Net Present Value

$\overline{\mathrm{EAY}}=(1+\mathrm{APR} / n)^{\mathrm{n}}-1 ;$ EAY $=\mathrm{e}^{\text {APR }}$ if interest is compounded continuously.
$\mathrm{FV}_{\mathrm{T}}=\sum \mathrm{C}_{\mathrm{t}}(1+\mathrm{r})^{\mathrm{T}-\mathrm{t}}$
(N)PV $=\sum C_{t} /(1+r)^{t}$

Perpetuity: $\mathrm{PV}=\mathrm{C} / \mathrm{r}$; Growing Perpetuity: $\mathrm{PV}=\mathrm{C}_{1} /(\mathrm{r}-\mathrm{g})$
Annuity: $\mathrm{PV}=\mathrm{C} / \mathrm{r} *\left(1-1 /(1+\mathrm{r})^{\mathrm{T}}\right)$ [T is the number of payments received (starting next period)]
Growing Annuity: $\mathrm{PV}=\mathrm{C} /(\mathrm{r}-\mathrm{g}) *\left(1-((1+\mathrm{g}) /(1+\mathrm{r}))^{\mathrm{T}}\right)$
Annuity in Advance: $\mathrm{PV}=\mathrm{C}_{0}+\mathrm{C}_{1} / \mathrm{r}^{*}\left(1-1 /(1+\mathrm{r})^{\mathrm{T}-1}\right.$
Infrequent Annuity: $\mathrm{r}=\left(1+\mathrm{r}_{0}\right)^{\mathrm{n}}-1, \mathrm{~T}=\mathrm{T}_{0} / \mathrm{n}$, where n is the number of periods between payments.
Inflation: $(1+r)=(1+\mathrm{R}) /(1+\mathrm{i})$
Capital Budgeting
Internal Rate of Return (IRR): $0=\sum \mathrm{C}_{\mathrm{t}} /(1+\mathrm{IRR})^{\mathrm{t}}$.
Average Accounting Return: AAR = Average Profit / Average Investment
Profitability Index $(\mathrm{PI}): \mathrm{PI}=\left(\sum \mathrm{C}_{\mathrm{t}} /(1+\mathrm{r})^{\mathrm{t}}\right) / \mathrm{C}_{0}$ (where the sum does not include C_{0}).
Cash Flows
Quick and Dirty: $\mathrm{C}_{\mathrm{t}}=\mathrm{EAT}_{\mathrm{t}}+\mathrm{Dep}_{\mathrm{t}}$
More Detailed: $\mathrm{C}_{\mathrm{t}}=\mathrm{R}_{\mathrm{t}}-\mathrm{CC}_{\mathrm{t}}-\operatorname{tax}_{\mathrm{t}}=\mathrm{R}_{\mathrm{t}}-\mathrm{CC}_{\mathrm{t}}-\mathrm{T}_{\mathrm{C}}\left(\mathrm{R}_{\mathrm{t}}-\mathrm{CC}_{\mathrm{t}}-\right.$ Dep $\left._{\mathrm{t}}\right)$

$$
=\left(\mathrm{R}_{\mathrm{t}}-\mathrm{CC}_{\mathrm{t}}\right)\left(1-\mathrm{T}_{\mathrm{C}}+\mathrm{T}_{\mathrm{C}} * \text { Dep }_{\mathrm{t}}=\mathrm{EBIT}+\right.\text { Tax Shield }
$$

Even more detailed:
Capital Gains on Machine = Sale Price - Book Value
Book Value = Price - Accumulated Depreciation
Cash from Sale of Machine $=$ Sale Price - Capital Gains Tax
$=$ Sale Price - Tax Rate $*$ Capital Gains
Net Working Capital $=$ Accounts Receivable - Accounts Payable + Inventory + Cash
Operating Costs $=$ Fixed Costs + Variable Costs
Total Investment Cash Flow $=$ Machine + Opportunity Cost + Change in NWC
Income Before Taxes $=$ Sales - Costs - Depreciation
Cash Flow from Operations $=$ Sales - Costs - Taxes
Bonds
Bonds: $\mathrm{P}=\sum \mathrm{C} /\left(1+\mathrm{r}_{\mathrm{t}}\right)^{\mathrm{t}}+\mathrm{F} /\left(1+\mathrm{r}_{\mathrm{T}}\right)^{\mathrm{T}}$
Current Yield $=$ Annual Payment $/$ Price $=$ Yield to Maturity - Appreciation to Maturity
YTM: $\mathrm{P}=\sum \mathrm{C} /(1+\mathrm{YTM})^{\mathrm{t}}+\mathrm{F} /(1+\mathrm{YTM})^{\mathrm{T}}$
Spot rate: $r_{n}=\left(F / P_{n}\right)^{1 / n}-1$ (where P_{n} is the price of an n-year zero coupon bond).
Forward rate: ${ }_{n-1} f_{n}=\left(1+r_{n}\right)^{n} /\left(1+r_{n-1}\right)^{n-1}-1$
Arbitrage: $\sum \mathrm{C}_{\mathrm{ti}} \mathrm{n}_{\mathrm{i}}=\mathrm{C}_{\mathrm{t} 0}$ for each t .
Stocks
Stocks: Price $=\sum \operatorname{Div}_{t} /(1+r)^{t}$
Return $_{t}=$ Div $_{t} / \mathrm{P}+\mathrm{g}=$ Dividend Yield + Capital Gain $=\operatorname{Div} / \mathrm{P}_{0}+\left(\mathrm{P}_{1}-\mathrm{P}_{0}\right)$

- Payout Ratio = Div / EPS; RR = PB = 1 - Payout Ratio = REPS / EPS
- $\quad \mathrm{g}=\mathrm{RR} * \mathrm{ROE} ; \mathrm{EPS}_{\mathrm{t}+1}=\mathrm{EPS}_{\mathrm{t}}+\mathrm{RR} * \mathrm{ROE}$
- Price $=\mathrm{EPS} / \mathrm{r}+\mathrm{NPVGO} ; \mathrm{P} / \mathrm{E}=1 / \mathrm{r}+\mathrm{NPVGO} / \mathrm{EPS}$

Valuing Portfolios:

- $\quad E(r)=\sum r_{t} / n$ or $E(r)=\sum P\left(r_{i}\right) r_{i}$
- $\quad \operatorname{Var}\left(\mathrm{r}_{\mathrm{i}}\right)=\sum\left(\mathrm{r}_{\mathrm{t}}-\mathrm{E}(\mathrm{r})\right)^{2} /(\mathrm{n}-1)$ or $\mathrm{E}(\mathrm{r})=\sum \mathrm{P}\left(\mathrm{r}_{\mathrm{i}}\right)\left(\mathrm{r}_{\mathrm{i}}-\mathrm{E}(\mathrm{r})\right)^{2} ; \sigma_{\mathrm{i}}=\sqrt{ } \operatorname{Var}\left(\mathrm{r}_{\mathrm{i}}\right)$
$-\quad \operatorname{Cov}\left(r_{A}, r_{B}\right)=\sigma_{A B}=\sum P\left(r_{A}, r_{B}\right)\left(r_{A}-E\left(r_{A}\right)\right)\left(r_{B}-E\left(r_{B}\right)\right) ; \operatorname{Corr}\left(r_{A}, r_{B}\right)=\rho_{A B}=\sigma_{A B} / \sigma_{A} \sigma_{B}$
- $E\left(r_{p}\right)=\sum X_{i} E\left(r_{i}\right)$ where X_{i} is the percentage of security i in the portfolio.
- $\quad \operatorname{Var}\left(\mathrm{r}_{\mathrm{p}}\right)=\sum \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \sigma_{\mathrm{ij}}=\sum \mathrm{X}_{\mathrm{i}}^{2} \sigma_{\mathrm{i}}^{2}-\sum_{\mathrm{i} \neq \mathrm{j}} \mathrm{X}_{\mathrm{i}} \mathrm{X}_{\mathrm{j}} \sigma_{\mathrm{ij}}=\beta_{\mathrm{p}} \sigma_{\mathrm{m}}{ }^{2}+\sigma_{\varepsilon}^{2}$
- \quad Diversification Effect $=\operatorname{Var}\left(\mathrm{r}_{\mathrm{p}}\right)-\sum \mathrm{X}_{\mathrm{i}} \sigma_{\mathrm{i}}$

CAPM:

- Minimum Variance Portfolio (2): $\mathrm{X}_{\mathrm{A}}=\left(\sigma_{\mathrm{B}}{ }^{2}-\rho_{\mathrm{AB}} \sigma_{\mathrm{A}} \sigma_{\mathrm{B}}\right) /\left(\sigma_{\mathrm{A}}^{2}+\sigma_{\mathrm{B}}{ }^{2}-2 \rho_{\mathrm{AB}} \sigma_{\mathrm{A}} \sigma_{\mathrm{B}}\right)$
- Security Market Line (SML): $E\left(r_{i}\right)=r_{f}+\beta_{i}\left(E\left(r_{m}\right)-r_{f}\right)$
- $\quad \beta_{\mathrm{i}}=\sigma_{\mathrm{im}} / \sigma_{\mathrm{m}}^{2}=\rho_{\mathrm{im}} \sigma_{\mathrm{i}} / \sigma_{\mathrm{m}} ; \beta_{\mathrm{p}}=\sum \mathrm{X}_{\mathrm{i}} \beta_{\mathrm{i}}$
- Capital Market Line (CML): $\mathrm{E}\left(\mathrm{r}_{\mathrm{p}}\right)=\mathrm{r}_{\mathrm{f}}+\left(\mathrm{E}\left(\mathrm{r}_{\mathrm{m}}\right)-\mathrm{r}_{\mathrm{f}}\right) / \sigma_{\mathrm{m}} * \sigma_{\mathrm{p}}$
- $E\left(r_{p}\right)=(1-X) r_{f}+X E\left(r_{S}\right)$
- $\quad \beta_{\mathrm{p}} \sigma_{\mathrm{m}}$ is the market risk.
$r_{\text {A }}=$ EBIT / Assets
$-\quad \beta_{\text {overall }}=$ Assets $/($ Assets + Tax Shield $) \beta_{\mathrm{A}}+\mathrm{TS} /(\mathrm{A}+\mathrm{TS}) \beta_{\mathrm{TS}}$
- Assuming $\beta_{\mathrm{B}}, \beta_{\mathrm{TS}} \approx 0$, and debt is constant,
- No taxes: $\beta_{S}=\beta_{\text {Asset }}(1+B / S)$
- Taxes: $\beta_{\mathrm{S}}=\beta_{\mathrm{A}}+\mathrm{B} / \mathrm{S}\left(\beta_{\mathrm{A}}-\beta_{\mathrm{B}}\right)\left(1-\mathrm{t}_{\mathrm{C}}\right) \approx \beta_{\mathrm{A}}\left(1+\mathrm{B}\left(1-\mathrm{t}_{\mathrm{C}}\right) / \mathrm{S}\right)$

Cost of Equity (r_{E} or r_{S}): Value of Stock $(\mathrm{S})=$ \# Shares $*$ Market Price

- Under constant growth, $\mathrm{P}_{0}=\operatorname{Div}_{1} /\left(\mathrm{r}_{\mathrm{E}}-\mathrm{g}\right)$, and $\mathrm{r}_{\mathrm{E}}=\operatorname{Div}_{1} / \mathrm{P}_{0}+\mathrm{g}$
- For preferred stock, $\mathrm{r}_{\mathrm{E}}=$ Div / P [constant dividends]
- Using CAPM: $r_{E}=r_{f}+\beta_{E}\left(r_{m}-r_{f}\right)$
- Or we may consider earnings: $r_{S}=\left(1-t_{C}\right)\left(E B I T-r_{B} B\right) / S$
$r_{S}=r_{A}+B / S\left(1-t_{C}\right)\left(r_{A}-r_{B}\right)=V_{U} / E r_{A}-B / S\left(1-t_{C}\right) r_{B}$
Weighted Average Cost of Capital:
$-\quad r_{\text {WACC }}=S /(S+B) r_{S}+B /(S+B) r_{B}\left(1-T_{C}\right)$
- $\quad r_{\text {WACC }}=$ Assets $/ V_{L} * r_{A}+t_{c} B / V_{L} r_{B}=B / V_{L} r_{B}\left(1-t_{C}\right)+S / V_{L} * r_{S}$
- $\quad r_{\text {WACC }}=r_{A}$ if not taxes; $r_{\text {WACC }}=r_{A}\left(1-t_{C} B / V_{L}\right)$ if taxes

Value of Company =

- $\quad \mathrm{PV}($ Assets $)=\mathrm{PV}$ (financial assets and claims)
- $V_{U}=\sum C_{t} /\left(1+r_{A}\right)^{t}$, where C_{t} is the unlevered cash flow.
- $\quad \mathrm{PV}($ tax shield $)=\mathrm{t}_{\mathrm{C}} \mathrm{r}_{\mathrm{B}} \mathrm{B} / \mathrm{r}_{\mathrm{B}}=\mathrm{t}_{\mathrm{C}} \mathrm{B}$
- Modigliani - Miller Propositions:

	Proposition I: Values	Proposition II: Returns
No Taxes	$V_{U}=V_{L}$	$r_{A}=r_{W A C C}=S /(S+B) r_{S}+B /(S+B) r_{B}$
Taxes	$V_{L}=V_{U}+t_{C} B$	$r_{S}=r_{A}+B / S\left(r_{A}-r_{B}\right)\left(1-t_{C}\right)$

- Miles-Ezzell: Assuming B/V is constant,
- $\quad P V($ tax shield $)=\sum t_{c} r_{B} B_{t-1} /\left(1+r_{A}\right)^{t-1}\left(1+r_{B}\right)$.
- $\mathrm{r}^{*}=\mathrm{r}_{\mathrm{A}}-\mathrm{t}_{\mathrm{C}} \mathrm{r}_{\mathrm{B}}(\mathrm{B} / \mathrm{V})\left(1+\mathrm{r}_{\mathrm{A}}\right) /\left(1+\mathrm{r}_{\mathrm{B}}\right)$
- $V=N P V($ Project $)+$ Initial Investment

Valuation Methods:

- WACC: $V_{L}=\sum C_{t} /\left(1+r^{*}\right)^{t}$, where C_{t} is the unlevered cash flow (no tax shield included).
- If D/V is changing: Find r_{S} from r_{B} and $r_{A}: r_{S}=r_{A}+\left(B_{t}-P V T S S_{t}\right) / S\left(r_{A}-r_{B}\right)$
- Adjusted Present Value:
- $\quad \mathrm{APV}=\mathrm{NPV}($ project $)+\mathrm{NPV}($ Financing $)=\mathrm{V}_{\mathrm{U}}+\mathrm{PV}($ financing $)=\mathrm{UCF}\left(1-\mathrm{t}_{\mathrm{C}}\right) / \mathrm{r}_{\mathrm{A}}-\mathrm{t}_{\mathrm{C}} B$
- Levered Cash Flow $=$ Net Income (Sales, costs, interest) - Tax (with depreciation and interest tax shields) - Investment (but not depreciation!); this is what goes to investors
- Operating Income is before interest, net income is afterward.
- Total Payout $=$ Levered Cash Flow + Interest
- If there is a target B / V ratio, then $B=(\operatorname{target} B / V) V_{L}$. Since V_{L} depends on B (through tax shields), this requires solving for each in terms of the other.
- Flow to Equity: $\mathrm{V}_{\mathrm{L}}=\mathrm{LCF}\left(1-\mathrm{t}_{\mathrm{C}}\right) / \mathrm{r}_{\mathrm{S}}+\mathrm{B}$ [assuming a perpetuity]
- LCF = EBIT - interest
- Cash Flow to Stockholders: $C_{E}=\left(X-r_{B} B\right)\left(1-t_{C}\right)-$ debt principal.

Costs of Financial Distress

$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{M}}+\mathrm{V}_{\mathrm{N}}=$ value of marketable securities (stocks/bonds) + value on non-marketable (tax shield, costs of financial distress)

Dividend Policy

Retained Earnings + Cash from New Securities = Dividends + Investment
Lintner's Dividend Model: $\mathrm{D}_{\mathrm{t}}=\mathrm{a}\left(\mathrm{p}^{*} \mathrm{E}_{\mathrm{t}}\right)+(1-\mathrm{a}) \mathrm{D}_{\mathrm{t}-1}$

Options

Call Option: Payoff $=\max \left\{0, S_{T}-X\right\} ;$ Put Option: Payoff $=\max \left\{0, X-S_{T}\right\}$

- $\quad S_{T}=$ price of the underlying asset at the maturity date (T)
- $\mathrm{X}=$ exercise price

Replication Model of Valuing:

- \quad Price $_{U} S+(1+r) B=$ Payoff $_{U}$
- \quad Price $_{D} S+(1+r) B=$ Payoff $_{D}$

Binomial Model of Valuing:

- Value at any time: $\mathrm{V}_{\mathrm{t}-1}=\mathrm{E}\left(\mathrm{V}_{\mathrm{t}}\right) /(1+\mathrm{r})=\left(\mathrm{q} \mathrm{V}_{\mathrm{U}}+(1-\mathrm{q}) \mathrm{V}_{\mathrm{D}}\right) /(1+\mathrm{r})$
- Risk-Adjusted Probability: $q=\left((1+r) \mathrm{S}_{0}-\mathrm{S}_{\mathrm{D}}\right) /\left(\mathrm{S}_{\mathrm{U}}-\mathrm{S}_{\mathrm{D}}\right)$
- If only volatility is known:

$$
\begin{array}{ll}
\circ & u=e^{\sigma \sqrt{T}} \\
\circ & d=1 / u \\
\circ & q=(1+r-d) /(u-d) \\
\circ & S_{U}=u S_{0}, S_{D}=d S_{0}
\end{array}
$$

Put-Call Parity: $P_{t}=C_{t}-S_{t}+X /(1+r)^{T-t}$

- If $S_{t}=X$ and T is small enough, $P_{t}=C_{t}$.

