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1 General Econometrics

Suppose we observe a sample, {yt}T
t=1 ∈ S, where yt may be a vector and S is the sample

space. We have a model in the form of a density function, f(yt; θ), with θ ∈ Θ, where the
true data generating process is this density with the true parameter value, θ0 ∈ Θ. An
estimator is a function from S to Θ given by θ̂ = θ(y1, ..., yT ). (This function may also be
a function of priors in Bayesian econometrics.)

Models come from both theory and looking at the data through diagnostic checking.

Definition A time series is covariance stationary if the mean is finite and constant and if
the covariances are finite and don’t depend on t.

Definition Given f(y1, ..., yT ; θ), the maximum likelihood estimator, θ̂MLE is defined as:

θ̂MLE = arg max
θ∈Θ

(log f(y1, ..., yT ; θ))

One could incorporate some uncertainty about the model by including more parameters.

Definition Suppose gt(y, θ) is a k × 1 vector such that E(gt(yt, θ0)) = 0. Let gT (θ) =
1
T

∑T
t=1 gt(yt, θ). The GMM estimator is defined by:

θ̂GMM = arg max
θ∈Θ

(
−gT (θ)′ŴgT (θ)

)
where Ŵ is a positive definite matrix (with probability one) which does not depend directly
on θ.

The choice of moment conditions does not (necessarily) come directly from a density,
but they may be implied by a model.

Proposition 1.1 Maximum likelihood estimation is a special case of GMM, with moment
conditions, g(yt, θ) = ∂

∂θ log f(yt; θ).
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In general, GMM is more robust to misspecification, but it is not necessarily optimal
when the model is correct. If we use MLE but the density chosen is incorrect, this is called
quasi-maximum likelihood.

Ways to check the robustness of the model include:

• Estimate the model for only a subsample of the data and compare the estimates.

• Compare out-of-sample forecasts.

• See if adding other variables changes the results.

• Try the same model with other data (for example, from other countries).

• Use other measures of the dependent or independent variables.

• Compare to other models.

Definition Let wt = (yt, xt). Suppose

f(wt; θ) = f(yt|xt; θ1)f(xt; θ2)

where θ1 and θ2 are not related and only θ1 is of interest. Then, we call {xt} weakly
exogenous.

Proposition 1.2 Ordinary least squares is MLE if the error term is normally distributed
and the independent variables are weakly exogenous.

Proof Suppose we observe data {yt, xt}T
t=1. Then, we may write:

f(y1, x1, ..., yT , xT |θ) =
T∏

t=1

f(yt, xt|past, θ)

=
T∏

t=1

f(yt|xt, past, θ1)f(xt|past, θ2)

Alternatively, we may concentrate or marginalize the density, by computing
∫
X fxy(x, y)dx =

fy(y). In either case, the resulting likelihood leads to an OLS estimator.

Proposition 1.3 OLS is GMM with certain moment conditions.

Proof Set gt(β) = (yt − βxt)xt. These moment conditions are identical to the normal
equations of the OLS and the first order conditions of maximum likelihood.

2



If there is heteroskedasticity, then the moment conditions continue to hold, so that
GMM (which is identical to quasi-maximum likelihood) is still consistent. For an optimal
estimator, if σ2

t were known, one could use maximum likelihood, which would be identical
to WLS. (Changing the weighting matrix in GMM is irrelevant in this case, since the
parameters are exactly identified.)

Definition An m-estimator maximizes Qn({w}; θ), where Qn =
∑n

t=1mt(wt, θ).

MLE is an m-estimator with mt(wt, θ) = log f(wt; θ).

Asymptotic Theory

Definition A sequence of random variables, {Xn}, converges in probability to ξ if limn→∞ P (|Xn−
ξ| > ε) = 0 for all ε > 0. This is also written as plim(Xn) = ξ or Xn →p ξ.

Definition An estimator, θ̂n, of θ0 is consistent if plim(θ̂n) = θ0.

Proposition 1.4 Suppose a(x) is a function which is continuous at ξ. Suppose plimn→∞Xn =
ξ. Then, plimn→∞a(Xn) = a(ξ). Note that Xn and ξ may be either scalars or vectors.

Definition fn(Xn, θ) converges to f(θ) uniformly in probability if supθ∈Θ |fn(Xn, θ) −
f(θ)| →p 0.

Theorem 1.5 Suppose θ̂n = θ̂n({wt}) = arg maxθ∈ΘQn({wt}; θ). Assume that the follow-
ing regularity conditions hold:

• Qn is measurable with respect to {wt} (that is, it can actually be calculated),

• Θ is compact, and

• Qn is continuous at all θ ∈ Θ for all {wt}.

Suppose that the following conditions also hold:

• there exists Q(θ) which is uniquely maximized at θ0 ∈ Θ, and

• Qn({wt}, θ) converges uniformly in probability to Q(θ).

Then, θ̂n →p θ0.

Proof (Sketch.) Though Qn is random, it eventually looks like Q. Since Q is uniquely
maximized at θ0 and Qn gets close to Q, θ̂ must get close to θ0.

Proposition 1.6 Suppose {yt} is stationary and ergodic. Assume the regularity conditions
hold. Assume that:
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• E(m(wt; θ)) is uniquely maximized at θ0, and

• E(supθ∈Θ |m(wt; θ)|) <∞.

Then, the m-estimator, θ̂, is consistent for θ0.

Proof E(supθ∈Θ |m(wt; θ)|) <∞ is sufficient to ensure uniform convergence in probability.

Corollary 1.7 Since the MLE is an m-estimator, it is consistent if:

• the regularity conditions hold,

• {wt} is stationary and ergodic,

• P (f(yt|xt; θ) 6= f(yt|xt; θ0)) > 0 for all θ 6= θ0, and

• E(supθ∈Θ | log f(yt|xt; θ)|) <∞.

The second-to-last condition ensures that distinct parameter values lead to different
probability distributions, so that the parameter is uniquely identified.

Proposition 1.8 Suppose that the following regularity conditions hold:

• θ̂ maximizes −ĝ′Ŵ ĝ on Θ,

• Ŵ →p W , with W positive definite,

• {wt} are stationary ergodic,

• g(w, θ) is measurable,

• g(w, θ) is continuous in θ for all w, and

• θ0 ∈ Θ and Θ is compact

Further, suppose that:

• E(g(wt, θ)) = 0 if and only if θ = θ0, and

• E(supθ∈Θ |g(wt, θ)|) <∞

Then, θ̂ is consistent for θ0.

Definition The non-linear least squares model is given by:

yt = φ(xt, θ) + εt

where φ is a known, non-linear function and E(εt) = 0.
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Non-linear least squares can be estimated consistently using GMM with moment condi-
tions gn(wt, θ) = 1

n

∑n
t=1(yt−φ(xt, θ))xt, since E(g(θ)) = Ex(E(g(wt; θ)|xt)) = E(φ(xt, θ0)−

φ(xt, θ)|xt) If θ = θ0, then the expectation will be zero. For most functions and distrib-
utions of xt, the converse will hold as well. Θ may need to be bounded in some cases to
ensure compactness.

Definition Let Fn(ξ) = P (Xn ≤ ξ) and F (ξ) = P (X ≤ ξ). We say that {Xn} converges
in distribution to X, and write Xn →D X if limn→∞ Fn(ξ) = F (ξ) for all ξ where F is
continuous.

Theorem 1.9 Law of Large Numbers. Under some conditions, X →p E(X).

Theorem 1.10 Central Limit Theorem. Under some conditions,

∑n
i=1(Xt − E(Xt))√∑n

t=1 V ar(Xt)
=
√
n

 1
n

∑n
i=1(Xt − E(Xt))√

1
n

∑n
t=1 V ar(Xt)

→D Normal(0, 1)

Theorem 1.11 Mean Value Theorem/Taylor Series Expansion. Let h(x) be continuously
differentiable. Then, we may write h(x) = h(x0) + ∂h

∂x |x∈(x,x0)(x − x0). Equivalently,
h(x)−h(x0)

x−x0
= ∂h

∂x |x∈(x,x0), for some x between x and x0 .

Lemma 1.12 Slutsky Condition. If Xn →D X and Yn →P α, then XnYn →D Xα.
This applies to vectors and matrices as well, so that if Xn →D X and An →P A then
AnXN →D AX and X ′

nAnXn →D X ′AX.

We may apply these theorems to find that:

0 =
∂Qn

∂θ
({w}, θ̂) =

∂Qn

∂θ
({w}, θ0) +

∂2Qn

∂θ∂θ′

∣∣∣∣
θ

(θ̂ − θ0)

θ̂ − θ0 = −
(
∂2Qn

∂θ∂θ′

∣∣∣∣
θ

)−1
∂Qn

∂θ
({w}, θ0)

√
n(θ̂ − θ0) = −

(
1
n
· ∂

2Qn

∂θ∂θ′

∣∣∣∣
θ

)−1 1√
n
· ∂Qn

∂θ
({w}, θ0)

The first term converges in probability to a constant, and the second term converges in
distribution to a normal random variable, which shows that

√
n(θ̂ − θ0) converges to a

normal distribution, with the mean and variance depending on the expressions on the
right-hand side.

Proposition 1.13 Assume that:
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• θ0 ∈ Interior(Θ),

• m(w, θ) is twice-continuously differentiable in θ for all w,

• 1√
n

∑n
t=1

∂m
∂θ (wt, θ0) →D Normal(0,Σ), where Σ is positive definite,

• there is a neighborhood, N , of θ0, with E(supθ∈N ‖ ∂2m
∂θ∂θ′ ‖) <∞, and

• E( ∂2m
∂θ∂θ′ |θ0) = H, where H is non-singular.

Then,
√
n(θ̂ − θ0) →D Normal(0, H−1ΣH−1).

Proof Let s = ∂m
∂θ (this is the score) and H = ∂2m

∂θ∂θ′ (this is the Hessian). Then, s(wt, θ̂) =
s(wt, θ0) + H(θ)(θ̂ − θ0). Summing over all n and recalling that the sum of the scores is
zero at the maximum, we find that:

0 =
1√
n

n∑
t=1

s(wt, θ0) +
1√
n

n∑
t=1

H(θ)(θ̂ − θ0)

√
n(θ̂ − θ0) =

(
1
n

n∑
t=1

H(θ)

)−1
1√
n

n∑
t=1

s(wt, θ0)

→D Normal(0, H−1ΣH−1)

since 1
n

∑n
t=1H(θ) →p H

−1 by the law of large numbers.

Corollary 1.14 For maximum likelihood estimation, H = Σ by the information equality,
so the MLE converges to a normal distribution with variance Σ−1.

Proposition 1.15 Assume that:

• θ0 ∈ Interior(Θ),

• g(wt, θ) is continuously differentiable,

• 1√
n

∑n
t=1 g(wt, θ0) →D Normal(0, S),

• E(supθ∈N ‖∂g
∂θ‖) <∞ for some neighborhood, N , about θ0, and

• E(∂g
∂θ ) = G is of full column rank.

Then,
√
n(θ̂ − θ0) →D Normal(0, (G′WG)−1G′WSWG(G′WG)−1).
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Proof In this case, Q = −1
2g
′
nŴgn, and ∂Q

∂θ |θ=θ̂ = −G(θ̂)′Ŵgn(θ̂). By the mean value
theorem,

gn(θ̂) = gn(θ0) +G(θ)(θ̂ − θ0)
0 = G(θ̂)′Ŵgn(θ̂)

= G(θ̂)′Ŵgn(θ0) +G(θ̂)′ŴG(θ)(θ̂ − θ0)
√
n(θ̂ − θ0) = −

(
1
n
G(θ̂)ŴG(θ)

)−1 1√
n
G(θ̂)′Ŵgn(θ0)

The first term converges in probability to (G′WG)−1 and the second term converges in dis-
tribution toNormal(0, G′WSWG). Thus,

√
n(θ̂−θ0) →D Normal(0, (G′WG)−1G′WSWG(G′WG)−1).

To estimate the standard errors, we note that W is chosen before estimation and G
can be computed based on the derivatives of the moment conditions (it is consistent to
evaluate it at θ̂ instead of θ0 as long as the derivatives are continuous). To estimate S, we
note that S = V ar

(
1√
n

∑n
t=1 g(wt, θ0)

)
, which is the long-run variance. The best method

to estimate S depends on the assumptions we can make:

• Suppose g(wt, θ) is serially uncorrelated. Then, V ar( 1√
n

∑n
t=1 g(wt, θ0)) = V ar(g(wt, θ0))

since there are no covariances. We may estimate Ŝ = 1
n

∑n
t=1 g(wt, θ̂)g(wt, θ̂)′. (In

the context of maximum likelihood estimators, this is called the outer product of the
gradient.) This is the heteroskedasticity-consistent estimator.

• If there is serial correlation,

V ar

(
1√
n

n∑
t=1

g(wt, θ0)

)
=

1
n
E
(∑

g(wt, θ0)g(wt, θ0)′
)

+
1
n
E
(∑

(g(wt, θ0)g(wt+1, θ0)′ + g(wt+1, θ0)g(wt, θ0)′)
)

+...

(Note that each term of the sums is symmetric, since one term is the transpose of
the other.) As the number of lags increases there are fewer elements in each sum,
which may lead to noisy standard errors or a matrix that is not positive definite. To
solve this, the sums at different lags may be weighted differently. Newey-West uses
Barlett weights to weight the sums, based on the user’s choice of the number of lags.
Non-parametric methods may be used to smooth out the terms, based on automatic
choices of bandwidths. (In this case, a kernel might be helpful in estimation.)

• One may also pre-whiten residuals by fitting a time series model to {g(wt, θ)} and
assuming that any remaining residuals are white noise. The VAR will then imply the
long-run variance.
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For GMM, the most efficient estimator sets W = S−1, in which case the covariance
matrix becomes (GS−1G)−1. This choice of weighting matrix gives more weight to the
less variable moment conditions. Since S is estimated, it might not be positive definite or
might be nearly singular, which can cause problems. In such a case, using W = I is safer
(and more robust). If GMM is exactly identified, G is invertible and the weighting matrix
does not matter; in this case, the covariance matrix is G−1SG−1.

For an m-estimator, the covariance matrix isH−1SH−1. In the case of the MLE,H = S
by the information matrix inequality, so that the covariance matrix is H−1, which makes
MLE the most efficient m-estimator (it also achieves the Cramer-Rao lower bound). This
means we may calculate H based on the Hessian, or we may use the information matrix,
E(H) instead. The three estimates agree asymptotically; if they disagree radically for a
particular sample, there could be a problem with the model.

To test GMM for adequacy, we use the J-test for overidentifying assumptions. We set
J = minθ∈Θ g

′Wg, where W = S−1. Then, under the null hypothesis that all the moment
conditions have expected value 0, 1√

n

∑
g(wt; θ) →D Normal(0, S), and (n− p)J ∼ χ2

k−p,
where k is the number of moment conditions and p is the number of parameters estimated.
We reject for large values of the J statistic.

The J-test will fail to reject either if the model is right or if the instruments are bad
(that is, they are only weakly correlated with the endogenous variables). In such a case,
the moment conditions are true, but not useful in estimation. Weak instruments can lead
to different asymptotics, misleading estimates, different confidence intervals, and a nearly
singular long-run variance matrix. To check for weak instruments, one should check the
correlation between the instrument and the (estimated) moment condition.

Wald tests can be performed, based on the estimated covariance matrix. Likelihood
ratio tests are generally helpful only when the likelihood is known. LM tests also have
their place.

2 Asset Pricing

Suppose an asset pays off Xt+1 in period t+1. Then, its price today is pt = Et(Xt+1Mt+1),
whereMt+1 is called the pricing kernel or stochastic discount factor, and adjusts for the risk
and the waiting time, and is assumed to be unknown at time t. The return is Rt+1 = Xt+1

pt
.

Then,

1 = Et

(
Xt+1

pt
Mt+1

)
= Et(Rt+1Mt+1)
= Covt(Rt+1,Mt+1) + Et(Rt+1)Et(Mt+1)
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The expected return is:

Et(Rt+1) =
1

Et(Mt+1)
(1− Covt(Rt+1,Mt+1))

Definition Suppose Xt+1 = 1 in all states of nature. Then, the asset is called a riskless
asset.

For a riskless asset,

Rf =
1
pt

=
1

Et(Mt+1)

Then, for a general asset:

Et(Rt+1) = Rf − Cov(Rt,Mt+1)
V ar(Mt+1)

· V ar(Mt+1)
E(Mt+1)

= Rf − βtλt

where βt = Cov(Rt+1,Mt+1)
V ar(Mt+1) is the population regression coefficient and λt = V ar(Mt+1)

E(Mt+1) is the
coefficient of variation or the price of risk. λt does not depend on the individual asset.

In a cross-section, if β were known, one could check if λ were constant across all stocks
in that period, by regressing the mean returns on the β’s of the stocks to estimate λ.

One could assume that each β is constant over time and that λt varies each period.
This yields the moment condition:

gt(yt, θ) = re
t + βλt

where re
t is the return, adjusted for the risk-free rate. A simpler method notes that the

returns on any two assets are always related by λ, which allows for another test of the
model.

Definition The CAPM model for the pricing kernel is:

rit − rf
t = α+ β(rm

t − rf
t ) + εit

where rf
t is risk-free rate, rm

t is the market return, and rit is the individual stock’s return.

We may test whether α = 0, to ensure that once risk-adjustment factors (such as excess
return) are included, there is no additional return. Also, the estimate of the risk-free rate
should be constant across all assets. Alternatively, one may write:

rit = α+ (1− β)rf
t + βrm

t + εit

If the risk-free rate is constant over time and β ≈ 1, then the constant term is approximately
α. (If dividends are not adjusted for, then α will include dividend-yield as well.)
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In this model, rm
t is endogenous. However, it is still true that 1 = E(MR) = Cov(M,R)+

E(M)E(R), so we may compute the population regression coefficient, Cov(rit,r
m
t )

V ar(rm
t ) . That is,

the regression will still estimate E(rit|rm
t ), though we may no longer be estimating the

structural parameter.

Definition In arbitrage pricing theory, we assume that markets are competitive and fric-
tionless, and that returns are described by:

Rit = α+ βift + εit

where ft is a K × 1 vector of factors common across all assets and εit are sufficiently
uncorrelated across assets.

In arbitrage pricing theory, λt is approximated by a vector of factors. Often, one of the
factors is a market index, designed to be a proxy for the market portfolio. Other factors
may be industry specific or factors that affect only cyclical companies.

Definition For any utility function, risk aversion is defined by −u′′(c)c
u′(c) . Constant relative

risk aversion preferences are defined by u(c) = βc1−γ ; in this case, the coefficient of risk
aversion is γ. If γ = 1, consumers are risk-neutral. If γ = 0, utility is linear, and asset
pricing is independent of the consumption level. In most contexts, γ ≥ 2 is considered
reasonable.

Since Mt depends on the marginal utility of consumption, Hansen and Singleton used
the utility function, u(c) = cγ , to compute Mt = u′(ct)

u′(ct−1) = ( ct
ct−1

)γ−1. We expect that
0 < γ < 1. If this utility function is correct and if we have a measure of consumption, we
may then apply GMM to the moment condition:

gt = βRt

(
ct
ct−1

)γ−1

− 1

Since there are two parameters (β and γ), we need at least two moment conditions (oth-
erwise, for any γ, we may set β = 1

E((
ct+1

ct
)γ−1Rt+1)

, and the moment condition will be 0).

For more moment conditions, we may use the returns on multiple assets (since neither
parameter depends on the asset chosen). Also, since the expectation is 0 with respect to
all time t information, we must have E(xt(β( ct+1

ct
)γ−1Rt+1 − 1)) = 0 for any xt known at

time t, which gives additional moment conditions.
Using maximum likelihood instead would require a joint distribution for (Rt, Ct), which

could be complicated. Log-normal distributions are sometimes used, but the tests often
have low power.
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3 Volatility

Volatility measures the amplitude of returns, regardless of sign. Volatility can be pre-
dictable, while returns themselves are unpredictable, using tests like the Q-test for auto-
correlation. Volatility tends to stay high or low for a long period; this is called volatility
clustering.

Definition In the stochastic volatility model, we model rt = σtεt, where εt is a zero-mean,
variance one random variable and log σt = α + β log σt−1 + κηt. Often, we assume that
εt, ηt are serially uncorrelated and independent of each other. In this model, volatility is a
latent variable. (There are other possible forms for the volatility, such as long memory or
other functional forms in the equation.)

In this model, there are two error terms affecting a single series. This causes problems
for both prediction and estimation. However, this model can be applied in continuous time.

Definition A conditional volatility model is one that satisfies rt =
√
htεt where ht =

Et−1(r2t ). In this model, ht is called the conditional variance.

These models are covariance stationary for rt if the unconditional variance is finite and
does not depend on t. One should check the coefficients to ensure that the conditional
variance cannot be negative.

Since ht is a conditional expectation, it must be measurable at time t − 1, so there
is no error term at time t. This model specifically builds forecasting into the model.

Since Et−1

((
rt√
ht

)2
)

= 1, we must have V ar(εt) = 1. If returns are not forecastable,

E
(

rt√
ht

)
= E(εt) = 0.

Every stochastic volatility model implies a conditional variance model, but the deriva-
tion is generally not simple.

Definition In the autoregressive conditional heteroskedasticity model, or ARCH(p) model,
we have ht = ω+α1r

2
t−1+...+αpr

2
t−p. If α1 = ... = αp = 0, this is a constant variance model.

If αj = 1
p and ω = 0, this is a moving average (historical volatility) model, ht = 1

p

∑p
j=1 r

2
t−j .

Definition In the generalized autoregressive conditional heteroskedasticity model, or GARCH
model, ht = ω+αr2t−1+βht−1. In general, the GARCH(p,q) model is ht = ω+

∑p
j=1 αjr

2
t−j+∑q

j=1 βjht−j . This is an exponential smoother if ω = 0 and α + β = 1, so that ht =
αr2t−1 + (1− α)ht−1.

Both the ARCH and GARCH models can be estimated from a single time series of data.
Empirically, one lag of the GARCH term, ht, is generally enough in a GARCH model.
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Using repeated substitution for ht−1, a GARCH(1,1) model can be written as an
ARCH(∞) model:

ht = ω + αr2t−1 + β(ω + αr2t−2 + βht−2

= ω(1 + β) + α(r2t−1 + βr2t−2) + β2ht−2

= ...

=
ω

1− β
+

∞∑
j=1

αβj−1r2t−j

For the GARCH(1,1) model, we find the unconditional variance using the law of iterated
expectations:

θt = E(r2t ) = E(htε
2
t )

= E(htEt−1(ε2t )) = E(ht)
= E(ω + αr2t−1 + βht−1)
= ω + αθt−1 + βθt−1

= ω + (α+ β)θt−1

θt =
ω

1− α− β
+ (α+ β)tθ0

where θ0 may be any positive initial value. If |α + β| > 1, the variance will explode over
time. If |α + β| < 1, the variance process will be mean-reverting. If α + β = 1, as in the
exponential smoother, θt = 0

0 + θ01t, which is undefined. If the unconditional variance is
constant, then θt = θt−1 = ω

1−α−β .
We also calculate the higher moments:

E(r3t ) = E(h3/2
t Et−1(ε3t ))

If εt is symmetric, then this will be 0.
If the conditional kurtosis, Et−1(ε4t ) is constant and equal to kc, then,

E(r4t ) = E(h2
tEt−1(ε4t ))

= kcE(h2
t )

By Jensen’s inequality, we find that the unconditional kurtosis satisfies:

k =
E(r4t )
E(r2t )2

=
kcE(h2

t )
E(ht)2

≥ kc
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Thus, ARCH and GARCH data will have more kurtosis unconditionally than conditionally;
this allows a normal distribution for εt to lead to a leptokurtotic (fat-tailed) distribution
for rt.

In practice, α+ β tends to be close to one, and ω is close to 0.
While the linearity of the GARCH model makes taking expectations and forecasting

either, it might not be correct empirically.

Definition In an asymmetric volatility model, also called a threshold ARCH (TARCH)
model or a GJR-GARCH model, we model ht = ω + αr2t−1 + βht−1 + γr2t−1dt−1, where
dt = 1 if rt < 0 and 0 otherwise.

Definition In the exponential GARCH (EGARCH) model, log ht = ω + β log ht−1 +
α |rt−1|√

ht−1
+ γ rt−1√

ht−1
.

In the TARCH model, squared positive returns increase volatility by α while squared
negative returns increase volatility by α+γ. In a TARCH model, α+β+γ may be greater
than 1. In EGARCH, positive and negative returns have different effects (α+ γ and α− γ
respectively); if γ < 0, then negative returns increase volatility. Since we are now modeling
the logarithm of volatility, we no longer need to constrain anything to be non-negative.

For forecasting with TARCH, we note that ht+1 is known at time t, assume that rt is
symmetric about zero (so that Et(dt+1) = 1

2), and compute:

ht+2 = ω + αr2t+1 + βht+1 + γr2t+1dt+1

Et(r2t+2) = Et(ht+2)
= ω + αEt(r2t+1) + βEt(ht+1) + γEt(r2t+1dt+1)

= ω + αht+1 + βht+1 + γ

(
1
2
ht+1

)
= ω +

(
α+ β +

γ

2

)
ht+1

If we assume stationarity, then we can compute the unconditional variance as E(r2t ) =
ω

1−(α+β+γ/2) . For this to be finite, we must have α+ β + γ
2 < 1.

All of these models assume that E(rt) = 0, which is not exactly correct (since returns
are positive over the very long run). However, the mean is close enough to 0 that it can
be approximated by 0 for daily data or higher frequency data.

TARCH can also be modeled as having a different threshold. However, this makes the
model more complicated because it no longer takes advantage of symmetry.

In TARCH, ARCH or GARCH, the conditional forecast of the variance at long horizons
reverts exponentially fast to the unconditional variance:

Et(ht+2) = E(ht)
(
1−

(
α+ β +

γ

2

))
+
(
α+ β +

γ

2

)
ht+1

Et(ht+k)− E(ht) =
(
α+ β +

γ

2

)k−1
(ht+1 − E(ht))

13



If α+ β + γ
2 is close to 1, then the mean-reversion occurs more slowly. This (and many of

the other results) assumes that E(ht) is constant over time.

Definition Another volatility model is PARCH or Power ARCH, where ht = α(r2t )
βh1−β

t .

To select a model for volatility, we may first use diagnostic checks. One should first
test the returns or the residuals from a model for the returns (using a correlogram) to
ensure that there is no autocorrelation. Then, one can use LM tests that regress squared
standardized residuals (that is, corrected for ht) on past squared residuals to check for
autocorrelation in volatility. One can also use a correlogram on the squared, standardized
residuals after fitted to ensure that no correlation remains. A histogram of the standardized
residuals should have mean 0 and variance 1, as well as skewness or kurtosis that matches
the distribution for εt (one can also use the Jacques-Berra test to ensure that normality is
not rejected). Second, for model selection, we use an information criterion. Though the
likelihood always increases if there are more parameters, we may use a likelihood ratio test
to compare nested models. In general, the AIC or BIC can be used to choose between
models (we wish to minimize the criterion of choice).

For estimation, we note that any of these models can be written as rt =
√
htεt + mt,

where mt is the conditional mean, ht is the conditional variance, and εt ∼ Normal(0, 1)
independent of mt, ht. Then, the conditional likelihood is:

rt|It−1 ∼ Normal(mt, ht)

log ft(rt|It−1) = 1− 1
2

log(2πht)−
1

2ht
(rt −mt)2

Summing up leads to the joint log likelihood:

l =
T∑

t=1

log ft(rt) = −T
2

log(2π)− 1
2

T∑
t=1

log(ht)−
1
2

T∑
t=1

(rt −mt)2

ht

We may then insert any functional forms for ht,mt. Taking the derivatives with respect
to the parameters, θ, that affect ht (and assuming that mt does not depend on the same
parameters!) shows that:

∂l

∂θ
= −1

2

T∑
t=1

1
ht

∂ht

∂θ
− 1

2

T∑
t=1

(
−(rt −mt)2

h2
t

)
∂ht

∂θ

= −1
2

T∑
t=1

ht − (rt −mt)2

h2
t

∂ht

∂θ

Since ht depends only on the past, the expectation of ∂l
∂θ is 0 (as it always should be if

the likelihood is correct), since E
(
(rt −mt)2

)
= ht and ∂ht

∂θ depends only on the past.
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If we treat this as an m-estimator (quasi-MLE) instead, then the estimates will be con-
sistent even if normality does not hold, as long as E

(
(rt −mt)2

)
= ht. In this case,

Bollerslev-Wooldridge standard errors should be used; these assume that the scores are
serially uncorrelated (which is reasonable since the returns are serially uncorrelated), and
may lead to much bigger standard errors.

We could also use the likelihood function for a different distribution (for example, the
Student’s t distribution with the degrees of freedom estimated; smaller degrees of freedom
lead to larger kurtosis). However, if the distribution is wrong, the estimator is no longer
even a quasi-MLE.

One can also estimate the density from the first-stage residuals. This is called an
adaptive or semiparametric estimator, and requires more data to really get the tail behavior
right.

3.1 Economic Reasons

For most equity time series, δ > 0. Economic reasons for this may include:

• Leverage Effects: A negative return implies that the debt/equity ratio increases. This
means that the volatility of equity must increase.

• Risk aversion: News about volatility (since price decreases predict higher future
volatility) may cause investors to change holdings.

The leverage theory has two problems. First, the effects on volatility seem disproportion-
ately large. Second, the effect seems to be stronger for indices than for individual stocks.

Volatility “news” may come in two forms. First, one may know that something (like a
macroeconomic announcement) is going to happen, but not know whether it will lead to a
positive or a negative movement. (This can be seen in options price data.) Second, knowing
today’s volatility forecasts tomorrow’s volatility. If people are rational, then volatility must
come from news; any volatility clustering would come from the clustering of news. However,
if there is also price discovery, commentary on news, or reaction to the trades based on the
news, then the volatility associated with a single news event may last longer, leading to
volatility clustering.

3.2 Skewness

Skewness can be used as a measure of downside risk. Asymmetry in volatility leads to
negative skewness, since price increases lead to low volatility and therefore little movement
the next day, while price declines lead to high volatility, and potentially bigger declines.
As data is aggregated over days, skewness increases at first (up to 30-40 days) and then
declines. Returns have been more skewed since the 1987 crash.
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Skewness should affect the risk-neutral distribution, through risk aversion and through
the empirical distribution of returns. Therefore, skewness affects options prices and any
other prices.

Empirically, individual stocks are positively skewed while indexes are negatively skewed.

4 Options

Definition Options are contracts that give the holder the right but not the obligation to
do something. A call option gives the right to buy a certain stock at a pre-specified strike
price. A put option gives the right to sell a certain stock at a pre-specified strike price.
A European option must be exercised at a particular expiration date, while an American
option can be exercised at any time up to the expiration date. A Bermuda option can be
exercised a a fixed number of dates in an interval.

Definition An option is in-the-money if it will lead to a positive payoff at the current price
of the underlying stock, out-of-the-money if it won’t, and at-the-money if the underlying
stock price is equal to the (discounted) strike price. An option is forward at-the-money
if the present value of the strike price equals the underlying price (K = S0e

rT ). (This
distinction matters most for larger risk-free rates and larger expirations dates.)

A call or put option is described by the strike price, K, the current underlying price
of the asset, St (or S0 if we start the clock today), and the date it expires, T . The price
today is Ct or Pt. At time T , the payoff (and therefore the price, if it were traded) is:

CT = max(0, ST −K)
PT = max(0,K − ST )

Note that the possible gain on a call option is unbounded, and that both options have
bounded losses. This means that short and long positions in options are not symmetrical.
Since the payoff is non-linear, the price of the option must be sensitive to the whole
distribution. In particular, the payoff depends on the volatility of the underlying stock
price, σ.

For any t < T , even if the option is out-of-the-money, the price has time to move so
that there might still be a positive payoff. This means that the price lies above the payoff
curve. Thus, an option is more valuable than an equivalent position in the stock.

The Greeks for call options are:

• Delta: ∂Ct
∂St

. This measures how the option price is affected by the price of the
underlying. 0 < ∂Ct

∂St
< 1 in all cases, since the option price must increase with the

underlying price (since the expected payoff is higher), but it doesn’t go up as fast
(because it is asymptotically equal to the underlying?). Delta goes to zero for longer
maturities.
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• Gamma: ∂2Ct

∂S2
t

. The gamma must always be positive, since the price curve as a
function of the underlying price is convex; if the curve were not convex, one could
use butterfly spreads which one buys two options for the middle strike price and
sells an option on either side of that, which would lead to an arbitrage profit or
C(K + ε)− 2C(K) +C(K − ε). Gamma is larger when the option is close to at-the-
money and at short maturities at-the-money (as the curve goes the final payoff which
has infinite curvature at the money).

• Vega: ∂Ct
∂σ . This is positive, since the likelihood of the underlying price going up

more or down more increases, but downside risks are bounded for options. Note that
∂Ct
∂σ goes to 0 as the option is deeper into and out of the money.

• Theta: ∂Ct
∂T . This is usually positive, since having more time to maturity generally

leads to a larger variance in the stock price. On the other hand, if the risk-free
interest rate is high, then the theta might be negative for a European option, since
one has to wait longer to exercise the option; this will only happen in the much longer
run, and is more likely with puts (where the payoff is bounded above by the strike
price). Mean-reverting volatility can also lead to this sort of effect. (Theta can also
be defined as ∂Ct

∂(T−t) , which reverses the sign and gives the interpretation as the time
rate of decay on options prices.)

For stocks, the delta is always 1, while the gamma and vega are 0. For puts, the delta is
always negative, while the gamma, vega, and theta are always positive. For two options on
the same underlying security, the Greeks for the portfolio is just the sum of the individual
Greeks, since derivatives are linear and the value of a portfolio is the sum of the individual
values.

The most active options in trading are usually the ones that are at-the-money. Also,
the options that are due to expire soon (but not too soon) tend to be more active. Analysis
should be based on these, if possible. Since many options are not frequently traded, analysis
should often be done using the midpoint of the current bid and ask prices, since that is
always kept current. Using the last trade will lead to a less smooth curve (where it is even
defined), since the bid-ask spread no longer needs to contain the last price. The curves of
bids and asks are based on market makers’ formulas; it is not necessarily true that people
would want to trade at these prices.

4.1 Options Pricing Models

Suppose we have a pricing kernel, M∗, or, equivalently, a risk-neutral density, f∗. Then,
the prices must be:

Pt = Et(max(K − ST , 0)M∗)
= e−r(T−t)E∗t (max(K − ST , 0))

Ct = e−r(T−t)E∗t (max(0, ST −K))
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where E∗t is the expectation at time t using the risk-neutral density. Note that the risk
premium is:

er(T−t)(Et(x)− E∗t (x))

Since the risk-neutral density is constant across all types of derivatives based on the same
underlying asset, St = e−r(T−t)E∗t (ST ).

Definition Put-call parity is defined by:

C0 − P0 = e−rTE∗t (ST −K) = S0 −Ke−rT

which must hold as long as the risk-neutral density is the same for call and put options
with the same strike price and expirations.

In the Black-Scholes pricing method, the risk-neutral density satisfies:

dS = rSdt+ σSdz

where dz is the random Gaussian measure, and both σ and r are assumed to be constant.
Using this risk-neutral density, we calculate the expected payoff:

E(ST ) = S0e
rT

log
(
ST

S0

)
∼ Normal

((
r − σ2

2

)
T, σ2T

)
E(max(V −K, 0)) = E(V )Φ(d1)−KΦ(d2)

C0 = S0Φ(d1)−Ke−rT Φ(d2)
P0 = Ke−rT Φ(−d2)− S0Φ(−d1)

d1 =
1

σ
√
T

(
ln
(

S0

Ke−rT

)
− Tσ2

2

)
d2 = d1 − σ

√
T

For an at-the-money forward call option, this can be approximated by c0 ≈ S0σ
√

T
2π .

Definition The implied volatility is the value of σ in the Black-Scholes formula that would
make the actual price of the option agree with the formula.

Implied volatilities are generally better predictors of future volatilities than GARCH
predictions, since implied volatilities built in the expectations of the people trading the
options.

If Black-Scholes were correct, implied volatility would be the same for options at any
maturity or expiration.
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Because of put-call parity, put and call options at the same strike price imply the same
volatility (approximately). Empirically, implied volatility is highest for puts or calls that
are far out of the money, and lower at-the-money. This shape is called the volatility smile.
For indexes, there tends to be a volatility smirk, where the implied volatility is lower at
higher strike prices, turning up less for out-of-the-money puts. The smirk tends to be
steeper over longer horizons, perhaps because the long-run risks are greater, with either
volatility being expected to rise or more uncertainty in financial markets in the long run.
For stocks, there tends to be more of a smile; this may come from higher implied volatility
if a stock could be overvalued (then, puts are a hedge against a correction).

In the Hull and White pricing method, they compute:

Pt = E∗t (Et(max(K − St, 0)|σ))
Ct = E∗t (Et(max(St −K, 0)|σ))

where σ is the realized volatility for the period. This will simply be E∗t (BS(σ, K
S0

)) if the
following assumptions hold:

• We are modeling volatility, σ, not variance, σ2,

• the density for the volatility is the risk-neutral density,

• St is conditionally log normal (given the volatility), and

• Cov(St, σ) = 0.

Since the Black-Scholes formula is not linear, E∗t (BS(σ, K
S )) 6= BS(E(σ, K

S )). That would
give the plug-in Hull and White formula, Pt = BS(E∗t (σ, K

S )). In general, the implied
volatility from the Hull and White prices will not agree with the average volatility, but
it will be closest for at-the-money options. The Hull and White formula can lead to a
relatively flat smile, but never a smirk.

Suppose we can assume that a certain risk-neutral density, f∗, of ST is known. Then,
we can use simulation-based methods to price options. To do this:

1. Simulate {ST,i}N
i=1 from the risk-neutral distribution.

2. Compute E∗t (max(K − ST , 0)) ≈ 1
N

∑N
i=1 max(K − ST,i, 0).

3. Discount back to find P̂t = e−r(T−t) 1
N

∑N
i=1 max(K − ST,i, 0).

One might want to ensure that the asset itself is priced correctly; that is, that St =
e−r(T−t) 1

N

∑N
i=1 ST,i exactly. To do this, one can adjust each ST,i slightly, though this

introduces some small dependence into the observations. Note that this method only
prices European options and is only valid for options that expire at time T . Because we
are modeling stock prices directly, we must be sure that we are using the risk-neutral
distribution, not the empirical distribution.
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To choose a risk-neutral distribution, p0(K,T ), one might specify a parametric form
that depends on θ and then choose θ to minimize

∑
K

∑
T (p0(K,T ) − p̂0(K,T ))2. This

allows θ to determined across expiration dates and strike prices. However, this would
require many simulations, since a new simulation is needed for each T .

Finding p̂0(K,T ) for successive days can be used to compute how implied volatility
changes over time. This uses the approximation:

∂c

∂S
=
c(S,K)− c(S + ε,K)

ε

However, this method requires additional simulations. Alternatively, if a pricing formula,
c(S0,K), is homogenous of degree one:

c(S0,K) =
1
t
c(tS0, tK)

c(S,K) = cKK + cSS

cS = −cK
K

S
+

1
S
c(S,K)

Simulation is also homogenous of degree one if ST,i = S0gi where gi is the random variable
being simulated, since

erT 1
N

∑
max(S0gi −K, 0) =

1
t
erT 1

N

∑
max

(
S0

t
gi −

K

t
, 0
)

and we may use the formula as before. Since cK , K
S ,

1
S , c(S,K) can all be computed from

a single simulation, this is an efficient way of finding the delta.
For market-makers, it is more important to have an arbitrage free model, even if the

parameter values change over time.
In least squares Monte Carlo (Longstaff and Schwarz), one estimates the payoff on an

American option from the regression on a constant and a function of last period’s price,
that is,

Payoffi = c+ εi + f(sT−1)

if it is exercised today. f may be estimated using a kernel estimator; it would be expected
that f would be close to 0 when options are out of the money. f may depend on lagged
options prices as well. With such a structure, we can determine which values of f(st−1)
should lead to an early exercise of the option.

Other models for options pricing include:

• Binomial Trees: This method assumes that the underlying asset can take on a finite
number of values in each period and uses the expectation to price the option.

• Heston Square Root Model
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• GARCH Trees: This uses GARCH to price options (since it gives a distribution for
future stock prices?). To do this, we fix the returns a GARCH model to make them
risk-neutral:

ln
(
St+1

St

)
= r − ht+1

2
+
√
ht+1zt

ht+1 = ω + αht(zt − c− λt)2 + βht

• One might need to adjust the risk-neutral distribution to add additional fear of
crashes.

• Component Models (Cristoferson, Jacobs and Wang): Suppose the risk-neutral den-
sity is

ln
(
St+1

St

)
= r + λht+1 +

√
ht+1zt+1

ht+1 = ωt + b1ht + a1(z − c1
√
ht)2

where wt is slowly time-varying. Then, the long-run variance changes as σ2
t =

ωt

1−b1−a1c21
. This builds in the short-run dynamics of a GARCH model and the long-

run dynamics from ωt. This can help in pricing different maturities.

If options markets are incomplete, then the volatility across the two markets might
differ.

Suppose Pt = BS(σ, K
S ). By definition, ∂Pt

∂σ = Λ (vega, as before), and

∂Pt

∂S2
t

= Γ +
∂BS

∂σ

∂2σ

∂S2
t

= Γ + Λ · VM

where VM = ∂σ2

∂S2
t

is the variance multiplier. The variance multiplier is generally smaller
for longer maturities (because σ is stationary in the long run), while Γ is larger for long-run
maturities. A method called GARCH GAMMA corrects for this.

Theorem 4.1 Breedan and Litzenberger. Suppose we options prices, c(K) for every strike
price K. Then, we may find the risk-neutral density, f∗, using ∂2c

∂K2 = erT f∗(K).

Proof

c(K) = e−rT

∫ ∞

0
max(ST −K, 0)f∗(ST )dST

= e−rT

∫ ∞

K
(ST −K)f∗(ST )dST

∂c

∂K
= e−rT

∫ ∞

K
(−1)f∗(ST )dST − e−rT max(K −K, 0)f∗(K)

∂2c

∂K2
= e−rT f∗(K)
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Unfortunately, approximations of ∂2c
∂K2 based on a small number of strike prices are

noisy. One could interpolate between strike prices to try to smooth out the estimates.
Also, using this result, one could get estimates of the pricing kernel M∗

t+1, based on the
ratio of the empirical density to the risk-neutral density. To smooth this out, M∗

t+1 could be
projected onto variables known at time t, using M∗(rt+1) = θtr

−θt
t+1. With this specification,

the pricing kernel will be monotonically decreasing in returns; more flexible specifications
allow people to seem to be risk-loving around 0 returns.

4.2 Trading Volatility

To buy volatility (as a hedge against volatility increases), one could use various portfolios:

• Straddle: Buy a call and a put at the same strike (usually, at-the-money) and matu-
rity.

• Strangle: Buy a call and a put at slightly different strikes.

• Buy an option and a delta hedge (?).

Such methods require constant adjustment as the underlying price changes.
The Volatility Index (VIX) averages out-of-the-money calls and puts to approximate

the future realized variance of the S & P 500. This is like a portfolio of strangles. This is
based on the exact Taylor series expansion:

g(S) = g(S) + g′(S)(S − S) +
∫ ∞

K
g′′(K)(K − S)+dK +

∫ K

0
g′′(K)(S −K)+dK

In particular, if g(S) is the payoff and St is the present value (known today), then

E(e−r(T−t)g(S)) = (g(St)− g′(St)St)e−r(T−t) + g′(St)St

+
∫ ∞

K
g′′(K)C(K, t, T )dK +

∫ K

0
g′′(K)P (K, t, T )dK

where C(K, t, T ) and P (K, t, T ) are the holdings of calls and puts at the given strikes
and expirations. Using g(ST ) = log(ST

St
), the weights on the calls and puts should be

2(1−log(K/St))
K2 . There must be interpolation since there is not an option at each point. This

is how the VIX is created, using no assumptions about the risk-neutral distribution.
In general, the VIX is higher than the GARCH estimates of volatility; this may come

from the risk premium being built into the VIX and not GARCH. Furthermore, VIX
usually gives a better forecast than GARCH (which in turn is better than just using
historical volatility).

This can be extended to trading more complicated moments:
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• Correlations: One could buy the variance of an index and sell the variance of its
components. Suppose ρij = ρ for all i 6= j. Then:

V ar
(∑

wirit

)
=
∑

ws
iV ar(rit) + 2ρ

∑
i6=j

wiwj

√
V ar(ri)V ar(rj)

• Skewness (which could be used to hedge downside risk) and kurtosis could also con-
ceivably be traded, but they are not yet.

5 Extreme Value Theory

Extreme value theory is used to measure the frequency with which extreme movements
(particularly crashes) occur in the market. This may be more challenging for stocks (than
for natural events) because of the human component built into stock trading. In this
section, we often talk about the maximum of n events; when we are interested in minima
instead, we simply talk about the maximum of their negatives. Throughout this section,
we only consider the unconditional distribution of returns, which might not be the best
option in reality.

Proposition 5.1 Let Mn = max(X1, ..., Xn). If X1, ..., Xn are independent and identically
distributed with distribution F , then:

Fn(z) = P (Mn < z)
= P (X1 < z)P (X2 < z)...P (Xn < z)
= F (z)n

Theorem 5.2 Fisher-Tippett. Suppose Xi is independent and identically distributed, and
there exist a sequence of constants cn, dn, such that Mn−dn

Cn
→D H, where H is a non-

degenerate distribution. Then, there are three possible cumulative distribution function for
H:

• Frechet Distribution (also known as the Pareto distribution): For some α > 0,

Φα(x) =
{

exp(−x−α) x > 0
0 x ≤ 0

• Weibull Distribution: For some α > 0,

Ψα(x) =
{

exp(−(−x)α) x ≤ 0
1 x > 0

• Gumbel Distribution: Λ(x) = exp(−e−x)
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The three distributions are related. In particular, if x ∼ Φα, then (log x)α ∼ Λ and
− 1

x ∼ Ψα (SAME α?).

Definition Let L be a function. If limx→∞
L(tx)
L(x) = 1 for all t, then L is a slowly-varying

function.

Definition Suppose limx→∞
h(tx)
h(x) = tρ for all t. Then, h is a regularly-varying function.

The logarithm is a slowly-varying function. Polynomials are regularly varying functions
with ρ equal to the highest order of the polynomial. ex is neither. The product of a slowly-
varying function and a regularly varying function is another regularly-varying function.

Definition If Fn converges to a certain one of the distributions, Θ, in the Fisher-Tippett
Theorem, then we say that F is in the maximal domain of attraction of that distribution,
or F ∈MDA(Θ).

Theorem 5.3 F is in the maximal domain of attraction of Φ if and only if F (x) = 1 −
F (x) = L(x)x−1/ξ, with ξ > 0 and L(x) a slowly varying function.

The Frechet distribution is in its own MDA. If F ∈ MDA(Φ), F has an infinite right
endpoint. If F ∈MDA(Ψ), it has a finite right endpoint.

Definition We call α = 1
ξ in the previous theorem the tail index. If α is small, the

distribution will have fat tails.

The tail index determines which moments of the distribution are finite. For the Frechet
distribution, there are α finite moments. The Student’s t distribution with ν degrees of
freedom has α = ν.

Theorem 5.4 Von Mises Condition. F ∈ MDA(Φ) if and only if limx→∞
xf(x)
F (x) = α (or

limx→∞
f(x)

1−F (x) = c). Suppose xF is the maximum value that F can take; F ∈MDA(Ψ) if

and only if limx↑xF

(xF−x)f(x)
1−F (x) = α > 0. In the latter case, α is the tail index.

The maximal domain of attraction of the Frechet includes: Frechet distribution, Cauchy
distribution, Burr distribution, Stable distribution with α < 2, and the t distribution. The
maximal domain of attraction of the Weibull includes: Uniform, Beta, some Power Law
distributions. The maximal domain of attraction of the Gumbel includes: Exponential,
Normal, Weibull, Erlang, Log Normal, Gamma.

Definition The generalized extreme value distribution is given by

Hξ(x) =
{

exp(−(1 + ξx)−1/ξ) ξ 6= 0, 1 + ξx > 0
exp(−e−x) ξ = 0

In the tails, ξ > 0 agree with the Frechet distribution, ξ < 0 agrees with the Weibull
distribution, and ξ = 0 agrees with the Gumbel distribution. Note that the change in the
neighborhood of ξ = 0 is continuous.
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5.1 Estimation

To find the probabilities of extreme events, we must estimate the tails of the distribution
by estimating α.

One can use block maxima, where the maximum is found over fixed consecutive blocks
of data, and the Frechet distribution is based on only those maxima. This throws out a
lot of data, which is inefficient.

With threshold exceedances, we pick a threshold, u, and concentrate on the data that
exceed it, {(xi − u)+}. For the Pareto distribution, the distribution of (xi − u)+ is f(x) =
αuα

xα+1 , x > u. Corresponding to the generalized extreme value distribution in this context
is the Generalized Pareto distribution:

Gξ,β(x) =

{
1− (1 + ξx

β )−1/ξ ξ 6= 0, 1− ξ
β ≥ 0

1− exp(−x
β ) ξ = 0

where ξ matches the parameter from the generalized extreme value distribution and β
depends on the threshold. The distribution of threshold exceedances converges to the
GPD as u increases.

Theorem 5.5 Pickens-Balkma-DeHaan. Let X be a random variable with distribution
function P (X < x) = F (x). We define:

Fu(x) = P (X − u < x|X > u)

=
P (u < X < x+ u)

P (u < X)

=
F (x+ u)− F (u)

1− F (u)

Let xF be X, which may be infinite. limx→xF sup0≤x≤xF−u |Fu(x) − Gξ,β(x)| = 0 if and
only if F ∈MDA(Hξ).

For maximum likelihood estimation, the density and log-likelihood are:

g(x; ξ, β) =
∂G

∂x
=

1
β

(
1 +

ξx

β

)−1−1/ξ

l =
∑

log g(yi) = −n log β −
∑(

1 +
1
ξ

)
log
(

1 +
ξyi

β

)
where yi = xi − u for those xi > u.

The choice of the threshold, u, can be a challenge. If u is too big, there will be very few
observations, which will lead to larger standard errors. If u is too small, the observations
chosen might not be far enough in the tail, which will lead to bias. One can use the mean
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squared error or just “window carpentry” (eyeballing where bias seems to be a problem)
to choose u.

Another option is the Hill estimator, which assumes that the distribution of extreme
values is f(x) = cx−α. This is the Pareto distribution, which is a stronger assumption but
still matches the extreme tails. This estimator has a closed form solution.

5.2 Quantile Regression

Suppose yt = β + ut. We may estimate β in a variety of ways. If we choose β̂ to minimize∑
u2

t , then β̂ will be the mean of yt. If we choose it to minimize
∑
|ut| instead, then β̂

will be the median of yt. If we minimize
(∑

ut<0 α|ut|+
∑

ut>0(1− α)|ut|
)
, then β̂ will be

the α-quantile of yt. Note that this last method weights positive and negative residuals
differently.

More generally, quantile regression is based on the model yt = f(xt, β)+ut and choosing
β̂ to minimize

(∑
ut<0 α|ut|+

∑
ut>0(1− α)|ut|

)
. Least squares minimizes

∑
u2

t and least
absolute deviations sets α = 0.5. It is possible to find estimators for more than one quantile,
but in finite samples the quantiles might not overlap or might intersect; asymptotically,
they should all work out.

Suppose that Xt has a hypothesized cumulative distribution function F . To test if the
distribution is correctly specified, we have a few options:

• We may compare the moments of the empirical distribution to the moments of the
hypothesized distribution.

• Ut = F (Xt) is a random variable with a uniform distribution. If Xt actually has
fatter tails than is hypothesized, then the distribution of Ut will be too high in the
middle and too low in the tails (since we divide by the variance first).

• We may also compute Yt = F−1(Ut) and check if the resulting distribution matches
the properties of F .

If there is possible time dependence, we would want to test that the CDF is uniform at
each time, not just on average.

In general, any monotonic transformation of a random variable will keep the observa-
tions in the same order; their spacing is the only part that is changed.

5.3 Copulas

Definition A copula is any joint distribution of uniform random variables. That is, U =
(U1, ., , , Uk) ∼ C(u1, ..., uk).

To check if C is a copula, it is sufficient to check that:

• C(u) = 0 if any argument is 0.
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• C(u) is monotonically increasing in each argument.

• C(u) = 1 if and only if u = 1.

The copula for independence is C(u1, ..., uk) = u1...uk.

Theorem 5.6 Sklar’s Theorem. If F is a k-dimensional cumulative distribution function
with univariate continuous marginals, F1, ..., Fk, then there exists a unique k-dimensional
copula, C, such that, for all x,

F (x1, ..., xk) = C(F1(x1), ..., Fk(xk))

Conversely, if C is a copula and F1, ..., Fk are univariate cumulative distribution functions,
then F as defined above is a joint cumulative distribution function with the given marginals.

We may also write: C(u) = F (F−1
1 (u1), ..., F−1

k (uk))

Definition If C is a copula, then the copula density is c(u) = ∂kC(u)
∂u1...∂uk

.

The joint density is the product of the marginal densities and the copula: f(y) =
c(u)f1(y1)...fk(yk).

The correlation of variables cannot be associated with a particular copula, because
it is sensitive to non-linear monotonic transformations of the variables (that is, different
marginals). However, Kendall’s τ (where τ = P ((Y1−Y ′1)(Y2−Y ′2) > 0)−P ((Y1−Y ′1)(Y2−
Y ′2) < 0)) and Spearman’s rank correlation (which is equivalent to finding the correlation
of U1, U2) are invariant to the marginals.

Definition Upper tail dependence is defined by:

λU = lim
u→1

P (U1 > u|U2 > u) = lim
u→1

P (U2 > u|U1 > u)

= lim
u→1

1− 2u+ C(u, u)
1− u

Lower tail dependence is defined by:

λL = lim
u→0

C(u, u)
u

Since tail dependence is a probability, it lies between 0 and 1. For joint normal distri-
butions, λU = λL = 0, even if the correlation is high. Other copulas may have one or both
be non-zero; in financial applications, we would like to have more lower tail dependence
(for example, in measuring correlations between defaults).

Tail dependence may help describe contagions, where extreme declines occur; in these
situations, correlations and volatility both increase. The multivariate normal distribution
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therefore underprices extreme events, such as defaults, and the hedges against them (like
CDO tranches, which protect against a combination of defaults).

Consider three measure of volatility:

|rt|2 = Ψtεt

(log(range))2 = φtξt

(RealizedV olatility)2 = θtνt

εt ∼ (1, σ2
1)

ξt ∼ (1, σ2
2)

νt ∼ (1, σ2
3)

In some applications, we assume that εt, ξt, νt all have Gamma distributions. We may also
be interested in the joint distribution of the three terms; we want a copula with Gamma
marginals. One possibility is a normal copula.

Copulas can also be used in modeling the implied volatility of various stocks. To do this
we must find the mean and errors of each, the correlations, and then the joint distribution
of the errors.

Suppose rit = βir
m
t + εit. If (rm

t , εit) is jointly normal, then each rit will also be
normal and there will be no tail dependence in returns across assets. However, if rm

t has
a asymmetric distribution, even though εit is still normal, the joint distribution will have
lower tail dependence. In particular, if β = 1 and V ar(εit) = 1, then

P (ri < di) = E (P (ri < di|rm)) = E(Φ(di − rm))

and skewness satisfies s = smρ3; that is, individual return skewness is attenuated relative
to the skewness of the market return. If default occurs when the return is below d, then
the joint probability of default is:

P (ri < d ∩ rj < d) = E(Φ(d− rm)2) = V ar(Φ) + P (ri < d)2

The heavier the tails of rm, the greater the tail dependence in returns.

5.4 Value at Risk

Definition The value at risk of a portfolio, given a confidence level, α, and a horizon, T ,
is a value, V aR(t, T, α), such that the return over horizon T will exceed it α of the time
(with α confidence). That is, Pt(rt,T < −V aR(t, T, α)) = α.

The value at risk must be measurable in the current period. In general, V aR(t) =
f(V aR(t− 1), r(t− 1), parameters). In the Adaptive Model,

V aR(t) = V aR(t− 1) + β(I(r(t− 1) < −V aR(t− 1))− θ)

There are many other models as well.
In the CAViaR Strategy, we have the following steps:
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• Define a quantile model with unknown parameters.

• Construct the quantile criterion function.

• Optimize the criterion over the history.

• Use diagnostic checks to ensure that the model is adequate.

One quantile criterion function (Koenker and Bassett, 1978) is:

Q(β) =
∑

I(r(t) < V aR(t))(r(t)− V aR(t))

which treats positive and negative errors differently (it is harsher on errors when the return
is below the VaR.

6 Multivariate Models

6.1 Factor Models and Principal Components

Definition A K-factor model or multiple indicator model for yt is defined by yt =
∑K

k=1 βkfkt+
εt, where yt is an observed vector, fkt are factors, and βk are vectors of coefficients. The
factors can be either unobservable (latent) or observable.

We use E(yt), V ar(yt) to understand the behavior of the unobservable factors. Speci-
fying a certain factor model is equivalent to a restriction of the moment condition.

Suppose we have an unobservable factor model, yt = BFt + εt, where Ft is a vector of
k factors and B is an N ×K matrix of coefficients. Since we do not observe the factors,
we require some additional identifying (orthogonality) assumptions:

• E(Ft) = 0

• E(FtF
′
t) = I

• E(Ftε
′
t) = 0

• E(εtε′t) = D, where D is a diagonal matrix

Note that V ar(Yt) = B(E(FtF
′
t))B

′ + E(εtε′t) + 0 = BB′ +D. Then, if we assumed that
E(FtF

′
t) = PP ′ more generally, the coefficient, B would simply become B∗ = BP . The

assumptions above are still not sufficient to identify the factors, since for any rotation
matrix C, F ∗t = CFt would lead to the same variance and would still satisfy E(F ∗t F

∗
t ) =

CIC ′ = I. To fix this, we may add zero restrictions on the B matrix. However, the choice
of which rotation is used matters only in the “naming” of factors to correspond to economic
theory; predictions would be the same.
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In this model, any dependence in the yt is captured by the factors, since εt is diagonal.
This gives a parsimonious way to describe correlations.

In general, the data gives N(N+1)
2 moments (from the lower triangle of the covari-

ance matrix), while there are NK + N parameters (NK elements of B and N non-zero
elements of D). Thus, adding more assets identifies or over-identifies the model (and over-
identification can lead to tests of adequacy), while adding more factors may require more
assets or more restrictions to identify the model.

One could estimate this model by maximum likelihood, under the assumption that εt
is multivariate normal:

L = −T
2

log |NN ′ +D| − 1
2

∑
y′t(BB

′ +D)−1yt

However, this is generally hard.
Instead, we use a similar (but not identical) model for estimation. In principal com-

ponents analysis, we assume that V ar(yt) = Ω, and we want to choose a vector a to
maximize a′Ωa such that a′a = 1. This is the unit vector that maximizes V ar(a′yt). Using
the Lagrangian, we find that:

L = a′Ωa− λ(a′a− 1)
Ωa− λa = 0

which implies that a is the eigenvalue of Ω corresponding to the largest eigenvector, λ. If
a1, ..., aN are the eigenvectors corresponding to eigenvalues λ1 > ... > λN , then V ar(yt) =∑N

i=1 λiaia
′
i, and ai is the linear combination of yt which has the largest variance, subject

to the restriction that ai is orthogonal to a1, ..., ai−1. If A = [a1, ..., aN ], then Z = A′y is
the vector of principal components. Note that

E(ztz′t) = E(A′yty
′
tA) = A′ΩA = Λ

where Λ is the diagonal matrix consisting of the eigenvalues.
We might be able to approximate the series using a smaller number of principal compo-

nents. In particular, we note that trace(V ar(yt)) = trace(AΛA′) =
∑N

i=1 λi, so that λiP
λj

is the importance of each component.
We can also compute the principal components using the eigenvectors of the correlation

matrix. In this case, the trace is always N . The results will be similar, particularly if the
series have similar variances, but they need not be identical.

By looking at the eigenvectors, we may “name” the components. For example, if all
the returns have roughly equal weights (or weights approximately equal to the market
capitalization), then the component is like the market return. Other factors might be
cyclical factors or industry-based factors. Graphing the factors over time may also be
helpful in naming.
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If one or more eigenvalues were 0, then one could form a portfolio with 0 variance (if
this had a positive return, this would be statistical arbitrage). In this case, the covariance
matrix must be singular.

To relate this to a K-factor model, we may write

Ω =
K∑

i=1

λiaia
′
i +

N∑
i=K+1

λiaia
′
i

If
∑N

i=K+1 λiaia
′
i is approximately diagonal, then we may write

∑K
i=1 λiaia

′
i = BB′ and

this is the factor structure. If we assume that yt = BFt + εt with D = σ2I (equal variances
in the errors), then the eigenvectors of V ar(yt) = BB′ + σ2I must be the eigenvectors of
BB′; the corresponding eigenvalues will be σ2 greater. This means that the first K factors
will have eigenvalues greater than σ2, while the remaining N − K factors will all have
eigenvalues of σ2, corresponding to the N −K zero eigenvalues of BB′.

In an observable factor model, we have yt = Bxt + εt, where xt is observable and we no
longer restrict V ar(εt) = Ω. This may also be the reduced form of simultaneous equation
system, a vector autoregression (if xt contains lagged yt), a model of expected returns, or
CAPM or APT where the xt are the risk factors. This should be estimated as a seemingly
unrelated regressions (SUR) model. If εt ∼ Normal(0,Ω) and use maximum likelihood:

l = −T
2

log |Ω| − 1
2

∑
t

(yt −B′xt)′Ω−1(yt −Bx′t)

= −T
2

log |Ω| − 1
2
trace

(∑
t

Ω−1(yt −B′xt)(yt −B′xt)′
)

∂l

∂β
=

2
2
trace

(∑
t

Ω−1(yt − β′xt)x′t

)

or if we use the method of moments, we also find the usual equation-by-equation OLS
estimator for the coefficients:

β̂ =
∑

ytx
′
t(
∑

xtx
′
t)
−1

This works as long as the same xt are in each equation.
As an intermediate case between observable and unobservable models, we might have

the model:

yt =
K∑

k=1

βkfkt + εt

fkt = γ′kxtk + ηkt
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We may then substitute the equation for the factors back into the equation for yt to show
that this is equivalent to a regression with a more complicated error structure:

yt =
K∑

k=1

βk(γ′kxtk + ηkt) + εt

=
K∑

k=1

βkγ
′
kxtk +

(
K∑

k=1

βkηkt + εt

)

This is called a multiple indicators, multiple causes (MIMC) model.
If the model specifies that there are fewer factors than variables in xt (as might be

implied by APT or MIMC), then B no longer should have full rank. We test this using
the canonical correlations test. This test chooses vectors a, b to maximize Corr(a′Y, b′X)
subject to the restriction that V ar(a′Y ) = V ar(b′X) = 1. If some of the correlations
are equal to 0, then B has reduced rank. The subsequent correlations are the canonical
correlations.

6.2 Multivariate GARCH Models

In a multivariate GARCH model, we want to allow both time-varying correlations and
time-varying volatilities.

Definition A matrix, M , is positive definite if x′Mx > 0 for all x 6= 0. M is positive
semi-definite if x′Mx ≥ 0 for all x.

Proposition 6.1 The sum of a positive definite matrix and a positive semi-definite matrix
is positive definite.

Definition The Hadamard product of two matrices, A ◦ B, is the element-by-element
product, that is, [A ◦B]ij = [aijbij ].

Proposition 6.2 A ◦ (rr′) is positive (semi-)definite if A is positive (semi-)definite and
r 6= 0.

Proof

A ◦ (rr′) =

 A11r
2
1 ... An1r1rn

... ... ...
A1nr1rn ... Annr

2
n


= diag(r)Adiag(r)

where diag(r) is the diagonal matrix with r along the diagonal. If A is positive definite
and r 6= 0, then diag(r)Adiag(r) is positive definite.
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Proposition 6.3 A ◦B is positive definite if both matrices are positive definite. A ◦B is
positive semi-definite if both matrices are positive semi-definite.

Proof Suppose B =
∑n

i=1 λibib
′
i is the eigenvector decomposition of B. Then,

A ◦B = A ◦ (
n∑

i=1

λibib
′
i)

=
n∑

i=1

λiA ◦ (bic′i)

AND?

Definition The operator, vec(A), converts an n × k matrix to a vector of length nk by
stacking the columns.

Proposition 6.4 vec(ABC) = (CT ⊗A)vec(B).

6.2.1 Models for Covariance Matrices

Definition The conditional covariance matrix is given by Ht = Et−1(rtr′t).

For a portfolio with weights w, this leads to a conditional variance of returns of
V art−1(w′rt) = w′Htw. For two portfolios with weights w1, w2, the correlation of their
returns is Corr(w′1rt, w

′
2rt) = w′

1Htw2√
w′

1Htw1w′
2Htw2

.

Definition Two models for the conditional covariances are the moving average model
with N lags (where N must be larger than the number of assets to ensure that Ht is
positive definite), with Ht = 1

N

∑N
k=1 rt−kr

′
t−k, and the exponential smoothing model with

parameter λ, where Ht = λrt−1r
′
t−1 + (1− λ)Ht−1.

Definition The diagonal multivariate GARCH model is given by:

σijt = ωij + βijσij,t−1 + αijri,t−1rj,t−1

Ht = Ω +A ◦ (rt−1r
′
t−1) +B ◦Ht−1

This yields n(n−1)
2 equations. Note that σijt depends only on lags of ri,t−1rj,t−1, not of any

other returns or either asset’s own covariance. (This is why the model is called diagonal.)

For the predicted covariance matrix to be positive definite, we require that Ω is positive
definite and that A,B are positive semi-definite. This requires restrictions in estimation
(or perhaps a parameterization of the matrices that will ensure that they are positive
semi-definite).
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Definition The BEKK model is given by

Ht = Ω +A′rt−1r
′
t−1A+B′Ht−1B

If A,B are diagonal in the BEKK model, then the model reduces to a diagonal multi-
variate GARCH model. If they are not diagonal, this allows one covariance to depend on
the returns of other assets.

Definition The VEC model is given by:

vec(Ht) = vec(Ω) +Avec(rt−1r
′
t−1) +Bvec(Ht−1)

This model allows all squares and cross-products to affect each other. We may write
the BEKK model as a special case of the VEC model:

vec(Ht) = vec(Ω) + (A′ ⊗A)vec(rt−1r
′
t−1) + (B′ ⊗B)vec(Ht−1)

This shows that the BEKK model is a special case of the VEC model. To reduce the VEC
model to the diagonal model, A,B must be diagonal. The VEC model need not produce
positive definite covariance matrices. Also, it requires the estimation of 2n4 +1 parameters
(since A,B are n2 × n2).

For forecasting with the VEC model,

vec(Ht) = vec(Ω) +Avec(rt−1r
′
t−1) +Bvec(Ht−1)

Et−1(vec(rtr′t)) = vec(Ht)
Et−1(vec(rt+kr

′
t+k)) = Et−1(vec(Ht+k))

= vec(Ω) +AEt−1(vec(rt+k−1r
′
t+k−1)) +BEt−1(vec(Ht+k−1))

= vec(Ω) +AEt−1(vec(Ht+k−1)) +BEt−1(vec(Ht+k−1))
= vec(Ω) + (A+B)Et−1(vec(Ht+k−1))

where we use the law of iterated expectations and the linearity of the vec operator. If we
iterate on k, we find that the unconditional variance is E(vec(Ht)) = (I−A−B)−1vec(Ω),
assuming that the model is stationary. This also shows that the model is linear is the
squares and cross-products, which makes forecasting easier.

Definition In the K-factor ARCH model, we have:

Ht = Ω +BFtB
′

σijt = ωij +
K∑

f=1

K∑
f ′=1

βifβjf ′σ
FACTOR
f,f ′,t

where B is an N × K matrix and F is a K × K matrix with the K factors. Then, Ht

varies with only the factors, and the factors change the relative importance of B and Ω in
affecting Ht.
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In this model, it is a restriction to assume that F is diagonal.
The arbitrage pricing theory model leads to a similar model. In this model:

rjt − r0 =
K∑

k=1

βjk(fkt − r0) + εjt

which leads to an expected return of Et−1(rjt − r0) =
∑K

k=1 βjkµkt = Bµt. If we assume
that the εt has constant covariance, Ω, then Ht = Ω +BFtB

′. However, constant variance
portfolios are in the null space of B, which is hard to find and makes the assumption of
a constant Ω unlikely. Even if the returns don’t have constant variance, they might have
an ARCH model, which could be extended to a model for the variance. This yields a
relationship between returns and volatility.

For estimation, we assume that the errors have a normal distribution, which gives the
model and likelihood:

rt = µ+ εt

εt ∼ Normal(0,Ht)

L = −1
2

T∑
t=1

(log |Ht|+ ε′tH
−1
t εt)

For diagnostic checking, we use the standardized residuals, εt = H
−1/2
t (rt − Et−1(rt)). If

the model is correct, the following should hold:

• Cov(εt) = I.

• ε2t has no autocorrelation.

• ε2it and ε2jt have no cross-asset autocorrelation.

• εitεjt has no autocorrelation.

• No other asymmetries in the residuals.

With this many tests, most models are rejected.
Estimating the intercept can be hard since Ω is often close to 0 but must be estimated

to be positive definite. This leads to the GMM moment condition:

(I −A−B)vec

(
1
T

T∑
t=1

yty
′
t

)
− vec(Ω) = 0

If A,B are known, then Ω is exactly identified. Let Σ̂ = 1
T

∑T
t=1 yty

′
t; this is an estimator

of (I −A−B)vec(Ω). Then, we may estimate A,B using:

vec(Ht) = Σ̂ +A(vec(rt−1r
′
t−1)− vec(Σ̂)) +B(vec(Ht−1)− vec(Σ̂))
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Since this is a two-step estimator, it is no longer a maximum likelihood estimator, even if
A,B are estimated by MLE. If yt is very persistent, then Σ̂ can be quite variable if the
sample period is too short.

6.2.2 Conditional Correlations Models

Definition The conditional correlation is given by:

ρ12,t =
Et−1(r1tr2t)√

Et−1(r21t)Et−1(r22t)

If xt =
√
hxtεxt and yt =

√
hytεyt, where V ar(εxt) = V ar(εyt) = 1, then ρxyt = Et−1(εxtεyt).

This shows that we may model the conditional correlations based on the standardized
residuals. That is, rt F (0,Ht) and Ht = D

1/2
t RtD

1/2
t . Then, the method is:

1. Collect the standardized residuals for each asset, by estimating volatility models for
each separately. (The volatility models can be different for each asset.)

2. Estimate the correlations based on the standardized residuals using one of the models
below.

Because any estimate of the correlation is a ratio of random variables, it need not be
unbiased. Since −1 ≤ ρ12,t ≤ 1, estimates are likely to be non-linear, particularly near the
endpoints.

We focus on contemporaneous correlations, because those tend to be the only significant
ones (otherwise, there would be a way to make a profit on one stock using information from
the previous return of the other stock).

Definition The constant conditional correlation model assumes that σijt = ρijσitσjt, so
that the correlation between two returns is constant over time. Then, Ht = D

1/2
t RD

1/2
t ,

where Dt is the matrix of conditional variances.

This model is easy to estimate, but the assumption that the correlation is constant is
too strong. Just because rt has constant conditional correlations does not imply that linear
combinations of the returns have constant conditional correlations.

Definition The exponential smoother model for conditional correlations is given by:

ρt =
∑∞

s=1 λ
sε1,t−sε2,t−s√∑∞

s=1 λ
sε21,t−s

∑∞
s=1 λ

sε22,t−s

Equivalently, this may be written as ρ = q12t√
q11tq22t

where qijt = (1 − λ)εi,t−1εj,t−1 +
λqij,t−1. In matrix terms, this can be written as Qt = (1 − λ)εt−1ε

′
t−1 + λQt−1 with

Rt = (Q∗t )
−1/2Qt(Q∗t )

−1/2, where Q∗t has the diagonal of Qt and zeroes elsewhere.
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Definition The mean reverting DCC model is given by ρijt = q12t√
q11tq22t

where

qijt = ρij(1− α− β) + αεi,t−1εj,t−1 + βqij,t−1

In matrix form, this can be written as Qt = R(1 − α − β) + αεt−1ε
′
t−1 + βQt−1, with

Rt = (Q∗t )
−1/2Qt(Q∗t )

−1/2.

The form above uses the variance targeting assumption for R. Because of the non-
linear transformation, the assumption is not exactly correct (it should be based on Q), but
it should be close.

Note that the Qt in both models are only covariance matrices (for the εt). The diagonal
elements need not be one and the other elements need not be bounded between -1 and 1;
this is why we need the final, non-linear step.

Other models include:

• Tse and Tsui : In this model, R is modeled directly as Rt = R(1− θ1− θ2)+ θ1r̂
k
t−1 +

θ2Rt−1, where

rk
t−1 = diag

(
1
k

t−1∑
s=t−k

εsε
′
s

)−1/2(
1
k

t−1∑
s=t−k

εsε
′
s

)
diag

(
1
k

t−1∑
s=t−k

εsε
′
s

)−1/2

is the sample correlation matrix based on the last k observations. Since all three
terms are correlation matrices, the sum will always be a correlation matrix. However,
because rk

t−1 depends on the last k observations, this measure is slower to react to
changes.

• DCC(p,q): One can add more lags to the DCC model, so thatQt = R+
∑p

i=1 αi(εt−iε
′
t−i−

R) +
∑q

i=1 βj(Qt−j −R).

• Generalized DCC : We may add parameters for each asset. Assume that A = αα′ and
B = ββ′. Let Qt = R + A ◦ (εt−1ε

′
t−1 − R) + B ◦ (Qt−1 − R). With the restrictions

on A,B above, Qt will be positive definite.

• Asymmetric DCC : We may also include a term of the form γηitηjt, with ηt =
min(εt, 0), in the usual DCC equation. If γ > 0, then the correlation will be increased
when both assets decline. This picks up negative tail dependence and contagions.
This model may be generalized with additional lags or more general parameters as
well.
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For estimation, the likelihood is:

L = −1
2

∑
t

(log(2π) + log |DtRtDt|+ r′tD
−1
t R−1

t D1
t rt)

= −1
2

∑
t

(log(2π) + 2 log |Dt|+ log |Rt|+ ε′tR
−1
t εt)

= −1
2

∑
t

(log(2π) + 2 log |Dt|+ r′tD
−2
t rt − r′tD

−2
t rt + log |Rt|+ ε′tR

−1
t εt)

The first few terms correspond to running univariate GARCH estimation while the last few
correspond to running a DCC, conditional on the GARCH estimation. The term −r′tD−2

t rt
is not included in either, but goes to a constant. This leads to the a Two-Step QMLE with
the method outlined at the beginning of the section. To compute standard errors, note
that we may write the overall quasi-likelihood as:

QL(φ, θ) = QL1(φ) +QL2(φ, θ)

where the first term is the GARCH likelihood and the second term is the correlation part
of the likelihood. Any multivariate GARCH that is correct for the first two moments and
satisfies the usual regularity conditions is a QMLE; this does not apply to the two-step
estimator. If we take the derivatives of the likelihood, this leads to the equivalent 2-step
GMM estimator with k1 moment conditions in g1(φ) and k2 moment conditions in g2(φ, θ).
The solution to these exactly identified moment conditions is equivalent to the QMLE.
Checking for consistency, we find that:

g1 =
∂

∂φ
QL1 = − 1

2T
∇φ

∑
t

(log(2π) + 2 log |Dt|+ r′tD
2
t rt)

= − 1
2T
∇φ

∑
k

∑
t

log(hkt) +
r2kt

hkt

where Dt is the diagonal matrix with (h1t, ..., hKt) along the diagonal. This shows that the
GARCH estimation part is consistent. Then, the standard errors are:

G =
[
∇φg1 0
∇φg2 ∇θg2

]
√
T

[
φ̂− φ0

θ̂ − θ0

]
→D Normal(0, G−1ΩG−1)

We may use variance targeting to simplify our GARCH estimation. In this case, we
note that ht = σ2(1−α− β) +αy2

t−1 + βht−1, and we replace σ2 by σ̂2 = 1
T

∑T
t=1 y

2
t . This
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ensures that α+ β < 1 and σ2 > 0. This is not an MLE, so it is not efficient. In this case,
g = 1

T ???. Then, the Two-Step DCC is based on:

g =
1
T

T∑
t=1

[
∇φ(log(hit) + y2

it
hit

)
∇θ(log |Rt|+ ε′tR

−1
t εt)

]
hit = φi0 + φi1y

2
i,t−1 + φi2hi,t−1

where i = 1, ...,K. We may also use Three-Step DCC in which we also estimate the
unconditional correlations, so that we add the additional moment condition:

1
T

T∑
t=1

εitεjt − ρij = 0

Definition The orthogonal GARCH model assumes that each principal component of the
returns has a GARCH model and fits the model accordingly.

To fit this model:

1. Use the returns to compute the principal components.

2. Fit a GARCH model to each principal components (each model may be different).

3. For forecasting, compute the predictions for the principal components individually
and then combine them back to the original returns.

Empirically, this does not work as well as DCC.
Empirically, the correlations from DCC are estimated to be smooth (β large) and

close to integrated (α + β close to 1). Other methods may lead to noisier estimates for
correlations, especially when the same parameters are used to fit both correlations and
volatility (and end up being influenced mostly by volatility).

If the normal assumption on the residuals is not palatable, then one one could rank the
GARCH residuals and build a DCC model on the ranks instead; this model is more robust.
Alternatively, one could convert the ranked residuals back to a Gaussian process (that is,
keeping their order but giving them a Gaussian shape) and fit a DCC model on the new
residuals. Since correlations are better for normal residuals and influenced by outliers, this
might improve results.

Because the correlation matrix differs each period, there would be a different principal
components model each period as well.

One could also assume that certain pairs of correlations are all equal, or use a factor
structure in the DCC.

These methods can also be used on cross-country returns.
To test the usefulness of these models, we test whether we could make money or reduce

variance using it. Given {Ht}, the portfolio problem is to choose weights, {wt}, to minimize
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the variance, w′tHtwt subject to the constraint that w′tµt > r0, where µt is the vector of
expected returns. If µ is fixed, the weights are:

wy = (µ′H−1
t µ)−1H−1

t µr0

If H is not the true covariance matrix, Ω, then we may compare the variance from the
estimated covariance matrix and the true covariance matrix:

σH =
rH
0

√
µ′H−1ΩH−1µ

µ′H−1µ

σΩ =
rΩ0√
µ′Ω−1µ

To compare two models or weighting schemes, the Diebold-Mariano test suggests that we
estimate:

(w′itrt)
2 − (w′2trt)

2 = ξ + ut

and test whether ξ = 0. We could also use a weighted test:

(w′itrt)
2 − (w′2trt)

2√
(w′1tH1tw1t)(w′2tH2tw2t)

= ξ + ut

BEKK and the many forms of DCC tends to lead to models with similar portfolio variances,
and one cannot be rejected in favor of another.

7 Market Microstructure Econometrics

Market microstructure econometrics looks at the minute details of financial markets in order
to figure out how information is incorporated into prices (not just where they eventually
end up).

In general, we assume that there are buyers and sellers with various quantities of a
single good. We require a market structure to match the two groups. One agent posts
a price and waits until another agent is willing to take the other side of the transaction
at that price. Sometimes, the agents do this directly (retail stores or real estate sellers
on the selling side, employers on the buying side); in other cases, there are intermediaries
(wholesalers) who buy from one and sell to another, and are compensated for their waiting
time and risk by the spread in their buying and selling prices.

In a financial market, the intermediary is called a market maker. Market makers hold
inventory and charge a spread between buying and selling prices. Their risks include
bankruptcy, price changes (when they buy the stock at a higher price than they can sell
it again), and trading with informed traders (asymmetric information that can lead to
arbitrage for the trader). Some exchanges (like NASDAQ) have competing market makers
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for each asset; all market makers also have to compete with market makers on other regional
and global exchanges selling the same asset. Their spread is also limited by limit orders
(orders that are posted at prespecified prices and which will be filled before the market
maker can buy or sell at the same price) and by regulation in some exchanges (like the
NYSE). Much of microstructure econometrics tries to model how market makers behave.

Reasons prices might move:

• Inventory Models: Suppose a buy order comes in. That depletes inventory, so that the
market maker wants to encourage sellers. This increases the bid price (and possibly
the ask, so that the spread stays the same; this model doesn’t necessarily say). After
the inventory has been replenished, the price might return to the original level. Some
particular models of this include:

– Garman (1976): If buy and sell orders follow a Poisson process, the market maker
must change a spread so that neither his number of shares nor his amount of
cash reaches 0.

– Amihud and Mendelsohn (1980): Prices should be a function of a market maker’s
inventory.

– Stoll (1978): If the market maker is risk averse, then he must be compensated
for possible deviations from his optimal inventory by the spread.

• Asymmetric Information Models: If some of the traders have more information (about
the true stock value, fundamentals, future trading plans, or who is informed) than
the market maker, then the market maker must infer future prices from their trading
strategies. Over time, the market maker will learn the information, and prices will
adjust to the efficient price (this may be a slow process if not all the traders are
informed traders). During the adjustment, information traders can only make limited
profits, since they may not be able to trade immediately, and because their trades
have a price impact.

– Sequential Trading Model: Suppose that people must trade one at a time, and
not necessarily at the instant they want to. The market maker forms expecta-
tions:

E(value|history, buy) = Pask

E(value|history, sell) = Pbid

That is, the current bid and ask are the best guesses of the price if the next
order order is a sell or a buy.

– Easley and O’Hara (1992): Suppose that there are three possible types of event
(good news, bad news, and no news), that this information is known ahead
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of time to some traders, and that the market makers want to figure out this
information. There are three possible trading moves, buy, sell, and nothing.
The amount the price moves depends on the market maker’s beliefs about the
probabilities of types of news and of traders’ being informed (more informed
traders leads to faster price changes; this also tends to be reflected in a higher
spread). One can estimate these probabilities empirically in a discrete choice
model. When there are more buyer initiated trades than seller initiated trades,
there is good news. When there is low volume, there is no news. The distribution
of the three types of actions depends on the news. (Empirically, the spread tends
to be greatest in the morning, which is when there is the biggest probability of
news.)

These models contradict the efficient markets hypothesis that even people with private
information can never make excess profits. Instead, they suggest that private information
leads to short-term profits, but not long-term profits; the speed of the transition back to
an efficient market depends on the market characteristics, the market maker’s knowledge
about informed traders, and transparency.

Informed traders are more likely to be a hurry (so they are trading during short duration
times) and prefer large volumes. If the market maker expects more informed traders, then
the spread is likely to be larger.

Definition The depth measures the number of shares that one can trade at or near the
current price. The quoted depth is the number of shares that the market maker is willing
to buy (sell) at the quoted bid (ask). One can also measure the depth as the number of
shares that can be traded for up to a fixed amount of price deterioration (by looking at
the limit order book). There are different depths for selling and for buying.

The market reaction curve plots sell/buy volume on the x-axis and the price on the
y-axis. The line is broken at 0 (by the bid-ask spread), flat for the length of the quoted
depth on either side of 0, and then upward-sloping, according to the limit order book (and
the way the market maker would react).

Quote changes might happen because the market maker is responding to the information
conveyed by an order or because a big trade starts clearing the limit order book.

For econometric models we may be interested in modeling:

• Timing: How quickly the market is moving

– Trade duration: The time between trades

– Quote duration: The time between quotes

– Order duration: The time between orders

– Execution time: The time between the submission of the order and the trans-
action
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– Trade-quote duration: The time from a transaction to a new quote

– Price duration: The time needed for a price to move a certain amount

• Spread: The difference between the prices at which one can buy and one can sell.
The spreads may differ for retail trades and institutional trades, since institutional
trades tend to be larger.

– Spread: qA − qB

– Effective spread: 2|ptt − 1
2(qA

t0 + qB
t0)|, where ptt is the transaction price. This is

the spread if you trade at the bid or ask. Price improvement occurs when the
bid and ask move so that the effective spread is less than the spread because of
the time delay.

– Realized spread: 2|ptt − 1
2(qA

tt+5 + qB
tt+5)|. This is the difference between the

transaction price and a future quote; this measures the price impact.

– Information component: qA
t+5 + qB

t+5 − (qA
t + qB

t ). This measures the difference
between the realized and effective spread.

When plotting data, consider whether to do it in transaction time (with one tick for
each transaction) or calendar time (so that transactions are further apart on the graph if
they happened further apart in time).

7.1 Conditional Durations Model

Suppose we model the time to the next price change as a random duration; this time is
related to the inverse of volatility (especially if the size of the price change is constant).
Then, price changes are a point process. The conditional intensity process (hazard function)
of price changes can be written generally as:

λ(t,N(t); t1, ..., tN(t)) = lim
∆t→0

P (N(t+ ∆t) > N(t)|N(t), t1, ..., tN(t))
∆t

where N(t) is the number of events up to time t, which occurred at times t1, ..., tN(t). This
is the limit of the conditional probability of the next event occurring between t and t+∆t,
scaled for the length of the interval.

Definition In the conditional durations model, xi = ti − ti−1 is described by:

xi = ψiεi

ψi(ti−1, ..., t1; θ) = E(xi|ti−1, ..., t1)
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where εi is independent and identically distributed with mean 1, non-negative support, and
some distribution. In the autoregressive conditional durations model,

ψi = ω +
∑

αjxt−j + βψi−1

Other models have ψi as a function of exogenous variables, yi, ..., y1, zi.

One possible distribution is the exponential, which has no memory and therefore a
constant intensity process whose level shifts with ψi. Others include Weibull, generalized
gamma, and non-parametric (all of which will have non-constant intensity processes and
therefore duration dependence). Empirically, we expect a decreasing intensity function,
since the longer it has been since a trade, the more likely it is that we have entered a
period of low volatility and low trading, which will lead to longer durations.

For the exponential distribution, the likelihood is:

L = −
∑

i

log(ψi) +
xi

ψi

This is analogous to a GARCH model with xi in place of r2t . Then, by using
√
xi, one can

use standard GARCH software to fit the model.
One could add additional exogenous variables, such as the number of transactions in

the previous period (in a model of price durations, not trade durations), the current spread,
or the volume per transaction. Empirically, these models show that more active markets
lead to more volatility and less liquidity in the future.

Definition Suppose that arrival times, xi, are associated with other characteristics, yi,
called marks. This is called a marked point process, and we may model (xi, yi) jointly.

In this context, the marks may include price, volume, and other trade characteristics.
The joint density of (xi, yi) is given by:

(xi, yi)|Fi−1 ∼ f(xi, yi|xi−1, yi−1, ..., x1, y1; θi)
f(xi, yi|xi−1, yi−1, ..., x1, y1; θi) = g(xi|xi−1, yi−1, ..., x1, y1; θ1i)q(yi|xi, xi−1, yi−1, ..., x1, y1; θ2i)

This decomposes the likelihood of a marked point process into an ACD process and a
process for the marks conditional on the arrival times.

Empirically, short durations (that is, higher speeds) leads to more volatility. At the
tick-by-tick level, the bid-ask bounce appears (this occurs because the next trade (after a
sell) will either be at the same ask or at a lower bid); this leads to negative autocorrelation
in transactions prices.
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7.2 Price Impact Models

Definition Each order and transaction affects the trading environment and moves prices
a little. The price impact of a trade is how much the price moves in reaction to it.

Let P be the midquote price, R be the log change in price, T be the time between
transactions, V be the volume, and xt be −1 if the transaction price is less than the
midquote (this is considered a buy) and +1 if the transaction price is above the midquote.
Some stylized facts include:

• Corr(|R|, T−1) < 0: A short previous time between trades implies more volatility in
future prices. (This is generally explained by an information flow argument.)

• Corr(spread, T−1) < 0: If trades are closer together, the spread tends to increase.

• Corr(|R|, V−1) > 0: A high volume in the previous trade tends to lead to more
volatility in the future.

The Hasbrouck model is a VAR of returns and trade directions (xt above), so that the
errors measure the new information provided by the latest trade, which may affect future
prices. This can be generalized for duration effects in the price impact:

rt = λr
openDtxt +

5∑
i=0

airt−i +
5∑

i=0

(γr
i + δr

i ln(Tt−i))xt−i + ε1t

xt = λx
openDt−1xt−1 +

5∑
i=0

cirt−i +
5∑

i=0

(γx
i + δx

i ln(Tt−i))xt−i + ε2t

This model shows that as the time between trades increases, the marginal effect of the
other variables is smaller. Also, the price change associated with an unexpected buy is
permanent.

Definition The liquidity of a market is how frictionless the market is. Liquidity is associ-
ated with low transactions costs, including the execution price and spread, the uncertainty
in a transaction, and the speed of transactions.

In general, having more buyers and sellers involved in a market increases liquidity, but
no market is frictionless. Three common measures of liquidity are:

• Bid-Ask Spread: This is the execution cost for a small trade.

• Depth

• Price impact of each trade
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Volume is also used to measure liquidity. Though volume across assets is positively cor-
related with the liquidity in those asset markets, volume over time for a given asset is
negatively correlated with liquidity.

In general, new information leads to an active market with a wider bid-ask spread and
more price impact. At the same time, it leads to more volume (as people rebalance because
of the news) and more volatility. Thus, there is a negative correlation between volume and
liquidity for an individual asset because of the impact of news on both.

Definition The process through which new information is transmitted to the stock price
through trading is called price discovery.

Definition A liquidity trader is person who trades an asset for exogenous reasons (such
as needing cash or having excess cash) instead of for reasons related to the asset.

Engle and Patton fit an error correction model to bid and ask prices (since the two
series must be cointegrated because the spread seems to be mean-reverting), including
many additional independent variables. This model shows that:

• A larger spread leads to bid and ask adjustment to return the spread to its usual
level.

• After a buy transaction, both the bid and the ask increase, but the ask increases
more, so that the spread widens. This may occur because of asymmetric information
(where the ask is raised in case there is good news, but the bid is raised less because
there might not be news after all). It may also occur because of the effect on the
limit order book (if this were the only effect, then the bid would not increase at all).

• The effect of a buy is smaller for stocks with more volume.

• The spread increases after any transaction but declines during periods with no trades.

• Larger trades have more impact on prices, especially for low-volume stocks.

• Short duration trades have more price impact, which means that active markets are
less liquid. They also increase the spread.

• If the ask depth is greater than the bid depth, both prices will tend to decline.

• In the long run, buy orders increase the price, with the biggest impact being from
medium-sized short-duration trades on infrequently traded stocks. However, the
effect on the spread mostly disappears in the long run.

Liquidity can be affected by many things. Tick size may affect liquidity. Different
exchanges may have different liquidity for the same asset. The trading system (electronic
versus broker) also matters.
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7.3 Execution Risk and Trading Strategies

Definition Transaction costs are the price of trading. Implicit costs are measured as the
ratio of the execution price to the cost at the initial price minus 1 (this shows how the price
changed as the trade was being executed, because of price impact, for example). Explicit
costs measure commissions and fees as a percentage of price.

Trades that are larger or happen in markets with lower liquidity are considered more
difficult, and therefore tend to have higher execution costs.

Definition Execution risk is the risk that the price will move during a trade during the
delay between choosing to trade and when the trade is finished. This is also called the
implementation shortfall.

In general, it is costly to decrease the risk on the trade (by trading faster), so there is
a risk-return tradeoff in the trading strategy (as well as in choosing the stock itself).

Let (xt, pt) be the sequence of portfolios from t = 0 to t = T , with xT = 0 (x0 can be
negative if the purpose is to buy a portfolio). The (implicit?) transaction cost of moving
from x0 to xT is TC =

∑
∆x′t(p̃t − p0), where p̃t is the transaction price and p0 is the

initial (midquote) stock price. In general, p̃t > p0 for buys and p̃t < p0 for sells, so that
E(TC) > 0. We may also write:

TC =
∑

∆x′t(p̃t − pt) +
∑

(xT − xt−1)′∆pt

The first term is the loss due to the spread and the second term is the cost of the most
recent price impact (on the shares that remain to be bought or sold).

To optimize the trading strategy, one should use the same risk tolerance, λ, that is used
for the usual portfolio optimization. This yields the trading optimization problem:

maxE

(
T∑

t=1

(
x′t−1∆pt −∆x′t(p̃t − pt)

))
+ V ar

(
T∑

t=1

(
x′t−1∆pt −∆x′t(p̃t − pt)

))

Then, for choosing a portfolio and a trading strategy, assuming that there are no covariances
between the transactions costs and the returns, there is a simple two-step method:

1. Use the standard portfolio problem to choose the target portfolio, xT , to hold during
the interval, [T1, T2].

2. Holding xT fixed, choose the optimal trading strategy to buy it during the interval,
[0, T1].

Definition The Sharpe ratio is defined as E(x′T (pT−p0)−TC−RF )√
V ar(x′T (pT−p0)−TC)

, where RF is the risk-free

rate.
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If V ar(p̃t−pt) = 0 (that is, the cost of immediate execution is known) and V ar(∆pt) =
0, then:

V ar(x′T (pT − p0)− TC) =
T∑

t=1

x′t−1Ωxt−1

Note that transactions costs must be included in the estimates of both the risk and the
expected return in order to correctly assess the tradeoff.

In order to choose the optimal trading strategy, we require a model for price impacts.
Suppose we assume that losses due to spreads are constant and transitory and that price
impacts have a permanent effect and some variance. That is,

V ar(p̃t − pt|{xt}) = 0
E(p̃t − pt|{xt}) = τt

V ar(∆pt|{xt}) = Ω
E(∆pt|{xt}) = πt

Then, the problem is to maximize the return, with a penalty for the risks:

max
T∑

t=1

(
x′t−1πt −∆x′tτt + λx′T ΩxT − λ(xT − xt−1)′Ω(xT − xt−1)

)
If πt and τt are linear in xt, this is a linear-quadratic optimization problem. This shows
that the remaining risk at any t depends only on trades that have not yet been made.
This shows the tradeoff between getting to xT quickly and the transaction costs of doing
this. A risk-neutral individual would trade equal amounts each period, while a risk-averse
individual would trade more at the beginning.

One could also trade in a second asset to hedge the trading risks, with the eventual
position in that asset being 0 again. This would require a high covariance between the two
asset types.

Econometrically, one could model:

%TCi = exp(x′iβ) + exp
(
x′iγ

2

)
εi

where εi ∼ Normal(0, 1). This model ensures that the average cost is always positive, but
allows the transactions costs to be negative (for the case in which the price moves in an
advantageous direction during trading). β and γ imply a risk-return frontier. Empirically,
increases in spread, volatility, and the ratio of value (of the trade?) to the total volume in
the stock lead to increases in the risk of the trade. As the trading strategy used is more
“urgent” (that is, it happens faster), the variance of the costs goes down (and, therefore,
the risk goes down).
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