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The Electromagnetic Lagrangian and Hamiltonian

Up to this point, we have only applied the Lagrangian and Hamiltonian formalisms to velocity independent
forces and potentials. When we introduce a velocity dependence, we can no longer say that

L = T − V,

where L is the Lagrangian, T is the kinetic energy, and V is the potential energy. We must redefine the
Lagrangian to be the function that gives the right answer when fed into the Euler-Lagrange equation.

As an example of this, let us consider a charged particle moving in an electromagnetic field. The particle
feels a force given by the Lorentz force law:

F = q
(
E +

v
c
×B

)
, (1)

where we have used cgs units. Note that q is the electric charge of the particle and not a generalized
coordinate.

Maxwell’s equations and vector calculus let us express the electric and magnetic fields in terms of the
scalar potential φ and the vector potential A:

E = −∇φ− 1
c

∂A
∂t

B = ∇×A

Inserting these expressions into the Lorentz force law, we get

F = q

(
−∇φ− 1

c

∂A
∂t

+
1
c
v × (∇×A)

)
(2)

We now use the vector identity

B× (∇×C) = ∇(B ·C)− (B · ∇)C− (C · ∇)B−C× (∇×B) (3)

and the fact that v is not an explicit function of position to write

v × (∇×A) = ∇(v ·A)− (v · ∇)A. (4)

Now, writing the total derivative of the vector potential as

dA
dt

=
∂A
∂t

+
∂A
∂x

dx

dt
+
∂A
∂y

dy

dt
+
∂A
∂z

dz

dt
=
∂A
∂t

+ (v · ∇)A, (5)

we can put the Lorentz force law into the form

F = q

(
−∇φ+

1
c
∇(v ·A)− 1

c

dA
dt

)
. (6)

Now, even though we cannot say that L = T − V because of the velocity dependence, there is a more
general form of the Euler-Lagrange equation we can use. The kinetic energy is defined by

T =
∑
i

1
2
miẋ

2
i .

1



Putting this into Newton’s second law, we obtain

Fi =
d

dt
(miẋi) =

d

dt

(
∂T

∂ẋi

)
. (7)

If we now replace the xi with generalized coordinates qi, some algebra shows that

∂T

∂q̇i
=
∑
j

mj ẋj

(
∂xj
∂qi

)
. (8)

Taking a time derivative, more algebra shows that

d

dt

(
∂T

∂q̇i

)
= Qi +

∂T

∂qi
, (9)

where the Qi are the components of the generalized force and are given by

Qi =
∑
j

Fj
∂xj
∂qi

. (10)

Rearranging equation (9), we get

Qi =
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
, (11)

which is the most general form of the Euler-Lagrange equation. In Cartesian coordinates, it reduces to

Fi =
d

dt

(
∂T

∂ẋi

)
− ∂T

∂xi
.

If the system is conservative, the we can write

F = −∇V,

and we come up with
d

dt

(
∂L

∂ẋj

)
− ∂L

∂xj
= 0, (12)

which is the familiar Euler-Lagrange equation for L = T − V . If, however, the potential (call it U) is
velocity-dependent, we can still write an equation of the exact same form as equation (12) with L = T − U
if the velocity-dependent force is of the form

Fj = − ∂U
∂xj

+
d

dt

(
∂U

∂ẋj

)
. (13)

We can put the Lorentz force law into this form by being clever. First, we write

dAj
dt

=
d

dt

(
∂

∂vj
(v ·A)

)
,

since the partial derivative will pick out only the jth component of the dot product. Now, since the scalar
potential is independent of the velocity, we can add on a term containing it inside the partial derivative:

dAj
dt

=
d

dt

(
∂

∂vj
(v ·A− qφ)

)
.
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This lets us write the Lorentz force law as

Fx = − ∂

∂x

(
qφ− q

c
(v ·A)

)
+
d

dt

(
∂

∂vx

(
qφ− q

c
(v ·A)

))
(14)

which in turn tells us that our generalized potential must be

U = qφ− q

c
(v ·A). (15)

This finally gives us the electromagnetic Lagrangian:

L = T − U =
1
2
mv · v − qφ+

q

c
(v ·A). (16)

The Lagrangian in turn gives us the canonical momentum:

p =
∂L

∂v
= mv +

q

c
A. (17)

Using the canonical momentum and the Lagrangian, we can construct the electromagnetic Hamiltonian:

H = p · v − L =
1

2m

(
p− q

c
A
)2

+ qφ. (18)
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