
OLS Asymptotics 
OLS is consistent, even if we replace the assumption E(u | x1, …, xn) = 0 by the 
assumption that E(u) = 0 and Cov(xj, u) = 0 for all j.  (If this does not hold, OLS is biased 
and inconsistent.) 
Asymptotic normality:  Under the standard assumptions, including homoskedasticity, but 
not normally distributed error terms: 

• √n (βj
^ - βj) ~ N(0, σ2/aj

2), asymptotically, where aj
2 = plim(∑r^

ij
2/n), and r^

ij are 
the residuals from regressing xj on the other independent variables 

• σ^2 is consistent for σ2 
• (βj

^ - βj)/se(βj
^) ~ N(0, 1), asymptotically 

se(βj
^) is proportional to 1/√n, since Var(βj

^) = σ^2/SSTj(1 – Rj
2) and SSTj ≈ nσj

2, while 
all the other factors converge to fixed numbers. 

LM Statistic: 
• Testing: βk-q+1 = … = βk = 0, in the model y = β0 + β1x1 + … + βkxk + u. 
• Find the residuals from y = β0 + β1x1 + … + βk-qxk-q + u~. 
• Regress u~ on x1, …, xk and obtain Ru

2 from this regression. 
• Under the null hypothesis, LM = nRu

2 ~ χq
2. 

• This is equivalent to testing (SSRrestricted – SSRunrestricted)/σ^2 ~ χg
2, where σ^2 = 

SSRr/(T – k + q) 
Likelihood Ratio Test:  LR = 2(l(θ^) – l(θ0)) ~ χ2

g. 
• θ0 is the restricted estimate of θ (under H0); θ^ is the unrestricted estimate. 
• l( ) is the likelihood of an estimate. 

Wald Test: W = (SSRrestricted - SSRunrestricted) / σ^2 ~ χg
2. 

• σ^2 = SSRu / (t – k) – the estimate from the unrestricted model. 
 
Specification and Data Problems 
Functional Form Misspecification:  Tests that the functional form is wrong, assuming that 

there are no omitted variables. 
• F Test:  Add quadratics ort other functions of the independent variables to the 

model and see if they explain significantly more. 
• RESET Test: 

o Save y^ from the original regression.   
o Regress Y on the original variables together with y^2 and y^3. 
o Test the joint restriction that the coefficients on y^2 and y^3 are zero.  If 

they are insignificant, the functional form is not rejected. 
• Non-nested models: 

o Combine the independent variables from the two models.  Test the 
combined model against each alternative model.  (Both might be rejected, 
or neither might be rejected.  Hopefully this doesn’t happen.) 

• Davidson-MacKinnon 
o Add the predicted values from one regression as the regressor  in the other 

regression and test their significance. 
Proxy Variables:  Used in place of unobservable variables. 

• Necessary Assumptions 
o The error term in the model is uncorrelated with the proxy variable. 



o The error in the proxy’s relation to the unobservable variable is 
uncorrelated with the other independent variables. 

Measurement Error 
• In the dependent variable, this just increases the variance (assuming that 

measurement error is not correlated with the error term). 
• In the explanatory variables: 

o Classical Errors in Variables (CEV):  Assume that measurement error (e1) 
is uncorrelated with the true x-value, x*.  Then the observed value, x, is 
correlated with the error.  In one variable, this means |plim(β1

^)| ≤ |β1|, 
which is called attenuation bias.   

o If we assume e1 and x are uncorrelated, then e1 and x* are correlated, 
which is less likely but causes no attenuation bias. 

Outliers:  Observations that are very different from the rest of the population.  Their 
inclusion causes regression results to change.  (Looking at observations with large 
residuals is not enough.) 

- Drop them and regress again (reporting all results). 
- Use a robust regression method. 

 
Instrumental Variables and Two-Stage Least Squares 
Model: y = β0 + β1x + u, where x is endogenous (Cov(x, u) ≠ 0). 

• Choose an instrumental variable, z, which is correlated with x (Cov(x, z) ≠ 0) but 
not with the error term (Cov(z, u) = 0).  If z is not exogenous, then the estimators 
are biased. 

• Then, β1 = Cov(z, y) / Cov(x, z).  Recall that we estimate covariance by ∑(zi – z-
bar)(yi – y-bar).  The resulting estimator for β1

^ is consistent but biased. 
• Homoskedasticity Assumption:  E(u2 | z) = σ2. 
• Standard Error:  se(β1

^) = √(σ^2/SSTxRx,z
2); this means that a small relationship 

between x and z makes the standard error bigger.   This is another reason to use 
large samples. 

• Functional form:  Keep things linear.  In particular, any variable that appears in 
one form in the second stage regression should appear in the same form in the 
first stage regression. 

Two Stage Least Squares: Suppose we have exogenous variables z1, …, zk which are 
either instruments for x or exogenous variables in the structural equation. 

• Estimate x = π0 + π1z1 + … + πkzk.  Use the predicted values for x in the original 
regression. 

• We need x to be significantly correlated with at least one instrument that is not in 
the original equation.  (Otherwise, x is not identified.) 

• This worsens multicollinearity, because we have less variation in x. 
Tests 

• To test whether x is really endogenous:  Find the residuals from the first stage 
regression.  Add the residuals into the original equation (including the original 
potentially-endogenous variable  - its original values).  If they are significant, the 
variable really was endogenous. 

• To test whether one of the instruments is correlated with the error term 
(overidentification):  Obtain the residuals from 2SLS.  Regress the residuals on 



ALL exogenous variables (obtain R1
2 from this).  Under the null hypothesis that 

all the IV’s are uncorrelated with the errors, nR1
2 ~ χq

2, where q = #IV’s - 
#exogenous variables 

Some other examples of using IV’s: 
• Measurement error:  If there are two measurements, use one as the IV for the 

other to pull out the true value. 
• Natural experiments:  When randomness happens exogenously (like draft 

numbers). 
• Mostly-randomized experiments:  When people are randomly assigned to groups 

but might change, the original assignment is an IV for the actual assignment. 
 
Limited Response Models 
Latent Variable Models:  We assume a model where the unobserved y* is a linear 
function of x and y is observed in various ways depending on the value of y*. 
Binary Response:  P(y = 1 | x) = G(β0 + β1x1 + … + βkxk) 

• Logit Model:  G(z) = exp(z)/(1 + exp(z)) 
• Probit Model: G(z) is the cumulative density function for the normal distribution. 
• Tests:   

o Percent correctly predicted (for either outcome) 
o Pseudo-R2: 1 – Lur/L0, where Lur is the likelihood ratio of the regression, 

and L0 is the likelihood ratio is the regression is only on an intercept. 
Tobit Model:  When the observed value might be zero or some number (that is, the 
observed values are constrained, so some people might choose a “corner solution”) 

• y* = β0 + xββ + u, u ~ N(0, σ2), y = max(0, y*). 
• E(y | x) = P(y > 0 | x) E(y | y > 0, x) 
• This assumes that P(y > 0 | x) and E(y | y > 0, x) vary together.  (This could be 

tested by estimating a probit model on whether P is zero or not.  If the two models 
are close, this is good.) 

Poisson Regression:  For count data 
• Model:  E(y | x) = exp(β0 + xββ).  Y ~ Poisson(E(y | x). 

Censored Regression:  When the highest values are assigned to one category. 
• Model:  yi* = β0 + xββ + ui.  yi = min(yi, ci) 

Truncated Regression:  When some values are omitted.  (Usually the highest values are 
left out.) 
Sample Selection in General:  Let si indicate whether yi is observed.  Then, we can 
estimate siyi = sixi + siui. 

• Exogenous Sample Selection: When si is a function only of the xi..  In this case, 
OLS is unbiased and consistent 

• Otherwise, OLS is biased and inconsistent. 
Incidental Truncation:  When xi is always observed, but yi might not be.  Then, we can 
use the Heckit method (which combines probit to estimate si and then use this to correct 
the regression on the observed yi’s). 
 
Asymptotic Time Series 
Types of Processes: 



• Stationary:  The joint distribution of (xt1+h, xt2+h, …, xtm+h) for fixed 1 ≤ t1 < … < 
tm is the same for any h. 

• Covariance Stationary:  E(Xt) and Var(Xt) is constant, and Cov(Xt, Xt+h) depends 
on  h but not on t.  (And the variance converges.) 

• Weakly Dependent:  Corr(xt, xt+h) approaches 0 as h approaches ∞.  (xt and xt+h 
are asymptotically uncorrelated.) 

o MA(1): xt = et + αet-1, and ei ~ [0, σe
2] identically and independently 

o AR(1): yt = ρyt-1 + et, |ρ| < 1 
• Trend Stationary Process: A process that is stationary once a time trend is 

removed. 
o Example: yt = β0 + β1yt-1 + β2t + et, |β1| < 1. 
o Removing trends from variables helps avoid spurious regressions.  Top do 

this: 
- Regress xt and yt on time trends.  Use the residuals from these 

regressions in the new regression. 
- Alternately, put a time trend in the regression. 

Asymptotic Assumptions: 
• The model is linear in the parameters 
• {(xt, yt)} is weakly dependent (for LLN and asymptotic normality) 
• E(u | xt) = 0 
• No perfect multicollinearity 
• Homoskedasticity: Var(ut | xt) = 0 
• No serial correlation: E(utus | xt, xs) = 0 

Highly Persistent Time Series 
• These include random walks (yt = yt-1 + et = ∑ei), unit root processes, and random 

walks with drift (yt = α0 + yt-1 + et = tα0 + ∑ei). 
o I(0) = weakly dependent process 
o I(1) = process whose first difference is weakly dependent. 

• These can be fixed by taking first differences or differencing the logs. 
Dynamically Complete Models:  A model is dynamically complete when adding more 
lags will not explain any more variation.  (In particular, not dynamically complete model 
has serial correlation.) 
 
More Time Series Stuff 
Infinite Distributed Lag Model:  yt = α + δ0zt + δ1zt-1 + … + ut (with infinitely many lags) 

- Impact Propensity: δn 
- Long Run Propensity: ∑ δi (this should converge) 
- One model:  δj = γρj, |ρ| < 1 
- Another model:  δj = ρj-1(ρ0γ0 + γ1) 

Dynamically Complete:  When no more lags are needed in the model. 
- This assumes there is no autocorrelation in the error term (since all of it is 

controlled for) 
- E(u | all lags) = E(u | included lags) 
- Lagged dependent variables cause bias but are still consistent 



Cointegration:  When {xt} and {yt} are I(1), but some linear combination, {yt - βxt}is 
I(0). 

- Testing this:  Regress {yt} on {xt}.  Find a t-statistic for the coefficient on xt; use 
Dickey-Fuller critical values (these are bigger to correct for spurious regression). 

- If {xt} and {yt} are cointegrated, then there exists an error correction model that 
explains the short run dynamics (Granger Representation Theorem): 

o Error correction model: ∆yt = β0 + other terms + βk(yt-1 - α0 - α1xt-1) + ut 
o This model suggests that when yt strays too far from α0 + α1xt, it will 

correct for that.   
Stationary but Serial Correlation:  Lags and Leads Estimator 

• Instead of estimating yt = β0 + β1xt + ut (ut stationary & serially correlated), 
augment this regression with ∆xt-1, …, ∆xt-k, ∆xt+1, …, ∆xt+k.  (This cleans up 
serial correlation.) 

Forecasting: Trying to predict future yt from xt and previous values. 
- Evaluation: Root Mean Squared Error = √(∑(yi – yi

^)2/n) [finding the difference 
between the predictions and the actual values 
• In sample evaluation: Look at the fitted values and the actual values.  (This gives 

the model to have more information, but it is also circular.) 
• Out of sample evaluation:  Estimate the model based on half the data and predict 

the other half; test these values. 
Testing for Unit Roots:  Regress ∆yt on yt (test whether the coefficient is 0).  To clean up 

serial correlation, add in ∆yt-1 and other lags. 
 
Pooled Cross Sections 
Model:  Distinct, independent random samples are taken in each period. 

- Use a year dummy for each time period.  Interactions can be used as well. 
Chow Test 

- SSRU = overall residual sum of squares from regressions in each time period 
- SSRR = residual sum of squares from combining all the cross sections with either 

no time dummy or just a dummy but not interactions 
- SSRU / SSRR ~ F 

Difference-in-Differences Estimator: (to use natural experiments) 
- Model:  y = β0 + β1year2 + β2policy + β3year2*policy 
- β3 = (µafter, treatment - µafter, no) – (µbefore, treatment - µbefore, no) = change between years 

due to treatment 
 
Panel Data Analysis 
Model:  One random sample of individuals is observed for multiple time periods 

- yit = β0 + β1xit + … + βkxik + ai + uit 
o ai is the unobservable but fixed effect for each individual 
o uit is the idiosyncratic effect for an individual at a certain time  

Heterogeneity Bias: The bias introduced by the correlation of ai with xi.  If panel data 
methods are not used, ai + uit is correlated with xi. 

First Difference Estimator: 
- ∆yt = δ0 + β1∆xi + … + βk∆xk + ∆ui  (for two time periods) 



- ∆yit = α0 + α3d3t + … + αTdTt + … + β1∆xit1 + … + βk ∆xiyk + ∆uit 
o dkt is 1 if t = k and 0 otherwise 

- Assumptions:  
o ∆xi varies 
o E(ui | xi1, xi2) = E(ui) [uncorrelated in both time periods!] 
o Cov(xitj, uis) = 0 
o homoskedasticity 

Fixed Effects (Within) Estimator: Regress time-demeaned values of variables on each 
other. 

- Let xi’ = xi – x-bar; this is called time-demeaning, and removes effects that are 
fixed over time (so ai’ = 0). 

- Regress yit’ on xit1’, …, xitk’. 
- Time constant variables cannot be used (but they can be interacted). 

Dummy Variable Regression:  Add a dummy for each individual, instead of time-
demeaning.  This estimates the ai, and otherwise gives the same results as fixed effect. 
Fixed Effects vs. First Differences: 

- Same when T = 2. 
- If the uit are serially uncorrelated, use fixed effects 
- If the uit are positively serially correlated, use first differences 
- For large T and small N, fixed effects is more sensitive to unit root processes and 

other violations of assumptions. 
- Fixed effects handle endogeneity better. 

Random Effects Estimator:  
- Assumption:  Corr(xitj, ai) = 0.  (the unobserved effects are not related to the other 

variables) 
- This means the errors  have mean zero, but are serially correlated. 
- This means we use GLS:  

o λ^ = 1 - √(1/(1 + T(σa
^2/σ^

u
2))) 

o Quasi-demean: xitj’ = xit - λ^xi-bar 
- Hausman Test: To test the hypothesis that random effects can be used (Corr(ai, x) 

= 0). 
o Let W = (β^

RE - β^
FE)TVar(β^

RE - β^
FE)-1(β^

RE - β^
FE) = (β^

RE - β^
FE)2/σRE-FE

2 
o Under the null hypothesis, W ~ χ2

k, where k is the number of estimated 
coefficients (except the constant). 


