt(st+1|st).

Firms maximize ct(st) + gt(st)− wt(st)nt(st) subject to ct(st) + gt(st) ≤ nt(st). This yields
the zero profit condition wt(st) = 1.

The household present value budget constraint and first order conditions are:

∞∑
t=0

∑
st∈St

q0t (s
t)ct(st) = b0 +

∞∑
t=0

∑
st∈St

(
1− τn

t (st)
)
nt(st)(1)q0t (s

t)

q0t (s
t) = βtπt(st)

uc(st)
u0(s0)

ul(st)
uc(st)

= 1− τn
t (st)

Combining all of these conditions yields the implementability condition:

∞∑
t=0

βtπt(st)(uc(st)ct(st)− ul(st)nt(st))− b0uc(s0) = 0

This gives the social planner’s Lagrangian:

L =
∞∑

t=0

∑
st∈St

(
u(st) + φ

(
uc(st)ct(st)− ul(st)nt

)
+ θt(st)

(
nt(st)− ct(st)− gt(st)

))
−φuc(s0)b0

(The sign on the Lagrange multipliers for the household budget constraint suggests that the
constraint is actually Spending ≥ Income. Since the household will spend all its income anyway,
this will make the multipliers non-negative for the social planner. The government budget
constraint is of the form Taxes−Speing as usual.) Then, the first order conditions with respect
to ct(st), nt(st), c0(s0), n0(s0) are:

uc(st) + φuc(st) + φ(ucc(st)ct(st)− ulc(st)nt(st))− θt(st) = 0
−ul(st)− φul(st) + φ(−ulc(st)ct(st) + ull(st)nt(st)) + θt(st) = 0

uc(s0) + φuc(s0) + φ(ucc(s0)co(s0)− ulc(s0)nt(s0))− θ0(s0)− φucc(s0)b0 = 0
−ul(s0)− φul(s0) + φ(−ulc(s0)ct(s0) + ull(s0)nt(s0)) + θ0(s0) + φucl(s0)b0 = 0

which characterizes the optimal solution(s). Substituting for θt(st), we find, for all t ≥ 1:

(1 + φ)uc(st) + φ(ucc(st)ct(st)− ulc(st)nt(st)) = (φ+ 1)ul(st) + φ(ucl(st)ct(st)− ull(st)nt(st))
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The only unknowns in this equation are φ and ct(st), since we may write nt(st) in terms of ct(st)
and the known gt(st).

The Laffer curve plots revenues versus tax rates. If the government spending lies completely
above the Laffer curve, it is infeasible. In other cases, the government spending line intersects
the curve in two places. If there are multiple solutions for the tax rate, then check them in the
resource constraint. One might lead to negative consumption. (That solution might minimize
consumer utility instead of maximizing it.) This curvature occurs because the problem is no
longer concave, so that there can be more than one solution.

Suppose gt(st) = gt+k(st+k). Since φ is constant, the equation above implies that ct(st) =
ct+k(st+k). Thus, whenever the government expenditure is the same, the allocation (and there-
fore the prices and taxes) should be the same as well. This means there is no history dependence
in the allocation. (This depends on having complete markets.)

For example, if government spending is constant across time, then ct, nt, τ
n
t are constant

across time. If b0 = 0, then the tax rate must satisfy τn = g
n .

If we substitute:

ul(st)
uc(st)

= 1− τn
t (st)

nt(st)− gt(st) = ct(st)

into the implementability constraint, we find that:

∞∑
t=0

∑
st∈St

βtπt(st)uc(st)
(
nt(st)− gt(st)−

(
1− τn

t (st)
)
nt(st)

)
+ b0uc(0) = 0

∞∑
t=0

∑
st∈St

βtπt(st)uc(st)
(
τn
t (st)nt(st)− gt(st)

)
− uc(s0)b0 = 0

(The inner term looks like the individual terms of the government budget constraint.) Multi-
plying the first order conditions by ct(st) and nt(st) respectively and summing, we find:

(1 + φ)(uc(st)ct(st)− ul(st)nt(st)) + φ(ct(st)2ucc(st)− 2ct(st)nt(st)ulc(st) + nt(st)2ull(st))
−θt(st)(ct(st)− nt(st)) = 0

Since utility is strictly concave, Q = ct(st)2ucc(st) − 2ct(st)nt(st)ulc(st) + nt(st)2ull(st) < 0.
Furthermore, θt(st) > 0 (by non-satiation) and φ > 0 (as long as the present value of government
expenditures exceeds its initial assets, −b0).

Suppose gt is zero except in period T when it is gt = g > 0; this is a perfectly foreseen
expense. Again, when t 6= T , consumption, labor and taxes will all be constant, both before
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and after the expense. Furthermore, because of the sign restrictions in the equation above and
because ct = nt (since gt = 0), we must have:

ct(st)uc(st)− nt(st)ul(st) > 0

for all t 6= T . This means that ul(s
t)

uc(st) < 1 and therefore τn
t (st) > 0. This means that taxes are

collected every period, which smooths the taxes needed for the later government spending. At
time T , ct(st) < nt(st), and −θt(st)(ct(st) − nt(st)) > 0 while φQ < 0. This makes the sign of
ct(st)uc(st) − nt(st)ul(st) indeterminate. Depending on the level of government spending and
the particular utility function, taxes at time T could be positive, negative, or 0. This shows that,
in this scenario, the government taxes before it must spend, goes into debt for the spending,
and then uses future taxes to pay the interest on the debt as the debt’s present value goes to 0
(it never actually pays off the debt, because then it would be optimal to stop taxing).

Suppose gt = 0 for all t 6= T and gT > 0 with probability α. As before, the allocation and
taxes will be the same for all t 6= T , as well as in period T if gT = 0. Again, the tax rate will
be positive for those periods. In this case, the government taxes in each period and then buys
Arrow securities at time T − 1 that will pay off if gT > 0 and will go further into debt if gT = 0.
In either case, the government will pay interest on the (same) debt with future taxes. Again,
after T , the past doesn’t matter, even without the process being Markov.

Complete markets allow the debt to depend on the outcomes of gt. This is what allows the
paths of taxes and consumption not to depend on history. If markets are not complete, debt
may become history dependent.

Once we have found the optimal consumption, labor and taxation paths, we may read off
the path of debt, bt+1(st+1|st), from {τtnt − gt} and the interest rates. We may compute debt
backward, based on b0, τ1, g1, τ2, g2, ..., or forward, with the equation:

bt(st|st−1) = τn
t (st)nt(st)− gt(st) +

∞∑
j=1

∑
st+j |st

(τn
t+j(s

t+j)nt+j(st+j)− gt+j(st+j))qt
t+j(s

t+j)

=
∞∑

j=0

∑
st+j |st

βjπt+j(st+j |st)
uc(st+j)
uc(st)

((
1− ul(st+j)

uc(st+j)

)(
ct+j(st+j) + gt+j(st+j)

)
− gt+j(st+j)

)
where the second equality follows by substituting in the equilibrium expressions for prices, taxes,
and labor. From this expression, we see that {gt+j} determines the future path of consumption
and therefore the value of future debt. Furthermore, gt(st) depends only on the current state,
so that if st is Markov, then debt must be Markov as well. In this case, b(st|st−1) depends only
on st, and there is no history dependence.

In a stochastic world, there is no steady state. Instead we may do asymptotics (Zhu, 1992).
Given the household first order condition:

uc(st) = βEt(uc(st+1)((1− τk
t+1(s

t+1))rt(st) + 1− δ)
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and the Ramsey allocation, {ct(st), nt(st), kt+1(st)}st,t, we may derive pricing kernels, p(st+1|st),
wages, rents, taxes, and bond holdings. However, there is indeterminacy with respect to capital
taxes, τk

t (st) and bond holdings, bt+1(st+1|st); given any solution, we may find an alternative.
Let {εt(st)} be any stochastic process with Et(uc(st+1)εt(st)rt+1(st+1)) = 0. Define:

τ̂k
0 = τk

0

τ̂k
t+1(s

t+1) = τk
t+1(s

t+1) + εt+1(st+1)

b̂t+1(st+1|st) = bt+1(st+1|st) + εt+1(st+1)rt+1(st+1)kt+1(st)

For this new allocation:

• Government capital tax revenue and maturing government debt are unchanged.

• Government debt carried from time t to t + 1 have the same present value at time t,
evaluated at the original prices.

• The household intertemporal Euler equation continues to hold.

4 Labor Markets: the Lucas-Prescott Island Model

Suppose we have:

• a continuum of agents,

• a large number of spatially separated islands, each with technology θf(n), where f is
constant across islands and satisfies the Inada conditions,

• θ1 < ... < θm, with π(θ′|θ) with P (θ′ ≤ θk|θ) =
∑k

i=1 π(θ, θi) a decreasing function of θ
(so that good and bad times tend to be persistent),

• risk-neutral preferences,
∑∞

t=0 β
tct, and

• a moving technology so that, if a worker wants to move, it takes one period (of foregone
wages).

Let βVu be the value of moving (it is discounted by β because of the lost wages during
moving). In equilibrium, this will be equal across all individuals (since everyone has the same
information and therefore would pick the same optimal islands(s)). βVu includes all the infor-
mation about the distribution of populations and productivity across islands.

Notice that after a productivity change, it takes one period for the labor force to change.
(It is also possible that productivity changes in two consecutive periods, so that people move in
and then out.)
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Let x be the population on the island at the beginning of a period and θ the current pro-
ductivity level on the island. (Though we assume all workers know the productivity levels on all
the islands, only one’s own island appears in the value function.) Let w(θ, x) = θf ′(n(θ, x)) be
the wage on the island; this depends on productivity and on the number of employed workers,
n(θ, x) (note that n(x, θ) ≤ x, since the number of workers can’t exceed the labor force at the
beginning of the period). Assuming that Vu is known, the value function is:

V (θ, x) = max{βVu, w(θ, x) + βE(V (θ′, x′)|θ, x)}

The first option corresponds to moving, while the second option corresponds to working this
period and staying on the island. We consider 3 cases:

• n < x: In this case, people are leaving the island, so V (θ, x) = βVu. However, not everyone
leaves (because of the Inada conditions). Thus, we must have w(θ, x)+βE(V (θ′, x′)|θ, x) =
βVu.

• n = x: Since everyone is working, we know that the wage must be w(θ, x) = θf ′(x).

– x′ > x: Since people are moving in, we must have E(V (θ′, x′)|θ, x) = βVu. This
means that the value function is V (x, θ) = θf ′(x) + βVu.

– x = x′: This determines the population next period, so that V (x, θ) = θf ′(x) +
βE(V (θ′, x)|θ).

This yields the value function:

V (θ, x) = max{βvu, θf
′(x) + βmin{Vu, E(V (θ′, x)|θ)}}

We then use the three cases to determine the equilibrium flows between islands:

• n < x: In this case, x′ = n. We choose n so that people are indifferent between moving
and staying:

βVu = θf ′(n) + βE(V (θ′, n)|θ)

We define x+(θ) as the n that solves this equation for a given θ.

• n = x, x′ > x: Note that, no matter the current value of x, x′ will be the same; otherwise,
more people would move in. This means that βVu = βE(V (θ′, x′)|θ). This equation
determines x−(θ) = x′.

• n = x, x′ = x: In this case, there is no movement. This will only happen if x−(θ) ≤
x ≤ x+(θ). This defines a range of inactivity in which wages are high enough that no one
moves out but not so high that people move in.
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Holding Vu fixed, x−(θ) < x+(θ) and both curves are upward-sloping in θ (since more produc-
tivity will lead to a better wage with the same number of workers). For any x, the population
will move to the closer end of the range of inactivity.

If x+(θ1) ≥ x−(θm), then any x ∈ [x−(θm), x+(θ1)] is in the range of inactivity. Thus,
once the population reaches this interval, it will never move again. This is an equilibrium with
no labor movement. On the other hand, if x+(θ1) ≤ x−(θm), then the ergodic set will be
x ∈ {x−(θi), x+(θi)}, with x+(θ1) ≤ x ≤ x+(θm) (since once x is inside this range, it will never
go below x+(θ1)). Since Vu is fixed in equilibrium, this is a finite number of possible points.
Note that not all transitions of θ will lead of a movement, if [x−(θi), x+(θi)] and [x−(θj), x+(θj)]
overlap. In either case, the stationary equilibrium is an equilibrium across all of the islands; an
individual island’s productivity and therefore population keep changing, but the distribution of
productivity and population is constant across all islands.

βVu determines the welfare of people on the islands the the population and on the non-
optimal islands (?). If βVu increases, the population on non-optimal islands increases.

Given Vu, we may compute the transition function:

Γ(θ′, x′|θ, x) = π(θ′|θ)I(x′ = x+(θ), x > x+(θ))
+π(θ′|θ)I(x′ = x−(θ), x < x−(θ))
+π(θ′|θ)I(x′ = x, x−(θ) ≤ x ≤ x+(θ))

Then,the distribution of population across islands can be found from the transition function:

Ψt+1(θ′, x′;Vu) =
∑

θ

∑
x

Γ(θ′, x′|θ, x)Ψt(θ, x;Vu)

We iterate on Ψt until we find the stationary distribution, Ψ(x, θ;Vu). Then, the population
must be

X =
∑
x∈X

∑
θ1,...,θm

xΨ(θ, x;Vu)

Each value of Vu can be mapped to some x. Thus, given the actual population size, we may
determine Vu in equilibrium.

(Remember that if Γ is a transition function, the stationary distribution satisfies q′Γ = q′.)

Because we have made minimal assumptions about f , profits (θf(n)− θf ′(n)n) need not be
0. We could give the profits out in an arbitrary way, since agents are risk-neutral and have no
disutility of labor.
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5 Overlapping Generations Model

Definition 7 Fiat money is money that is printed by the government that is not backed. Com-
modity money is money printed by the government that is backed by some commodity.

In a real economy, fiat money will never have any value. Fiat money can take on value if:

• money is included in the utility function,

• consumers have a cash-in-advance constraint, or

• there are market frictions (as in the overlapping generations model).

In the overlapping generations model:

• agents live two periods,

• at date t, there are N(t) young people, so that the total population is N(t)+N(t− 1) (we
also start out with some initial old people at date 0),

• agents can only trade with living agents,

• it is an endowment economy in which the young get y and the old get ε, with y > ε, and

• all agents have preferences log(cyoung) + log(cold).

In a steady state in the economy, it is not necessary that agents consume the same amount each
period. However, all of the agents must consume the same amount in youth and old age. That
is, all the consumption paths are the same.

Definition 8 In this context, an equilibrium is stationary if ct(t) = cy and ct(t + 1) = co for
all t ≥ 1. (There are no restrictions on c0(1).) Equivalently, an equilibrium is stationary if the
return (Rt or p(t)

p(t+1)) is constant over time.

In the competitive equilibrium outcome, there will be autarky, where each individual con-
sumes their endowment. Though the old would like to borrow from the young (to smooth
consumption), there is no way to pay back the loans because of the finite lifespans. In this equi-
librium, the interest rate, 1+r is the slope of the indifference curve at the endowment. (Though
there is no borrowing, this is the interest rate where you would save the current amount if it
were an option.)
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The social planner outcome would have each person consume y+ε
2 in each period. At this

solution, everyone is better off as long as the world never ends (otherwise, the young in the final
period T would lose out). Because there cannot be saving, there is dynamic inefficiency. To fix
this, one could introduce an infinitely-lived government.

One option is pay-as-you-go pensions or Social Security. If the transfer in this case is high
enough, then fiat money will no longer be necessary; that is, there will be no equilibrium with
fiat currency.

Definition 9 The Balasko-Shell condition for optimality is that 1 + r ≥ 1 + g, where g is the
growth rate of the economy. If this condition holds, the economy is Pareto optimal.

In this economy, r < 0 so the economy is inefficient. If we had ε ≥ y, the economy would be
efficient. There would still be no trading, but it would be optimal because there is no way to
make the people who are old at time 0 better off.

By Samuelson’s two proposals, pay-as-you-go Social Security and fiat money would both
make the economy optimal, and would be equivalent.

Definition 10 An equilibrium with valued fiat money is a feasible allocation, (ct(t), ct(t +
1))T

t=1, and a nominal price sequence, {p(t)}, with 0 < p(t) < ∞ for all t, such that given the
price sequence, the allocation maximizes each households utility subject to the budget constraint
ct(t) + ct(t+ 1) ≤ wt(t) + p(t+1)

p(t) wt(t+ 1).

The household’s budget constraint can be written in two-period form as:

ct(t) +
m(t)
p(t)

≤ w1

ct(t+ 1) ≤ w2 +
m(t)

p(t+ 1)

The initially old have the one-period constraint that c0(1) ≤ m(1)
p(1) + w2.

In the more general case of this model, let

• wh
t (s) be the endowment of agent h, born at time t during period s,

• cht (s) be the consumption of agent h, born at time t during period s,

• τh
t (s) be the lump sum tax on agent h, born at time t during period s,
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• τh
t (s) be the storage of the good by agent h, born at time t during period s (note that this

will only happen in period t, so that the agent will be around to take it out of storage),

• lht (s) be the amount of 1-period loans that in period s made by agent h born in time t
(this will only be non-zero when the agent is young, so that they can get paid back),

• G(t) be government expenditures at time t,

• Lg(t) be government loans at time t,

• ρ(t) be the net rate of return on storage from period t to t+ 1, and

• r(t) be the net real interest rate between periods t and t+ 1.

Time starts at period 1 and ends at period T (which may be infinite). The initial old have
preferences uh

0(ch0(1)) while an agent born in period t ≥ 1 has preferences given by uh
t (cht (t), cht (t+

1)). The storage technology takes in kh
t (t) at time t and returns kh

t (t)(1+ρ(t)) in the next period.
The population is N(t) +N(t− 1) at each period.

Since the social planner solution is not necessarily implementable, we use compute the com-
petitive equilibrium directly by finding agents’ solutions for any prices and then choosing prices
by ensuring that markets clear. The agents’ problem is to maximize uh

t (cht (t), cht (t+ 1)) subject
to:

cht (t) + τh
t (t) + lht (t) + kh

t (t) ≤ wh
t (t)

cht (t+ 1) + τh
t (t+ 1) ≤ wh

t (t+ 1) + kh
t (t+ 1)(1 + ρ(t)) + lht (t)(1 + r(t))

cht (t), cht (t+ 1), kh
t (t) ≥ 0

This can also be written as a present value budget constraint:

cht (t) + τh
t (t) +

cht (t+ 1)
1 + r(t)

+
τh
t (t+ 1)
1 + r(t)

≤ wt(h) +
1h

t (t+ 1)
1 + r(t)

+ kh
t (t)(

1 + ρ(t)
1 + r(t)

− 1)

Note that if ρ(t) > r(t), the agents will set kh
t (t) to be infinite, which requires that ρ(t) ≤ r(t).

(The non-negativity constraint on kh
t (t) allows ρ(t) < r(t) without making the budget constraint

unbounded, since the agents cannot “go short” in storage.) If there is no storage, ρ(t) = −1.
The government budget constraint is:

G(t) + Lg(t) =
∑

h

τh
t+1(t) +

∑
h

τh
t (t) + Lg(t+ 1)(1 + r(t− 1))

(In equilibrium, the government has no reason to store, since they can do at least as well in the
capital market.) We assume that Lg(0) = lh0 (0) = kh

0 (0) = 0.

Definition 11 Given the exogenous components, wh
0 (1), N(0), (wh

t (t), wh
t (t+1), ρ(t), G(t), N(t))T

t=1,
a rational expectations competitive equilibrium consists of an allocation, ch0(1), τh

0 (1), (cht (t), cht (t+
1), kh

t (t), lht (t), Lg(t), τh
t (t), τh

t (t+ 1))T
t=1 and a price system, r(t)T

t=1, that satisfy:
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• the government budget constraint,

• given (r(t), ρ(t), τh
t (t), τh

t (t+ 1)), agents are maximizing utility, and

• market-clearing conditions:∑
h

cht−1(t) +
∑

h

cht (t) +G(t) +
∑

h

kh
t (t) =

∑
h

wh
t−1(t) +

∑
h

wh
t (t) +

∑
h

kh
t−1(t− 1)(1 + ρ(t− 1))

Lg(t) +
∑

h

lht (t) = 0

A sequence of Lg(t) is equivalent to having fiat money. Suppose that the government prints
bills and gives them to the old. It is possible that people will assign no value to the fiat money,
which reduces to the case where Lg(t) = 0. However, the fiat money can take on a range of
values, which means that the price level is not uniquely determined; any of the possibilities in
the range above leads to a rational expectations equilibrium. Now, we see unbacked government
debt as fiat money, with the real money supply defined by −Lg(t) = m(t)

p(t) and the (inverse of

the) inflation rate by 1+r(t) = 1/p(t+1)
1/p(t) = p(t)

p(t+1) . Substituting these into the government budget
constraint leads to:

G(t) =
∑

h

τh
t−1(t) +

∑
h

τh
t (t) +

1
p(t)

(m(t)−m(t− 1))

The equilibrium conditions now include both debt and money as assets, and they must have the
same rate of return. In the case with no taxes after the initial tax and no government spending,
the expression above implies that m(t+1) = m(t), so that the nominal money supply is constant
but the real money supply changes. In all cases, Lg(1) =

∑
h τ

h
0 (1) = −m(1)

p(1) . In this monetary
equilibrium, the government controls m(1) but not p(1), because that depends on the agents’
perceptions.

In general, to solve a fiat money problem:

• Find the saving function (which is equivalent to the demand for money) by maximizing
u(w1 − s, w2 +Rs) over s.

• In equilibrium, s(Rt) = m
p(t) and Rt = p(t)

p(t+1) . Given p(1) or R0, these equations implicitly
define the path of p(t).

For a stationary equilibrium, we must have p(t) = p(t + 1). Otherwise, for equilibrium to
occur, p(t) < p(t + 1) and Rt decreases to R∗ such that S(R∗) = 0; this is the interest rate at
the equilibrium without valued fiat currency. Any equilibrium must have Rt ∈ [R∗, 1].

If money is valued, the stationary equilibrium is not stable.
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5.1 Example: Borrowers and Lenders

Suppose everyone has utility function uh
t (cht (t), cht (t+1)) = log cht (t)+log cht (t+1). Suppose that

in each generation, there are N1 people with endowment (α, 0) and N2 people with endowment
(0, β). We assume that ρ(t) = −1, T = ∞, G(t) = 0, τh

t (t) = τh
t (t+ 1) = 0. We allow τh

t (0) and
Lg(t) to take on any values.

Solving the agents’ problem shows that l1t (t) = α
2 and l2t (t) = − β

2(1+r(t)) . Using the market

clearing condition, we find that 1 + r(t) = βN2

αN1+2Lg(t) . (This is also equivalent to the feasibility
condition.) The government budget constraint implies that:

Lg(t+ 1) = (1 + r(t))Lg(t)

Lg(1) =
∑

h

τh
0 (1)

Clearly, one solution sets τh
0 = 0. Then, Lg(t) = 0 for all time. In this equilibrium,

1 + r(t) = N2β
N1α .

Suppose N2β
N1α ≥ 1. Then, there is a continuum of equilibria which can be ranked according

to Pareto optimality.

Suppose 1+r(t) = 1 and therefore Lg(t) = Lg(1) for all t. Then, Lg(t) = 1
2(N2β−N1α) < 0.

This equilibrium transfers from the young to the old. In general, any Lg(1) ∈ [12(N2β−N1α), 0]
leads to an equilibrium, in which the government borrows and transfers to the old. For the
interior cases, N2β

N1α < 1+ r(t) < 1. Then, 0 > Lg(t+1) > Lg(t), which means that 1+ r(t+1) <
1 + r(t). In the limit, (Lg(t), 1 + r(t)) → (0, N2β

N1α).

If N2β
N1α ≥ 1, then the economy is dynamically efficient (by Balasko-Shell). Thus, the equilib-

rium above is the only equilibrium. Using the results above, we would see that any debt would
grow unboundedly, with N1

α
2 − N2

β
2(1+r(t)) = −Lg(t). Since the left-hand side is bounded by

N1
α
2 and the right hand side is unbounded, there can be no equilibrium.

Given p(1), the credit market pins down all future p(t) through the difference equation:

N1
α

2
−N1

β

2
p(t+ 1)
p(t)

=
m(1)
p(t)

N1αp(t)−N2βp(t+ 1) = 2m(1)

(1− N2β

N1α
L−1)p(t) =

2m(1)
N1α

Since N2β
N1α < 1, the general solution is

p(t) =
2m(1)
n1α

1
1−N2β/N1α

+ C(
N1α

N2β
)t
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we require that C ≥ 0, so that the price level is always positive. Any positive C is possible.
C = ∞ is equivalent to p(1) = ∞ (AND C = 0?). This shows that (1

2(N2β −N1α), 0) maps to
(0,∞).

Contrast this with the case of infinitely lived agents. Then, the government could not have
τh
o < 0 since Lg(t) < 0 for all time, and no one would buy the bonds. Furthermore, τh

0 > 0
implies that the government would accumulate infinite assets. Infinitely lived agents would have
no use for fiat money either. In an Arrow-Debreu equibrium, p(1) = ∞; this is the price of
money, which is a good that gives no one utility.
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