
Econometrics Summary 
 
Algebraic and Statistical Preliminaries 
Elasticity:  The point elasticity of Y with respect to L is given by α = (∂Y/∂L)/(Y/L).  
The arc elasticity is given by (∆Y/∆L)/(Y/L), when L and Y may be chosen in various 
ways, including taking the midpoint of the two points in question or using the initial 
point.  We also estimate ∆Y/Y ≈ α (∆L/L). 
Growth Factors: The growth rate of X is given by gX = (Xt - Xt-1)/Xt-1 = Xt/Xt-1 – 1.  
Notice that (ln Xt – ln Xt-1) = ln (1 + gX).  Thus, a constant growth rate would lead to a 
straight line in a plot of time versus ln X. 

• Discrete Time Growth occurs when Pi = (1+r) Pi-1 where i denotes a discrete 
time period, and therefore takes on only integer values.  r is a constant growth 
factor.  Then, Pi = (1 + r)i P0, and ln Pi = ln P0 + i ln (1 + r). 

• Continuous Time Growth occurs with continuous compounding.  Then, we model 
Pt = egPt-1 = egt P0.  Then, ln Pt = ln P0 + gt. 

• As a comparison:  For these to be equal, 1 + r = eg. 
A random variable is a variable that doesn’t have a specific value (though it does have a 
distribution) until an experiment is done.  The outcomes of the measurements of the 
experiment must be numerical.  It may also be considered as a function that assigns a 
numerical value to the outcome of an experiment. 

• A discrete random variable has a countable number of possible values, with 
probability given by a probability density function. 

• A continuous random variable can take on values over an interval, given by the 
cumulative probability function, P(a < x <b) = ∫ab p(x) dx, where p(x) is the 
probability mass function. 

Descriptive Statistics: 
- Sample mean: x-bar = (∑xi)/n 
- Total variation = ∑(xi – x-bar)2 
- Variance: sx

2 = TV/(n-1) 
- Sample Standard Deviation: sx = √Variance 
- Covariance: sxy = (∑(xi – x-bar)(yi – y-bar))/(n–1) 
- Correlation Coefficient: r = sxy/sxsy 
- Mean Squared Error: MSE = E((β* - β)2) = Var(β*) + Bias2 

• Suppose we have n observations of Y, where Y can take on the values x1, …, xm.  
Let nk = {yi | yi = xk}.  Then, fk = nk/n is the relative frequency of k.  This gives 
the following new formulas: 

- Sample mean: x-bar = ∑k=1
m fkxk 

- Sample standard deviation: sx = √n/(n-1)) √(∑(xk – x-bar)2fk) 
- Similar calculations may be done with continuous random variables, by 

dividing them into m intervals and choosing a class mark (representative 
value) for each interval. 

Sampling:  A random sample is a sample such that all units are equally likely to be 
selected for inclusion in the sample, and each selection is independent of each other 
selection.  This means estimators won’t be biased by how the sample was selected.  A 



sampling distribution of a statistic gives the relative frequency that certain values of the 
statistic would occur in repeated sampling from the underlying population. 
Estimators:  An estimator is a rule of calculating estimates based on a set of data.  The 
point estimates are calculated using the rule given by the estimator given the data.  (We 
have distributions for estimators, not estimates). 
 
Elementary Linear Regression 
The simple bivariate model is given by Yi = β0 + β1Xi + ui 

- Yi is the dependent variable. 
- Xi is the explanatory variable. 
- β0 and β1 are the true population parameters, which are never known. 
- ui are unobservables (differences in variables we are not measuring that 

affect the dependent variable). 
• Yi = E(Yi | Xi) + ui (the ui are the reason that points do not lie on the true 

regression line). 
• The estimated regression line is given by Yi

^ = β0
^ + β1

^Xi. 
- β0

^ and β1
^ are the estimates of β0 and β1. 

- The residuals (error) are ui
^ = Yi – Yi

^.  (These are only estimates of the 
unobservables, not the true unobservables…  They can’t be observed.) 

Ordinary Least Squares: We estimate  β0
^ and β1

^ by minimizing the sum of squared 
residuals:  ∑(ui^)2 = ∑ (Yi - β0

^
 - β1

^ Xi)
2.  This involves solving the equations ∑ (Yi - β0

^
 

- β1
^ Xi) = 0 and ∑ (Yi - β0

^
 - β1

^ Xi)Xi = 0 (found by taking the partials and setting them 
to 0).  This gives us the solutions: 

- β1
^ = ∑(Xi – X-bar)(Yi – Y-bar)/∑(Xi – X-bar)2 

- β0
^ = Y-bar - β1

^ X-bar 
• Algebraic Properties: 

- (X-bar, Y-bar) is always on the OLS line. 
- The sum of the residuals, ∑ui

^, is 0. 
- Cov(ui

^, Xi) = 0, since ∑ui
^ Xi = 0. 

Measuring the Fit: 
• The standard error of regression (also called root mean square error) is SER = √(∑ 

(ui
^)2 / (n–2)). 

• The coefficient of variation of a single variable is sx / x-bar.  For regression, this is 
SER/y-bar. 

• The coefficient of determination, is given by R2 = 1 - ∑(ui
^)2 / ∑(yi – y-bar)2 = ∑ 

(yi
^ - y-bar)2/∑(yi – y-bar)2. 

Interpreting the coefficients of a regression:  β0
^ is the predicted expectation of Y when X 

= 0.  β1
^ is the predicted change in Y given a unit change in X. 

• Changing the scales of X and Y do not change the resulting predictions or 
interpretations. 

Alternative Specifications:  We may take regressions with functions of X and Y; linear 
means linear in the estimated parameters. 

- log-level specification: ln Yi = β0
^ + β1

^ Xi.  In this case, 100β1
^% is the 

approximate percentage change in the dependent variable for a unit change 
in the independent variable.  (The exact value is gw = 100(eβ1^ - 1)%.)   



- log-log specification: In this case, β1
^ is the elasticity of Y with respect to 

X.  (We are implicitly assuming constant elasticity.) 
Expected values and variances of OLS Estimators  

• The following assumptions are needed for the calculations of bias and variance: 
- The true population model is linear in the parameters. 
- The sample is drawn randomly from the population being modeled. 
- The expected value of the population unobservables is 0, conditional on X.  

That is, E(ui | Xi) = 0. 
- The explanatory variable is not constant. 
- (Homoskedasticity)  The variance of the unobservables is constant, 

conditioning on the explanatory variable.  That is, Var(Ui | Xi) = σu
2. 

• Under the first four assumptions, the OLS estimators are unbiased. 
• Under the assumption of homoskedasticity, Var(β1

^) = σu
2 / ∑ (xi – x-bar)2, 

Var(β0
^) = σu

2 (∑xi
2 / n ∑ (xi – x-bar)2), and Cov(β0

^, β1
^) = - (x-bar) σu

2 / ∑ (xi – 
x-bar)2. 

• We estimate σu
2 by SER2 = (∑ ui

^2)/(n–2).  This is unbiased. 
• se(β0

^) = SER √(∑ xi
2 / n ∑ (xi – x-bar)2) 

• se(β1
^) = SER √(1 / ∑ (xi – x-bar)2) 

• Gauss-Markov Theorem.  Under the first four assumptions about, the OLS 
estimators, in the class of linear unbiased estimators, have minimum variance.  
That is, the OLS estimators are BLUE (best linear unbiased estimators). 

Multiple Regression: 
• The model: Yi = β0 + β1X1i + β2X2i + … + βkXki + ui 

- E(Yi | X1, …, Xk) = β0 + β1X1i + β2X2i + … + βkXki 
- βj

^ estimates the response in Y if Xj changes by one unit and all other Xl 
are held constant. 

• First Order Conditions (OLS Normal Equations): 
- ∑ (Yi - β0

^ - β1
^ X1i - … - βk

^ Xki) = 0 
- ∑ (Yi - β0

^ - β1
^ X1i - … - βk

^ Xki) Xji = 0 for j  = 1, …, k 
• Algebraic Properties 

- ∑ ui
^ = 0 

- The fitted regression line passes through the point of means, (X1-bar, X2-
bar, …, Xk-bar, Y-bar). 

- Cov(u^, Xj) = 0 for j = 1, .., k. 
• SER = √ (∑ ui

^2 / (n–k–1)) 
• R-bar2 = 1 – SER2/sy

2, where sy
2 = ∑ (Yi – Y-bar)2 / (n-1).   

- This adjusts R2 for the number of fitted parameters, penalizing the 
regression for needing more parameters.  (R2 never decreases with more 
parameters; R-bar2 might.) 

- If a model decreases SER2, then R-bar2 increases, since sy
2 is constant. 

- Notice that R-bar2 approximates 1 – Var(ui) / Var(Yi). 
- R2 = R-bar2 when k = 0. 

Multicollinearity: When the independent variables are correlated. 



• Under perfect collinearity, we cannot solve for the coefficients on those variables 
because we cannot separate the effects of two variables that always move 
together. 

- This requires modification of Assumption 4:  In the sample (and in the 
population), none of the explanatory variables are constant or exact linear 
functions of each other. 

• If there is multicollinearity but not perfect multicollinearity, estimators will be 
unbiased, but the variance of the estimators will increase: 

- Var(βj
^) = σu

2 / (SSTj(1 – Rj
2)) 

§ SSTj = ∑ (Xji – Xj-bar)2 (total sum of squares) 
§ Rj

2 is the R2 from the regression of Xji on X1i, …, X(j-1)i, X(j+1)i, …, 
Xki. 

- This occurs because multicollinearity makes identifying specific 
influences harder, since variables tend to move together. 

Specification Issues: 
• Excluding a relevant variable 

- If the excluded variable is correlated with any included variables, the 
coefficients on the included variables will be biased (omitted variable 
bias): 
§ Suppose we estimate Yi = b0 + b1 X1i + ui’ instead of the true Yi = 

β0 + β1 X1i + β2i X2i + ui.  Then, E(b1
^) = β1 + β2 b21, where b21 is 

found from X2i = b20 + b21 X1i + u2i. 
• Including an irrelevant variable 

- The results are unbiased if extra variables are included. 
- Irrelevant variables decreases the degrees of freedom, and therefore 

increases the standard errors. 
• We cannot choose the variables to include after running the regression – this 

violates the theories of hypothesis testing! 
 
Inferences in Regression 
For all hypothesis testing, we assume ui are distributed iid normal, with mean 0 and 
variance σu

2. 
- If we consider ui as a sum of independent, identically distributed influences, ui is 

approximately normal by the central limit theorem. 
- By a variant of the Central Limit Theorem, there is approximate normality even if 

there are only a small number of influences which are not quite independent. 
- Normality also makes testing and derivations easier. 

Assuming normality, since Yi and all estimators are linear combinations of normally 
distributed random variables: 

• Yi ~ N(β0 + β1 X1i + … + βk Xki, σu
2) 

• βj
^ ~ N(βj, σu

2 / SSTj(1 – Rj
2)) 

T-Tests 
• The test statistic: t* = (βj

^ - βj
0) / se(βj

^) 
- Under the null hypothesis, t* ~ tn-k-1 



- t measures the “estimation error” – the distance from the estimate to the 
null hypothesis.  Large estimation errors relative to the standard error are 
evidence against the null hypothesis. 

• One-sided (testing for sign, when βj
0 = 0) 

- Alternate Hypothesis: βj > βj
0 or βj < βj

0 
- For the former alternative hypothesis, reject H0 if t

* > tc, where tc is 
determined by P(t > tc) = α, the significance level. 

- Note that rejecting H0 for extreme values with the wrong sign is incorrect! 
• Two-sided 

- Alternative Hypothesis: βj ≠ βj
0 

- Decision Rule: Reject H0 if |t
*| > tc, where 

§ t* is calculated as above 
§ tc, the critical value, is determined by P(|t| > tc) = α, where α is the 

significance level 
• Confidence Intervals 

- If we want P(- tc ≤ (βj
^ - βj

*)/se(βj
^) ≤ tc) = 1 - α, we have a (1 - α)% 

confidence interval of βj
^ ± tc se(βj

^).   
- This gives a random interval which, (1 - α)% of the time will contain the 

true population parameter. 
• P-Values 

- The p-value gives the probability that a t statistic distributed according to 
the null hypothesis would be greater than the calculated t*.   
§ p = P(t > t*) 

- This allows readers to apply their own significance levels. 
- Note that two-tailed p-values are given by p = 2 P(t > |t*|). 

F-Tests: To test groups of coefficients. 
• We consider two models, the unrestricted model and the restricted model.   

- Restrictions may include removing 1 or more variables or imposing a 
relationship on the coefficients (for example: β1 + β2 = 1; then, we run a 
new regression with the substitution of 1 - β1 for β2 and appropriate 
algebraic manipulation). 

• Test statistic: F = ((SSRR – SSRU)/r) / (SSRU/(n – k – 1)) = ((Ru
2 – RR

2)/r)/((1 – 
RU

2)/(n – k – 1)) 
- SSRR is the sum of the squared residuals in the restricted model 
- SSRU is the sum of squared residuals in the unrestricted model 
- r is the number of restrictions imposed 
- n – k – 1 is from the unrestricted model 

• Under the null hypothesis, F ~ Fr, n-k-1
.  We reject when F > Fc. 

Types of Errors 
• Type I Error: Rejecting the null hypothesis when it is true.  The probability of this 

occurring is α 
 
Prediction 
We may use regression lines to predict new values of the dependent variable from other 
values of the independent variable, assuming the economic conditions hold. 



• True Value:  Yp = β0 + β1Xp + up 
• Predicted Value:  Yp = β0

^ + β1
^ Xp 

• Prediction Error:  up
^ = Yp

^ - Yp = (β0
^ - β0) + (β1

^ - β1)Xp - up 
• Var(up

^) = Var(β0
^) + Xp

2 Var(β1
^) + Var(up) + 2XpCov(β0

^, β1
^) = σu

2(1 + 1/n + 
(X-bar – Xp)

2 / ∑ (Xi – X-bar)2) 
• Notice that predictions are less variable for large n and closer to X-bar.  However, 

the variance is never lower than σ2. 
 
Dummy Variables 
Definition.  A dummy variable indicates the presence or absence of a quality or attribute 
for each observation.  That is, Di = 1 if the attribute is present, and 0 otherwise. 
If there are multiple categories, then there should be one less dummy variable than 
category (otherwise, perfect collinearity will occur).  The category with no dummy 
variable is called the reference group, and the coefficient on every other variable makes a 
comparison to the reference group. 
 
Asymptotics 
Definition.  The probability limit of X is θ if limnà∞ P(|X - θ| > δ) = 0 for any δ > 0.  In 
this case, we write plim X = θ. 

• Properties: 
- plim C = C if C is constant 
- plim (Z1 + Z2) = plim Z1 + plim Z2 
- plim Z1Z2 = (plim Z1)(plim Z2) 
- plim Z1/Z2 = (plim Z1)/(plim Z2) 
- plim g(Z) = g(plim Z) 

• Note that this is a generalization of the expectations operator – only the first two 
properties always hold for expectations. 

Definition.  θ^ is a consistent estimator of θ if the probability limit of θ^ is θ. 
Note that plims hold only for large (infinite) samples.  Small samples may have 
problems. 
 
Heteroskedasticity 
We relax the assumption that E(ui

2) is constant.  Instead, E(ui
2) = σi

2 for each i.   
Estimators will still be unbiased with heteroskedasticity; however, the variance estimates 
will be wrong. 

- For example, Var(β1
^) = (∑(xi – x-bar)2σi

2)/(∑(xi – x-bar)2)2, since we can’t pull 
the σi

2 out anymore. 
- This means that the variance might not be minimized, and OLS might not be 

BLUE. 
Ideally, we would instead do the regression Yi/σi = β0/σi + β1 (Xi/σi) + ui/σi.  Then, ui/σi 
~ N(0, 1), and we would have homoskedasticity.  (Note that we are now regressing on 
two variables – 1/σi and Xi/σi – and no error term.)  This procedure is called generalized 
least squares, and yields BLUE estimators. 
Detecting heteroskedasticity: 

• Might be implied by the nature of the problem. 



• Graph the residuals or the squared residuals against independent variables and 
look for patterns. 

• White’s Test: 
- Get the residuals from the initial regression  

§ Yi = β0
^ + β1

^X1i + β2
^X2i + ui

^. 
- Regress ui

^2 on a constant, the independent variables, their squares and 
crossterms:  
§ ui

^2 = α0 + α1X1i + α2X2i + α3X1i
2 + α4X2i

2 + α5X1iX2i 
- Under the null hypothesis of homoskedasticity, nR2 ~ χ2, where R2 and the 

degrees of freedom come from the second equation estimated.  Test this 
hypothesis. 

Correcting heteroskedasticity: 
• To find the proper standard errors:  se(β1

^)2 = (∑(xi – x-bar)2ui
^2)/(∑(xi – x-bar)2)2.  

(These are called the White standard errors, and are consistent but biased for the 
true variance.) 

• Suppose we have a functional form for the heteroskedasticity: E(ui
2 | Xi) = σ2f(Xi) 

- Transform the model:  Yi / √f(Xi) = β0 / √f(Xi) + β1 Xi / √f(Xi) + ui / √f(Xi) 
- Notice that the error term is now σ2.  Hence, this is heteroskedastic. 
- Now, the model being estimated has two variables (1 / √f(Xi) and Xi / 

√f(Xi)) and no intercept. 
- We may be estimating parameters in choosing f() [say, ui

2 = σ2eaXi], we 
cannot ensure that our error and variance estimates will be unbiased.  
However, they will be consistent. 

 
Time Series Regression 
Definition.  Suppose we have an infinite sequence of random variables, {Xt} for t = …, -
2, -1, 0, 1, 2, ….  This is called a discrete stochastic process.  A realization of a discrete 
stochastic process for a particular finite time period, {1, 2, …, T}, that is X1, …, XT, is 
called a time series. 
This allows us to look at the effect of both lagged (from previous periods) and 
contemporaneous (determined in the same period) variables on the variable in question – 
including the dependent variable’s own lagged values.   

• Often, the result of a variable changing one unit in one period and then returning 
to its old value is of interest.  This is captured (over time) in the coefficients on 
that variable (in its various lags).  This is the short run effect of a change. 

• Sometimes, we care more about when the variable changes one unit and stays 
there.  To find this, reparameterize the model in terms of mt (the current value), 
∆mt (the change from t-1 to t), ∆mt-1, and so on.  The resulting change will be the 
sum of the coefficients on mt, mt-1, etc.  This is the long run effect of a unit 
change. 

Classical Assumptions for OLS with Time Series Data 
• Linearity:  the population model is linear in its parameters 
• E(ut | X) = 0 for all t 

- Note that X includes all past and future values of Xy. 



- This replaces the assumption of random sampling, since we cannot do 
random sampling in a time series. 

• No perfect multicollinearity 
• Homoskedasticity 
• No autocorrelation:  Corr(ut, us | X) = 0 for all t ≠ s. 

- Ensures that disturbances over time periods are not related. 
• (for hypothesis testing) ut ~ N(0, σ2), independently. 

Patterns in the Data: Even without economic theory, we may assume that a times series is 
of the form Yt = Tt + St + Ct + Ut, where Tt is a trend, St is seasonal, Ct is cyclical, and Ut 
is random. 

• Trends:  
- Deterministic: Tt = t., so that Yt = β0 + β1t + ut, and E(Yt) = β0 + β1t. 
- Semilog Trend: ln Yt = ln Y0 + t ln(1+r) + ut, so that Yt = Y0(1+r)teut. 

§ Note that E(Yt) = Y0(1+r)tE(eut) > Y0(1+r)t.   
§ In particular, E(eut) = eσ^2/2, which we estimate by SER2 

- Random Walk: Zt = Zt-1 + et, et ~ [0, σe
2], Cov(et, es) = 0 when t ≠ s, is a 

random walk. 
§ Var(Yt) = Var(∑et) = ∑Var(et) = tσe

2.  This is unbounded. 
§ A random walk is said to have a unit root, since the coefficient on 

Zt-1 is 1. 
§ Two independent random walks often cause spurious regressions, 

where the hypothesis that they are unrelated is rejected with 
probability greater than α.   

§ In this regression, Yt = β0 + β1Xt + ut.  Under the null hypothesis, 
we have Yt = β0 + ut = ut (since Y0 = 0).  But Cov(ut, ut-1) = 
Cov(Yt, Yt-1) ≠ 0, and Var(ut) = Var(Yt) is unbounded. 

• Seasonality: When a value may fluctuate depending on the season.  To deal with 
this, create a dummy variable for each season (except for the reference season).  
Then, the coefficient on each season shows the effect of being in that season 
relative to the reference season. 

 
Autocorrelation (Serial Correlation) 
Definition.  Autocorrelation occurs when Cov(ut, us) ≠ 0 for some t ≠ s. 

• Autocorrelation is more likely to occur with time series, since random sampling 
(including a random order) removes it. 

• This occurs when disturbances are likely to be the same over a few periods. 
An example:  Suppose ut = ρut-1 + εt, |ρ| < 1 (so that Var(ut) < ∞).  (This is first order 
autocorrelation, written AR(1).)  Then, E(ut) = 0 and Var(ut) = σε

2/(1 - ρ2).   
• The OLS estimators are still unbiased under autocorrelation. 
• Notice that Cov(ut, ut-s) = Corr(ut, ut-s) √Var(ut)Var(ut-s) = ρsσu

2 
• Var(β1

^A) = Var(β1
^) + σu

2(2∑s<t(xt – x-bar)(xt-s – x-bar)ρs)/∑(xt – x-bar)2. 
• Thus, autocorrelation makes the variances of the estimators bigger, if ρ > 0 and 

may make the variance bigger or smaller otherwise. 
Detecting autocorrelation:  Using the residuals from the standard estimator of the model: 



• Look at the residuals graphically to see if they tend to be positive or negative 
together. 

• Regress ut
^ on ut-1

^ and Xt.  Test whether the coefficient on the lagged residual is 
significantly different from 0. 

Fixing autocorrelation: 
• Assuming ρ were known:  Yt – ρYt-1  = (1-ρ)β0 + β1(Xt - ρXt-1) + (ut – ρut-1) fits 

the OLS assumptions. 
• Instead, we use feasible GLS to estimate ρ:  (This is asymptotically correct.) 

- Estimate Yt = β0 + β1Xt + ut and obtain ut
^. 

- Regress ut
^ on ut-1

^.  Obtain r^, the slope coefficient on ut-1
^. 

- Use the transformation above:  Regress Yt – r^Yt-1 on Xt – r^Xt-1. 
 

Simultaneous Equations 
If a system is described by multiple interdependent equations, then using OLS on each 
equation independently is biased and inconsistent.  This is called simultaneous equations 
bias (and is like omitted variable bias). 
The structural model of a system is the original system of equations (from economic 
theory).  We may solve this system of equations for the endogenous variables in terms of 
the exogenous variables.  This gives the reduced form.   
The Identification Problem:  Is the reduced form sufficient to make good estimates for the 
parameters in the structural form? 

• Definition.  An equation is unidentified if there is no way to estimate all its 
structural parameters from the reduced form.  An equation is identified otherwise.  
An equation is exactly identified if unique parameters values exist and 
overidentified if more than one value can be obtained for some parameters. 

• The Order Condition (a necessary condition for identification):  If an equation is 
identified then the number of exogenous variables excluded from the equation is 
at least the number of included endogenous variables (on both sides) minus one. 

- It is possible for one equation to be identified when the other is not. 
- Example:  In Pt = β0 + β1Qt + ut and Pt = α0 + α1Qt + αYt + vt, the first 

equation is identified (since Yt is excluded to make up for Pt and Qt both 
being endogenous), but the second is not. 

Two Stage Least Squares:   
• The Method 

- Find the reduced forms for all endogenous variables. 
- For each endogenous variable on the right-hand-side of the identified 

equation, estimate the reduced form and obtain the predicted values. 
- Substitute the predicted values for the actual values in the identified 

equation. 
- Run the regression with these values instead. 

• By doing this, we find the part of the endogenous variables that are no correlated 
with the error term, which removes the bias. 

• The exogenous variables that are excluded from the identified equation are called 
instrumental variables.  Thus we assume: 

- They are independent of the error term in the identified equation/ 



- They are correlated with the endogenous right-hand-side variables in the 
identified equation. 

- They do not appear in the equation being estimated. 
- This allows them to substitute for the endogenous variables without 

having to worry about correlation. 
 
Proxy Variables:  When a variable stands in for another (unmeasurable) variable, like IQ 
for innate ability. 
 
Formulas: 
Total variation = ∑(xi – x-bar)2 
β1

^ = ∑(Xi – X-bar)(Yi – Y-bar)/∑(Xi – X-bar)2 
β0

^ = Y-bar - β1
^ X-bar 

CV = SER/y-bar 
R2 = 1 - ∑(ui

^)2 / ∑(yi – y-bar)2 = ∑ (yi
^ - y-bar)2/∑(yi – y-bar)2. 

Var(β1
^) = σu

2 / ∑ (xi – x-bar)2  
Var(β0

^) = σu
2 (∑xi

2 / n ∑ (xi – x-bar)2)  
Cov(β0

^, β1
^) = - (x-bar) σu

2 / ∑ (xi – x-bar)2. 
SER = √ (∑ ui

^2 / (n–k–1)) 
R-bar2 = 1 – SER2/sy

2, where sy
2 = ∑ (Yi – Y-bar)2 / (n-1).   

Var(βj
^) = σu

2 / SSTj(1 – Rj
2) 

SSTj = ∑ (Xji – Xj-bar)2 (total sum of squares) 
Rj

2 is the R2 from the regression of Xji on X1i, …, X(j-1)i, X(j+1)i, …, Xki. 
t* = (βj

^ - βj
0) / se(βj

^) 
F = ((SSRR – SSRU)/r) / (SSRU/(n – k – 1)) 

• Prediction Error: Var(up
^) = Var(β0

^) + Xp
2 Var(β1

^) + Var(up) + 2XpCov(β0
^, β1

^) 
= σu

2(1 + 1/n + (X-bar – Xp)
2 / ∑ (Xi – X-bar)2) 

Heteroskedasticity: Var(β1
^) = (∑(xi – x-bar)2σi

2)/(∑(xi – x-bar)2)2 


