Nick Ouellette Physics 113

The Electromagnetic Lagrangian and Hamiltonian

Up to this point, we have only applied the Lagrangian and Hamiltonian formalisms to velocity independent forces and potentials. When we introduce a velocity dependence, we can no longer say that

$$L = T - V,$$

where L is the Lagrangian, T is the kinetic energy, and V is the potential energy. We must redefine the Lagrangian to be the function that gives the right answer when fed into the Euler-Lagrange equation.

As an example of this, let us consider a charged particle moving in an electromagnetic field. The particle feels a force given by the Lorentz force law:

$$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c} \times \mathbf{B} \right),\tag{1}$$

where we have used cgs units. Note that q is the electric charge of the particle and not a generalized coordinate.

Maxwell's equations and vector calculus let us express the electric and magnetic fields in terms of the scalar potential ϕ and the vector potential **A**:

$$\mathbf{E} = -\nabla\phi - \frac{1}{c}\frac{\partial\mathbf{A}}{\partial t}$$
$$\mathbf{B} = \nabla \times \mathbf{A}$$

Inserting these expressions into the Lorentz force law, we get

$$\mathbf{F} = q \left(-\nabla \phi - \frac{1}{c} \frac{\partial \mathbf{A}}{\partial t} + \frac{1}{c} \mathbf{v} \times (\nabla \times \mathbf{A}) \right)$$
(2)

We now use the vector identity

$$\mathbf{B} \times (\nabla \times \mathbf{C}) = \nabla (\mathbf{B} \cdot \mathbf{C}) - (\mathbf{B} \cdot \nabla)\mathbf{C} - (\mathbf{C} \cdot \nabla)\mathbf{B} - \mathbf{C} \times (\nabla \times \mathbf{B})$$
(3)

and the fact that \mathbf{v} is not an explicit function of position to write

$$\mathbf{v} \times (\nabla \times \mathbf{A}) = \nabla (\mathbf{v} \cdot \mathbf{A}) - (\mathbf{v} \cdot \nabla) \mathbf{A}.$$
(4)

Now, writing the total derivative of the vector potential as

$$\frac{d\mathbf{A}}{dt} = \frac{\partial \mathbf{A}}{\partial t} + \frac{\partial \mathbf{A}}{\partial x}\frac{dx}{dt} + \frac{\partial \mathbf{A}}{\partial y}\frac{dy}{dt} + \frac{\partial \mathbf{A}}{\partial z}\frac{dz}{dt} = \frac{\partial \mathbf{A}}{\partial t} + (\mathbf{v}\cdot\nabla)\mathbf{A},\tag{5}$$

we can put the Lorentz force law into the form

$$\mathbf{F} = q \left(-\nabla \phi + \frac{1}{c} \nabla (\mathbf{v} \cdot \mathbf{A}) - \frac{1}{c} \frac{d\mathbf{A}}{dt} \right).$$
(6)

Now, even though we cannot say that L = T - V because of the velocity dependence, there is a more general form of the Euler-Lagrange equation we can use. The kinetic energy is defined by

$$T = \sum_{i} \frac{1}{2} m_i \dot{x}_i^2.$$

Putting this into Newton's second law, we obtain

$$F_i = \frac{d}{dt}(m_i \dot{x}_i) = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i}\right).$$
(7)

If we now replace the x_i with generalized coordinates q_i , some algebra shows that

$$\frac{\partial T}{\partial \dot{q}_i} = \sum_j m_j \dot{x}_j \left(\frac{\partial x_j}{\partial q_i}\right). \tag{8}$$

Taking a time derivative, more algebra shows that

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) = Q_i + \frac{\partial T}{\partial q_i},\tag{9}$$

where the Q_i are the components of the generalized force and are given by

$$Q_i = \sum_j F_j \frac{\partial x_j}{\partial q_i}.$$
 (10)

Rearranging equation (9), we get

$$Q_i = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_i},\tag{11}$$

which is the most general form of the Euler-Lagrange equation. In Cartesian coordinates, it reduces to

$$F_i = \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{x}_i} \right) - \frac{\partial T}{\partial x_i}$$

If the system is conservative, the we can write

 $\mathbf{F} = -\nabla V,$

and we come up with

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{x}_j}\right) - \frac{\partial L}{\partial x_j} = 0,\tag{12}$$

which is the familiar Euler-Lagrange equation for L = T - V. If, however, the potential (call it U) is velocity-dependent, we can still write an equation of the exact same form as equation (12) with L = T - Uif the velocity-dependent force is of the form

$$F_j = -\frac{\partial U}{\partial x_j} + \frac{d}{dt} \left(\frac{\partial U}{\partial \dot{x}_j} \right).$$
(13)

We can put the Lorentz force law into this form by being clever. First, we write

$$\frac{dA_j}{dt} = \frac{d}{dt} \left(\frac{\partial}{\partial v_j} (\mathbf{v} \cdot \mathbf{A}) \right),$$

since the partial derivative will pick out only the j^{th} component of the dot product. Now, since the scalar potential is independent of the velocity, we can add on a term containing it inside the partial derivative:

$$\frac{dA_j}{dt} = \frac{d}{dt} \left(\frac{\partial}{\partial v_j} (\mathbf{v} \cdot \mathbf{A} - q\phi) \right).$$

This lets us write the Lorentz force law as

$$F_x = -\frac{\partial}{\partial x} \left(q\phi - \frac{q}{c} (\mathbf{v} \cdot \mathbf{A}) \right) + \frac{d}{dt} \left(\frac{\partial}{\partial v_x} \left(q\phi - \frac{q}{c} (\mathbf{v} \cdot \mathbf{A}) \right) \right)$$
(14)

which in turn tells us that our generalized potential must be

$$U = q\phi - \frac{q}{c}(\mathbf{v} \cdot \mathbf{A}). \tag{15}$$

This finally gives us the electromagnetic Lagrangian:

$$L = T - U = \frac{1}{2}m\mathbf{v}\cdot\mathbf{v} - q\phi + \frac{q}{c}(\mathbf{v}\cdot\mathbf{A}).$$
(16)

The Lagrangian in turn gives us the canonical momentum:

$$\mathbf{p} = \frac{\partial L}{\partial \mathbf{v}} = m\mathbf{v} + \frac{q}{c}\mathbf{A}.$$
(17)

Using the canonical momentum and the Lagrangian, we can construct the electromagnetic Hamiltonian:

$$H = \mathbf{p} \cdot \mathbf{v} - L = \frac{1}{2m} \left(\mathbf{p} - \frac{q}{c} \mathbf{A} \right)^2 + q\phi.$$
(18)