
Theory of Computation (CS 46) 
 
Sets and Functions 
We write 2A for the set of subsets of A. 
Definition.  A set, A, is countably infinite if there exists a bijection from A to the natural 

numbers. 
 Note.  This allows us to enumerate A, using the order from the bijection. 
Definition.  A set is countable if it is finite or countably infinite.  It is uncountable 
otherwise. 
Theorem.  If A is a subset of a countable set, then A is countable. 
Theorem.  N × N is countable. 
Corollary.  A countable union of countable sets is countable. 
 
Programs 
Definition.  A program is a finite string (ordered set of symbols) over a finite alphabet.   
 Note.  This is distinct from the process associated with the program, which may be 

infinite. 
Theorem.  The number of programs is countable. 
 Proof.  The number of strings of length k is finite, and the set of all programs is the 

union of this countable number of countable sets. 
Theorem.  The number of functions from the natural numbers to {0,1} is uncountably 

infinite. 
Corollary. There are more functions than possible programs.  Thus, some functions are 

not computable. 
 
Languages 
Definition.  An alphabet (Σ) is a finite set of symbols.  A string is a finite sequence from 

an alphabet.  The set of all strings over an alphabet is denoted Σ*. 
• |w| is the length of the string w. 
• ak = aa … a (k times) 

Definition.  A language is a subset of Σ*. 
The following operations are defined on languages: 

• L1 + L2 is the union of the two languages 
• L1 • L2 = {l1l2 | l1 ∈L1 and l2 ∈ L2} is the concatenation of two languages. 
• L1* = ∪ L1

i for all i ≥ 0. 
Definition.  A regular expression over the alphabet Σ is a string over {(, ), ∅, ε, +, *} ∪ Σ 

obtained as follows: 
• ∅, ε are regular expressions 
• If a ∈ Σ then a is a regular expression. 
• If α, β are regular expressions then so are (αβ), (α+β), α*. 
• Nothing else is a regular expression 

Regular expressions correspond to regular languages by L(∅) = ∅, L(x) = {x}, and the 
operations act as expected. 
Definition.  A regular language is any language that can be represented by a regular 
expression. 



 
Finite Automata 
Definition.  A deterministic finite automaton is a 5-tuple, (K, Σ, δ, s, F), where K is the 

(finite) set of states, Σ is a (finite) alphabet, δ: K × Σ à K is the transition function, s is 
the start state, and F ⊂ K is the set of final states.  A string is accepted if, starting at s, 
the automaton transitions so that when the string has been reduced to an empty string, 
the automaton is in a state of F. 

 Note.  Any future actions of an automaton are determined by the remaining input string 
and the current state; this, all “memory” must be included in the current state.  (This 
suggests that a finite automaton has a finite amount of memory. 

Definition.  A non-deterministic finite automaton is a 5-tuple, (K, Σ, δ, s, F), where K is 
the (finite) set of states, Σ is a (finite) alphabet, δ: K × Σ à K is the transition relation, s 
is the start state, and F ⊂ K is the set of final states.  (There may be more than one state 
(or 0 states) which is the result of some pair.)  A string is accepted if any possible run 
of the string ends in some state in F.   

 Note.  We may also consider a non-deterministic finite automaton’s transition function  
as from subsets of K and letters to other subsets of K. 

Theorem.  A language is regular if and only if it is accepted by a finite automaton. 
Theorem.  The set of languages accepted by deterministic finite automata equals the set 

of languages accepted by non-deterministic finite automata. 
Pumping Lemma.  If L is regular, then there exists N > 0 such that when |w| > N and w ∈ 

L then we may write w = xyz such that |xy| < N and xyiz ∈ L for all i ≥ 0. 
 Proof (sketch).  Let N be the number of states (in the associated deterministic finite 

automaton).  Then, in reading the string, the automaton must pass through some state 
twice.  Let y be the part of the string falling between the first time that state is seen and 
the second time that state is seen.  Then, that part may be removed or repeated without 
affecting if the string is accepted. 

Algorithm.  We may convert any DFA to a regular expression.  Let R(i, j, k) be the 
regular expressions that allow the automaton to pass from qi to qj through no state of 
number higher than k.  Then, R(i, j, k+1) = R(i, j, k) + R(i, k+1, k)R(k+1, k+1, 
k)*R(k+1, j, k).  The full regular expression is R(qstart, qfinal, |K|).  (In order to make a 
single final state, add an ε-transition from every state in F to a new final state.) 

 
Phrase Structure and Context-Free Grammars / Pushdown Automata 
Definition.  A phrase structure grammar is G = (V, T, R, S), where T ⊂ V is the set of 

terminals, V – T is the set of non-terminals, R: (V* - T*) à V* is a set of production 
rules and S ∈  V – T is the start symbol. 

Definition.  A context-free grammar is a phrase structure grammar in which R: V – T à 
V* (all productions are from a single non-terminal). 

Definition.  Let G = (V, T, R, S) be a grammar.  Let α, β ∈ V*.  Then α directly derives 
β if α = αfαmαl and β = αfβmαl and (αm à βm) ∈ R.  (The substrings may be empty.)  
derives is the reflexive, transitive closure of directly derives. 

Definition.  If G = (V, T, R, S) is a grammar then the language generated by G is given by 
L(G) = {w ∈ T* | S derives w}. 



Definition.  A context free grammar is right linear if all productions are of the form A à 
wB or A à w, where w ∈ T*, A, B ∈ V – T. 

 Theorem.  Right linear grammars generate precisely the regular languages. 
Definition.  A CFG is in Graibach Normal Form if R: (V – T) à T(V – T)*.  (Every rule 

sends a non-terminal to a single terminal and a string of non-terminals.) 
 Note.  Any context-free language can be generated by a grammar in Graibach Normal 

Form. 
Definition.  A pushdown automaton is a finite automaton with a stack, so that transitions 

are determined in part by the top of the stack and may affect the stack.  Formally, M = 
(K, Σ, Γ, ∆, s, F) where K is a set of states, Σ is the alphabet, Γ is the set of stack 
symbols, ∆: K × (Σ+{ε}) × Γ* à K × Γ* is a relation, s is the starting state and F is the 
set of final states.  A pushdown automaton accepts if it is in an accepting state with an 
empty stack when the string terminates. 

 Note.  It is equivalent if the automaton accepts if it has an empty stack when the string 
terminates or if it is in a final state when the string terminates. 

 Note.  Pushdown automata are generally non-deterministic.  In fact, the set of languages 
accepted by deterministic automata are strictly contained in the set of languages 
accepted by pushdown automata. 

Theorem.  The set of languages accepted by pushdown automata is the set of context free 
languages. 

Definition.  A grammar in Chomsky normal form has R: (V – T) à ((V – T)2 + T).  All 
rules have either two non-terminals or one terminal on the right hand side. 

Theorem.  Most CFG’s may be transformed into Chomsky normal form (possibly losing 
ε). 

 Note.  A grammar in Chomsky normal form may be parsed in O(n3) steps. 
Pumping Lemma II.  If L is a context-free language there exists K > 0 such that if w ∈ L 

and |w| > K we may write w = uvxyz, |vy| ≥ 1, |vxy| < K such that uvixyiz ∈ L for all i ≥ 
0. 

 Proof (sketch).  Let K = 2|V – T| + 1. Consider the parse tree of w.  The height of this parse 
tree is greater than |V – T| + 1, which is the number of non-terminals.  Thus, there is at 
least one path with a repeated non-terminal.  Choose the terminal with lowest “next-to-
last” appearance (A).  Suppose the last A yields and the previous A yields vAy.  Then, 
we find that S yields uAz which yields uvnxynz for any n. 

 
Turing Machines 
Definition.  A Turing Machine is M = (K, ∑, ∆, s, H) where K is a set of states, H ⊆ K is 

the set of halting states, ∑ is the alphabet, which includes > (the left-end marker), _ (the 
blank symbol), ∆: (K – H) × Σ à K × (Σ ∪ {ß, à}) which sends the current state and 
symbol being read to a new state and either symbol or move left/right.  Note that δ(q, >) 
= (q, à) for all q ∈ K – H.   

Note.  One way to describe complex Turing machines is by linking simple Turing 
machines with arrows that may depend on the symbol seen. 

Theorem. A Turing Machine that decides languages may be simulated by a 2-stack PDA. 
Proof.  Consider popping the input onto one stack and moving the top symbol from one 

stack to the other to move the tape head.  After dealing with the infinite blanks  at the 
end and the left-end marker, this PDA can do anything the Turing machine does.  



(Also, a 3-tape Turing Machine can simulate a 2-stack PDA by having one tape for the 
input and one for each stack.) 

Extensions and Other Definitions.  (All are equivalent to one-tape Turing machines.  All 
simulations, except for the non-deterministic one, can be done in polynomial time.) 

• Instead if having a left-end marker, the Turing machine might always halt in a 
non-accepting state if it falls off the left end of the tape. 

• A tape that is infinite in both directions. 
• The ability to write and move in the same step (this might decrease the number of 

states slightly). 
• Two-Track Turing Machine:  There is a second space below the input (always 

exactly lined up) that can be written on.  (This could be simulated by a regular 
Turing machine using the alphabet Σ×Σ.) 

• Two-Tape Turing Machine.  There are two tapes, and the read/write head may 
look anywhere on each. (This may be simulated by a 4-track Turing machine, 
where the first and third tracks have the contents of tape 1 and 2, and the second 
and fourth tracks have markers for the current location of the heads.  Then, each 
computation would begin by identifying what each head would be seeing, and 
going from there.) 

• Two-Head Turing Machine:  Two heads on the same tape. 
• Two-Dimensional Tapes 
• Random Access Turing Machines:  The machine may jump to any square on the 

tape.  This machine makes use of one infinite tape and various registers that hold 
integers.  (This, too, may be simulated by a one-tape Turing Machine, in 
polynomial time – both in the number of states and in the running time.) 

o Since Random Access Turing Machines have both random access and 
possibly infinite length words, they are more powerful than computers. 

• Non-deterministic Turing Machines: These machines accept if any possible 
sequence of states accepts/halts. 

o Simulation by a Deterministic 3-Tape Turing Machine:  Let k be the 
maximum number of options for δ(q, a) over all q, a.  Let the first tape 
hold the original input to M (so that it does not get destroyed.)  Let the 
second tape hold the current simulation of M.  Let the third tape hold 
stings over an alphabet with k letters.  This machine goes through all the 
possible strings over the alphabet with k letters, in order of increasing 
length, pausing after each is written, so that the second tape may copy the 
input to M, and simulate M on the second tape, making the choices 
designated by the string on the third tape,  This machine halts if and only 
if M halts on any path.   

Definition.  Let M be a Turing Machine with H = {y, n}.  M accepts an input if it halts in 
state y.  M rejects an input if it halts in state n.  M decides a language, L, if M accepts 
whenever w ∈ L and rejects otherwise.  (M always halts.)  A language decided by a 
Turing machine is called recursive. 

Note.  The alphabet of the language and the Turing machine are not the same – the Turing 
machine alphabet must contain _ and >, and may contain other symbols as well. 

Definition.  A language is recursively enumerable if there exists a Turing machine that 
halts on an input if and only if it is in the language. 



Theorem.  Any recursive language is recursively enumerable. 
Proof.  Make the “no” state a non-halting state.   
Theorem. The complements of recursive languages are also recursive. 
Proof.  Reverse the “yes” and “no” states. 
Theorem.  Recursive and recursively enumerable languages are closed under union, 

concatenation, and Kleene star, 
Definition.  A function, f, is recursive if there is a Turing machine that, when given an 

input, w, halts with f(w) on its tape. 
Definition.  A primitive recursive function can be created through composition and 

recursive definition from the basic functions of the zero function (f(n1, …, nk) = 0), the 
jth identity function (f(n1, …,  nk) = nj), and the successor function (f(n) = n+1).  A 
primitive recursive predicate is a function that takes on only 0 and 1. 

Definition.  The minimalization of a function is the smallest such number such that a 
predicate holds (or 0 if none exists).  A function is minimalizable if there is always 
another number that will make the predicate true.  A function is µ-recursive if it can be 
obtained from the basic functions by composition, recursive definition, and 
minimalization of minimalizable functions. 

Universal Turing Machines 
Definition.  A Universal Turing Machine is a Turing Machine that takes in an encoding of 

any other Turing Machine and input and simulates that Turing machine on the input. 
Example.  One way to design this is to encode each state as qxxx (where xxx is in binary, 

with enough initial 0’s on some that all encodings of states have the same length), each 
letter in the alphabet as axxx (with special encodings for >, _, à, and ß), and each 
transition in the form (old state, input, new state, output).  Then, MU has 3 tapes.  It 
copies the description, “M”, onto its second tape and shifts “w” to the beginning of the 
first tape.  It writes the current state on the third tape.  For each move, it scans the 
current input (which is taking up multiple tape squares) and current state, finds the 
corresponding move, and executes it, changing both the first tape and the state on the 
third tape if necessary. 

Theorem.  Let K = {x | x is not the encoding of a Turing Machine or x is the encoding of 
the Turing Machine, M, such that M does not halt on x}.  K is not recursively 
enumerable. 

Proof.  Suppose K is recursively enumerable.  Then there is some Turing machine, M*, 
such that M* halts on the language K.  If M* ∈ K, then M* halts on “M*”.  Since “M*” 
is a valid encoding of a Turing machine, M* must not halt on “M*” if it is in K.  On the 
other hand, if M* is not in K, then M* must halt on itself.  However, then “M*” is in K.  
This is a contradiction.  So K is not recursively enumerable. 

Theorem.  Let H1 be the set of all Turing Machines such that M halts on “M”.  Then, H1 
is recursively enumerable but not recursive. 

Proof.  The universal Turing Machine halts on “M”“M” if and only if “M” ∈ H1.  Thus a 
machine that accepts H1 is one that copies the encoding of M and runs the universal 
Turing machine on it.  Hence, it is recursively enumerable.  However, its complement 
(K above) is not recursively enumerable.  Since recursive languages are closed under 
complement, H1 is not recursive. 

Theorem.  Let H = {“M”“w” | M halts on w}.  H is recursively enumerable but not 
recursive. 



Proof.  The universal Turing Machine halts on H.  However, H1H1 ⊂ H.  If H were 
recursive, H1H1 (and thus H1) would be recursive.  Since it is not, H is not recursive. 

Corollary.  Recursively enumerable languages are not closed under complement or 
intersection. 

Undecidability and the Halting Problem 
Definition.  A problem or language is undecidable if there is no Turing Machine that 

decides it.  (Not semidecides!  This machine must halt on all inputs.)  This means that 
there is no general algorithm to deal with this problem. 

Definition.  Let L1 and L2 be languages in ∑*.  A many-one reduction from L1 to L2 is a 
recursive function τ: ∑* à ∑* such that x ∈ L1 if and only if τ(x) ∈ L2.  If there is a 
many-one reductions from L1 to L2, we write L1 ≤M L2. 

Theorem.  If L1 ≤M L2 and L1 is not recursive, then L2 is not recursive. 
Proof.  Suppose L2 is recursive.  Then there exists M2 that decides L2.  Let R be the 

Turing machine that computes τ.  Then the composition of R and M2 decides L1.  Since 
L1 is undecidable, this leads to a contradiction.  So L2 is not decidable. 

Some More Undecidable Problems 
• Theorem.  Given a Turing Machine, M, the question of whether M halts on the 

empty tape is undecidable. 
o Proof.  Let Mw be the machine that, when started on the empty tape, write 

w on its tape and then simulates M.  MW halts on the empty tape if and 
only if M halts on w.  Since “M” “w” may be transformed into “Mw” by a 
Turing machine, we see that deciding if M halted on the empty tape would 
decide the halting problem.  Since that is impossible, we may not decide if 
M halts on the empty tape either.  

• L(M) = ∑* is undecidable. 
• L(M1) = L(M2) and L(G1) = L(G2) 
• Given  M, the question of whether L(M) = ∅ is undecidable. 
• Whether M ever reaches a particular state or writes a particular symbol. 
• Post Correspondence Problem:  Given {(u1, v1) …, (un, vn)}, is there any way to 

arrange the pairs so that uj1…ujn = vj1 … vjn? 
• For any context-free grammar, G, is L(G) = ∑*.  (The Post Correspondence 

Problem can be reduced to this.)  
Definition.  A property of recursively enumerable languages is trivial if it is satisfied by 

none of the recursively enumerable languages or all of the recursively enumerable 
languages. 

Rice’s Theorem. Every non-trivial property of recursively enumerable languages is 
undecidable. 

Proof.  Let Q be a non-trivial property of recursively enumerable languages.    Let LQ = 
{“M” | L(M) satisfies Q}.  Without loss of generality, assume ∅ does not satisfy Q.  
Suppose ML semi-decides LQ.  Let τ(“M”“w”) = “TMwL”, the machine that, given any 
input, runs M on w and ML on the input.  Then, the input to TMwL is in LQ if and only if 
M halts on w.  So this is a reduction from the halting problem to LQ. 

 
Definition.  A grammar is context-sensitive if every rule u à v has |u| ≤ |v|. 



Definition.  An in-place acceptor (linear bounded automaton) is a Turing machine that 
never moves more than one space beyond the length of the original input. 

Theorem.  Linear bounded automata accept any context-sensitive grammar. 
Proof.  Simulate a backward derivation of any input by checking if the input has been 

transformed into S and, if not, non-deterministically choosing a position in the 
remaining string and a rule to un-apply.  If any list of rules halts with S on the string, 
the input was in the language. 

Theorem.  Any language accepted by a linear bounded automaton is context-sensitive.   
Proof.  Apply the proof that a phrase structure grammar can simulate a Turing machine.  

To remove ε-productions, attach symbols to the end-markers, so that the endmarker is 
replaced by the symbol (and not the empty string). 

 
Chomsky Hierarchy (all inclusions are strict) 
Name(s)    Acceptor    Example 
Regular (right linear grammar) Finite automata   
Context-Free Grammar  Pushdown automata   anbn 
Context-Sensitive Grammar  Inplace Acceptor   anbncn 
Recursive    Turing Machine (decides)   
Recursively Enumerable  Turing Machine (semi-decides) Halting 
Note.  Context-free and regular languages that contain the empty string are not 

technically context-sensitive, but close enough. 
 
Undecidable Questions 

 Regular D-CFL CFL CSL Recursive Recursively 
Enumerable 

Is w ∈ L? D D D D D U 
Is L = ∅? D D D U U U 
Is L = ∑*? D D U U U U 
Is L1 = L2? D ? U U U U 
Is L1 ⊆ L2? D U U U U U 
Is the 
complement 
the same 
type? 

D  
(always 

yes) 

D U ? D  
(always 

yes) 

U 

 
Complexity 
Whether a problem can be solved in polynomial time generally does not depend on what 

system is solving the problem.  The most important exception is that non-deterministic 
Turing machine (probably) cannot be simulated by other machines in polynomial time.  
(Also, sometimes problems can be solved in time polynomial in the size of the number, 
but not in the length of the input (binary vs. unary, for example).) 

Definition.  P = {L | L can be decided by a Turing Machine in time polynomial in the 
length of the word}. 

Theorem.  P is closed under union, intersection, Kleene star, concatenation, and 
complement. 



Note.  If a language is semi-decidable in a fixed number of steps, it is decidable in one 
more step than that (since we may answer “no” if the answer “yes” has not come before 
that time). 

Definition.  NP = {L | L can be decided by a non-deterministic Turing machine in a 
number of steps polynomial in the length of the words}. 

Theorem.  NP is closed under union, intersection, concatenation, and Kleene Star. 
Definition.  coNP = {L | LC ∈ NP}.   
Definition.  EXP = {L | L can be decided in exponential time in the length of the input}. 
Fact.  If NP ≠ coNP, then P ≠ NP.  
Theorem.  A problem is in NP if and only if there is a succinct certificate; in other words, 

any possible solution is polynomial in length and can be verified in polynomial time. 
Theorem.  Given any problem, there is a polynomial optimization algorithm if and only if 

there is a polynomial yes-no algorithm for a fixed number. 
Definition.  Let L1, L2 ⊆ ∑*.  L1 ≤p L2 if there is a polynomial time computable function 

τ: ∑* à ∑* such that x ∈ L1 if and only if τ(x) ∈ L2.  τ is called a polynomial time 
reduction from L1 to L2. 

Definition.  L is NP-Complete if L is in NP and L’ ≤p L for all L’ ∈ NP. 
Problem.  Let a set of clauses, F, each clause with only “or” in it, be given.  F is 

satisfiable if there is some assignment of truth values to the variables that makes each 
clause true (that is, at least one variable is true in each clause) – note that clauses 
contain both x and xc.  (This is called conjunctive normal form.) 

Theorem (Cook Levin).  Satisfiability is NP-Complete. 
Proof.  Let M = ({q1, …, qs = y}, {x1, …, xn}, ∆, q1, {qs-1, qs}) be a one-tape Turing 

Machine that decides some language in p(n) time.  Let w = xj1…xjn ∈ ∑*.  Modify M 
so that it runs exactly p(|w|) steps.  Using the variables Cijt (cell i of the tap contains xj 
at the tth step), Skt (M is in state qk at time t), and Hit (M is scanning square i at time t), 
create the following clauses. 

• M is scanning exactly one square at each time 
• Each configuration has exactly one symbol in each cell at each time (we only care 

about the first p(n) cells, since M does not get beyond there). 
• Each configuration has exactly one state. 
• At most one cell is modified in each step. 
• The change of state, tape, and head position is allowed by ∆. 
• The machine begins in the correct initial configuration. 
• The machine ends in state y. 

 Since these clauses are satisfiable if and only if w is in L(M) and the clauses can be 
made in polynomial time, this is a polynomial time reduction from an arbitrary NP 
problem to Satisfiability, and Satisfiability is NP-Complete. 

Some More NP-Complete Problems 
• 3-coloring:  Can a graph be colored with 3 colors such that no two adjacent nodes 

have the same color? 
• Traveling Salesman Problem:  In a complete, weighted graph, find the shortest 

patch that passes through each vertex only once. 
• Hamiltonian Cycle  



• Bounded Tiling Problem:  Can a square be tiled according to tiles with certain 
rules? 

o General Tiling Problem:  Tiling the first quadrant.  This is undecidable, 
since tiles may be used to simulate a Turing machine, so that a tiling exists 
if and only if the machine fails to halt. 

• Equivalence of regular expressions without Kleene star. 
• Dominating Set:  Finding a set of vertices such that every other node in the graph 

is adjacent to a vertex in the set. 
Definition.  An approximation algorithm is one that finds a solution to an optimization 

problem such that |value(optimal) – value(solution found)| / value(optimal) < ε for 
some fixed ε. 

- Algorithms may exist for none, some or all ε. 
Theorem.  There is no general approximation algorithm for the Traveling Salesman 

Problem.  (It is inapproximable.) 
Proof.  If there were, we could use it to solve a Hamiltonian cycle problem (add edges of 

large enough weight to a Hamiltonian cycle problem – if there is a small enough 
possible path, then there is a Hamiltonian cycle. 

Definition.  Let M be a Turing Machine where all computations halt in exactly p(|w|) 
steps and each step has exactly two (not necessarily distinct) choices.  M is a Monte 
Carlo Turing Machine if at least ½ of M’s computations for any x it will accept answer 
yes. 

Definition.  RP = {L | there exists a Monte Carlo Turing Machine for L}. 
Theorem.  The set of all composites is in RP. 
Definition.  ZPP = RP ∩ coRP.  
We know that P ⊆ ZPP ⊆ RP ⊆ NP ⊆ EXP.  We do not know which of these 

containments are strict.  (At least one is.)  


