
Electronic Circuit Applications
Final Project

Stepper Motor Control

Andrew Grasberger

December 16, 2012

Contents

Abstract . 2
Introduction . 2
Background/Theory . 2
Design . 3
Results . 6
Conclusion . 6
Appendix . 7

1

Abstract

A MATLAB interface was created to take a velocity profile and output it to a stepper
motor. MATLAB takes a velocity profile and sends it to a µ controller through a UART
serial interface. The µ controller interprets the data and controls H-Bridges to control the
coils of a stepper motor.

Introduction

Stepper motors have an advantage over regular motors. They have the ability to turn in
discrete amounts (2◦ or less) which makes them useful where precision is necessary. When
the drive shaft is coupled with a lead screw, these motors can provide linear movement very
precisely. These motors have become widely used in home-brew CNC’s and 3D printer’s.
The downside to using these motors is that the way they are configured requires specialized
circuitry to get them to function, which can be expensive. This project was undertaken in
order to obtain a better personal understanding of how the control circuitry works, allowing
for future work with these technologies.

Background/Theory

The motor used for this project was a bipolar, two coil stepper motor. In this configuration,
there is a magnet in the center with a certain polarity and then there are lots of coils around
the outside connected in two sets. The coils on the outside can have current flowing through
them in either direction, producing different polarities of magnetism. So, by having current
flowing in either direction, the permanent magnet in the center can be attracted or repelled

For standard motors, there is one coil that can have current running through it in either
direction, and for opposite directions of current flow, the motor turns opposite directions.
The required circuitry for running a standard motor is an H-bridge. Two H-bridges can be
seen in Fig. 1. In this configuration, the control lines 1a and 1b must inverses of each other.
If 1a is a logic 1 and 1b is a logic 0 then the current flows from Vcc to the pMOS resistor
on right side of the coil, through the coil and then through the nMOS transistor on the
bottom left of the coil to ground. Switching the values of 1a and 1b lets current flow the
other way. For the stepper motors, there is an H-bridge for each coil so the current can flow
either direction, producing the alternate polarities necessary for stepper motor operation.
This requires both of the H-bridges pictured in Fig. 1.

The H-bridges are based on CMOS technology (i.e. nMOS and pMOS transistors). To
get current to flow through an nMOS transistor, the gate voltage must be above the threshold
gate voltage (about 5V). PMOS transistors are slightly trickier because the voltage at the
gate must be at least the voltage at the source in order to turn off, or else current will leak
through.

2

Figure 1: H-Bridges, one for Each Coil

Design

The overall implementation of the design was a MATLAB command program that would
take velocity profiles and send them over a serial line to the MSP430G2553 (MSP430). The
MSP430 processes the commands from MATLAB and sent them through MOSFET drivers
to H-bridges which controls the coils of the stepper motor.

The stepper motors need power to operate, and the power that they run off of is much
higher than the logic-level power that comes from the µcontroller

In order to get the logic level voltage from the MSP430 (3.3V) to the voltage that the
motors run on (12V, which is also the required gate voltage for the pMOS transistors) buffers
were used. Using a buffer along with pull-up resistors to Vcc allows there to be a power-level
signal that corresponds in state to the logic level signal. Buffers either output a high voltage
(5V) which would allow the node to be pulled up to 12V by the resistor, or they can be at
ground, so the node is going to be held at 0.

The buffers used to get the logic level signal to a signal that can be used on the gates of
the transistors are inverting buffers (SN7406) made by TI. There are non-inverting buffers
as well (SN7407) but since the signal at 1a and 1b need to be inverse of each other, the
inverting buffers were easier to implement. These buffers typically operate at a voltage of
5V but the threshold voltage for a logic 1 on an input is 2V so the 3.3V output from the

3

Figure 2: MOSFET Drivers from Hex Inverting Buffers

MSP430 is enough to register as a logic 1.
In Fig. 2 the line on the left is the input line from the MSP430. This signal goes to two

buffers. Assuming the signal is a logic 1, both of the next buffers’ outputs go to ground.
The second buffer on the top branch inverts the signal once again, outputting a 1 which is
drawn high by the pull up resistor attached to the 12V source. This gives opposite signals
on the two outputs on the right side of the figure, which connect to the H-bridge in Fig. 1.
Each H-bridge has one of the buffer circuits (like in Fig. 2) to control the transistors and
the status of the coil. To get the motor to turn clockwise, the control lines for the buffer
circuits have to follow the logic table in Table 1. The motors can also be run backwards by
implementing these steps in reverse order. In the MSP430 code in the Appendix, there are
functions that put these logic values on the pins to go forwards or backwards.

Line 1 Line 2
1 1
0 1
0 0
1 0

Table 1: Turning Motor Clockwise

The software side of the project involved taking a velocity function in MATLAB and
mapping it to the appropriate signals on the output pins of the MSP430. Getting a velocity
profile to go to the motor required a slightly hacky process on the MATLAB and MSP430
sides of the code. To send the velocity information over the serial lines, it was sent as an
ASCII ’char’ value. This meant that there was a limited range of discrete values that were
valid. On the MATLAB side, that means that a range had to be defined where the input
velocity function would be valid. The way the code is set up, there are hard limits on the
velocity at ± 10. These values correspond to motor operating at its maximum speed in the
forward or reverse directions. The velocity range in between -10 and 10 is converted to the
’data’ range of 25 to 125 and rounds to the nearest integer, because there are no fractional
ASCII values. This is a problem because it means that there is a limited resolution for the
motor velocity. An extreme version of this is seen in Fig. 3 where there are only 10 velocity

4

values for a cos curve. Fig. 4 shows what the cos curve looks like when it is divided up
to 125 different levels. It is relatively good but for precise velocity control and when there
multiple motors would be interacting, a better system should be found.

Figure 3: Output for low Number of Output Levelsl

Figure 4: Output for High Number of Output Levelsl

From MATLAB, the ASCII value is then sent over the serial line using UART to the
MSP430. The MSP430 takes the value and determines if it is a positive or negative number
and determines its magnitude. It then changes the length of the delay function inversely
proportionally to the magnitude of the velocity (a higher velocity means a shorter delay

5

between each cycling of the coil polarity). The pseudocode below gives an idea of how
this could be implemented (full code listings in the Appendix). The forward and backward
functions being called each set the coils to the correct polarities following the order (or
reverse order for the backwards function) of Table 1.

d = serialinput - 75

#define Delay

for i < 100 + 100/|d|

if d>0

forward()

else d<0

backward ()

Results

The project worked successfully. Inputting a cosine curve into the MATLAB program yielded
an output velocity on the motor that would having an increasing and then decreasing velocity
in one direction before reversing direction and increasing and decreasing in velocity. It would
continue to follow this pattern, which is characteristic of a velocity following a cos curve.

Conclusion

The project worked well overall. The one big flaw at this point is the limits on the output
from MATLAB to the motor. This needs to be calibrated better and it would be nice to
be able to send non-integer values for greater accuracy. Other extensions could be adding
functionality to start with a position function and have MATLAB differentiate it to get the
velocity profile. Also being able to connect two motors to trace out a shape in two dimensions
would be another step towards building a functional printer.

6

Appendix

Figure 5: Overall Schematic for the Circuit

7

1 /∗ Andrew Grasberger
∗ December 4 , 2012

3 ∗ This code accept s v e l o c i t y va lue s from MATLAB
∗ over a UART s e r i a l i n t e r f a c e and i n t e r p r e t s them

5 ∗ as de lays so the v e l o c i t y o f the motor changes
∗ along with the v e l o s i t y va lue from MATLAB

7 ∗/
#inc lude<msp430 . h> // inc lude header f i l e s and

9 // i n i t i a l i z e v a r i a b l e s
i n t f ;

11 i n t i ;
i n t q ;

13 #de f i n e DELAY fo r (i =1; i<q ; i++) // the de lay funct ion , the value o f q
// i s changed to

15 v o l a t i l e i n t d ; // change motor speed

17

void forward (void) // move c l o ckw i s e by changing how
19 // c o i l s are turned on/ o f f

{
21

P1OUT |= 0x40 ;
23 P1OUT |= 0x20 ;

25 DELAY;
P1OUT &= 0x00 ;

27

P1OUT &= ˜0x40 ;
29 P1OUT |= 0x20 ;

31 DELAY;
P1OUT &= 0x00 ;

33

P1OUT &= ˜0x40 ;
35 P1OUT &= ˜0x20 ;

37 DELAY;
P1OUT &= 0x00 ;

39

P1OUT &= ˜0x20 ;
41 P1OUT |= 0x40 ;

43 DELAY;
P1OUT &= 0x00 ;

45 }

47 void backward (void) //move counter c l o ckw i s e by
// turn ing c o i l s on/ o f f

49 {

51 P1OUT &= ˜0x20 ;
P1OUT |= 0x40 ;

53

DELAY;

8

55 P1OUT &= 0x00 ;

57 P1OUT &= ˜0x40 ;
P1OUT &= ˜0x20 ;

59

DELAY;
61 P1OUT &= 0x00 ;

63 P1OUT &= ˜0x40 ;
P1OUT |= 0x20 ;

65

DELAY;
67 P1OUT &= 0x00 ;

69 P1OUT |= 0x40 ;
P1OUT |= 0x20 ;

71

DELAY;
73 P1OUT &= 0x00 ;

}
75

void i n i t (void) // i n i t i a l i z e UART i n t e r f a c e
77 //with a baud ra t e o f 9600

{
79 BCSCTL1 = CALBC1 1MHZ; // Set DCO

DCOCTL = CALDCO 1MHZ;
81 P1SEL = BIT1 + BIT2 ; // P1 . 1 = RXD, P1.2=TXD

P1SEL2 = BIT1 + BIT2 ; // P1 . 1 = RXD, P1.2=TXD
83 UCA0CTL1 |= UCSSEL 2 ; // SMCLK

UCA0BR0 = 104 ; // 1MHz 9600
85 UCA0BR1 = 0 ; // 1MHz 9600

UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1
87 UCA0CTL1 &= ˜UCSWRST; // ∗∗ I n i t i a l i z e USCI

// s t a t e machine∗∗
89 IE2 |= UCA0RXIE; // Enable USCI A0 RX in t e r r up t

91 b i s SR r e g i s t e r (GIE) ; // i n t e r r up t s enabled
}

93

void main (void)
95 {

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog t imer
97 P1DIR |= 0 x f f ; // c l e a r a l l p ins and s e t them

// as outputs
99 P1OUT &= 0x00 ;

i n i t () ; // i n i t i a l i z e the UART
101 // communication

whi l e (1)
103 {

i f (d > 0) // c a l l the appropr ia te f unc t i on s
105 // f o r what d i r e c t i o n to move

{
107 forward () ;

}

9

109 e l s e i f (d < 0)
{

111 backward () ; a
}

113 e l s e (d == 0) ;

115 f = d ;
i f (f<0) // the moving func t i on s i n t e r p r e t

// p o s i t i v e numbers so
117 { // make i t always p o s i t i v e but d

// a l r eady determined the d i r e c t i o n
119 f = −1∗ f ;

}
121 q = 100 + 100/ f ; //q i s the de lay parameter , make

// i t i n v e r s e l y p ropo r t i ona l to the
123 // value o f f (d)

// so that f o r h igher v e l o c i t i e s ,
125 // the de lay i s s ho r t e r

}
127

}
129

#pragma vecto r=USCIAB0RX VECTOR
131 i n t e r r u p t void USCI0RX ISR(void)
{

133

UCA0MCTL = UCBRS0; // Modulation UCBRSx = 1
135 UCA0CTL1 &= ˜UCSWRST; // ∗∗ I n i t i a l i z e USCI

// s t a t e machine∗∗
137 IE2 |= UCA0RXIE; // Enable USCI A0 RX in t e r r up t

139 b i s SR r e g i s t e r (GIE) ; // i n t e r r up t s enabled

141 d = UCA0RXBUF − 75 ; // convert the sent va lue to a
// p o s i t i v e / neag ive s c a l e

143 }

main.c

10

% Andrew Grasberger December 4 , 2012
2 %E72 Fina l Pro j e c t This code i n t e r f a c e s with an MSP430 over the UART S e r i a l
%i n t e r f a c e , sending the value o f a func t i on at a c e r t a i n time Which i s

4 %in t e rp r e t ed as a de lay by the u con t r o l l e r , so the func t i on Inputted i s the
%v e l o c i t y func t i on

6

s = s e r i a l (’COM13 ’ , ’BAUD’ ,9600) ; % Create s e r i a l ob j e c t and s e t
8 %the baud ra t e
fopen (s) % Open the s e r i a l port f o r r /w

10 t = l i n s p a c e (0 , 8 , 100) ; %make an a rb i t r a r y time vec to r
r = 10∗ s i n (t) ; % s e t the value o f the v e l o c i t y

12 %p r o f i l e
prompt = ’ Enter a charac t e r (q to e x i t) : ’ ; %prompt f o r ending the code

14

whi le (myChar ˜= ’q ’) % While user hasn ’ t typed ’q ’
16 f o r i = 1 : l ength (r) %go over the e n t i r e l ength o f the

%input func t i on
18 i f r (i) > 10 %the f i r s t two par t s o f the

%i f / e l s e statement
20 x = 125 %se t hard l im i t s on the max

%and min speed o f the motor
22 e l s e i f r (i)< −10

x = 0
24 e l s e % s e t the value o f 75 as the ’0 ’

%value and have the
26 i f r (i)>0 %delay in between motor s t ep s

%varry around i t
28 x = 75 + round (5∗ r (i))

e l s e
30 x = 75 + round (5∗ r (i))

end
32 end

f p r i n t f (s , ’%c ’ , x) ; %wr i t e the value o f x over
34 %the s e r i a l l i n e

pause (. 5) %wait be f o r e wr i t i ng the next va lue
36

end
38 myChar = input (prompt , ’ s ’) ; % Get user input

end
40

f c l o s e (s) ; % Close the s e r i a l port
42 de l e t e (s) ; % Delete the s e r i a l ob j e c t

Serial com.m

11

