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In regression, one models a response variable (y) using predictor variables
(x1, ...xn). Such a model can be used for prediction, forecasting, understanding
relationships, testing, classifying, and so on.

1 The Linear Regression Model

The linear least squares regression model is:

yi = β0 + β1x1i + ... + βpxpi + εi

(Note that this is technically a regression hyperplane, not a regression line.)
This model is estimated by choosing estimates β̂0, ..., β̂p to minimize sum of
squared residuals,

∑n
i=1(yi − (β̂0 + β̂1x1i + ... + β̂pxpi))2. In this model, β̂j

is the estimated expected change in the response variable associated with a
one-unit change in the jth predictor, holding all the other predictors constant
(this is a partial association, so the estimates will depend on all the variables in
the model). β̂0 is the estimated expected value of the response variable when
all the predictors equal zero (this may be irrelevant). The fitted values are
ŷi = β̂0 + β̂1x1i + ... + β̂pxpi. Note that the fitted values may also be written in
matrix form as Ŷ = Xβ̂ = X(XT X)−1XT Y = HY .

We make the following assumptions about the model:

• This straight line relationship is approximately correct.

• E(εi) = 0 for all i.

• Homoskedasticity: V ar(ε2i ) = σ2 does not depend on the observation.

• Cov(εi, εj) = 0 if i 6= j.

• εi ∼ Normal(0, σ2) (or at least approximately so).

Under these assumptions, least squares estimation is optimal. If some of the
assumptions are violated, it may be unbiased but not optimal, or entirely wrong.
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Consider the identity:∑
(yi − y)2 =

∑
(ŷi − y)2 +

∑
(yi − ŷi)2

where y is the mean of the response variable. (This holds only for linear least
squares models.) The left-hand side measures the total variability of yi. The first
term on the right-hand side is the variability in yi explained by the regression
model (the explained sum of squares). The second term on the right-hand side
is the amount of variability that is not explained by the regression model (the
residual sum of squares). We define R2 =

P
(ŷi−y)2P
(yi−y)2 . This is the proportion

of variability accounted for by the regression. (Closer to one is better, but
there is no measure of how good a regression is using R2.) The adjusted R2,
an unbiased measure of the squared population correlation coefficient, is R2

a =
R2 − p

n−p−1 (1−R2). (This is a small adjustment if n is large.)
We may use hypothesis testing to check the usefulness of the regression. An

overall F-test tests the null hypothesis that all the coefficients on the predictors
equal 0. A t-test tests the null hypothesis that an individual coefficient equals
zero, given all the other predictors in the model. In the one variable case, the
p-values are exactly identical. We may also construct confidence intervals for
the regression coefficients: β̂j ± tn−k−1

α/2 se(β̂j).
A linear contrast is a set of linear equations among the parameters; it is a

restriction of the model being estimated. We may use a partial F-test to test this
restriction, using the residual sum of squares for the full (unrestricted) model
and the restricted (subset) model:

F =
(RSSsubset −RSSfull)/d

RSSfull/(n− p− 1)
=

(R2
full −R2

subset)/d

(1−R2
full)/(n− p− 1)

where d is the number of restrictions. Under the null hypothesis, F ∼ Fd,n−p−1.
Unless we can reject the null hypothesis of a simple model, we use the simpler
model. (Parsimonious models make fewer assumptions about the relationships
among all the variables and are often better at forecasting because of it.)

We may understand the practical importance of the regression using predic-
tion intervals; if the prediction intervals are quite narrow, then the regression is
useful. A rough prediction interval is given by the predicted value ±2σ̂, where
σ̂ is the standard error of the regression. (The precise standard error of a pre-
diction depends on the distance of the predictors of interest from the mean of
the predictors used in estimation.) If we have a large number of observations,
the prediction interval is determined almost entirely by the standard deviation
of ε; for small samples, the uncertainty of the coefficients matters as well. This
means there is a non-zero lower bound on the width of the prediction interval
(this is in contrast to confidence intervals for the mean value for a given set of
predictors, which shrinks to a point).
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1.1 Regression Diagnostics

Definition An outlier is an observation in which the value of Y is unusual,
given the value of X.

Definition The residual from a regression is yi − ŷi; this is the difference be-
tween the observed and predicted value. The standardized residual is given
by

e∗i =
yi − ŷi

se(yi − ŷi)
=

yi − ŷi

σ̂
√

1− hii

where hii is the (i, i) element from the matrix H = X(XT X)−1XT .

If the assumptions of the regression model hold, then the standardized resid-
uals should be normally distributed with mean 0 and standard deviation 1.
Observations with standardized residuals outside of 2.5 or 3 (especially if the
sample size is small) are outliers.

Definition A leverage point is an observation in which the values of X are
unusual.

Definition The leverage value of a point is the effect it has on its own fitted
value. This is hii (since ŷi =

∑n
j=1 hijyj , hii is the effect of yi on ŷi).

Note that 0 < hii < 1 and
∑n

j=1 hij = p + 1. Thus, we have the guideline
that a point may be a leverage point if hii > 2.5p+1

n . Plots of the leverage values
for all the points can help identify which points have the most leverage, even if
they do not meet this threshold.

Leverage points tend to draw the regression line toward them, making them
overly influential. Because of this, a small change in the response for the leverage
point causes large changes in the regression line itself. A leverage point that
has the same relationship to X as all the other points will tend to decrease
standard errors and increase measures of fit. However, it is hard to know if the
relationship is really the same.

Definition Cook’s distance is given by Di = (e∗i )2hii

(p+1)(1−hii)
. This is the amount

that the coefficients change if the ith point is excluded from the estimation.

Cook’s distance increases with both the size of the residual and the amount
of leverage of a point. In general, if Di > 1 or if one point has a higher Cook’s
distance than all the others, that point should be more closely examined.

Definition The deleted residual is the residual an observation would have if
the regression were based on the other observations and its value were then
predicted.

In general, the larger the sample size, the smaller the effect of individual ob-
servations. Identifying outliers and the reasons they are unusual can be helpful
in understanding the underlying problem.
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Definition When there are multiple outliers or leverage points, so that diag-
nostics based on a single point (such as Cook’s distance) cannot catch them, we
call this masking.

Definition When outliers lead to the “good” points having the highest Cook’s
distances, then we call this effect swamping.

To deal with such problems, we may either use robust regression methods
(which are less susceptible to outliers) or use diagnostics that test groups of
points. We may also try to fit the regression with a group of points that are
known not to have leverage points or outliers (perhaps identified using clustering
methods) and then add in those observations that have small predictive residuals
based on the regression on the “good” points.

There are also graphical methods of checking the regression assumptions:

• Plot Y versus each predictor. Make sure there is no non-linearity or het-
eroskedasticity.

• Plot the residuals versus the fitted values, to make sure there is no pattern
(isolated points – either horizontally or vertically – can be a problem; so
can a width that changes with the fitted values).

• If the observations have a natural order (such as time), plot the residuals
versus the order and ensure that there are no patterns.

• Look at a normal probability plot (a plot of the ordered residuals versus
the quantiles of the normal distribution). Curves in this plot suggest non-
normality, and isolated points are outliers.

Multicollinearity occurs when some of the predictors are highly correlated
with each other. In this case, it is hard to isolate the effect of one variable rela-
tive to another, and the regression estimates may be unstable. In addition, the
regression may be significant overall, even though no individual coefficient is sta-
tistically significant. We quantify multicollinearity using the variance inflation
factor for each variable, defined by:

V IFj =
1

1−R2
j

where R2
j is the R2 from the regression of the jth predictor on all the other

predictors. High values of the variance inflation factor signal multicollinearity.
In general, if V IFj < max{10, 1

1−R2
model

} for all j, then this should not be a
problem.

1.2 Hierarchical Models with Dummy Variables

Suppose we have a response variable, Y , an observed variable, X, and a dummy
variable, D. The dummy variable describes a pair of subgroups in the data.
Then, we have three possible models which are nested:
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• Pooled Model: Y = β0 + β1X + ε in which the model does not change
across the two subgroups.

• Constant Shift Model: Y = β0 + β1X + β2D + ε. In this case, the in-
tercept differs across the two groups, but the slope is the same in the
two subgroups. (We test this model versus the pooled model using a null
hypothesis that β2 = 0.)

• Full Model: Y = β0+β1X+β2D+β3DX+ε. In this model, both the slope
and the intercept may differ across the two groups. This is equivalent to
estimating two regressions (constrained to have the same error variance)
and allows us to test the hypotheses that either the pooled or constant
shift models are sufficient.

The term XD in the full model is called an interaction effect.

1.3 Nonlinearities and Transformations

Note that a linear model is linear in the parameters. We may use non-linear
functions of Y or X in a linear model, though it will affect the interpretation of
the coefficients.

Some models are inherently non-linear, and there is no way to fit them using
linear regression (other methods, such as non-linear least squares or maximum
likelihood, may be more useful here).

Definition A model is linearizable if it is non-linear but can be transformed
into a linear model.

Definition The log/log model is defined by Y = αXβ , so that log(Y ) =
log(α)+β log(X), which is a linear regression model. (Note that the base of the
logarithm does not matter, as long as it is consistent throughout the analysis.)

Log-log models are commonly used with data involving money, several orders
of magnitude, or long right tails. In this model, β is the elasticity of Y with
respect to X; that is, β is the estimated percentage change in Y associated with
a 1% change in X.

For any model with log(Y ) on the left-hand-side, R2 measures the variation
in log(Y ) explained by the right-hand-side (not the variation in Y itself!). Any
prediction intervals for log(Y ) may be converted into prediction intervals for Y
by exponentiating the endpoints of the interval.

Definition The semi-log model or the additive/multiplicative model is given
by Y = αγX , so that log(Y ) = log(α) + X log γ = β0 + β1X. Then, β1 is a
semielasticity, which measures the multiplicative change in Y associated with
an additive change in X.

Multiplicative/additive models, with Y = β0 + β1 log(X) + ε, are also useful
in some cases.
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1.4 Model Selection

Model selection is the problem of choosing which of a set of variables belong in
a linear regression. The hope is to choose a parsimonious yet accurate model
and to avoid multicollinearity.

First, we may use a best subsets regression, in which the computer efficiently
fits all possible models and displays the best model(s) for each number of vari-
ables (based on R2, which is equivalent to most other methods when the number
of variables is fixed). Note that the best models of different sizes need not be
nested, which means we may not use F- or t-tests to choose among them. In-
stead, we have the following measures which may help us trade off:

• R2: Note that adding more variables never decreases R2. However, we
may be interested in the number of variables where R2 “levels off,” since
the additional variables are not adding much explanatory power.

• Adjusted R2: This statistic is given by R2
a = R2 − p

n−p−1 (1 − R2) and
therefore penalizes models with more variables. We may then choose the
model that maximizes R2

a. (This tends to choose larger models.)

• Standard error of the estimate (s): The standard error of the estimate
is proportional to the width of the confidence intervals, so we may wish
to choose the number of variables where s levels off or starts increasing
again.

• Mallow’s Cp: This is defined as Cp = ResidualSS
s2
0

− n + 2p + 2, where s2
0

is the residual mean square from the model with all the predictors. Note
that Cp ≈ p + 1 if the residual sum of squares from the model is close to
the residual sum of squares from the model with all the variables, so this
is a more parsimonious model with about the same residuals. That is, we
choose the smallest model where Cp < p + 1. We may also choose the
model that minimizes Cp.

• Akaike Information Criterion (AIC): We define AIC = n ln(ResidualSS
n )+

n + 2p + 4 and choose the model that minimizes this value.

• Corrected Akaike Information (AICC): This is defined as AICC = AIC +
2(p+2)(p+3)

n−p−3 , and corrects the bias in AIC; we choose the model that min-
imizes this number.

Cp, AIC, and AICC are efficient model selection methods; they will find the
best model (as n → ∞) under the assumption that the true model is never an
option. (In contrast, BIC is consistent and will find the true model given that
the true model is an option.)

Once a few models are chosen by these criteria, the assumptions can be
checked for those models and a single model can be chosen based on both the
criteria above and other regression diagnostics.

However, by running so many possible regressions, we risk finding relation-
ships by chance. To avoid this, we may reserve some data to validate the model
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based on the “training data” (this also allows a better estimate of s2). We may
also just adjust the standard error of the estimate to account for the number of
variables that were considered: s∗ =

√
ResidualSS
n−max(p)−1 . Ideally, we should correct

the t- and F-statistics as well. We may also randomly perturb the data and
see if a similar model is chosen (the method bagging does this repeatedly and
then averages predictions over the set of models that were chosen). Finally, it
is worth thinking about which variables should be used instead of just throwing
in lots of variables.

1.5 Partial Correlation

The coefficient on a variable, X1, in a model measures the association between
Y and X1 controlling for all the other variables in the model. We may see the
relevant relationship in this way:

1. Regress Y on all the other variables, X2, ..., Xp, and save the residuals,
eY .

2. Regress X1 on all the other variables, X2, ..., Xp, and save the residuals,
e1.

The partial correlation is the correlation between e1 and eY . The regression of
eY on e1 will have the same coefficient as the coefficient on X1 in the original
regression. A scatterplot of eY versus e1 may also show patterns of interest.

1.6 Time Series Data

Suppose that observations are ordered in time. Then, they are likely to to violate
the assumption that Cov(εs, εt) = 0, which will make the estimates inefficient
and the measures of fit misleading (and overly optimistic, when both ε and X
have positive autocorrelation).

A plot of residuals versus the order of observations will tend to show “cycli-
cal” patterns (where the residuals tend to stay on the same side of zero for a
while).

One formal test for autocorrelation is the Durbin-Watson Test. In this case,
we test H0 : εi ∼ Normal(0, σ2), Cov(εi, εj) = 0 versus HA : εi = ρεi−1+zi, zi ∼
Normal(0, τ2). The Durbin-Watson test statistic is DW =

Pn
i=2(ei−ei−1)

2
Pn

i=1 e2
i

,
where ei are the residuals. E(DW ) = 2 under the null hypothesis, and DW is
less than two if there is positive autocorrelation. For large samples (n > 100),√

n(DW
2 − 1) ∼ Normal(0, 1), approximately. For smaller samples, we may

compare 4−DW to a table. Note that this test may be indeterminate (because
it technically should depend on the values of X), and one might want to correct
for autocorrelation in the indeterminate region. This test is the most powerful
if H0 and HA are correct, but may fail if the assumptions are violated.

We may also plot the autocorrelation function. This allows us to see whether
any of the autocorrelations are non-zero (as well as see whether the assumptions
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of the Durbin-Watson test are approximately met; in that case, the autocorre-
lations should decay exponentially). Note that the hypothesis tests about the
ACF assume approximate normality.

The runs test is a non-parametric test of the null hypothesis that there is
no autocorrelation in the errors. Suppose we observe n+ positive residuals,
n− negative residuals, and u runs of consecutive residuals with the same sign.
Under the null hypothesis,

1
σ

(|u− µ| − 1
2
) ∼ Normal(0, 1)

where µ = 2n+−n−
n++n−

−1 ≈ n
2 +1 and σ2 = 1

n2(n−1) (2n+n−(2n+n−−n)) ≈ n2−2n
4(n−1) .

This test is always valid, but is less powerful.
To deal with a time series, we should consider detrending, by removing either

a linear trend (by adding time or a function of time as a predictor) or some
underlying change, like inflation or population growth. If the ACF plot shows
a spike at a frequency suggesting seasonality (ρ4 for quarterly data, ρ12 for
monthly data), we may deseasonalize by adding dummy variables for all but
one period to control for seasonality.

We may also lag either the independent or the dependent variables (this
is only helpful for forecasting if the previous value would be known in time
for the forecast!). Lagging the predictors generally doesn’t fix autocorrelation,
but it allows for effects on the response to take some time (which may make
sense depending on the context). Lagging the response is often helpful in fixing
autocorrelation in the residuals. (However, including lagged response variables
makes the Durbin-Watson test invalid.)

We may also difference either the predictors or the residuals. Note that
differencing the predictor is context dependent and is really a special case of the
model that includes both xt and xt−1 as predictors (where their coefficients are
equal with opposite signs). Differencing the response is equivalent to having a
lagged variable as a predictor with a coefficient of 1, except that the left-hand-
side variable is different (which will affect R2 and test statistics).

Outliers are harder to omit in time series, especially if there are lagged values
in the model. Instead, we wish to impute a new value. The imputed value can
come from:

• Linear Interpolation: y∗t = 1
2 (yt−1 + yt+1) (this does not consider the

predictor variables)

• We may estimate the model without using yt as an observation or a pre-
dictor and use the fitted value, ŷt.

• Multiple Imputation: Impute multiple values of y∗t and compare the analy-
ses across the different values.

We may also use a model-based method that includes an indicator that is 1
during the outlier period and 0 otherwise (this can also help account for groups
of consecutive outliers from the same cause). The coefficient on the dummy
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variable estimates the effect at that period, holding all else equal. (If there are
multiple groups of outliers, there should be different indicators for each.)

We may also deal with autocorrelation structure in the noise. Suppose we
have yt = β0+β1xit+...+βkxkt+εt with εt = ρεt−1+zt (and the zt independent).
For this, we use the Cochrane-Orcutt Procedure:

• If we let y∗t = yt − ρyt−1 and x∗jt = xjt − ρxj,t−1, then we note that
y∗t = (1− ρ)β0 + β1x

∗
1t + ... + βkx∗kt + zt and OLS is optimal in this case.

• Since we do not know ρ, we estimate ρ̂ from the first autocorrelation of
the errors in the original regression.

• Transform y∗t = yt − ρ̂yt−1 and x∗jt = xjt − ρ̂xj,t−1.

• Regress y∗t on x∗1t, ..., x
∗
kt. and do all the diagnostics on the residuals

from this regression. Note that the existence of autocorrelation in these
residuals suggests that modeling the errors as AR(1) was inadequate.

• To relate the transformed regression to the original regression, the slope
coefficients are identical, β̂o = β̂∗0

1−ρ̂ , and σ̂ = σ̂∗√
1−ρ̂2

. (Note that the

prediction intervals are wider in the original model.)

1.7 Heteroskedasticity

1.7.1 Heteroskedasticity Related to the Response Variable

Suppose that we have heteroskedasticity that is related to the level of Y (not to
the explanatory variables). Then, there may be a variance-stabilizing transfor-
mation, h, such that h(y) has a constant variance. Suppose that σ2

y ∝ f(µy)2.
Then, choose a function, h such that h′(µy) ∝ 1

f(µy) . Then, by a Taylor series
expansion:

V ar(h(y)) ≈ (h′(µy))2V ar(y) ∝ (h′(µy))2f(µy)2

which is approximately constant. In particular, suppose σy = µk
y . Then h(y) =

y1−k. (If k = 1, then h(y) = ln(y).) The transformation may be context
dependent. For example, common transformations include:

• Poisson (count) data: If Y ∼ Poisson(λ), then E(Y ) = V ar(Y ) and
σy ∝ µ

1/2
y . Then, h(y) =

√
y and we should analyze the square roots of

the data instead.

• Gamma (fixed scale) data: In this case, h(y) = ln(y). Note that this is
related to the previous situation in which we took logs; the distribution
has a long right tail and a fixed scale (that is, σ/µ = 1√

α
is constant).

• Exponential (waiting times): In this case, 1
y is usually used (which means

that we are modeling something like the number of events per time instead
of the time to the next event).
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These transformations allow us to use OLS, but the meanings of the coefficients
change. It may be better to use other kinds of regression (general linear models)
instead.

1.7.2 Heteroskedasticity Related to the Predictors

Suppose yi = β0 +β1x1i + ...+βkxki +εi and V ar(εi) = σ2
i . Then, OLS of yi

σi
on

1
σi

, x1i

σi
, ..., xki

σi
is optimal because the variance of the errors is now constant (this

is equivalent to Generalized Least Squares, which weights observations by 1
σi

).
These estimates are more efficient and lead to more accurate prediction interval
widths. However, the σi and therefore the weights are usually unknown.

Levene’s Test for Heteroskedasticity :

1. Use OLS to estimate the absolute standardized residuals.

2. Regress the absolute residuals on the predictor variables that are possibly
related to heteroskedasticity (these variables need not be in the regression
for the levels).

3. Use an overall F-test to test whether the variables are significantly related
to the variability of the residuals.

4. Individual t-tests may also help identify which variables are most impor-
tant.

Alternatively, we may plot the absolute residuals versus a variable and find a
non-parametric curve for the data (using a Lowess curve); this may suggest a
suggest a functional form for Levene’s test.

Correcting for heteroskedasticity related to continuous variables:

• Assume that σ2
i = σ2 exp(

∑
j λjzj) where the zj are the variables affecting

heteroskedasticity.

• Estimate the coefficients, λj , using the regression of ln(ε̂2i ) on zj .

• The estimated weights are 1
exp(
P

j λ̂jzj)
.

After this correction, the standardized residual plots should not have heteroskedas-
ticity, in either plots or Levene’s test (the standardized residuals should correct
for heteroskedasticity). In GLS, the coefficients have the same meaning but the
values might change. The standard error no longer has any meaning (since each
observation has its own standard error), nor does R2. The influential observa-
tions may change, since their weights affect their influence.

To predict with weighted least squares, we use the same method to find point
estimates. However, the prediction interval width will vary with the weight, We
estimate the weight using the previously estimated relationship, 1

exp(
P

j λ̂jzj)
,

with the z values from the new observation. The correct standard error for
this predicted value is se∗ =

√
(sefit)2 + (ResidualMS)/Weight, which can be
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used to create a prediction interval. (Note that sefit is given correctly in the
output because it does not depend on the weight of an individual observation.)

We may also have non-constant variance within subgroups only. We may
calculate the residuals from OLS and calculate summary statistics for each sub-
group. Then, the weight for each observation in group j is 1

σ̂2
j
. This is a

non-parametric method, but it works only with discrete variables.

2 ANOVA

2.1 One-Way ANOVA

Suppose we observe a variable across K different groups. Then we model yij =
µ+αi+εij , where µ is the overall mean (assuming the groups have equal weights),
αi is the effect of being in the ith group (so that the group mean is µ + αi),
and εij ∼ Normal(0, σ2) is the error for the jth individual in the ith group. To
identify the model, we impose the restriction that

∑K
i=1 αi = 0; if there is no

group effect, then all of the αi are 0. We may also write this as a regression
model with y = β0 + β1x1 + ... + βkxk + ε where xi is an indicator variable for
group i. Note that we must either (1) omit one indicator (corresponding to the
reference group) or (2) use effect codings where we instead set xi = −1 for the
omitted group. With just indicator variables, the mean for the omitted group
is β0 while the mean for the ith group is β0 + βi. With effect codings, the mean
for group i 6= K is β0 + βi and the mean for group K is β0 +

∑K−1
i=1 βi; that is,

β0 is the overall level and β1, ..., βK−1,−
∑K−1

i=1 βi are the group effects. Note
that the two codings are equivalent, but the interpretation of the coefficients
differs.

This method does not impose any relationship between group order and
group mean. However, it does impose a constant variance.

We may wish to test whether specific pairs of groups are different; that is, we
want to test null hypotheses of that form αi = αj , j 6= i. With so many possible
pairs, we have the multiple comparisons problem. Instead, we do simultaneous
inference to ensure that the overall error rate is correct. The exact method of
controlling the overall error rate is called Tukey’s T. An approximate method
is the Bonferroni method which tests at an overall confidence level of 1− α by
considering only p-values above α/k significant. If the subgroups are ordered,
the we may also wish to test a functional relationship between the subgroup
order and the mean; this leads to a regression of y on f(i).

We may also wish to check for non-constant variance by subgroup.

2.2 Two-Way ANOVA

Suppose we have two (or more) categorical predictors. Then the two-way
ANOVA model is given by:

yijk = µ + αi + βj + (αβ)ij + εijk
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for groups i, j and observation k in the i, j group. We assume that εijk ∼
Normal(0, σ2). Then, the observed values depend on the overall level, µ, the
main effects of the two subgroups (“rows” and “columns”) and the interaction
effect, (αβ)ij (this is notation, not actual multiplication). To identify the para-
meters, we require that:∑

i

αi =
∑

j

βj =
∑

i

(αβ)ij =
∑

j

(αβ)ij = 0

The interaction effect is the change in the row effect due to the column (or
vice versa). An interaction plot draws a line for each row with points for each
column; if there are no interactions, then the lines in the interaction plot are
parallel. We always include the main row and column effects if we include the
interaction effects. If the interactions are insignificant, then we may omit the
interaction effects and test whether the row and column effects are significant.

To calculate the regression, we may use effect codings for the row and column
effects and then calculate the interaction as the product of row and column
effects (this is (I− 1)(J − 1) different pairwise products). In this setup, the test
for an interaction effect is a partial F-test that compares the model with and
without the interaction effects.

For this model to be estimable, no cell may be empty (that is, we must
have at least one observation from every pair (i, j)). If there are empty cells,
we may omit rows or columns with missing cells, combine rows or columns so
that no cell is empty, or omit interaction effects; otherwise, we have perfect
multicollinearity.

It is preferable for all the cells to have approximately equal numbers of
observations, but this may not be possible. If nij is constant for all i, j, then we
have a balanced design. In this case, the effects are orthogonal and the p-values
for row and column effects will change very little when the interaction term is
removed. Also, all the points have equal leverage. In a balanced design with no
interactions, the fitted values are yi. + y.j − y... If nij = 1 then a model with
interactions will fit the data perfectly.

There may be non-constant variance in the different subgroups, which sug-
gests using weighted least squares. If there is non-constant variance by the two
groups (with no interaction), then the weights are given by:

wij =
1

stdev2
i

1
stdev2

j

Alternatively, Levene’s test may be implemented using ANOVA. If the interac-
tion is significant, then the weights are given by 1

stdev2
ij

instead.

2.3 Analysis of Covariance

Suppose we have a model with covariates (numerical variables), X1, ..., Xp and
factors (subgroups), i = 1, ..., I; j = 1, ...J . Then, we have an ANCOVA model:

yijk = µ + αi + βj + (αβ)ij + γ1x1ijk + ... + γpxpijk + εijk
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This is a constant shift model, in which each subgroup has a different intercept,
so that given certain values for the covariates, the difference between being in
groups i and i′ depends only on the α terms (and their interactions). This allows
for multiple comparisons tests to be used.

The point prediction in this case is Meani + β̂1(x1 − x1) + ... + β̂p(xp − xp)
(the means of the covariates could be combined into a constant term, depending

on the output). A rough half-width of the prediction interval is 2
√

ResidualMS
Weighti

(where Weighti = 1 if we are not using WLS).
We may also allow the slopes to differ by subgroup by including interaction

terms between the subgroups and the covariates. To calculate the slopes from
variables based on effect codings, we add the slope of the ith group to the overall
slope (except for the last group, where we subtract the sum of all the other slopes
from the overall slope, just as we do for groups means above).

3 Generalized Linear Models

A more general model of regression has three parts: a random component, the
expected relationship of y to X, and a link function from the random part to
the predictor. In a linear regression, the expected relationship is µi = β0 +β1xi,
the random component is yi ∼ Normal(µi, σ

2), and the link function is µ. In a
generalized linear model, we assume that y has a distribution in the exponential
family, given by:

f(y; θ, φ) = exp
(

yθ − b(θ)
a(φ)

+ c(y, φ)
)

We define µ = E(y) = b′(θ) and note that V ar(y) = a(φ)b′′(θ). We define the
systematic component by:

ηi = β0 + β1x1i + ... + βpxpi

The link function is given by g(µ) = η. The canonical link function is θi = ηi

(this often makes estimation and hypothesis testing easier).
Let ri = (yi − µi) ∂ηi

∂µi
and W = diag[(∂µi

∂ηi
)2/V ar(yi)]. Then, the score equa-

tions for maximum likelihood estimation are 0 = X ′Wr, and we may estimate
β̂ = (X ′WX)−1X ′Wz where z = Xβ + r. Note that W and r depend on
the parameters, so that estimation is done through iteratively reweighted least
squares.

3.1 Goodness of Fit Tests

Definition A goodness of fit test is a test of the null hypothesis that the model
fits the data. (It is not a test of the strength of the relationship.)

Definition The saturated model is the model in which we estimate µ̂i = yi; this
model has one parameter for each observation. The deviance is the likelihood
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ratio test statistic of the saturated model versus the model of interest:

D(y, µ̂M ) = 1
N∑

i=1

yi(θ̂S
i − θ̂M

i )− b(θ̂S
i ) + b(θ̂M

i )
ai(φ)

=
M∑
i=1

di

If the model is a good fit, then D χ2
n−p−1.

A second goodness of fit test is given by the Pearson statistic, X2 =
∑n

i=1
(yi−µ̂i)

2

V̂ (yi)
.

If the model is a good fit, X2 also has a χ2
n−p−1 distribution.

We may also use the deviance to compute a “pseudo-R2”:

R2
D = 1− D(y, µ̂M )

D(y, µ̂0)

where µ̂0 are the estimates from the model with only an intercept.

3.2 Model Checking

Many of the statistics used for model checking can be used with general linear
models.

The leverage values are the diagonal entries of the matrix H = W 1/2X(X ′WX)−1X ′W 1/2.
There are two possible forms of residuals:

• Pearson Residuals: rP
i = yi−µ̂i√

V̂ (yi)

• Deviance Residuals: rD
i = sgn(yi − µ̂i)

√
di

Note that the squared residuals add up to their respective goodness of fit mea-

sures. To standardize the residuals, to r̃P
i and r̃D

i , we divide by
√

φ̂(1− hii).
We define Cook’s distance (as before) by:

CD =
r̃2
i hii

(p + 1)(1− hii)

where either type of standardized residuals may be used.
As before, plots of residuals or absolute residuals versus the predictors may

be of interest. In addition, plots of the residuals versus η̂ may be helpful.

4 Logistic Regression

Logistic regression (also called binomial regression), is a general linear model
with:

yi ∼ Binomial(ni, pi)

ln(
pi

1− pi
) = β0 + β1xi
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The odds are p
1−p ; there is a one-to-one correspondence between probabilities

and odds. Note that logistic regression is a semi-log model of the odds. In this
model, we have:

pi =
eβ0+β1xi

1 + eβ0+β1xi

According to this model, increasing the jth predictor by one unit multiplies
the odds ratio by eβ̂j . If the confidence interval for eβ̂j contains one, then the
variable does not have a significant effect.

To plot the data, we may look at boxplots of the continuous predictors versus
by outcome (this just reverses the usual axes). The outliers in the boxplots may
be interesting points. Note that non-constant variance across the boxplots is no
longer relevant to heteroskedasticity, but they may suggest variables for which
the logarithm will be a better predictor.

In a logistic regression with categorical predictors, we may consider the data
in a contingency table with one dimension for each predictor and one dimension
for the response. (This also provides a better way to display the data, and may
show whether there is an interaction.)

In testing, we use Wald tests (a normal approximation; exact methods exist
but are computationally intensive) for each individual variable. Furthermore,
the test for the overall significance of the regression (G) is a likelihood ratio
test, which may give slightly different results from the Wald test (in the case
where the logistic regression has only one variable).

In logistic regression, useful diagnostics for the model include:

• Delta Beta: This is the logistic regression analog of Cook’s Distance, which
measures the effect of a single observation on the output. (In terms of
scale, it is more like the square root of Cook’s distance.)

• Leverage values (Hi)

• Estimated Probabilities: These are the “fitted values”, the estimated prob-
ability of the event occurring for each observation.

• Standardized Pearson Residuals: These are proportional to the observed
number of successes less the expected number. (Residuals are positive
when there is a success and negative when there is a failure.)

• ∆χ2, the squared Pearson residuals: A plot of these versus the fitted values
can show outliers (those values above 6 or 7). Because the responses are
discrete, there will always be an x-shaped pattern in the plot of ∆χ2 versus
the estimated probabilities, even if there is no structure in the residuals.

To quantify the usefulness of the variables in predicting outcomes, we use
measures of association. The most common counts the number of concordant,
discordant, and tied pairs. This runs through all possible pairs of one success and
one failure. If the estimated probability (of success) is greater for the success,
the pair is concordant ; if the estimated probability (of success) is greater for
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the failure, then the pair is discordant ; otherwise, it is a tie. A model with
more concordance is generally preferable (this can help compare two models
with the same number of variables). The number of concordant and discordant
pairs is summarized by various statistics, including Somer’s D. Other measures
of association exist as well.

To test the usefulness of a model, we may create a table where the rows are
the actual successes and failures and the columns are the predictions (where
we predict “success” if the estimated probability is above some fixed number,
like 0.5 or another number if one kind of misclassification is worse than the
other). Then, the percent of correct predictions is n00+n11

n . We may compare
this number against:

• Cmax = max(n0.

n , n1.

n ): This is the probability we would have correct if we
classified everything into the larger group. (This is harder to beat if most
of the outcomes are of the same type.)

• Cpro = 1.25(n0.n.0
n2 )(n1.n.1

n2 ): If the predictors are useless, then the pre-
dicted and actual results would be independent, and we would expect
n00 = n0.n.0

n and n11 = n1.n.1
n . We inflate this by a factor of 1.25, since

the regression used the same data for estimation and prediction.

Collinearity can occur in a logistic regression, but it is not defined in the
same way.

Note that the model is estimated iteratively, and might not converge. If
the model doesn’t converge, then the results are not reliable. Sometimes, one
might just need more iterations. If it still doesn’t converge, the data might fit
the model perfectly. In this case, all the estimated probabilities are zero or one.
This is called separation, because the successes and failures can be perfectly
separated by the variables. To fix this, some variables should be omitted from
the model.

Another option is probit analysis, where the link function is the CDF of a
standard normal. However, the logit is canonical link function and the estimates
have better small sample properties and are fully efficient.

4.1 Goodness of fit tests

The binomial distribution depends on only one parameter, pi, instead of two,
µ, σ2. This means we do not need to estimate the variance separately, which
allows for goodness of fit tests.

Lack of fit might be caused by outliers, the wrong functional form, or the
wrong link function (perhaps there is unmodeled heterogeneity which leads to
overdispersion, with a variance bigger than np(1 − p); this can be caused by
trials that are not independent, omitted variables, and clustering). If the model
does not fit, it may be able to be modified (with a Beta-Binomial, for example)
or quasi-likelihood or semiparametric methods may be more useful.

If we observe multiple trials for each i (preferably, ni > 5 for all i), then we
have two asymptotically equivalent goodness of fit tests:
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• Pearson Goodness of Fit Test: X2 =
∑

j
(fj−nj p̂j)

2

nj p̂j(1−p̂j)
, where fj is the ob-

served number of successes in nj trials and p̂j is the estimated probability.

• Deviance Test: G2 = 2
∑

j fj ln( fj

nj p̂j
)− (nj − fj) ln( njfj

nj(1−p̂j)
)

Under the null hypothesis of a correct model, both test statistics have a χ2
N−p−1

distribution asymptotically (they will be zero if p̂j = fj

nj
), where N is the number

of groups of observations.
If the ni are small, then we use the Hosmer-Lemeshow test. This test ranks

the data by p̂, splits the data into roughly equal-sized groups by rank, calculates
the expected number of successes in each group, and runs a goodness of fit test
based on these numbers.

If the goodness of fit test rejects the model, other predictors or interactions
may be necessary (ignoring covariates can cause big problems, like Simpson’s
paradox). For large ni, we may graph the empirical logits, ln( fj/nj

1−fj/nj
), versus

the predictor to check for non-linearity. (If this cannot be calculated because
of a zero, we made add a fake success and a fake failure to make calculation
possible.)

4.2 Model Selection

To choose a model, we have a variety of possible measures:

• G measures the overall strength of the regression (higher values are prefer-
able). However, G always increases with additional predictors.

• Somer’s D: The model where this measure begins to level off is best.

• A model with a high p-value of the Hosmer-Lemeshow test is preferable,
because the model fits better.

• Minimize AICC = G2 +2ν( n
n−ν−1 ), where G2 is the deviance and ν is the

number of parameters.

Instead of using best subsets for a logistic regression, we may approximate
the process by using best subsets with a linear regression of the 0-1 values on
the predictors. (This tends to work better if most of the estimated probabilities
are away from 0 and 1.)

If we drop variables based on the Wald statistics (since they are only ap-
proximate), one should check that the new model still fits (using the Hosmer-
Lemeshow test or the Pearson and Deviance tests).

4.3 Adjusting the odds for data collection

Definition A prospective (cohort) study is a study in which units are sampled
at random and then followed to see the outcome. (This can be done in real time
or just by choosing a random sample from a valid frame in the past.) Note that
this sample is not based on the outcome of interest.
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Definition A retrospective (case-control) study samples a fixed number from
each outcome of interest in order to measure other variables. This sample is
based on the outcome of interest.

Retrospective studies ensure a more equal representation of the two out-
comes, but estimates for future individuals need to be adjusted for the sampling
method. (Logistic regression allows for comparison between these two types of
studies.)

¿From a prospective study, we may calculate the odds of observing the out-
come given the predictor, πO|P . From a retrospective study, we calculate the
odds of the predictor given the outcome, πP |O. The logistic regression uses the
odds ratio, which we may calculate from a prospective or a retrospective study:

πO|P /π∼O|P

πO|∼P /π∼O|∼P

πP |O/π∼P |O

πP |∼O/π∼P |∼O

Logistic regression is based on the odds ratio, which means that the coefficients
from the retrospective study and a prospective study are comparable. However,
the intercepts will differ because of the way the data was collected.

In a prospective study, we estimate the probabilities for new observations
by:

p̂ =
exp(β̂0 + β̂1x)

1 + exp(β̂0 + β̂1x)

In a retrospective study, we must know the unconditional proportions, πO, π∼O,
of each outcome (from some other data source). Then we use the ratio be-
tween the number of each outcome observed in the study (nO, n∼O), and these
probabilities to adjust the intercept:

β̃0 = β̂0 + ln(
πO/nO

π∼O/n∼O
)

The slope stays the same, and the probabilities are calculated as above.

4.4 Multinomial Logistic Regression

We use multinomial logistic regression when the target variables have more than
two outcomes. These outcomes may be nominal, where there is no ordering to
the outcomes, or ordinal, where there is a natural order to the outcomes (but
OLS is not appropriate, since the outcomes must be integers).

4.4.1 Nominal Multinomial Logistic Regression

In the nominal case, we have the model for outcomes j = 1, ...,K:

P (j|X) =
exp(β0j + β1jx1 + ... + βpjxp)

1 +
∑K−1

l=1 exp(β0l + β1lx1 + ... + βplxp)
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or, equivalently,
ln(

pj

pK
) = β0j + β1jx1 + ... + βpjxj

We call K the control or reference group. This is like fitting K − 1 logistic
regressions, for each of ln( pj

pK
). We fit them simultaneously so that they are

consistent (the estimated probabilities sum to less than one, the log odds work
out for all the groups, the results will not be affected by which group is the
reference group, and we can do hypothesis testing across different groups).

This model depends on some assumptions:

• The model is correct: Observations are independent and multinomial, and
the probabilities depend only on the predictors given.

• Independence of Irrelevant Alternatives: If a category is added or removed,
it will not affect the relative odds of the other categories. (This can fail
in discrete choice models, with the Red Bus/Blue Bus problem.) One can
test for this using a Hausman test. This test removes one outcome and
then compares the estimates for all other pairs to the original estimates;
they should be approximately unchanged if IIA holds.

To visualize the data, boxplots of the independent variables for each outcome
may again be useful.

Diagnostics are not well-defined (because each observation is associated with
K−1 independent probabilities), but we may observe the estimated probabilities
and use these for classification. Goodness of fit tests exist only when each
ni > 1. We may measure the usefulness of the model in classification as before,
with Cmax based on classifying everything into the single largest group (Cpro is
the same).

If all the predictors are categorical, then the estimates for a logistic regression
are identical to the estimates for a log-linear contingency table model with all
possible interactions for the predictors.

4.4.2 Ordinal Multinomial Logistic Regression

In the case where outcomes are ordinal, it may be reasonable to treat the out-
comes like numbers, particularly for large data sets or more complicated forms of
analysis. However, predictions will not be integral, we cannot get the probabil-
ity for each outcome (making classification harder), and such a model assumes
that the outcomes are “equally spaced.”

A latent variable regression or ordinal logistic regression might make more
sense. Suppose Y ∗ is a continuous variable, and we observe Y = j if αj−1 <
Y ∗ ≤ αj , where −∞ = α0 < α1 < ... < αJ = ∞. Ordinal logistic regres-
sion estimates the relationship between X and Y ∗ and the αj . This regression
assumes that Y ∗|X has a logistic distribution, while ordinal probit regression
would assume a normal distribution. This is also called a proportional odds
model, because it implies that:

Lj(x) = ln
(

Fj(x)
1− Fj(x)

)
= αj + β1x1 + ... + βkxk, j = 1, ...J − 1
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where Fj(x) = P (Y ≤ j|X), which are the cumulative logits. This model
estimates J − 1 constants and only one β. Lj(xl + 1)−Lj(xl) = βl for all j, xl,
so that the odds of seeing a response below a given category are multiplied by
eβl when xl increases by one unit.

In this model, merging adjacent categories does not change the relationship;
in simply removes one of the αj . However, estimation with fewer categories is
less efficient.

An alternative model is the adjacent categories logit. In this model, we
assume that:

log(
pj+1

pj
) = αj + β1x1 + ... + βkxk

That is, if xl increases by one unit, then the odds of being the the next category
up are multiplied by eβl . Because βl does not depend on the category, it also
means that the log odds of being in the category m levels higher increase by
mβl.
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