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Most current macroeconomic research is based on dynamic, stochastic mod-
els which involve optimizing agents. We look for properties of the equilibrium
outcomes, using dynamic programming.

1 Probability and Markov Chains

1.1 Markov Chains

Definition Let {xt} be a stochastic process in discrete time. {xt} satisfies the
Markov property if P (xt ∈ A|xt−1, ..., x0) = P (xt ∈ A|xt−1). That is, knowing
xt−1 is sufficient for the entire history of the process.

Definition Let S be the space of column basis vectors, ei ∈ Rn, where the
ith element of ei is 1 and all the other elements are 0. We define ei as being
in state i. Let S be the set of all subsets of S. Then, A ∈ S is the event
of being in a certain subset of states. We define a transition matrix, P , by
Pij = P (xt = ej |xt−1 = ei), which is the one-step probability of moving from
state i to state j (this makes the process Markov). We assume that this matrix
is time-invariant. Note that

∑n
j=1 Pij = 1 and Pij ∈ [0, 1]. We also define

an initial density, π0, which gives the probabilities that x0 = ei. The states,
transition matrix, and initial condition define a Markov chain.

To find the probabilities of future states, we have π′k = π′0P
k.

Definition Let y be an n× 1 vector. Define yt = y′xt, where xt is the current
state. Then, yt is a Markov random variable.

Then, we may take expectations of the random variable in each period:

E(y0) = π′0y

E(yt|xt−1 = ei) = e′iPy

E(yt+k|xt) = x′tP
ky

Definition π is a stationary distribution of a Markov chain if π′P = π′. That
is, the stationary distribution does not change from one period to the next. This
is also called the ergodic distribution, the invariant distribution, the steady state
distribution, and the unconditional distribution.
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Definition A process is asymptotically stationary if, for all π0, limt→∞ π0P
t =

π∞, and π∞ does not depend on π0.

Note that π∞ is a stationary distribution.

Definition A state is transitory if there is a positive probability of leaving the
state and never returning.

Definition A set E ⊂ S is ergodic if P (xt ∈ E|xt−1 ∈ E) = 1 and no proper
subset of E has this property. That is, once the Markov chain enters the set, it
never leaves.

Theorem 1.1 The state space of any Markov chain can be partitioned into a
least one ergodic set and one (possibly empty) transitory set.

Theorem 1.2 Let P∞ = limN→∞
1
N

∑N−1
n=0 Pn (which always exists). Each

row of P∞ is an invariant distribution of the Markov chain, and any invariant
distribution is a convex combination of the rows of P∞.

Theorem 1.3 P has a unique ergodic set if there exists a state, j, such that
for all i, Pn

ij > 0. That is, all states eventually lead to j. (Then, once you are
at j, all future paths are identical; also, there are no absorbing sets that do not
include j.)

Theorem 1.4 If all Pij > 0 then there is a unique invariant distribution and
one ergodic set. If Pn

ij > 0 for some n, then there is a unique steady state
distribution.

1.2 Basic Time Series

Definition An AR(1) process is defined as Yt = µ + ρYt−1 + εt, where εt ∼
Normal(0, σ2) are independent and identically distributed, and −1 < ρ < 1.
Note that Yt is a continuous random variable with support on all of R.

The transition function is Yt|Yt−1 ∼ Normal(µ + ρYt−1, σ
2). Note that

knowing Yt−1 is enough to characterize the distribution conditional on all the
information up to time t− 1, and Yt satisfies the Markov property.

Definition The lag operator, L, is defined by LXt = Xt−1. The forward oper-
ator, F , is defined by FXt = Xt+1. Note that F = L−1.

The norm of a lag operator is 1, since it maps constants to themselves.
Some facts about AR(1) processes:

• Yt = µ
1−ρL + 1

1−ρLεt = µ
1−ρ +

∑∞
j=0 ρjεt−j .

• E(Yt) = µ
1−ρ and V ar(Yt) = σ2

1−ρ2 .
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• The process is mean-reverting. The importance of the initial value, Y0,
declines exponentially fast to 0 (this means that the process is asymptot-
ically stationary).

• For forecasting: Et(Yt+n) = µ
∑n−1

j=0 ρj + ρnYt.

Definition An AR(2) process is given by Yt+1 = µ+ρ1Yt +ρ2Yt−1 + εt+1, with
εt+1 ∼ Normal(0, σ2).

This process is not Markov, because the distribution depends on two lags.
However, we may rewrite it as a vector AR(1) process, using (assuming µ = 0):[

Yt+1

Yt

]
=
[

ρ1 ρ2

1 0

] [
Yt

Yt−1

]
+
[

1
0

]
εt+1

Then, Zt = (Yt, Yt−1) is Markov of the first order, with Zt+1 = AZt + Bεt+1.
For the process to be stationary, the eigenvalues of A must lie in the unit

circle. E(Zt) = (I−A)−1BE(εt) = 0. The variance can be computed recursively
using the Lyapunov equation, V ar(Zt) = AV ar(Zt)A′+Bσ2B′. For forecasting,
Et(Zt+j) = AjZt.

Definition An MA(1) process satisfies Yt = εt−bεt−1 with εt ∼ Normal(0, σ2)
iid, |b| < 1.

MA processes do not satisfy the Markov property. However, if we include εt

as part of the information set, then we have the companion form:[
Yt

εt

]
=
[

0 −b
0 0

] [
Yt−1

εt−1

]
+
[

1
1

]
εt

If we write this as Zt = AZt−1 + Cεt, we may compute:

E(Zt) = AE(Zt) = 0
V ar(Zt) = AV ar(Zt)A′ + σ2CC ′

=
[

1 + b2 1
1 1

]
σ2

Et(Zt+j) = AjZt

Definition An ARMA(1,1) process is given by Yt = µ+ρYt−1 + εt−bεt−1 with
εt ∼ Normal(0, σ2) independent and identically distributed.

The companion form for the Markov property to hold is:[
Yt

εt

]
=
[

ρ −b
0 0

] [
Yt−1

εt−1

]
+
[

1
1

]
εt +

[
1
0

]
µ

The one-step-ahead forecast is Et(Yt+1) = µ + ρYt − bεt.
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2 Dynamic Programming

Definition A correspondence is a mapping Γ : X → S(Y ), where S(Y ) is the
set of subsets of Y .

Dynamic programming depends on the following elements:

• A space of exogenous variables, Z, which are determined outside the sys-
tem, and evolve according to a Markov process with probabilities q(z, z′).
Note that Z may include lags of other variables, as long as everything
evolves according to a Markov process.

• A space of endogenous (control) variables, X, which are determined in the
system.

• A payoff function at date t, given by F (xt, xt+1, zt).

• A constraint correspondence, xt+1 ∈ Γ(xt, zt).

• A discount factor, β, for future payoffs.

We wish to choose a policy function, πt : Zt−1 → X, in which we choose
the next value of the control variable given all of the previous values of the
exogenous variable (and, therefore, implicitly, all of the previous choices for the
control variable).

Definition A policy, π, is feasible if πt+1 ∈ Γ(πt, zt) for all t.

The sequence problem is to maximize:

V (x0, z0) = sup
πt+1∈Γ(πt,zt)

( ∞∑
t=0

βtE(F (πt, πt+1, zt)|x0, z0)

)

That is, we wish to maximize the present value of the payoffs.
According to Bellman’s Principle, the optimal policy has the property that

whatever the initial state and actions, the remaining decisions constitute an
optimal policy with regard to the state resulting from the initial decision. That
is, one should make the best decision today given that one will make the best
decision tomorrow. Using this principle (and that fact that the payoff function
and constraint correspondence depend only on the current state), we have the
Bellman equation for the sequence problem:

V (x, z) = max
x′∈Γ(x,z)

(F (x, x′, z) + βE(V (x′, z′)|z))

We search for a value function, V , that will satisfy this relationship. We then
find a policy function, x′ = π(x, z), to maximize the resulting expression.

Theorem 2.1 Bellman’s recursive formulation is equivalent to the original se-
quence problem if V does not change over time.
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Proof (For the case with certainty.) In this case:

V (x0) = sup
x1∈Γ(x0)

F (x0, x1) + βV (x1)

= ...

= sup
{xt} feasible

F (x0, x1) + βF (x1, x2) + β2F (x2, x3) + ... + βkV (xk)

If βkV (xk) → 0, as would happen if V (xk) does not grow over time, then the
two problems are identical.

Definition Let (S, ρ) be a metric space. Let T : S → S be a function. T is a
contraction mapping with modulus β if, for some β ∈ (0, 1),

ρ(Tx, Ty) ≤ βρ(x, y)

for all x, y ∈ S.

Theorem 2.2 Contraction Mapping Theorem. If (S, ρ) is a complete metric
space and T : S → S is a contraction mapping of modulus β, then T has exactly
one fixed point, v ∈ S, and, for all v0 ∈ S, ρ(Tnv0, v) ≤ βnρ(v0, v).

Proof Let v0 be any point in the space. Then, {Tnv0} defines a Cauchy se-
quence, since ρ(Tnv0, T

n−1v0) ≤ βnρ(v, Tv0) (and we may then apply the trian-
gle inequality for any m,n). Because the metric space is complete, this sequence
converges to some v which must be a fixed point.

The fixed point is unique, since if both v0 and v1 are fixed, then ρ(v0, v1) =
ρ(Tv0, T v1) ≤ βρ(v0, v1), and the distance between them must be 0.

We may use such iterations to compute the fixed point. For any v0, we
bound the distance to the fixed point (repeatedly using the triangle inequality):

ρ(Tnv0, v) ≤
∞∑

i=0

ρ(Tn+iv0, T
n+i+1v0)

≤
∞∑

i=0

βiρ(Tnv0, T
n+1v0)

=
1

1− β
ρ(Tnv0, T

n+1v0)

Thus, we can look at the stepsize between iterations to decide when the iterates
are close enough to the fixed point.

Corollary 2.3 If S′ ⊂ S is closed and T (S′) ⊂ S′, then v ∈ S′. If T (S′) ⊂
S′′ ⊂ S, then v ∈ S′′.

Theorem 2.4 Blackwell’s Conditions for a Contraction Mapping. Let X ⊂ Rk.
Let B(X) be the space of bounded functions on X with the sup norm (that is,
ρ(f, g) = supx∈X |f(x)−g(x)|). Suppose T is a mapping on B(X) that satisfies:
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• Boundedness: If f ∈ B(X) than Tf ∈ B(X).

• Monotonicity: If f, g ∈ B(X) and f(x) ≤ g(x) for all x ∈ X, then
Tf(x) ≤ Tg(x) for all x ∈ X.

• Discounting: There exists β ∈ (0, 1) such that (T (f + a))(x) ≤ (Tf)(x) +
βa, for all f ∈ B(X), constants a ≥ 0, and x ∈ X.

Then T is a contraction mapping on B(X).

Proof Given f, g ∈ B(X), set a = supx∈X |f(x) − g(x)|. Then, (f − a)(x) ≤
g(x) ≤ (f + a)(x) for all x ∈ X. By monotonicity, T (f − a) ≤ Tg ≤ T (f + a).
By discounting,

T (f + a)(x) ≤ Tf(x) + βa

Tf(x) ≤ T (f − a)(x) + βa

T (f − a)(x) ≥ Tf(x)− βa

(Two steps are needed in the second case because discounting is only defined
for a ≥ 0.) Then, we have bounds on Tg:

Tf(x)− βa ≤ T (f − a)(x) ≤ Tg(x) ≤ T (f + a)(x) ≤ Tf(x) + βa

This shows that ρ(Tf, Tg) ≤ βa = βρ(Tf, Tg). Thus, these conditions ensure
that T is a contraction.

For Bellman’s equation, we consider the mapping:

Tf(x, z) = sup
y∈Γ(x,z)

F (x, y, z) + βE(f(y, z′)|z)

If F is bounded, this mapping satisfies boundedness, since the maximum of
two bounded functions is bounded as well. This mapping satisfies discounting,
because E(f(y, z′) + a|z) = E(f(y, z′)|z) + a, so that:

T (f + a)(x, z) = sup
y∈Γ(x,z)

F (x, y, z) + βE((f + a)(y, z′)|z)

= sup
y∈Γ(x,z)

F (x, y, z) + βE(f(y, z′)|z) + βa

= Tf(x, z) + βa

This mapping satisfies monotonicity, because when f ≤ g,

Tf(x, z) = sup
y∈Γ(x,z)

F (x, y, z) + βE(f(y, z′)|z)

≤ sup
y∈Γ(x,z)

F (x, y, z) + βE(g(y, z′)|z)

= Tg(x, z)

since f ≤ g implies that E(f(y′, z)|z) ≤ E(g(y′, z)|z) for any y, z. Thus, this
mapping is a contraction, with the value function as a fixed point.
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Definition A correspondence, Γ : X → Y , is lower hemi-continuous at x if
Γ(x) 6= ∅ and if for all y ∈ Γ(x) and all xn → x, there exists N ≥ 1 and a
sequence {yn} such that yn → y with yn ∈ Γ(xn) for all n ≥ N . (This means
that new choices cannot appear discontinuously.)

Definition A compact-valued correspondence, Γ : X → Y , is upper hemi-
continuous at x if Γ(x) 6= ∅ if, for all sequences xn → x and every sequence
{yn} such that yn ∈ Γ(xn) for all n, there exists a convergent subsequence of
{yn} whose limit point is in Γ(x). (This means that choices do not disappear
discontinuously.)

Roughly, an upper hemi-continuous correspondence has a closed graph.

Definition If a correspondence is both upper and lower hemi-continuous, then
we say that it is continuous.

Theorem 2.5 Theorem of the Maximum. Let X ⊂ Rl, Y ⊂ Rm. Let f :
X × Y → R be a continuous function. Let Γ : X → Y be a compact-valued,
continuous correspondence. Define h : X → R by h(x) = maxy∈Γ(x) f(x, y).
Define the correspondence G : X → Y by G(x) = {y ∈ Γ(x)|f(x, y) = h(x)}.
Then, h is continuous, and G is nonempty, compact-valued, and upper hemi-
continuous.

Note that there may be more than one optimal choice for any given x (this
is why G is a correspondence), but a new one will always appear before the old
one disappears, by upper hemi-continuity. Since h is constant across the two
choices, it is still continuous in x.

Corollary 2.6 If the constraint set, Γ, is convex and the function f above is
strictly concave, then the optimal correspondence is single-valued and therefore
is a continuous function.

Proposition 2.7 If F and Γ are continuous in x, then the value function is
continuous in x.

Proof Let g be continuous. Then, F (x, y, z) + βE(g(x′, z′)|x, z) is the sum
of continuous functions. Applying the Theorem of the Maximum shows that
Tg(x, z), which is the maximum, must be continuous (in x) as well. Note that
the set of bounded, continuous functions on a compact set is closed under the
sup norm and is mapped to itself under this contraction. Thus, the fixed point
must be bounded and continuous as well.

Proposition 2.8 Suppose F (x, y, z) is increasing in x and that Γ is monotonic
in x (that is, whenever x1 ≤ x2, Γ(x1, z) ⊆ Γ(x2, z)). Then, the value function
is increasing in x.
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Proof Suppose f is increasing and x2 > x1. Let y(x1) and y(x2) be the optimal
choices for x1, x2. Since Γ(x, z) is monotonic, y(x1) ∈ Γ(x2, z). Because F is
monotonic in x and y(x2) is the optimal choice, we must have:

Tf(x1, z) = F (x1, y(x1), z) + βE(f(y(x1), z′)|z)
≤ F (x2, y(x1), z) + βE(f(y(x1), z′)|z)
≤ F (x2, y(x2), z) + βE(f(y(x2), z′)|z)
= Tf(x2, z)

and Tf is increasing. Thus, T maps increasing functions to increasing functions,
so the fixed point is increasing.

If F is strictly increasing in x, then any non-decreasing function, f , will be
mapped to a strictly increasing function. Thus, the fixed point must be strictly
increasing, since it cannot be non-decreasing.

Proposition 2.9 Suppose F (x, y, z) is concave in x and y (that is, for any
θ ∈ (0, 1), F (θx1+(1−θ)x2, θy1+(1−θ)y2, z) ≥ θF (x1, y1, z)+(1−θ)F (x2, y2, z))
and that Γ(x, z) is convex. Then, the value function is concave.

Proof Let g be any concave function. Consider Tg(x1, z), Tg(x2, z) and the
associated maximizers, y1, y2. Define

T̂ g(x, z) = F (x, αy1 + (1− α)y2, z) + βE(g(αy1 + (1− α)y2, z
′)|z)

for x = αx1+(1−α)x2. This assigns the choice which is the average of the choices
for x1 and x2; this is feasible because Γ is convex. Since the average is a linear
function, T̂ g is concave. Note that T̂ g(x1, z) = Tg(x1, z), T̂ g(x2, z) = Tg(x2, z),
and T̂ g(x, z) ≤ Tg(x, z) in the interior (because T chooses the optimal value
and therefore cannot do worse than T̂ ). Thus, T is greater than a concave
function on the interior of the interval, and is therefore concave. In fact, if F
and therefore T̂ are strictly concave, then T is strictly concave as well.

Since (strictly) concave functions are mapped to themselves, the fixed point
must be (strictly) concave. The set of concave functions is closed under the sup
norm. Thus, the value function is concave.

Theorem 2.10 Benvenesti-Schenkman. Consider V (x, z) = maxy∈Γ(x) F (x, y, z)+
βE(V (y, z′)|z). If V is continuous and concave, Γ is continuous, and F is con-
tinuous, concave, and differentiable, then V is differentiable in x, if the optimal
policy lies in the interior of Γ(x, z).

Proof There must be a hyperplane that lies above V and touches it at only
one point (because V is concave). Let y∗ be the optimal choice for x∗, z∗.
Suppose we have some nearby x, z. By continuity and the fact that y∗ ∈
Interior(Γ(x∗, z∗)), y∗ is feasible. However, y∗ need not be optimal. Thus,
F (x, y∗, z)+βE(V (y∗, z′)|Z) ≤ V (x, z), with equality only if y∗ is still optimal.
Thus, V (x, z) is sandwiched between two functions that are differentiable in x,
so it must be differentiable in x as well.
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This yields the following sequence of steps for dealing with value functions:

• Suppose the payoff function, F (x, y, z), is bounded and continuous. Then,
the mapping based on the value function is a contraction by Blackwell’s
Theorem, and the value function exists and is bounded.

• If Γ(x, z) is continuous as well, then we apply the Theorem of the Maximum
to show that the value function is continuous.

• Apply Benevesti-Schenkman’s theorem to show that the value function is
differentiable and the other theorems to show that the value function is
concave and increasing.

2.1 The Euler Equation

Because we are maximizing the control variable as part of evaluating the value
function, we have a first order condition that the control variable next period
must satisfy if it is in the interior:

F2(x, y, z) + βE(V1(y, z′)|z) = 0

where F2 is the partial derivative of F with respect to the second argument and
V1 is the partial derivative of V with respect to the first argument. (This means
that we wish to balance the marginal payoff today with the discounted marginal
value tomorrow.) If there is more than one control variable (in x or just in the
one-period maximization), then there will be more first order conditions of the
same form.

Theorem 2.11 Envelope Theorem. If V (x, z) = maxy∈Γ(x,z) F (x, y, z)+βE(V (y, z′)|y)
and y is an interior point, then

V1(x, z) = F1(x, y, z)

(where the V1 and F1 are partial derivatives with respect to the first arguments).

Proof (Sketch.) We may write y as a function of x, and we then use the chain
rule to compute:

V1(x, z) = F1(x, y, z) + F2(x, y, z)
∂y

∂x
+ βE(V2(y, z′)|z)

∂y

∂x

The last two terms sum to 0 if y is an interior point by the first order conditions.

To use the envelope theorem, we plug in all the equality constraints, so
that the value function is written in terms of only the current states and the
maximizer. We then take the derivative(s) of the value function with respect
to the control variables by: (1) dropping the fact that we are maximizing, (2)
treating all the other states as constants, (3) treating the variable that we have

9



maximized as constant, and (4) taking the derivative with respect to the variable
of interest (probably applying the chain rule).

We may use the envelope theorem to calculate V1(y, z′) to substitute into
the first order conditions (moving all variables one period forward). This yields
the Euler equation:

F2(x, y, z) + βE(F1(y, y′, z′)|z) = 0

where z′ is the value of the exogenous state variable next period and y′ is the
corresponding choice of the control variable. The same idea works out if there
are multiple endogenous variables.

Much analysis happens using only the Euler equation. This will not give
unique solutions because it is only a first order condition, describing relative
changes in the variables. To completely understand the solution, we also care
about the constraints and the levels of the variables; these are the boundary
conditions for the first order condition and are in the value function.

2.2 Steady States

In a non-stochastic problem, one may want to show the existence of a steady
state, where xt = xt−1. (One can solve for this by just plugging xSS = ySS

into all the equations.) We then want to show if the steady state is stable
by examining the derivatives to see if small perturbations will be pushed back
toward the steady state.

In a stochastic problem, one could find an analog of the steady state by
setting all the exogenous variables equal to their means and solving for the
control variables as before.

2.3 Calculus of Variations

We use the Euler equation to study the effect of small perturbations on the
system. At the margin, the loss of a F2(x, y, z)ε today should be balanced by a
gain of βE(V1(y, z′)|z)ε tomorrow. This shows the effect of small perturbations
on the optimal path.

One may string together a sequence of Euler equations to find the effect of
a perturbation over multiple periods. (For example, taking less payoff now and
then having more value in two periods.)

2.4 Solution Methods

2.4.1 Numerical Dynamic Programming

To compute the value function numerically, we may start with any bounded
function, I0, and then use the mapping, T , to iterate to the value function:

T (Ik) = sup
y∈Γ(x,z)

F (x, y, z) + βE(Ik−1(y′, z′)|z)
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where the values of Ik are computed over a grid (which is chosen to include all
possible values that the control variable might take in the problem; this suggests
that we should find bounds for the problem overall), and the maximum is found
by searching over the grid of F (x, y, z)+βE(Ik−1(y′, z′)|z), since Ik−1 is known
from the previous iteration. Then,

V (x, z) = lim
n→∞

Tn(I0)

(one stops iterating once the functions are “close enough,” based on the formula
above for the distance to the fixed point).

2.4.2 Finding a closed form

Given a functional form for the payoff function, one may be able to guess a
relationship between x and y(x) that will satisfy the Euler equation (that is,
if one replaces y by y(x) in the Euler equation, everything will cancel, leaving
some constants that are defined by the resulting equation).

2.4.3 Log-Linearization

For any value of xt, we may write xt = xSS(1 + x̂t), where xSS is the steady-
state value and x̂t is the percentage change from the steady state. We may wish
to study how (percentage) deviations from the steady state are propagated,
perhaps using stochastic difference equations.

By Taylor’s Theorem, we may approximate any function by a linear func-
tion. We use log-linearization, using the fact that the percentage change in x is
approximately ln(x)− ln(x0) and that:

f(x) = f(eln x) ≈ f(eln(x0)) + f ′(eln x0)eln x0(lnx− lnx0)
= f(x0) + f ′(x0)x0(lnx− lnx0)

In two variables, this works out to:

f(x, y) = f(x0, y0) + fx(x0, y0)x0(lnx− lnx0) + fy(x0, y0)y0(ln y − ln y0)

Given an equation (such as an Euler equation) or a constraint, we may then
apply this function term-by-term (since Taylor expansions add), expanding
about the steady state values. Because the constraints and Euler equation
must hold at the steady states, we then cancel the level terms, leaving linear
equations that approximate the dynamics about the steady state. For example,
if f(x, y) = g(z), then we compute:

f(x0, y0) + fx(x0, y0)x0(lnx− lnx0) + fy(x0, y0)y0(ln y − ln y0) = g(z0) + gz(z0)z0(ln z − ln z0)
fx(x0, y0)x0(lnx− lnx0) + fy(x0, y0)y0(ln y − ln y0) = gz(z0)z0(ln z − ln z0)

fx(x0, y0)x0x̂ + fy(x0, y0)y0ŷ = gz(z0)z0ẑ
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Alternatively, we may take logs of both sides of the equation first, and sub-
tract the log of the equation at the steady state. For example, if Z = XY ,
then

log(Z) = log(X) + log(Y )
log(ZSS) = log(XSS) + log(YSS)

zt = log(Z)− log(ZSS) = xt + yt

We can also divide two equations first, and then take logs.

2.4.4 Linear-Quadratic Models and Stochastic Difference Equations

Another way to make everything linear is for the payoff to be quadratic (we need
the resulting derivative to be linear in both x and y) and for all constraints and
evolutions of variables to be linear. (Note that any increasing and concave
quadratic payoffs will have a maximum, called the bliss point or the satiation
point ; we generally assume that point is outside the range of possible values.)

Then, the Euler equation can be written as a stochastic difference equation
in terms of the expectations of the endogenous and exogenous variables. This
can be re-written in a form like:

Et(xt + α1xt+1 + α2xt+2) = Et(zt + γ1zt+1)

We may write the left-hand side with lag polynomials:

Et((B2 + α1B + α2)xt+2) = Et(zt + γ1zt+1)

We may factor the lag polynomial into (B − δ1)(B − δ2). If the problem is
reasonable, then |δ1| < 1 and |δ2| ≥ 1. We take the term with δ1 “into the
future”(since zeroes less than one correspond to time series that are stationary
when written in terms of future shocks) and the term with δ2 “into the past”.
To do this, we rewrite B− δ1 = (1− δ1

B )B, which yields the difference equation:

Et((B − δ2)(1−
δ1

B
)xt+1) = Et(zt + γ1zt+1)

(since Bxt+2 = xt+1).
Divide both sides by the term to be taken into the future:

Et((B − δ2)xt+1) = Et

(
zt + γ1zt+1

1− δ1
B

)
Expand the fraction to write the right-hand side in terms of future values of the
exogenous variable and solve for xt+1:

xt+1 = xt + Et

 ∞∑
j=0

δj
1

Bj
(zt + γ1zt+1)

 = xt + Et

 ∞∑
j=0

δj
1(zt+j + γ1zt+j+1)


This writes the control variable for the next period in terms of the previous
value and the expectations of future shocks.
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2.5 Testing the Model

One way to test a model is to estimate the model parameters directly from data
(using GMM; any impulse response function is potentially a moment condition).
This is then used to identify the shocks and see how well the model fits the data.
(This is the Chicago method.)

Alternatively, one can calibrate the model, using parameter values deter-
mined in other studies (for example, a risk aversion parameter from experi-
ments), instead of directly from the data. Then, one finds predictions from the
model (such as the standard deviation of GDP growth) and compares them to
what is actually seen in macro data.

3 Growth Models

3.1 Non-stochastic Growth

Definition The Inada conditions for a production function are:

1. limK→0 f ′(K) = ∞ (the first unit of capital is infinitely productive)

2. limK→∞ f ′(K) = 0 (eventually, additional capital is useless)

Definition In a putty-putty model, capital from a previous period may be con-
sumed in the current period. (This is called “eating the capital”.) In a putty-clay
model, capital from a previous period cannot be consumed in the next period.

One way to bound everything when there is growth in the economy (such
as population and technology growth) is to divide everything by the growing
variable. For example, we may divide by effective labor, AL:

Y

AL
= F (

K

AL
, 1)

(We assume constant returns to technology in this equation.)
Assumptions for this model:

• A consumer maximizes
∑∞

i=0 βiu(Ct+i), where u is strictly increasing,
strictly concave, and continuous.

• The output function, Yt = f(Kt), is strictly increasing, strictly concave,
has f(0) = 0, and satisfies the Inada conditions.

• Capital Accumulation: Kt+1 = (1− δ)Kt + It, where δ is the depreciation
rate.

• The resource constraints: Yt = Ct + It, 0 ≤ Ct ≤ (1− δ)Kt + Yt. (This is
a putty-putty model.)
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The Social Planner’s Problem is to maximize the utility of a representative
agent.

The Bellman equation (written in terms of next period’s capital as the con-
trol variable) is:

v(K) = max
K′∈[0,(1−δ)K+f(K)]

u(f(K)− (1− δ)K −K ′) + βv(K ′)

In this case, there is a natural upper bound for K, found by solving the
equation K = (1−δ)K+f(K). (Such a solution exists because d

dk (1−δ)K+f(K)
is greater than 1 at 0 and asymptotically (1 − δ) by the Inada conditions; the
solution occurs when (1− δ)K + f(K) crosses the 45-degree line.) This ensures
that the constraint correspondence is compact and that f , u, and v are bounded
as well. We find v(K) as the fixed point of the mapping on bounded functions
on [0,K], since the mapping satisfies Blackwell’s conditions.

The first order conditions are:

u′(C) = βv′(K ′)

where C is defined as a function of K ′ by the resource constraints. Using the
envelope theorem,

v′(K) = u′(C)((1− δ) + f ′(K))

Combining the two yields the consumption Euler equation:

u′(C) = β((1− δ) + f ′(K))u′(C ′)

This shows that optimal consumption depends on the product of capital and the
rate of depreciation. (The equilibrium rate of return on capital can be defined
as 1 + r = 1− δ + f ′(K).)

Suppose u(C) = ln(C), f(K) = Kα for some α ∈ (0, 1), and δ = 1. In this
case, the Euler equation is:

1
Ct

= β(α(Kt+1)α−1)
1

Ct+1

We guess that Ct = (1 − s)Kα
t , and therefore Kt+1 = sKα. This satisfies the

Euler equation:

1
(1− s)Kα

t

= βα(Kt+1)α−1

(
1

(1− s)(Kt+1)α

)
s = βα

and therefore this must be the optimal policy. This also defines the optimal
saving rate.

In the steady state, KSS = sKα
SS , and KSS = s

1
1−α . If Kt < KSS , then

Kt+1
Kt

= sKα−1
t > 1, and capital moves up toward the steady state. In addition,

if Kt > KSS , then capital moves toward the steady state. Thus, the steady
state is stable. The interest rate in any period is 1 + r = α(Kt+1)α−1. In the
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steady state, this is 1 + rSS = α
s = 1

β . If K > KSS , then r < rSS ; if K < KSS

then r > rSS .
Suppose we instead have u(C) = C1−σ−1

1−σ (this is constant relative risk aver-
sion, σ = Cu′′

u′ , so that utility is more concave with larger values of σ; this also
assumes that consumers treat risk across time and risk across space the same,
which may not be right). We use log linearization on the constraints, where the
lower case is the log deviation from steady state:

KSSkt+1 = (1− δ)KSSkt + ISSit

YSSyt = CSSct + ISSit

YSSyt = αKα−1
SS KSSkt

yt = αkt

(The last equation follows because YSS = Kα
SS .) Log-linearizing the Euler

equation:

−σC−σ
SS ct = −σC−σ

SS ct+1β
(
(1− δ) + αKα−1

SS

)
+ βC−σ

SS α(α− 1)Kα−1
SS kt+1

We may then substitute to find a difference equation for capital:

1
β

kt +
(

CSSβα(α− 1)Kα−2
SS

σ
− 1− 1

β

)
kt+1 + kt+2 = 0

Using this difference equation and initial guesses for kt, kt+1, we may use forward
induction to work out kt+2 and future values. These values should return to the
steady state; if they diverge, then one should adjust kt+1, because that was not
the optimal choice for capital in the next period. Also, one can choose kt+2, kt+1

near the steady state and use backward induction to find a path that would have
come to that point.

3.2 Stochastic growth

Assumptions:

• The consumer maximizes
∑∞

i=0 βiE(u(Ct+i, Lt+i)), where Ct is consump-
tion and Lt is leisure.

• Production is defined by Yt = AtF (Kt, Nt), where At is a Markov chain
describing total factor productivity, Kt is capital, and Nt is labor.

• Capital grows according to Kt+1 = (1 − δ)Kt + It, and we must have
Kt+1 ∈ [0, (1− δ)Kt + Yt].

• We have resource and time constraints: Yt = Ct + It and Nt + Lt = 1.

The state variables are Kt (endogenous) and At (exogenous). In each period
we choose Nt as well (which then specifies Lt, It, Ct, Yt as we choose Kt+1), but
we do not need Nt to describe future states. This yields the Bellman equation:

v(K, A) = max
K′∈[0,(1−δ)K+F (K,N)],N∈[0,1]

u((1−δ)K+AF (K, N)−K ′, 1−N)+βE(v(K ′, A′)|A)
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Note that Γ is a joint constraint correspondence on (K ′, N).
There are now two first order conditions (one for each control variable) and

one application of the envelope theorem:

u1(C,L) = βE(V1(K ′, A′)|A)
u1(C,L)AF2(K, N) = u2(Ct, Lt)

V1(K, A) = u1(C,L)(1− δ + AF1(K, N))

where C = (1 − δ)K + AF (K, N) − K ′ and L = 1 − N . Note that the first
order condition based on K ′ is intertemporal; it describes the tradeoff of more
consumption today versus having more capital tomorrow. In contrast, the first
order condition based on N is intratemporal; it describes the tradeoff between
more leisure today and more consumption (or capital) today. The first and third
equations can be combined to find the Euler equation for consumption:

u1(Ct, Lt) = E(u1(Ct+1, Lt+1)(1− δ + At+1F1(Kt+1, Nt+1))|At)

Other combinations can be use to find intertemporal leisure substitution and
other possible substitutions.

We may log-linearize this model, in order to find the effect of technology
shocks, for example. The movements of variables will depend on both the Euler
equations and the constraints.

Using log-linearization, we note that:

YSSyt = CSSct + ISSit

yt =
CSS

YSS
ct +

ISS

YSS
it

This shows that the percentage deviation in output is a weighted average of the
consumption and investment deviations.

In the steady state, ISS = δKSS .

4 Consumption Models

Assumptions:

• Consumers receive utility, u(Ct), in each period and have a discount factor
β < 1. Consumers want to maximize the present discounted value of
utility.

• Consumers begin with initial assets A0.

• The rate of return, Rt = 1 + rt, and the income process, Yt, are Markov.
Rates of return from this period to the next may be known this period
(like bonds) or may be unknown (like stocks).

• The budget constraint depends on whether the consumer can borrow, the
effect of uncertainty on borrowing (and the enforcement mechanism for
repayment), and whether the problem has a finite or infinite horizon.
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If there is a two-period horizon with certainty and no borrowing, then we
know Y1, Y2, R. If there is no borrowing, the constraints are:

0 ≤ C1 ≤ A1 + Y1

0 ≤ C2 ≤ R(A1 + Y1 − C1) + Y2

On the other hand, if there is borrowing (and we note that the second constraint
will always be binding if u is increasing), then we have the constraint C1 + C2

R =
A1 +Y1 + Y2

R . We see that consumption over time is the sum of initial assets and
discounted human capital. In general, consumption must always be less that
total wealth, Wt = At + Ht, where Ht is the present discounted value of human
capital. This requires that At+1

Rt+1
> 0 and limT→∞

AT+1
RT+1

≥ 0.
If there is uncertainty in income, then a reasonable borrowing constraint is

that one must be able to pay back everything in any state of the world. This
means that one can only borrow against the discounted human capital in the
worst case: Hmin =

∑∞
j=0

1

Rj
max

Ymin (where Ymin and Rmax are well-defined in
a Markov chain).

If we assume no borrowing and that R is known at time t, then the Bellman
equation is:

v(A, Y, R) = max
C∈[0,A+Y ]

u(C) + βE(v(R(A + Y − C), Y ′, R′)|RY )

We must assume that u(C) is bounded on [0, A + Y ]. We could also bound
the problem by considering the control variable C

A instead, by finding an upper
bound for A (as we did for capital in the growth model) or by just assuming
everything will work out.

We may write the Bellman equation in terms of next period’s assets as
the control variable as well. If R is not known ahead of time (so that assets
tomorrow are Rt+1(At +Yt−Ct), which is unknown at time t), then we may use
the alternative state variable, St = At + Yt − Ct, which keeps the endogenous
and exogenous state variables separate.

The first order condition (no matter which state variables are used in the
Bellman equation) is:

u′(C) = βE(RV1(R(A + Y − C), R′, Y ′)|R, Y )

Using the envelope theorem (most easily calculated with A′ or S′ as the choice
variable):

V1(A,R, Y ) = u′(C)

This yields the Euler equation, u′(C) = βE(Ru′(C ′)|R, Y ). If the consumer is
constrained at C = Y + A (this is a liquidity constraint), then this becomes:

u′(C)
{

= βRE(V (A′, Y ′, R′)|Y, R) A′ ≥ 0
> βRE(V (A′, Y ′, R′)|Y, R) A′ = 0

If the constraint is binding, then A′ = 0 for small changes in A as well. This
means that E(V1(0, Y ′, R′)|R, Y ) is constant for the consumer (because nothing
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changes), and we will still have V1(A,R) = u′(C) even when the constraint
binds. Thus, we have the Euler equation for the constrained consumer, u′(C) >
βRE(u′(C ′)).

4.1 Linear-Quadratic Model of Consumption

Suppose u(C) is quadratic, R = 1 + r is known, Yt is ARIMA, and βR = 1.
Then, the Euler equation is just Ct = Et(Ct+1), or, in terms of At:

At −
At+1

R
= Et(At+1 + Yt+1 −

At+2

R
)

At − (1 +
1
R

)At+1 + Et(
At+2

R
) = −Yt + Et(Yt+1)

We find paths for the stochastic difference equation using lag polynomials:

Et((B2 − (1 +
1
R

)B +
1
R

)At+2) = Et(−Yt + Yt+1)

Et((B − 1)(B − 1
R

)At+2) = Et(−Yt + Yt+1)

Et((B − 1)(1− 1
BR

)At+1) = Et(−Yt + Yt+1)

Et((B − 1)At+1) = Et

(
−Yt + Yt+1

1− 1
BR

)

At −At+1 = Et

 ∞∑
j=0

(
1

BR
)j(Yt − Yt+1)


At = At+1 + Et

 ∞∑
j=0

1
Rj

(Yt+j − Yt+j+1)


We may also substitute this expression into the definition of consumption:

Ct = At + Yt −
At+1

R

= At + Yt −
1
R

At − Et

 ∞∑
j=0

1
Rj

(Yt+j − Yt+j+1)


= At(1−

1
R

) + (1− 1
R

)Et

 ∞∑
j=0

1
Rj

Yt+j


=

r

1 + r

At + Et

 ∞∑
j=0

1
(1 + r)j

Yt+j


This shows that one consumes from expected total assets as an annuity, which
is Milton Friedman’s permanent income hypothesis. Note that, in this model,
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the optimal policy is the same whether one is certain or uncertain about future
income; this is called certainty equivalence, and happens in linear-quadratic
models because marginal utility is linear and not concave.

This expression for consumption allows us to calculate the response to an
unexpected one unit change in income. If Yt = ρYt−1 + εt, then ∆ct = r

1+r (εt +
ρ

1+r εt + ρ2

(1+r)2 εt + ...) = r
1+r−ρεt, and consumption is predicted to be a random

walk. More complicated forms of Yt may make consumption more volatile than
income.

This form of the model can be tested against micro or macro data. The
accepted wisdom is that consumption has excess smoothness, because it does
not respond enough to innovations in permanent income, and excess sensitivity
to variables that should already be in the information set. Some of this can be
explained by liquidity constraints (because people cannot respond to expected
future income shocks until their receive the income) or delays in learning infor-
mation. Another test of the model (Zeldes, 1981) assumes that only poor people
have liquidity constraints and then tests that equality holds for rich people and
only sometimes holds for poor people.

Hall (1978) also tested this model, using only the Euler equation form, by
estimating Ct+1 = α0 + α1Ct + γXt + εt+1, where Xt is any other information
known at time t; the coefficient on this other information should be 0. This is
a reduced form test of the previous model.

4.2 Other applications of the Euler equation

(Hansen and Singleton, 1988) If the model is correct, we may estimate β, σ
(assuming constant relative risk aversion for the utility function). One way
to estimate this is by deriving moment conditions from the Euler equation,

Et((βRt+1
C−σ

t+1

C−σ
t

− 1)Xt) = 0, where Xt is any information known at time t.
(They defined Rt using stock returns.)

5 McCall Search Models

Suppose we have an unemployed worker searching for a job. In each period,
t = 1, 2, ..., the worker receives a single wage offer, wt, from a known distribution,
F (w), on bounded support, [0, B]. Each period, the worker may accept the offer
and work forever at the wage, wt, or may reject the offer, receive unemployment
insurance, c, that period, and draw again next period. We assume that future
earnings are discounted at β < 1 and draws from F (w) are independent and
identically distributed. The worker wants to maximize the present discounted
value of income. We want to find the optimal decision for each wage draw.

Let V (w) be the expected discounted value of future earnings if the optimal
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decision (for draw w) is made. Then, the Bellman equation is:

V (w) = max{accept, reject}

= max{ w

1− β
, c + βE(V (w′))}

The value function is bounded because 0 ≤ V (w) ≤ max{ B
1−β , c

1−β }. We write
the associated mapping of functions as

Tg(w) = max{w + βg(w), c + βE(g(w′))}

(The value function just simplifies the first term, using the fact that the worker
stays at a job forever.) T is bounded, and preserves continuity, since the max-
imum of two continuous functions is continuous. T also satisfies Blackwell’s
conditions, so V exists and is continuous.

This can also be written as two value functions (and therefore two mappings),
one for the case where the worker already has a job and the other for the case
where the worker is still unemployed:

Vjob(w) = w + βVjob(w)
Vun(w) = max{w + βVjob(w), c + βE(Vun(w′))}

T

[
g0

g1

]
(w) =

[
max{w + βg1(w), c + βE(g0(w′))}

w + βg1(w)

]
We maximize the value function by accepting when w

1−β ≥ c + βE(V (w));
this identifies w such that we should accept any w > w. This is the first order
condition for w:

w

1− β
= c + βE(V (w))

Since V (w) does not depend on time,

w +
β

1− β
w = c + β

(∫ w

0

w

1− β
dF (w) +

∫ B

w

w

1− β
dF (w)

)

(the first term is if we reject the offer, the second is if we accept the offer). This
equation implicitly defines w, so we could calculate it for a specified F .

Definition A distribution, F2(w), is a mean-preserving spread of F1(w) if∫ B

0
(F2(w) − F1(w))dw = 0 and

∫ x

0
(F2(w) − F1(w))dw ≥ 0 for all x ∈ (0, B).

That is, the two distributions have the same mean, but F2 has more weight on
extreme observations than F1.

Proposition 5.1 Let F2 be a mean-preserving spread of F1. Then the cutoff
wage, w, is higher for F2 than F1.

Proof Recall that E(w) =
∫ B

0
wdF (w) =

∫ B

0
(1− F (w))dw.

20



Then, ∫ B

w

(w′ − w)dF (w′) = E(w′)− w −
∫ w

0

(w′ − w)dF (w′)

= E(w′)− w +
∫ w

0

F (w′)dw′

(the last step uses integration by parts).
Using our previous solution, we find that

w − c =
β

1− β

∫ B

w

(w′ − w)dF (w′)

=
β

1− β
(E(w′)− w +

∫ w

0

F (w′)dw′)

= β(E(w′)− c +
∫ w

0

F (w′)dw′)

Under a mean-preserving spread, the first two terms do not change, but the
third term increases. This means that w must increase as well.

Notice that:

β

1− β

∫ B

0

(w′ − 0)dF (w′) =
β

1− β
E(w′)

β

1− β

∫ B

B

(w′ −B)dF (w′) = 0

Since β
1−β

∫ B

k
(w′ − k)dF (w′) is continuous and decreasing in k, it must cross

the line k − c at some point; this crossing occurs at k = w.
Suppose c increases. Then, the point where the two lines cross will be

higher, which means that w increases. This means that unemployment insurance
reduces the incentive to take lower paying jobs.

Extensions of the model include:

• Quits: A worker might be able to quit and search again. If the underlying
F has not changed, though, this would never be worth it, since one will
still take only jobs with a wage over w. If one can search on the job with
no cost, however, one would take the first job with w > c and then keep
looking for better jobs.

• Search with recall: Suppose that a worker may take any previous wage
offer. Then, the value function is V (xt), with xt = max{wt, xt−1}. Note
that V (Xt) = max{ 1

1−β xt, c +
∫

V (x′)dF ∗}, where F ∗ is a modification
of the distribution (because of the maximum) and will change from one
period to the next. However, note that the distribution changes only in the
rejection region. This means that if a wage offer is rejected in the past,
it will still be rejected in the future. So the problem has not changed
dramatically.
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